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Abstract
We introduce parameterized communicating automata (PCA) as
a model of systems where finite-state processes communicate
through FIFO channels. Unlike classical communicating automata,
a given PCA can be run on any network topology of bounded
degree. The topology is thus a parameter of the system. We pro-
vide various Büchi-Elgot-Trakhtenbrot theorems for PCA, which
roughly read as follows: Given a logical specification ϕ and a
class of topologies T, there is a PCA that is equivalent to ϕ on
all topologies from T. We give uniform constructions which allow
us to instantiate T with concrete classes such as pipelines, ranked
trees, grids, rings, etc. The proofs build on a locality theorem for
first-order logic due to Schwentick and Barthelmann, and they ex-
ploit concepts from the non-parameterized case, notably a result by
Genest, Kuske, and Muscholl.

Categories and Subject Descriptors F.1.1 [Computation by Ab-
stract Devices]: Models of Computation; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords communicating automata, parameterized topology,
message sequence charts, monadic second-order logic, realizability

1. Introduction
The Büchi-Elgot-Trakhtenbrot theorem states that finite automata
and monadic second-order (MSO) logic over words are expres-
sively equivalent [9, 14, 31]. This connection between automata
and logic constitutes one of the cornerstones in theoretical com-
puter science, as it bridges the gap between high-level specifica-
tions and operational system models. Various extensions of that re-
sult followed, providing logical characterizations of tree automata
[29], asynchronous automata [32], and graph acceptors [30], to
mention just a few.

In recent years, an analogous question has been studied for
communicating automata (CA). A CA consists of several finite-
state processes that can exchange messages through FIFO channels
by performing send and receive actions. A single execution of
a CA is captured by a message sequence chart (MSC), a finite
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directed acyclic graph, whose nodes represent the events that are
observed during an execution. Its edge relation C = Cproc ∪ Cmsg

visualizes causal dependencies between events. Edges from Cproc

connect consecutive events performed by a process, and edges
from Cmsg connect send events with their corresponding receives.
Logical characterizations have been established for unrestricted CA
[6] and channel-bounded CA [19, 23, 26]. All these results require
the underlying communication topology, which provides a set of
processes and channels between them, to be fixed.

Now, it is a natural question to ask for an automaton that realizes
a given logical specification for a class of topologies (for example,
all grid topologies, no matter what the size of the grid is). This is
what this paper is about, i.e., we aim for Büchi-Elgot-Trakhtenbrot
theorems in a setting with non-fixed, parameterized topology.

In a first step, we introduce parameterized communicating au-
tomata (PCA). Unlike classical CA, a given PCA can be run on
any network topology of bounded degree (such as pipelines, ranked
trees, grids, or rings). PCA are a conservative extension of CA and,
as such, also recognize sets of MSCs. Our study is centered around
the following question, which depends on a given logical specifica-
tion ϕ and a given class T of topologies:

Is there a PCA A that is equivalent to ϕ on all topolo-
gies T ∈ T (when A is run on T , it accepts precisely
the MSCs over T that satisfy ϕ)?

If the answer is affirmative, then we say that formula ϕ is realiz-
able for T. This paper investigates realizability wrt. several logics
and instances of T in a unifying framework. We consider standard
first-order and existential MSO logic, FO[σ] and EMSO[σ], respec-
tively. Here, σ ⊆ {Cproc,C∗proc,Cmsg,C∗,∼} is the collection of
binary relation symbols that are available in the logic. All symbols
are self-explanatory apart from ∼, which allows us to say that two
events are executed by the same process.

Our first results settle the limits of what we can hope for:

(i) There is an FO[Cproc,Cmsg]-formula that is not realizable for
the class of “ring forests” (unions of ring topologies).

(ii) There is an FO[C∗proc,Cmsg,C∗]-formula that is not realizable
already for the class of binary trees.

This shows that we have to restrict both, the topologies and the
logic, and that we are left with only a small margin for posi-
tive results. However, we are able to provide various Büchi-Elgot-
Trakhtenbrot theorems:

(iii) Every EMSO[Cproc,Cmsg,∼]-formula is realizable for the
classes of pipelines, ranked trees, grids, and rings.

(iv) When we suppose that the channels of a PCA are bounded, then
every EMSO[C∗proc,Cmsg]-formula is realizable for the classes
of pipelines, ranked trees, grids, and rings.



Note that the logic used in (iii) is a priori weaker than the logic from
(iv). The predicate ∼ allows one to say that two events are located
on the same process. However, unlike C∗proc, it cannot impose a
particular order on them.

In fact, we obtain (iii) and (iv) as corollaries of more general,
uniform statements: it is shown that every EMSO formula is real-
izable for T whenever T is unambiguous. Intuitively, this rules out
cycle patterns that a PCA is not able to detect on its own. Indeed,
the classes of pipelines, ranked trees, and grids are all unambiguous
so that we get realizability as a direct corollary. To capture also the
class of rings, some additional arguments are needed.

Note that, for (iii) and (iv) to apply, a class T of topologies
has to be fixed in advance. The construction of a PCA A from a
formula ϕ is uniform, but it crucially depends on T. That is, though
A can still be run on any other topology of bounded degree, it
is only guaranteed to be equivalent to ϕ when it is applied to a
topology from T. Now, when we fix T, we have in mind that we
run A only on topologies T ∈ T. For that reason, A does not have
to check membership of T in T. However, it will have to collect
some topological information to identify bounded subtopologies
among those from T. In fact, the translation from logic to PCA
builds on a locality theorem for first-order logic due to Schwentick
and Barthelmann, which states that satisfaction of a formula in a
structure can be reduced to satisfaction of a normal-form formula in
bounded portions of the same structure [28]. This allows us to apply
notions from the setting with fixed topologies, notably a result by
Genest, Kuske, and Muscholl [19]. Hereby, the assumption that
topologies are of bounded degree is crucial.

For the logic EMSO[Cproc,Cmsg], we provide a variation of the
theme: Every formula ϕ can be translated into a PCA that is equiv-
alent to ϕ on all prime topologies. In that case, the construction
is independent of a concrete class of topologies (once the bound
on the degree has been fixed). Intuitively, a topology is prime if
none of its cycles has a periodic labeling. For example, a ring is not
prime, while pipelines, trees, and grids are all prime.1

Finally, every PCA A can be transformed into a formula from
EMSO[Cproc,Cmsg] that is equivalent to A on all topologies of
bounded degree. Thus, overall, we indeed establish a variety of
Büchi-Elgot-Trakhtenbrot theorems for PCA.

