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Abstract. The languages of infinite timed words accepted by timed au-
tomata are traditionally defined using Büchi-like conditions. These ac-
ceptance conditions focus on the set of locations visited infinitely often
along a run, but completely ignore quantitative timing aspects. In this
paper we propose a natural quantitative semantics for timed automata
based on the so-called frequency, which measures the proportion of time
spent in the accepting locations. We study various properties of timed
languages accepted with positive frequency, and in particular the empti-
ness and universality problems.

1 Introduction

The model of timed automata, introduced by Alur and Dill in the 90’s [2] is
commonly used to represent real-time systems. Timed automata consist of an
extension of finite automata with continuous variables, called clocks, that evolve
synchronously with time, and can be tested and reset along an execution. De-
spite their uncountable state space, checking reachability, and more generally
!-regular properties, is decidable via the construction of a finite abstraction,
the so-called region automaton. This fundamental result made timed automata
very popular in the formal methods community, and lots of work has been done
towards their verification, including the development of dedicated tools like Kro-
nos or Uppaal.

More recently a huge effort has been made for modelling quantitative aspects
encompassing timing constraints, such as costs [3, 6] or probabilities [11, 5]. It is
now possible to express and check properties such as: “the minimal cost to reach
a given state is smaller than 3”, or “the probability to visit infinitely often a given
location is greater than 1/2”. As a consequence, from qualitative verification, the
emphasis is now put on quantitative verification of timed automata.

In this paper we propose a quantitative semantics for timed automata based
on the proportion of time spent in critical states (called the frequency). Contrary
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to probabilities or volume [4] that give a value to sets of behaviours of a timed
automaton (or a subset thereof), the frequency assigns a real value (in [0, 1])
to each execution of the system. It can thus be used in a language-theoretic
approach to define quantitative languages associated with a timed automaton,
or boolean languages based on quantitative criteria e.g., one can consider the
set of timed words for which there is an execution of frequency greater than a
threshold �.

Similar notions were studied in the context of untimed systems. For finite au-
tomata, mean-payoff conditions have been investigated [10, 1, 9]: with each run is
associated the limit average of weights encountered along the execution. Our no-
tion of frequency extends mean-payoff conditions to timed systems by assigning
to an execution the limit average of time spent in some distinguished locations.
It can also be seen as a timed version of the asymptotic frequency considered
in quantitative fairness games [7]. Concerning probabilistic models, a similar
notion was introduced in constrained probabilistic Büchi automata yielding the
decidability of the emptiness problem under the probable semantics [14]. Last,
the work closest to ours deals with double-priced timed automata [8], where the
aim is to synthesize schedulers which optimize on-the-long-term the reward of a
system.

Adding other quantitative aspects to timed automata comes often with a
cost (in terms of decidability and complexity), and it is often required to restrict
the timing behaviours of the system to get some computability results, see for
instance [13]. The tradeoff is then to restrict to single-clock timed automata.
Beyond introducing the concept of frequency, which we believe very natural, the
main contributions of this paper are the following. First of all, using a refinement
of the region automaton abstraction, we show how to compute the infimum and
supremum values of frequencies in a given single-clock timed automaton, as
well as a way to decide whether these bounds are realizable (i.e., whether they
are minimum and maximum respectively). The computation of these bounds
together with their realizability can be used to decide the emptiness problem for
languages defined by a threshold on the frequency. Moreover, in the restricted
case of deterministic timed automata, it allows to decide the universality problem
for these languages. Last but not least we discuss the universality problem for
frequency-languages. Even under our restriction to one-clock timed automata,
this problem is non-primitive recursive, and we provide a decision algorithm in
the case of Zeno words when the threshold is 0. Our restriction to single-clock
timed automata is crucial since at several points the techniques employed do not
extend to two clocks or more. In particular, the universality problem becomes
undecidable for timed automata with several clocks.

2 Definitions and preliminaries

In this section, we recall the model of timed automata, introduce the concept of
frequency, and show how those can be used to define timed languages. We then
compare our semantics to the standard semantics based on Büchi acceptance.

2



2.1 Timed automata and frequencies

We start with notations and useful definitions concerning timed automata [2].
Given X a finite set of clocks, a (clock) valuation is a mapping v : X → ℝ+.