Related Work It seems that neither PCA nor expressiveness of
parameterized systems in general in terms of logic have been con-
sidered in the literature.

For classical CA, the term realizability was coined by Alur,
Etessami, and Yannakakis [2], who formulated it as a decision
problem: Given an MSC graph (a sort of regular expression over
MSCs), is there a CA that generates the same set of MSCs? Note
that we do not study a decision problem here, and our model of (pa-
rameterized) CA is different in that messages can carry information
that is abstracted away in the observable behavior. Rather, our work
is in line with [6, 19, 23, 26], which aim at a logical characteriza-
tion of CA. Note that, like [6, 19, 23], we assume a semantics in
terms of finite MSCs, while [26] considers infinite behaviors.

In [24], Jacobs and Bloem study parameterized synthesis, where
a temporal-logic specification is transformed into a system of pro-
cesses that are arranged in a token ring of arbitrary size. Build-
ing on [15], the idea is to reduce parameterized synthesis to dis-
tributed synthesis over a bounded architecture. Though we also use
a reduction to a bounded case, our framework differs from [24] in
the model (asynchronous rather than token communication), in the
topologies, and in the logic.

In parameterized verification, one aims at showing that a given
system is correct independently of the number of processes or

1 “Prime” is a property of single topologies, while “unambiguous” refers to
sets of topologies.

the communication topology [1, 7, 8, 11–13, 21]. Our approach
is different, since we generate a system model from a high-level
specification.

There have been a variety of automata constructions that exploit
normal forms of first-order logic [17, 28, 30]. We actually borrow
a technique from [17], but the overall framework is quite different.

Finally, our contribution intersects the area of distributed algo-
rithms. Indeed, the way a PCA evaluates a (sub)topology is similar
to constructing a map of an anonymous graph [10]. In particular,
our notion of unambiguous classes of topologies is in the spirit of
universal sequences. There are also methods to evaluate graphs ver-
sus logical specifications [22]. Though all those techniques do not
seem to be directly applicable, it will be worthwhile to explore pos-
sible connections further.

Outline Sections 2–4 settle basic notions such as topologies,
MSCs, PCA, and MSO logic. In Section 5, we argue that we
will have to restrict both topologies and logic. Sections 6 and
7 present the above-mentioned Büchi-Elgot-Trakhtenbrot theo-
rems, respectively. We conclude in Section 8. Due to space con-
straints, most proofs are only sketched or omitted. All details can
be found in the technical report available at the following link:
http://hal.archives-ouvertes.fr/hal-00872807/

2. Preliminaries
2.1 Communication Topologies
A (communication) topology2 is made up of single entities such as
b a . Here, a process (represented by the circle) is equipped

with two interfaces, a and b. The interfaces allow the process
to communicate with its environment. When they are connected
to interfaces of other processes, we obtain a topology. A simple
pipeline topology is depicted below.

a b a b a b a b a b

Thus, a topology is essentially a graph, whose nodes are pro-
cesses that can communicate with adjacent processes via their in-
terfaces. The pipeline, for example, will allow a process to execute
actions !a and ?a in order to send a message to (receive a message
from, respectively) its right neighbor, if it exists. Accordingly, !b
and ?b refer to the left neighbor. Actually, we assume that any two
processes p and q that are adjacent in the topology communicate
through (a priori unbounded) FIFO channels. More precisely, there
are two FIFO channels between p and q, one for messages sent
from p to q, and one for messages from q to p. Thus, p qa b

can be understood as p q

!a ?b

!b?a

.

Let us define topologies formally. Throughout the paper, unless
stated otherwise, we fix a nonempty finite setN = {a, b, c, . . .} of
(interface) names. When we talk about a concrete process, we may
also say interface instead of name.

Definition 1. A topology overN is a pair T = (P, ) where

• P is the nonempty finite set of processes, and
• ⊆ P ×N ×N × P is the edge relation.

2 What we call topology is sometimes termed architecture. It seems that,
however, in a parameterized setting, the term topology is more custom.
Actually, our definition does not quite correspond to architectures from
the literature, which often assume an explicit set of channels. In our work,
channels arise implicitly when processes are connected via their interfaces.
Interfaces support the view that a process is specified independently of a
concrete topology.
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We write p a b q for (p, a, b, q) ∈ , which signifies that the
a-interface of p points to q, and the b-interface of q points to p. We
require that, whenever p a b q, the following hold:

(a) p 6= q,
(b) q b a p, and
(c) for all a′, b′ ∈ N and q′ ∈ P such that p a′ b′ q′, we have

a = a′ iff q = q′.

By (a), a topology does not contain self-loops. Condition (b)
says that two adjacent processes are mutually connected (in other
words, a topology is “undirected”). By (c), a name points to at most
one process, and two distinct names point to distinct processes.

We usually consider topologies up to isomorphism. The set of
all topologies overN is denoted by TN .

Given a topology T = (P, ) ∈ TN , a PCA will run
identical subautomata on processes of the same type. We define
typeT : P → 2N by typeT (p) := {a ∈ N | there are b ∈ N
and q ∈ P such that p a b q}. Thus, typeT (p) contains those
interfaces of p that are connected to some other process.
Remark 1. One can also define types independently ofN , in terms
of an extra finite set Types , and include a mapping type : P →
Types in the topology. In our setting, this can be encoded by
choosing N × Types as new set of names. In a topology, an edge
p a b q is then replaced by an edge with names (a, type(p)) and
(b, type(q)). All definitions can be adapted easily, and all results
hold verbatim in this alternative setting.

Example 1. Let us identify some typical topology classes. We give
an informal description. The precise definitions are as expected.

Pipelines: A pipeline is a topology over {a, b}, as already indi-
cated above. Recall that interface a points to the right neighbor of a
process (if it exists), while b is connected to the left neighbor. Ac-
cordingly, the leftmost process has type {a}, the rightmost process
has type {b}, and all inner processes have type {a, b}. The pipeline
with n ≥ 2 processes is denoted by T nlin . Figure 1 depicts T 4

lin. We
let Tlin = {T nlin | n ≥ 2} ⊆ T{a,b} denote the set of all pipelines.

Trees: We suppose that trees are binary, but we could consider
arbitrary ranked alphabets. An example tree is depicted in Figure 2.
Hence, a tree is a topology over {a, b, c, d}where interface a points
to the left son, and c to the right son of a process, while b and d are
their respective “dual” interfaces. We suppose that a tree has at least
two processes. The type of a leaf is either {b} or {d}. The type of
the root is either {a}, {c}, or, as is the case in Figure 2, {a, c}. The
set of all tree topologies is denoted by Ttree ⊆ T{a,b,c,d}. Note that
pipelines can be seen as a special case of trees.

Grids: A grid is a topology over {a, b, c, d} where processes
are arranged in a matrix. It is uniquely given by its number m ≥ 1
of rows and its number n ≥ 1 of columns. Again, there should be at
least two processes so that we suppose max{m,n} ≥ 2. A process
that is not located on the border has a right and a left neighbor
(following a and b, respectively), but also adjacent nodes below
and above (following c and d). Let T m,ngrid denote the grid with m

rows and n columns. An example is illustrated in Figure 3. By
Tgrid = {T m,ngrid | m,n ≥ 1 with max{m,n} ≥ 2} ⊆ T{a,b,c,d},
we denote the set of all grids. Again, a pipeline is a special case of
a grid.

Rings: A ring can be seen as a pipeline where the endpoints are
glued together. Thus, it is a topology over {a, b} in which every
process has type {a, b}. The ring with n ≥ 3 processes is denoted
by T nring. Figure 4 illustrates T 5

ring. We denote the set of all rings by
Tring = {T nring | n ≥ 3} ⊆ T{a,b}. �

Remark 2. For many concrete topology classes of bounded degree
such as pipelines, grids, or rings, the names are canonical so that
fixing them in advance is not a restriction. Moreover, in most
cases considered in the literature, a few (sometimes even one)
process types will do. In particular, it is a common assumption that
processes in a ring are indistinguishable [8, 15, 24]. However, one
could also assume a distinguished leader process and add another
interface name just for the purpose of identifying the leader; cf. also
Remark 1.

2.2 Message Sequence Charts
The semantics of both an automaton and a logic formula will be
defined as a set of message sequence charts (MSCs). Each MSC
depicts a single execution of a system. It is formalized as a labeled
finite directed acyclic graph whose nodes, the events, are associ-
ated with processes from a given communication topology. Events
are linked by process edges Cproc and message edges Cmsg. The
process edges connect consecutive events of one process, and mes-
sage edges connect send events with their corresponding receives
according to a FIFO policy.

Definition 2. An MSC over T = (P, ) ∈ TN is a triple
M = (E,C, `) where

• E is the nonempty finite set of events,
• C ⊆ E × E is the acyclic edge relation, which is partitioned

into Cproc and Cmsg, and
• ` : E → P determines the location of an event in the topology;

for p ∈ P , we let Ep := {e ∈ E | `(e) = p}.
We require that the following hold:

• Cproc is a union
⋃
p∈P Cp where each Cp ⊆ Ep × Ep is the

direct-successor relation of some total order on Ep,
• there are a partitionE = E!]E? and a bijection µ : E! → E?

such that Cmsg = {(e, µ(e)) | e ∈ E!},
• for all (e, f) ∈ Cmsg, there are a, b ∈ N such that `(e) a b

`(f) (communication is restricted to adjacent processes), and
• for all (e, f), (e′, f ′) ∈ Cmsg such that `(e) = `(e′) and
`(f) = `(f ′), we have eC∗proc e

′ iff f C∗proc f
′ (FIFO).

We do not distinguish isomorphic MSCs over T .
Given an MSC M = (E,C, `), we define a mapping actM :

E → { !a , ?a | a ∈ N} that associates with an event the
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Figure 5. MSC M8
lin over topology T 8

lin

action that it executes: for (e, f) ∈ Cmsg and a, b ∈ N such that
`(e) a b `(f), we let actM (e) = !a and actM (f) = ?b.

Example 2. Figure 5 illustrates an MSC, call itM8
lin, over topology

T 8
lin ∈ Tlin. The behavior of each process is represented by a top-

down process line. Arrows between process lines determine the
relation Cmsg, connecting send events with their receive events.
For illustration, some events are labeled with the actions that they
execute. We may consider Mn

lin as the execution of a P2P protocol:
a request from the leftmost process is forwarded by n − 2 inner
processes of type {a, b}, until it reaches the rightmost process. An
acknowledgement is then relayed back to the first process along
the same way backwards. Figure 10 depicts an example MSC over
T 2,5

grid . �

Our main result will deal with systems that have (existentially)
B-bounded channels, for someB ≥ 1 [19, 20]. Intuitively, an MSC
is B-bounded if it can be scheduled in such a way that, along the
execution, there are never more than B messages in each channel.
Formally, we define boundedness via linearizations. A linearization
of an MSC M = (E,C, `) over T = (P, ) is any total
order � ⊆ E × E satisfying C∗ ⊆ �. Then, � is called B-
bounded if, for all f ∈ E, p, q ∈ P , and a, b ∈ N such that
p a b q, we have |{e ∈ E | e � f , `(e) = p, and actM (e) =
!a}| − |{e ∈ E | e � f , `(e) = q, and actM (e) = ?b}| ≤ B. In
other words, in any prefix of �, there are no more than B pending
messages, in every “channel” (p, q). Now, we say that MSC M is
B-bounded if it has some B-bounded linearization. For example,
for all n ≥ 2, the MSC Mn

lin (cf. Figure 5) is 1-bounded, because
its (only) linearization is 1-bounded.

3. Parameterized Communicating Automata
Next, we introduce PCA. Their definition does not depend on a
topology, but only on N . The language of a PCA, a set of MSCs,
is then parameterized by a topology.