We write ℝX
+ for the set of valuations. We note 0 the valuation that assigns 0 to

all clocks. If v is a valuation over X and t ∈ ℝ+, then v+ t denotes the valuation
which assigns to every clock x ∈ X the value v(x) + t. For X ′ ⊆ X we write
v[X′←0] for the valuation equal to v on X ∖X ′ and to 0 on X ′.

A guard over X is a finite conjunction of constraints of the form x ∼ c where
x ∈ X, c ∈ ℕ and ∼ ∈ {<,≤,=,≥, >}. We denote by G(X) the set of guards
over X. Given g a guard and v a valuation, we write v ∣= g if v satisfies g (defined
in a natural way).

Definition 1. A timed automaton is a tuple A = (L,L0, F,�,X,E) such that:
L is a finite set of locations, L0 ⊆ L is the set of initial locations, F ⊆ L is the
set of accepting locations, � is a finite alphabet, X is a finite set of clocks and
E ⊆ L×G(X)×� × 2X × L is a finite set of edges.

The semantics of a timed automaton A is given as a timed transition system
TA = (S, S0, SF , (ℝ+ × �),→) with set of states S = L × ℝX

+ , initial states
S0 = {(ℓ0, 0) ∣ ℓ0 ∈ L0}, final states SF = F × ℝX

+ and transition relation

→ ⊆ S × (ℝ+ × �) × S, composed of moves of the form (ℓ, v)
�,a−−→ (ℓ′, v′) with

� > 0 whenever there exists an edge (ℓ, g, a,X ′, ℓ′) ∈ E such that v+ � ∣= g and
v′ = (v + �)[X′←0].

A run % of A is an infinite sequence of moves starting in some s0 ∈ S0, i.e.,

% = s0
�0,a0−−−→ s1 ⋅ ⋅ ⋅

�k,ak−−−→ sk+1 ⋅ ⋅ ⋅ . A timed word over � is an element (ti, ai)i∈ℕ
of (ℝ+ ×�)! such that (ti)i∈ℕ is increasing. The timed word is said to be Zeno
if the sequence (ti)i∈ℕ is bounded from above. The timed word associated with %

is w = (t0, a0) . . . (tk, ak) . . . where ti =
Pi

j=0 �j for every i. A timed automaton

A is deterministic whenever, given two edges (ℓ, g1, a,X
′
1, ℓ
′) and (ℓ, g2, a,X

′
2, ℓ
′)

in E, g1 ∧ g2 cannot be satisfied. In this case, for every timed word w, there is
at most one run reading w. An example of a (deterministic) timed automaton is
given in Fig. 1. As a convention locations in F will be depicted in grey.

ℓ0 ℓ1 ℓ2

x<1,a,x:=0

x<1,a

x=1,a,x:=0

Fig. 1. Example of a timed automaton A with L0 = {ℓ0} and F = {ℓ1}.

Definition 2. Given A = (L,L0, F,�,X,E) a timed automaton and a run % =

(ℓ0, v0)
�0,a0−−−→ (ℓ1, v1)

�1,a1−−−→ (ℓ2, v2) ⋅ ⋅ ⋅ of A, the frequency of F along %, denoted
freqA(%), is defined as lim supn→∞(

P
i≤n∣ℓi∈F �i)/(

P
i≤n �i).
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Note that the choice of lim sup is arbitrary, and the choice of lim inf would be
as relevant. Furthermore notice that the limit may not exist in general.

A timed word w is said accepted with positive frequency by A if there exists
a run % which reads w and such that freqA(%) is positive. The positive-frequency
language of A is the set of timed words that are accepted with positive frequency
by A. Note that we could define more generally languages where the frequency
of each word should be larger than some threshold �, but even though some of
our results apply to this more general framework we prefer focusing on languages
with positive frequency.

Example 3. We illustrate the notion of frequency on runs of the determinis-
tic timed automaton A of Fig. 1. First, the only run in A ‘reading’ the word

(1, a).(( 13 , a).(
1
3 , a))

∗ has frequency 1
2 because the sequence n/3

1+(2n)/3 converges to
1
2 . Second, the Zeno run reading (1, a).((( 1

2k
, a).( 1

2k
, a))k)k≥1 in A has frequency

1
3 since the sequence

P
k≥1

1/2k

1+
P

k≥1
1/2k−1

converges to 1
3 . Finally, the run in A reading

the word (1, a).((( 12 , a).(
1
4 , a))

22k .(( 14 , a).(
1
2 , a))

22k+1

)k≥1 has frequency 4
9 . Note

that the sequence under consideration does not converge, but its lim sup is 4
9 .