Definition 3. A parameterized communicating automaton (PCA)
overN is a tuple A = (S,Msg ,∆, I, F ) where

• S is the finite set of states,
• Msg is the finite set of messages,
• I : (2N \ {∅}) → 2S assigns to each nonempty process type

its initial states,
• F is the acceptance condition: a finite boolean combination of

statements 〈#(s) ≥ k〉 with s ∈ S and k ∈ N (to be read as
“s occurs at least k times as the terminal state of a process”),
and

• ∆ ⊆ S × ΣA × S is the set of transitions.

Here, ΣA := { !ma , ?ma | a ∈ N and m ∈ Msg} contains send
actions !ma and receive actions ?ma. A transition (s, η, s′) ∈ ∆ is
also written s

η
=⇒ s′.

{a}
!reqa ?acka

{a, b}
?reqb !reqa ?acka !ackb

{b}
?reqb !ackb

Figure 6. PCA A over {a, b}

The class of PCA over N is denoted by PCAN . A PCA over
N can be run on any topology T = (P, ) ∈ TN . The idea
is that every process p ∈ P executes a copy of the transition
system (S,∆), starting in some state from I(typeT (p)). Thus, one
could define a PCA (equivalently) as a collection of finite automata,
each describing the local behavior of a particular process type.
Suppose p a b q for processes p, q ∈ P and names a, b ∈ N .
When p executes a transition (s, !ma, s

′) ∈ ∆, it changes its local
state from s to s′ and writes m into the FIFO channel (p, q). The
messagem can then be received by process q executing a transition
with action ?mb. However, messages are abstracted away in the
observable MSC behavior (they are in the spirit of stack symbols in
visibly pushdown automata [3]).

Formally, we define the semantics of a PCA directly on MSCs.
This is equivalent to an operational semantics in terms of an in-
finite transition system, but closer to the logical approach where
formulas are evaluated over MSCs (see Section 4). Let A =
(S,Msg ,∆, I, F ) ∈ PCAN be a PCA, T = (P, ) ∈ TN
be a topology, and M = (E,C, `) be an MSC over T . A run of A
on M will be a mapping ρ : E → S. Intuitively, ρ(e) is the state
that process `(e) reaches after executing e ∈ E. To define when ρ
is a run, we will need some more notation.

Set PM := {p ∈ P | Ep 6= ∅}, which is the set of active
processes of M . A (global) initial state of A for M is a tuple
ι = (ιp)p∈PM where ιp ∈ I(typeT (p)) for all p ∈ PM . Given ι
and ρ : E → S (a possible MSC run), we define another mapping
ρ−ι : E → S, which returns the source state of a transition. For
(f, e) ∈ Cproc, we let ρ−ι (e) = ρ(f); for a Cproc-minimal event
e ∈ E, we let ρ−ι (e) = ι`(e).

Now, a mapping ρ : E → S is called a run of A on M if
there is an initial state ι = (ιp)p∈PM for M such that, for all
(e, f) ∈ Cmsg, there are a, b ∈ N and m ∈ Msg satisfying
`(e) a b `(f), ρ−ι (e)

!ma===⇒ ρ(e), and ρ−ι (f)
?mb===⇒ ρ(f).

To determine if ρ is accepting, we define a multiset hρ : S → N
over S that counts how often each state occurs as the terminal state
of an active process. For s ∈ S, we let hρ(s) = |{e ∈ E | e
is Cproc-maximal and ρ(e) = s}|. We say that ρ is accepting if
hρ satisfies F in the expected manner; in particular, hρ satisfies
〈#(s) ≥ k〉 if hρ(s) ≥ k. The MSC M is accepted by A if it
admits an accepting run of A. For a topology T , the set of MSCs
over T that are accepted by A is denoted by LT (A). Finally, we
let LBT (A) be the restriction of LT (A) to B-bounded MSCs.

Example 3. Consider the PCA A over {a, b} from Figure 6.
The acceptance condition F is simply the conjunction of formulas
¬〈#(s) ≥ 1〉 with s ranging over the states without double circle.
Recall that the messages req and ack do not occur in the accepted
MSCs. In this example, we could actually do with just one message
(|Msg | = 1). In general, however, message contents increase the
expressive power of PCA. Note that MSC M8

lin is the only MSC
that is accepted by A over T 8

lin (cf. Example 2). We actually have
LT n

lin
(A) = L1

T n
lin

(A) = {Mn
lin} for all n ≥ 2. �

Remark 3. The multiset hρ defined to evaluate the acceptance
condition of a PCA does not include any states of non-active (i.e.,
idle) processes. So, a PCA cannot express “the topology has ./ 5
processes” where ./ ∈ {≥,≤,=}, but only “./ 5 processes are



active”. In principle, one could include idle processes as well.
However, this has to be reflected in the logic (cf. Theorem 9).
One possibility is to consider processes as single events. But, apart
from involving a more technical presentation, this does not seem
to be natural. Alternatively, one could consider a two-sorted logic
to reason about both events and processes. In that case, one very
quickly exceeds the capability of PCA to evaluate a topology, as
their runs rely on the messages that occur in an MSC. A two-sorted
logic also goes against the intuition that PCA accept behaviors
rather than topologies.

The section concludes with some closure properties of PCA.

Theorem 1. PCA are closed under union and intersection: For all
A1,A2 ∈ PCAN , there are PCA A and B over N such that, for
all topologies T ∈ TN , we have LT (A) = LT (A1) ∪ LT (A2)
and LT (B) = LT (A1) ∩ LT (A2).

The construction of A and B follows a standard scheme. The
only (minor) subtle point is the acceptance condition.

Theorem 2. PCA are not closed under complementation: There
is A ∈ PCA{a,b} such that, for all B ∈ PCA{a,b}, we have
LT 2

lin
(B) 6= {M |M is an MSC over T 2

lin} \ LT 2
lin

(A).

Theorem 2 is an immediate consequence of the fact that fixed-
topology CA over two processes are not complementable [6]. Fi-
nally, non-deterministic PCA are strictly more expressive than de-
terministic ones (we do not give the formal definitions). This al-
ready holds over 1-bounded MSCs, which follows from the case of
fixed-topology CA and requires a topology with five processes and
five interface names [20].

4. MSO Logic and Locality of FO logic
While PCA serve as a model of an implementation of a communi-
cating system, we use monadic second-order (MSO) logic to spec-
ify properties of MSCs.

4.1 Monadic Second-Order Logic
The set MSON of MSO formulas overN is given by the following
grammar:

ϕ ::=

act(x) = !a | act(x) = ?a | a ∈ type(x) |
x Cproc y | x C∗proc y | x Cmsg y | x C∗ y | x ∼ y |
x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃Xϕ

where a ∈ N , x and y are first-order variables (interpreted as
events of an MSC), and X is a second-order variable (interpreted
as a set of events), all taken from infinite supplies of variables.
We use standard abbreviations such as ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ),
ϕ→ ψ ≡ ¬ϕ ∨ ψ, and ∀xϕ ≡ ¬∃x¬ϕ.

The set FON of first-order formulas is the fragment of MSON
without second-order quantification ∃X . Moreover, EMSON (ex-
istential MSO) is the set of formulas of the form ∃X1 . . .∃Xnϕ
with ϕ ∈ FON .

A formula is evaluated wrt. an MSC M = (E,C, `) over
some topology T = (P, ) ∈ TN . Free variables x and X
are interpreted by a mapping I as an event I(x) ∈ E and a set
of events I(X) ⊆ E, respectively. For η of the form !a or ?a, the
atomic formula act(x) = η is true if actM (I(x)) = η. Formula
a ∈ type(x) is true if a ∈ typeT (`(I(x))), i.e., a is contained in
the type of the process where I(x) is located. Formula, x C∗proc y
is satisfied if I(x) C∗proc I(y). Moreover, x ∼ y holds true if
`(I(x)) = `(I(y)), i.e., I(x) and I(y) are located on the same
process. Other formulas are interpreted as expected.

Though, even in FON , some binary predicates are mutually
expressible in terms of others (e.g., Cproc and ∼ in terms of C∗proc,
and C∗proc in terms of C∗ and ∼), we include all of them explicitly
in the logic. They will be used in fragments in which they would
no longer be expressible.

Let σ ⊆ {Cproc,C∗proc,Cmsg,C∗,∼} be a nonempty set of re-
lation symbols. The logics FON [σ] and EMSON [σ] restrict FON
and EMSON , respectively: instead of {Cproc,C∗proc,Cmsg,C∗,∼},
we can only access the relation symbols from σ. Our main (posi-
tive) result will concern the logic EMSON [C∗proc,Cmsg] (recall that
Cproc and ∼ can be expressed in terms of C∗proc).

Let T ∈ TN be a topology, and let ϕ ∈ MSON be a sentence,
i.e., a formula without free variables. The set of MSCs over T that
satisfyϕ is denoted byLT (ϕ). Moreover, forB ≥ 1, we letLBT (ϕ)
denote the restriction of LT (ϕ) to B-bounded MSCs.

Example 4. We will consider two FO{a,b}-sentences. First, for-
mula ϕ1 = ∀x(act(x) = ?b → ∃y(x C∗proc y ∧ act(y) = !b))
says that every process that receives a message from its b-interface,
eventually sends a message through b. Note that Mn

lin ∈ LT n
lin

(ϕ1)
for all n ≥ 2 (cf. Example 2). Next, let ϕ2 = ∃x∃y(b 6∈ type(x) ∧
a 6∈ type(y) ∧ xCmsg y) . Interpreted over pipelines, ϕ2 says that
the leftmost process sends a message to the rightmost process. We
have Mn

lin ∈ LT n
lin

(ϕ2) iff n = 2. �

4.2 Locality of FO Logic
Next, we state a locality theorem due to Schwentick and Barthel-
mann [28].3 It formalizes the intuition that first-order logic can only
reason about local neighborhoods, which include elements whose
distance from a given center is bounded by a radius that depends
on the formula.

Fix a nonempty set σ ⊆ {Cproc,C∗proc,Cmsg,C∗,∼} of relation
symbols. Let M = (E,C, `) be an MSC over some topology
T = (P, ) ∈ TN . The distance distσM (e, f) between events
e, f ∈ E is the minimal length of a path between e and f in the
graph of M with edges given by σ, in either direction (or ∞ if
such a path does not exist). For example, let σ = {C∗proc,Cmsg}.
Then, distσM (e, f) refers to the distance in the (undirected) graph
(E,C∗proc ∪ (C∗proc)

−1 ∪ Cmsg ∪ C−1
msg) so that distσM (e, f) ≤ 1

for all e, f ∈ E such that `(e) = `(f), and distσM (e, f) =
distσM (f, e) = 1 for all (e, f) ∈ Cmsg.

Example 5. LetM be the MSC over T 8
lin from Figure 7 and let e be

the distinguished event given by the white circle. The set of events
f such that distσM (e, f) ≤ 3 depends on σ, and is illustrated for
{C∗}, {C∗proc,Cmsg} (inducing the same set as {Cmsg,∼}), and
{Cproc,Cmsg}. �

Let r ≥ 1 be a natural number. A formula χ ∈ FON [σ] is called
(r, σ)-local around a first-order variable y if (i) y is not quantified
in χ and (ii) χ is obtained from some FON [σ]-formula by replacing
each subformula of the form ∃zψ with ∃z(distσ(y, z) < r ∧ ψ),
and each subformula of the form ∀zψ with ∀z(distσ(y, z) < r →
ψ). Here, distσ(y, z) < r denotes the obvious FON [σ]-formula.
We use strict inequality for technical reasons (cf. [17]). Adapted to
our setting, [28] yields the following:

Theorem 3 (Schwentick & Barthelmann, [28]). For every sen-
tence ϕ ∈ EMSON [σ], there are r ≥ 1 and a sentence ϕ′ =
∃X1 . . .∃Xm∃x1 . . .∃xn∀yχ ∈ EMSON [σ] (with m,n ≥ 0)
such that χ ∈ FON [σ] is (r, σ)-local around y and, for all topolo-
gies T ∈ TN , we have LT (ϕ) = LT (ϕ′).

3 Gaifman’s normal form [16] appears to be more difficult to deal with in
our context.
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Figure 7. Distance r = 3 in an MSC depending on the signa-
ture

5. Negative Results
Recall that we are interested in realizability of formulas ϕ for a
class T of topologies: Is there a PCAA such thatLT (A) = LT (ϕ)
for all T ∈ T ? In this section, we show that such a PCA does not
always exist.