2.2 A brief comparison with usual semantics

The usual semantics for timed automata considers a Büchi acceptance condi-
tion. We naturally explore differences between this usual semantics, and the
one we introduced based on positive frequency. The expressiveness of timed au-
tomata under those acceptance conditions is not comparable, as witnessed by the
automaton represented in Fig. 2(a): on the one hand, its positive-frequency lan-
guage is not timed-regular (i.e. accepted by a timed automaton with a standard
Büchi acceptance condition), and on the other hand, its Büchi language can-
not be recognized by a timed automaton with a positive-frequency acceptance
condition.

ℓ0 ℓ1

x=1,a,{x}

x=1,b,{x}

x=1,a,{x}

(a) Expressiveness.

ℓ0 ℓ1

�

�

(b) Universality (non-Zeno).

ℓ0 ℓ1
�

�

(c) Universality (Zeno).

Fig. 2. Automata for the comparison with the usual semantics.

The contribution of this paper is to study properties of the positive-frequency
languages. We will show that we can get very fine information on the set of
frequencies of runs in single-clock timed automata, which implies the decidability
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of the emptiness problem for positive-frequency languages. We also show that
our technics do not extend to multi-clock timed automata.

We will also consider the universality problem and variants thereof (restric-
tion to Zeno or non-Zeno timed words). On the one hand, clearly enough, a (non-
Zeno)-universal timed automaton with a positive-frequency acceptance condition
is (non-Zeno)-universal for the classical Büchi-acceptance. The timed automaton
of Fig. 2(b) is a counterexample to the converse. On the other hand, a Zeno-
universal timed automaton under the classical semantics is necessarily Zeno-
universal under the positive-frequency acceptance condition, but the automaton
depicted in Fig. 2(c) shows that the converse does not hold.

3 Set of frequencies of runs in one-clock timed automata

In this section, we give a precise description of the set of frequencies of runs in
single-clock timed automata. To this aim, we use the corner-point abstraction [8],
a refinement of the region abstraction, and exploit the links between frequencies
in the timed automaton and ratios in its corner-point abstraction. We fix a
single-clock timed automaton A = (L,L0, F,�, {x}, E).

3.1 The corner-point abstraction

Even though the corner-point abstraction can be defined for general timed au-
tomata [8], we focus on the case of single-clock timed automata.

If M is the largest constant appearing in the guards of A, the usual region
abstraction of A is the partition RegA of the set of valuations ℝ+ made of the
singletons {i} for 0 ≤ i ≤ M , the open intervals (i, i + 1) with 0 ≤ i ≤ M − 1
and the unbounded interval (M,∞) represented by ⊥. A piece of this partition
is called a region. The corner-point abstraction refines the region abstraction
by associating corner-points with regions. The singleton regions have a single
corner-point represented by ∙ whereas the open intervals (i, i + 1) have two
corner-points ∙– (the left end-point of the interval) and –∙ (the right end-point
of the interval). Finally, the region ⊥ has a single corner-point denoted �⊥. We
write (R,�) for the region R pointed by the corner � and (R,�) + 1 denotes its
direct time successor defined by:

(R,�) + 1 =

8
><
>:

((i, i+ 1), ∙–) if (R,�) = ({i}, ∙) with i < M,
((i, i+ 1), –∙) if (R,�) = ((i, i+ 1), ∙–),
({i+ 1}, ∙) if (R,�) = ((i, i+ 1), –∙),
(⊥, �⊥) if (R,�) = ({M}, ∙) or (⊥, �⊥).

Using these notions, we define the corner-point abstraction as follows.