5.1 Restrictions on Topologies Are Necessary
In fact, there is a sentence from FO{a,b}[Cproc,Cmsg] that is not
realizable for the class of all topologies over {a, b}. This even holds
for the class T∗ring ⊆ T{a,b} of ring forests and when we restrict to
1-bounded MSCs. A ring forest is a disjoint union of an arbitrary
number of rings (possibly containing several copies of one and the
same ring).

Theorem 4. There exists a sentence ϕ ∈ FO{a,b}[Cproc,Cmsg]
such that, for all PCA A ∈ PCA{a,b}, there is T ∈ T∗ring with
L1
T (A) 6= L1

T (ϕ).

Proof. The sentence ϕ will say that every event is part of the cycle
pattern that is depicted in Figure 8:

ϕ = ∀x∃x1, . . . , x6(x ∈ {x1, . . . , x6} ∧ cycle(x1, . . . , x6))

where cycle(x1, . . . , x6) is defined as

x1 Cmsg x2 Cproc x3 Cmsg x4 Cproc x5 Cmsg x6

∧ x1 Cproc x6 ∧
∧
i∈{1,3,5} act(xi) = !a

Towards a contradiction, suppose there is a PCA A such that, for
all T ∈ T∗ring, LT (A) and LT (ϕ) agree on all 1-bounded MSCs.

b a

a

b a

b

x1 x2

x3 x4

x5x6

Figure 8. Cycle
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s1 s2

s3 s4

Figure 9. Fusing two cycles

Consider the MSC Mn that consists of n ≥ 1 disjoint copies of
the “atomic” MSC from Figure 8. That is, Mn is an MSC over the

topology Tn = T 3
ring ] . . . ] T 3

ring ∈ T∗ring with n disjoint copies of
T 3

ring. Obviously, Mn ∈ L1
Tn(ϕ) = L1

Tn(A) for all n ≥ 1. When
we choose n large enough, then there is an accepting run ρ ofA on
Mn that behaves the same on at least two disjoint copies of atomic
MSCs. More precisely,Mn is an MSC over T ]T 3

ring]T 3
ring ∈ T∗ring,

for some T , such that ρ assigns states s1, . . . , s6 to the events
x1, . . . , x6 of the atomic MSCs over the last two copies of T 3

ring,
respectively. We will now replace these two atomic MSCs with the
larger one from Figure 9, over T 6

ring. The resulting MSC, call itM ′n,
is a 1-bounded MSC over T ]T 6

ring. There is still a run onM ′n, using
the assignment shown in Figure 9. As the multiset of terminal states
does not change, the run is accepting. But this is a contradiction,
since M ′n does not satisfy ϕ.

The proof of Theorem 4 reveals that PCA have limited ability
to “detect” cycles in an MSC and in a topology. In the following
sections, we will, therefore, restrict the “cyclic behavior” of a class
of topologies (of a single topology, respectively).

In Section 6, the construction of a PCA indeed requires a class T
of topologies to be given in advance. We show that certain formulas
are realizable for all classes T that are unambiguous: one can tell
by looking at a sequence w ∈ (N ×N )∗ of edge labels whether w
produces a cycle or not, in any topology of T. This notion exludes
the set of ring forests exploited in Theorem 4, but it captures the
classes of pipelines, trees, and grids, as well as singleton rings and
the class of “almost all” rings (which will finally allows us to cover
the class of all rings with one single PCA).

In Section 7, the construction of a PCA from a given formula
does not depend on a class of topologies, but only on N . It makes
sure that the synthesized PCA agrees with the formula on all prime
topologies. This forbids cycles with a periodic labeling (as they
occur in rings), but includes all pipelines, trees, and grids.

5.2 Restrictions on Logic Are Necessary
Next, we argue that we have to restrict the logic, too. In fact, when
we take FON (i.e., first-order logic with all binary predicates),
then the negative result even holds for the class of trees (actually,
for simple bus topologies). This has to be contrasted with the
expressive equivalence of MSO and CA over fixed topologies when
imposing any existential bound on the channels [19].

Theorem 5. There exists a sentence ϕ ∈ FO{a,b,c,d} such that,
for all PCA A ∈ PCA{a,b,c,d}, there is T ∈ Ttree with L1

T (A) 6=
L1
T (ϕ).

The proof uses a technique from [30], which was employed to
show that FO (with reflexive transitive closure relations) and a local
variant of EMSO are incomparable over pictures.

We briefly discuss Theorem 5. Let ϕ ∈ FON [σ], for some
σ ⊆ {Cproc,C∗proc,Cmsg,C∗,∼}, and suppose r is the radius
associated with ϕ according to Theorem 3. Satisfaction of ϕ in an
MSC M essentially depends on the σ-neighborhoods of the latter
(informally, the σ-neighborhood of an event e is the substructure
of M , including the actions, induced by all elements f such that
distσM (e, f) ≤ r). When σ contains C∗, there is no a priori bound
on the size of the σ-neighborhood of e: it may feature events f that
are far from e in terms of the number of messages that separate
them. In other words, distσM (e, f) can be small for σ = {C∗},
but large for σ = {C∗proc,Cmsg}. This is exemplified in Figure 7.
On the other hand, the exchange of information in a PCA relies
on messages and is restricted to processes that are adjacent in the
topology. This intuitively explains the mismatch between automata
and logic that Theorem 5 reveals.

The size of a {C∗proc,Cmsg}-neighborhood is a priori unbounded
as well. However, unlike a {C∗}-neighborhood, it has “bounded



width”, since it spans over a bounded area of the underlying topol-
ogy: Figure 7 illustrates that, provided C∗ 6∈ σ, a topology neigh-
borhood of radius dr/2e is indeed sufficient to cover all events f
with distσM (e, f) ≤ r. As our topologies are structures of bounded
degree, there are only a bounded number of such topology neigh-
borhoods. This allows us to take advantage of results on CA over
fixed topologies. We pursue this idea in Section 6 to show real-
izability of EMSON [C∗proc,Cmsg]- and EMSON [Cproc,Cmsg,∼]-
formulas for unambiguous classes of topologies (as discussed in
the previous subsection).