Definition 4. The (unweighted) corner-point abstraction of A is the finite au-
tomaton Acp = (Lcp, L0,cp, Fcp, �cp, Ecp) where Lcp = L×RegA×{∙, ∙–, –∙, �⊥}
is the set of states, L0,cp = L0 × {0} × {∙} is the set of initial states, Fcp =
F × RegA × {∙, ∙–, –∙, �⊥} is the set of accepting states, �cp = � ∪ {"}, and
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Ecp ⊆ Lcp ×�cp × Lcp is the finite set of edges defined as the union of discrete
transitions and idling transitions:

– discrete transitions: (ℓ, R, �)
a−→ (ℓ′, R′, �′) if � is a corner-point of R and

there exists a transition ℓ
g,a,X′

−−−−→ ℓ′ in A, such that R ⊆ g and (R′, �′) =
(R,�) if X ′ = ∅, otherwise (R′, �′) = ({0}, ∙),

– idling transitions: (ℓ, R, �)
"−→ (ℓ, R′, �′) if � (resp. �′) is a corner-point of

R (resp. R′) and (R′, �′) = (R,�) + 1.

We decorate this finite automaton with two weights for representing frequencies,
one which we call the cost, and the other which we call the reward (by analogy
with double-priced timed automata in [8]). The (weighted) corner-point abstrac-
tion AF

cp is obtained from Acp by labeling idling transitions in Acp as follows:

transitions (ℓ, R, �)
"−→ (ℓ, R, �′) with (R,�′) = (R,�) + 1 (�′ = �+ 1 for short)

are assigned cost 1 (resp. cost 0) and reward 1 if ℓ ∈ F (resp. ℓ /∈ F ), and all
other transitions are assigned both cost and reward 0. To illustrate this defini-
tion, the corner-point abstraction of the timed automaton in Fig. 1 is represented
in Fig. 3.

ℓ0,{0}, ∙ ℓ0,(0,1), ∙— ℓ0,(0,1), —∙ ℓ0,{1}, ∙ ℓ0,⊥, ⊥

ℓ1,{0}, ∙ ℓ1,(0,1), ∙— ℓ1,(0,1), —∙ ℓ1,{1}, ∙ ℓ1,⊥, ⊥

ℓ2,{0}, ∙ ℓ2,(0,1), ∙— ℓ2,(0,1), —∙ ℓ2,{1}, ∙ ℓ2,⊥, ⊥

",0/1

",1/1

",0/1

",0/0

",0/0 ",0/0

",0/0 ",0/0

",0/0 ",0/1 ",0/0

",0/0 ",1/1

",0/0 ",0/1

a,0/0 a,0/0

a,0/0

a,0/0 a,0/0

Fig. 3. The corner-point abstraction AF
cp of A represented Fig. 1.

There will be a correspondence between runs in A and runs in Acp. As time
is increasing in A we forbid runs in Acp where two actions have to be made in

0-delay (this is easy to do as there should be no sequence . . .
�−→ (ℓ, R, �)

�′

−→ . . . ,
where both � and �′ are actions and R is a punctual region).

Given � a run in AF
cp the ratio of �, denoted Rat(�), is defined, provided

it exists, as the lim sup of the ratio of accumulated costs divided by accumu-
lated rewards for finite prefixes. Run � is said reward-converging (resp. reward-
diverging) if the accumulated reward along � is bounded (resp. unbounded).
Reward-converging runs in AF

cp are meant to capture Zeno behaviours of A.

6



Given % a run in A we denote by Projcp(%) the set of all runs in AF
cp compati-

ble with % in the following sense. We assume % = (ℓ0, v0)
�0,a0−−−→ (ℓ1, v1)

�1,a1−−−→ ⋅ ⋅ ⋅ ,
where move (ℓi, vi)

�i,ai−−−→ (ℓi+1, vi+1) comes from an edge ei. A run4 � =
(ℓ0, R

1
0, �

1
0) → (ℓ0, R

2
0, �

2
0) → ⋅ ⋅ ⋅ → (ℓ0, R

k0
0 , �k0

0 ) → (ℓ1, R
1
1, �

1
1) → ⋅ ⋅ ⋅ →

(ℓ1, R
k1
1 , �k1

1 ) ⋅ ⋅ ⋅ of AF
cp is in Projcp(%) if for all indices n ≥ 0:

– for all i ≤ kn, �
i
n is a corner-point of Ri

n,
– for all i ≤ kn − 1, (Ri+1

n , �i+1
n ) = (Ri

n, �
i
n) + 1,

– (R1
n+1, �

1
n+1) is the successor pointed-region of (Rkn

n , �kn
n ) by transition en

(that is (R1
n+1, �

1
n+1) = ({0}, ∙) if en resets the clock x and otherwise

(R1
n+1, �

1
n+1) = (Rkn

n , �kn
n )),

– vn ∈ R1
n and if Rkn

n ∕= ⊥, vn + �n ∈ Rkn
n ,

– if Rkn
n = ⊥, the sum �n of the rewards since region {0} has been visited for

the last time has to be equal to ⌊vn + �n⌋ or ⌈vn + �n⌉.5 Note that �n can
be seen as the abstraction of the valuation vn.