Any {Cproc,Cmsg}-neighborhood in an MSC also spans over
a bounded topology (cf. Figure 7). But here, we can go one step
further: up to isomorphism, there are only a bounded number of
{Cproc,Cmsg}-neighborhoods. Using this, we will build, in Sec-
tion 7, a PCA that evaluates a formula by “computing” such neigh-
borhoods in an MSC. The construction is independent of a class of
topologies. However, the resulting PCA is only guaranteed to be
equivalent to the given formula when it is applied to prime topolo-
gies, in which no cycle has a periodic labeling (cf. Definition 5).

6. EMSO vs. PCA over Unambiguous Topology
Classes

6.1 Main Result and Consequences
Following the discussion in the previous section, we will consider
logics that discard C∗. Particular attention is paid to the logic
EMSON [C∗proc,Cmsg], containing the process-order relation.

Recall that the {C∗proc,Cmsg}-neighborhood of an event is cov-
ered by a bounded area in the underlying topology. We exploit
this to translate a formula into a PCA by simulating several fixed-
topology CA in parallel. In fact, in our construction of a PCA, a
process will have to determine its (bounded) topology neighbor-
hood, so that it can launch a corresponding fixed-topology CA. To
some extent, it can verify whether it is the source of a w-labeled
path, for a given w ∈ (N ×N )∗. In general, however, there is no
means to discover whether w forms a cycle (cf. Theorem 4). We
will, therefore, consider topology classes T in which some words
are unambiguous, i.e., they always form a cycle, or never form a
cycle in T. For example, (a, b)(c, d)(b, a)(d, c) is unambiguous for
the class of grids: it gives rise to a cycle whenever it is applicable.
As we deal with bounded topology neighborhoods, we have to con-
sider only words up to a certain length.

Let w = (a1, b1) . . . (an, bn) ∈ (N × N )∗. The length n
of w is denoted by |w|. For a topology (P, ) ∈ TN and
processes p, q ∈ P , we write p w q if there is a w-labeled
path from p to q, i.e., there are p0, . . . , pn ∈ P such that
p = p0

a1 b1 p1
a2 b2 . . . an bn pn = q.

Definition 4. Let k ∈ N and let T ⊆ TN be a class of topologies.
We say that T is k-unambiguous if, for all w ∈ (N × N )∗

with |w| ≤ k, all topologies (P, ), (P ′, ′) ∈ T, and all
processes p, q ∈ P and p′, q′ ∈ P ′ such that p w q and
p′ w ′ q′, we have p = q iff p′ = q′.

In other words, if a topology from T admits a cycle of length
≤k with label w, then following w (if possible) will always form
a cycle, in any topology from T. Note that “unambiguous” is a
property of a class of topologies. It captures the classes of pipelines,
trees, and grids. Moreover, it will allow us to apply our results to
ring topologies.

Lemma 1. The classes Tlin, Ttree, Tgrid, and {T nring | n ≥
max{3, k + 1}} are all k-unambiguous, for every k ∈ N. More-
over, {T } is k-unambiguous for all T ∈ Tring and k ∈ N.

For a nonempty set σ ⊆ {Cproc,C∗proc,Cmsg,C∗,∼} and a
sentence ϕ ∈ EMSON [σ], let rϕ ≥ 1 denote the radius associated

with ϕ according to Theorem 3. Note that an exponential upper
bound for rϕ was given in [25]. We now present our main result:

Theorem 6. Let ϕ ∈ EMSON [C∗proc,Cmsg] be a sentence, B ≥ 1,
and T ⊆ TN be an (rϕ + 2)-unambiguous set of topologies.
There is a PCA A ∈ PCAN such that, for all T ∈ T, we have
LBT (A) = LBT (ϕ).

Before we prove Theorem 6, let us discuss it and state some
consequences. First, note that we have to commit to a class T of
topologies before constructing the PCA. This is also what usually
happens in practice: one has a “concrete” class of topologies in
mind when writing a formula. For example, a specifier may want
to synthesize a PCA that is equivalent to the given formula on
all grids.4 Though, a priori, different topology classes give rise
to different PCA, we give a uniform construction and proof. By
Lemma 1, we can then instantiate T in Theorem 6 with various
classes so that we obtain the following corollary (for simplicity, we
consider pipelines and rings as topologies over {a, b, c, d}):

Corollary 1. Let ϕ ∈ EMSO{a,b,c,d}[C∗proc,Cmsg] be a sentence,
B ≥ 1, and T be any of the following:

• the set of pipeline topologies,
• the set of grid topologies,
• the set of tree topologies,
• the set of ring topologies with at least rϕ + 3 processes, or
• the singleton set {T } where T is any ring topology.

Then, there is a PCA A ∈ PCA{a,b,c,d} such that, for all T ∈ T,
we have LBT (A) = LBT (ϕ).

The construction where one single ring topology is given is
not an immediate consequence of a corresponding result from the
setting with fixed topologies [19]. The reason is that CA over fixed
topologies have an initial state per process, while PCA have initial
states per process type, which is a priori weaker. Now, given a
formula ϕ, Corollary 1 gives us a way of “covering” all rings in
terms of a finite collection of PCA: For those rings with at most
rϕ+ 2 processes, we can construct tailor-made PCA, i.e., one PCA
for each ring. All other rings can be covered by one single PCA.
Using this observation, we can even do better than that and show
that one single PCA is enough. The idea is to “approximate” the
size of the given ring in terms of the number of active processes
and to launch a corresponding PCA according to Corollary 1. As
we already know that we will run the PCA on a ring, we in fact
only have to “determine” its size.

Theorem 7. Let ϕ ∈ EMSO{a,b}[C∗proc,Cmsg] be a sentence and
B ≥ 1. There is a PCAA ∈ PCA{a,b} such that, for all T ∈ Tring,
we have LBT (A) = LBT (ϕ).

Let us come back to the generic result of Theorem 6. Its proof
uses the logical characterization of fixed-topology CA [19]. But
it works similarly for EMSON [Cproc,Cmsg,∼] when we take [6]
instead of [19]. In the setting of fixed topologies, ∼ reduces to
a local comparison of event labels so that [6] is indeed applica-
ble. The logic EMSON [Cproc,Cmsg,∼] is a priori weaker than
EMSON [C∗proc,Cmsg], but allows us to drop the channel restriction.