Remark 5. As defined above, the size of AF
cp is exponential in the size of A

because the number of regions is 2M (which is exponential in the binary encoding
of M). We could actually take a rougher version of the regions [12], where only
constants appearing in A should take part in the region partition. This partition,
specific to single-clock timed automata is only polynomial in the size of A. We
choose to simplify the presentation by considering the standard unit intervals.

We will now see that the corner-point abstraction is a useful tool to deduce
properties of the set of frequencies of runs in the original timed automata.

3.2 From 퓐 to 퓐F
cp, and vice-versa

We first show that given a run % of A, there exists a run in Projcp(%), whose
ratio is smaller (resp. larger) than the frequency of %.

Lemma 6 (From A to AF
cp). For every run % in A, there exist � and �′ in

AF
cp that can effectively be built and belong to Projcp(%) such that:

Rat(�) ≤ freqA(%) ≤ Rat(�′).

Run � (resp. �′) minimizes (resp. maximizes) the ratio among runs in Projcp(%).

Such two runs of AF
cp can be effectively built from %, through the so-called

contraction (resp. dilatation) operations. Intuitively it consists in minimizing
(resp. maximizing) the time elapsed in F -locations.

Note that the notion of contraction cannot be adapted to the case of timed
automata with several clocks, as illustrated by the timed automaton in Fig. 4.
Consider indeed the run alternating delays ( 12 + 1

n ) and 1− ( 12 + 1
n ) for n ∈ ℕ,

4 For simplicity, we omit here the transitions labels
5 Roughly, in the unbounded region ⊥, the number of times an idling transition is
taken should reflect how ‘big’ the delay �n is.
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and switching between the left-most cycle (ℓ1− ℓ2− ℓ1) and the right-most cycle
(ℓ3− ℓ4− ℓ3) following the rules: in round k, take 22k times the cycle ℓ1− ℓ2− ℓ1,
then switch to ℓ3 and take 22k+1 times the cycle ℓ3 − ℓ4 − ℓ3 and return back to
ℓ1 and continue with round k+1. This run cannot have any contraction since its
frequency is 1

2 , whereas all its projections in the corner-point abstraction have
ratio 2

3 , the lim sup of a non-converging sequence. This strange behavior is due
to the fact that the delays in ℓ1 and ℓ3 need to be smaller and smaller, and this
converging phenomenon requires at least two clocks.

ℓ1 ℓ2 ℓ4ℓ3

x<1,a,x:=0

y=1,a,y:=0

x<1,a,x:=0

y=1,a,y:=0

x<1,a,x:=0

y=1,a,y:=0

Fig. 4. A counterexample with two clocks for Lemma 6.

We now want to know when and how runs in AF
cp can be lifted to A. To that

aim we distinguish between reward-diverging and reward-converging runs.

Lemma 7 (From AF
cp to A, reward-diverging case). For every reward-

diverging run � in AF
cp, there exists a non-Zeno run % in A such that � ∈

Projcp(%) and freqA(%) = Rat(�).

Proof (Sketch). The key ingredient is that given a reward-diverging run � in AF
cp,

for every " > 0, one can build a non-Zeno run %" of A with the following strong
property: for all n ∈ ℕ, the valuation of the n-th state along %� is �

2n -close to
the abstract valuation in the corresponding state in �. The accumulated reward
along � diverges, hence freqA(%") is equal to Rat(�). □

The restriction to single-clock timed automata is crucial in Lemma 7. Indeed,
consider the two-clocks timed automaton depicted in Fig. 5(a). In its corner-point
abstraction there exists a reward-diverging run � with Rat(�) = 0, however every
run % satisfies freqA(%) > 0.

ℓ0 ℓ1 ℓ2
0<x<1,a,y:=0

x>1,a,x:=0

y=1,a,y:=0

(a) A counterexample with two clocks.

ℓ0 ℓ1 ℓ2
x=1,a,x:=0x=1,a,x:=0

x>0,a,x:=0

(b) Zeno case.

Fig. 5. Counterexamples to extensions of Lemma 7.

8



Lemma 8 (From AF
cp to A, reward-converging case). For every reward-

converging run � in AF
cp, if Rat(�) > 0, then for every " > 0, there exists a Zeno

run %" in A such that � ∈ Projcp(%") and ∣freqA(%")− Rat(�)∣ < ".

Proof (Sketch). A construction similar to the one used in the proof of Lemma 7
is performed. Note however that the result is slightly weaker, since in the reward-
converging case, one cannot neglect imprecisions (even the smallest) forced e.g.,
by the prohibition of the zero delays. □

Note that Lemma 8 does not hold in case Rat(�) = 0, where we can only
derive that the set of frequencies of runs % such that � ∈ Projcp(%) is either
{0} or {1} or included in (0, 1). Also an equivalent to Lemma 7 for Zeno runs
(even in the single-clock case!) is hopeless. The timed automaton A depicted
in Fig. 5(b), where F = {ℓ0, ℓ2} is a counterexample. Indeed, in AF

cp there is

a reward-converging run � with Rat(�) = 1
2 , whereas all Zeno runs in A have

frequency larger than 1
2 .

3.3 Set of frequencies of runs in 퓐

We use the strong relation between frequencies in A and ratios in AF
cp proven in

the previous subsection to establish key properties of the set of frequencies.

Theorem 9. Let ℱA = {freqA(%) ∣ % run of A} be the set of frequencies of runs
in A. We can compute inf ℱA and supℱA. Moreover we can decide whether these
bounds are reached or not. Everything can be done in NLOGSPACE.

The above theorem is based on the two following lemmas dealing respectively
with the set of non-Zeno and Zeno runs in A.

Lemma 10 (non-Zeno case). Let {C1, ⋅ ⋅ ⋅ , Ck} be the set of reachable SCCs
of AF

cp. The set of frequencies of non-Zeno runs of A is then ∪1≤i≤k[mi,Mi]
where mi (resp. Mi) is the minimal (resp. maximal) ratio for a reward-diverging
cycle in Ci.

Proof (Sketch). First, the set of ratios of reward-diverging runs in AF
cp is exactly

∪1≤i≤k[mi,Mi]. Indeed, given two extremal cycles cm and cM of ratios m and
M in an SCC C of AF

cp, we show that every ratio m ≤ r ≤ M can be obtained
as the ratio of a run ending in C by combining in a proper manner cm and cM .
Then, using Lemmas 6 and 7 we derive that the set of frequencies of non-Zeno
runs in A coincides with the set of ratios of reward-diverging runs in AF

cp. □

Lemma 11 (Zeno case). Given � a reward-converging run in AF
cp, it is decid-

able whether there exists a Zeno run % such that � is the contraction of % and
freqA(%) = Rat(�).

Proof (Sketch). Observe that every fragment of � between reset transitions can
be considered independently, since compensations cannot occur in Zeno runs:
even the smallest deviation (such as a delay " in A instead of a cost 0 in �) will
introduce a difference between the ratio and the frequency. A careful inspection
of cases allows one to establish the result stated in the lemma. □
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Using Lemmas 10 and 11, let us briefly explain how we derive Theorem 9.
For each SCC C of the corner-point abstraction AF

cp, the bounds of the set of
frequencies of runs whose contraction ends up in C can be computed thanks to
the above lemmas. We can also furthermore decide whether these bounds can
be obtained by a real run in A. The result for the global automaton follows.

Remark 12. The link between A and AF
cp differs in several aspects from [8].

First, a result similar to Lemma 6 was proven, but the runs � and �′ were
not in Projcp(%), and more importantly it heavily relied on the reward-diverging
hypothesis. Then the counter-part of Theorem 9 was weaker in [8] as there was
no way to decide whether the bounds were reachable or not.

4 Emptiness and Universality Problems

The emptiness problem. In our context, the emptiness problem asks, given a
timed automaton A whether there is a timed word which is accepted by A with
positive frequency. We also consider variants where we focus on non-Zeno or
Zeno timed words. As a consequence of Theorem 9, we get the following result.

Theorem 13. The emptiness problem for infinite (resp. non-Zeno, Zeno) timed
words in single-clock timed automata is decidable. It is furthermore NLOGSPACE-
Complete.

Note that the problem is open for timed automata with 2 clocks or more.

The universality problem. We now focus on the universality problem, which asks,
whether all timed words are accepted with positive frequency in a given timed
automaton. We also consider variants thereof which distinguish between Zeno
and non-Zeno timed words. Note that these variants are incomparable: there are
timed automata that, with positive frequency, recognize all Zeno timed words
but not all non-Zeno timed words, and vice-versa.

A first obvious result concerns deterministic timed automata. One can first
check syntactically whether all infinite timed words can be read (just locally
check that the automaton is complete). Then we notice that considering all
timed words exactly amounts to considering all runs. Thanks to Theorem 9, one
can decide, in this case, whether there is or not a run of frequency 0. If not, the
automaton is universal, otherwise it is not universal.

Theorem 14. The universality problem for infinite (resp. non-Zeno, Zeno) timed
words in deterministic single-clock timed automata is decidable. It is furthermore
NLOGSPACE-Complete.

Remark 15. Note that results similar to Theorems 13 and 14 hold when consid-
ering languages defined with a threshold � on the frequency.

If we relax the determinism assumption this becomes much harder!

Theorem 16. The universality problem for infinite (resp. non-Zeno, Zeno) timed
words in a one-clock timed automaton is non-primitive recursive. If two clocks
are allowed, this problem is undecidable.

10
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Fig. 6.

Proof (Sketch). The proof is done by reduction
to the universality problem for finite words in
timed automata (which is known to be undecid-
able for timed automata with two clocks or more [2]
and non-primitive recursive for one-clock timed au-
tomata [13]). Given a timed automaton A that ac-
cepts finite timed words, we construct a timed au-
tomaton ℬ with an extra letter c which will be inter-
preted with positive frequency. From all accepting
locations of A, we allow ℬ to read c and then accept
everything (with positive frequency). The construction is illustrated on Fig. 6.
It is easy to check that A is universal over � iff ℬ is universal over � ∪ {c}. 2

Theorem 17. The universality problem for Zeno timed words with positive fre-
quency in a single-clock timed automaton is decidable.

Proof (Sketch). This decidability result is rather involved and requires some
technical developments for which there is no room here. It is based on the idea
that for a Zeno timed word to be accepted with positive frequency it is (necessary
and) sufficient to visit an accepting location once. Furthermore the sequence of
timestamps associated with a Zeno timed word is converging, and we can prove
that from some point on, in the automaton, all guards will be trivially either
verified or denied: for instance if the value of the clock is 1.4 after having read
a prefix of the word, and if the word then converges in no more than 0.3 time
units, then only the constraint 1 < x < 2 will be satisfied while reading the
suffix of the word, unless the clock is reset, in which case only the constraint
0 < x < 1 will be satisfied. Hence the algorithm is composed of two phases: first
we read the prefix of the word (and we use a now standard abstract transition
system to do so, see [13]), and then for the tail of the Zeno words, the behaviour
of the automaton can be reduced to that of a finite automaton (using the above
argument on tails of Zeno words). □

5 Conclusion

In this paper we introduced a notion of (positive-)frequency acceptance for timed
automata and studied the related emptiness and universality problems. This se-
mantics is not comparable to the classical Büchi semantics. For deterministic
single-clock timed automata, emptiness and universality are decidable by inves-
tigating the set of possible frequencies based on the corner-point abstraction.
For (non-deterministic) single-clock timed automata, the universality problem
restricted to Zeno timed words is decidable but non-primitive recursive. The
restriction to single-clock timed automata is justified on the one hand by the
undecidability of the universality problem in the general case. On the other
hand, the techniques we employ to study the set of possible frequencies do not
extend to timed automata with several clocks. A remaining open question is the
decidability status of the universality problem for non-Zeno timed words, which

11



is only known to be non-primitive recursive. Further investigations include a
deeper study of frequencies in timed automata with multiple clocks, and also
the extension of this work to languages accepted with a frequency larger than a
given threshold.
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14. M. Tracol, C. Baier, and M. Größer. Recurrence and transience for probabilis-
tic automata. In Proc. 29th IARCS Annual Conf. on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’09), vol. 4 of LIPIcs, pp.
395–406. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2009.

12