Theorem 8. Let ϕ ∈ EMSON [Cproc,Cmsg,∼] be a sentence
and T ⊆ TN be an (rϕ + 2)-unambiguous set of topologies.
There is a PCA A ∈ PCAN such that, for all T ∈ T, we have
LT (A) = LT (ϕ).

4 The synthesized PCA can still be run on any other topology (over the same
set of names). However, it is sufficient to know that it is equivalent to the
formula when we run it on a grid (respectively, topology from T).



From Theorem 8 and Lemma 1, we can derive statements anal-
ogous to Corollary 1 and Theorem 7 (which we omit).

We do not know whether Theorem 8 holds for the logic
EMSON [C∗proc,Cmsg] (or, equivalently, whether Theorem 6 holds
when we drop the channel bound). The answer is affirmative if
EMSON [C∗proc,Cmsg] is equivalent to unbounded CA over fixed
topologies. But this is an open problem.

The translation of PCA to EMSON [Cproc,Cmsg] is not restricted
to topologies of a particular form.

Theorem 9. LetA ∈ PCAN be a PCA overN . There is a sentence
ϕ ∈ EMSON [Cproc,Cmsg] such that, for all topologies T ∈ TN ,
we have LT (ϕ) = LT (A).

Proof. The proof is by a standard construction, and we give only
a sketch of it. Suppose the set of states of A is S. Using a block
∃(Xs)s∈S of existentially quantified second-order variables, the
formula will guess an assignment of states to events, which is
checked by the first-order part for being an accepting run. As the
requirements of a run can be verified locally, the predicates from
the logic EMSON [Cproc,Cmsg] are indeed sufficient. To verify the
existence of an appropriate initial state, we have to determine the
type of a process, which is done using formulas a ∈ type(x).
Moreover, to simulate an acceptance constraint “s occurs at least k
times as the terminal state of a process”, there will be a subformula
that asks for k pairwise distinct Cproc-maximal events x1, . . . , xk
such that

∧
i∈{1,...,k} xi ∈ Xs.

6.2 Proof Sketch for Main Result (Theorem 6)
The rest of this section is devoted to the proof of Theorem 6 (which
works for Theorem 8 with only minor changes).

Set σ∗ = {C∗proc,Cmsg} and let ϕ ∈ EMSON [σ∗] be a sen-
tence. According to Theorem 3, there are a radius r = rϕ ≥ 1 and
a sentence ϕ′ = ∃X1 . . .∃Xm∃x1 . . .∃xn∀yχ ∈ EMSON [σ∗]
such that χ ∈ FON [σ∗] is (r,σ∗)-local around y and, for all
T ∈ TN , we have LT (ϕ) = LT (ϕ′). The free variables of ∀yχ
can be considered as unary predicates and are dealt with by pro-
jection from an extended alphabet. By means of the acceptance
condition of a PCA, one can make sure that variables xi are in-
deed interpreted as exactly one event. So, it essentially remains to
translate the formula ∀yχ into a PCA.

There is, however, another subtlety. Satisfaction of χ in an MSC
depends on the neighborhood of y of radius r but also on the truth
values of propositions involving only the free variables of ∀yχ.
Following [17, page 806], the PCA will guess and verify these truth
values. By means of the acceptance condition, we can make sure
that the guess is consistent throughout a run.

For simplicity, we henceforth suppose that y is the only free
variable of χ (and write χ(y)). Thus, for the rest of the proof, we
fix r,B ≥ 1, an (r + 2)-unambiguous set T ⊆ TN of topologies,
and a sentence ∀yχ(y) ∈ FON [σ∗] such that χ(y) is (r,σ∗)-
local around y. We will build a PCA A ∈ PCAN such that, for
all T ∈ T, we have LBT (A) = LBT (∀yχ(y)). We sketch the
construction and try to give some intuition. The formal definition
of A is technical and requires a lot of additional notation.

We exploit locality of χ(y): to know whetherM, e |= χ(y), i.e.,
MSC M satisfies χ(y) when y is interpreted as e, it is sufficient to
look at the neighborhood of e with radius r (as y is the only free
variable, r − 1 actually would be enough).

Example 6. Consider the MSCM over T = T 2,5
grid depicted in Fig-

ure 10. Take any event e that is located on process p. All events f
such that distσ

∗
M (e, f) ≤ r = 3 lie on a process in the gray-shaded

topology neighborhood of p with radius R = dr/2e = 2, which
has p as a distinguished center. We call this neighborhood a sphere
and denote it by R-Sph(T , p). One major task of A is to identify

spheres in the topology it is run on. But it has to rely on the mes-
sages that are predetermined by M . Therefore,A can actually only
detect a substructure of R-Sph(T , p). Figure 11 depicts its restric-
tion R-Sph(T , p) �M (gray-shaded) to those edges that are “cov-
ered” by a message of M and to those nodes that one can reach
from p with at most R such edges. However, every process pre-
serves its complete type information. Observe that process (2, 5) is
not part ofR-Sph(T , p) �M anymore. Moreover, the edge between
(1, 3) and (1, 4) is removed, since it is not covered by a message.
Let R-Sph(M,p) be the restriction of M to R-Sph(T , p) �M (cf.
again Figure 11). We call R-Sph(M,p) a partial MSC, since it has
some unmatched events. In fact, satisfaction M, e |= χ(y) only
depends on R-Sph(M,p), for all events e on p. �

The example illustrates that, essentially, we have to cope with
spheres and partial MSCs, i.e., structures of bounded “width”. For
a fixed sphere, every MSON -formula can be translated to a (fixed-
topology) CA that accepts exactly the partial MSCs that are a
model of the formula [19]. For [19] to apply, we need to restrict
to B-bounded MSCs (unless we prove Theorem 8, which is based
on [6]). Thus, given a sphere θ, we can construct a CA Bθ that
recognizes the partial MSCs over θ that satisfy χ(y) for all events
e located on the sphere center. Up to isomorphism, there are only
finitely many spheres θ of radius R and, thus, finitely many CA
Bθ . To obtain the PCA A running on MSCs over arbitrarily large
topologies, we will glue these CA together. Note that, to exploit
unambiguousness, it is crucial that we restrict to those spheres that
arise from topologies in T.

We proceed as follows. Every process p guesses a sphere θ,
supposing that its topology neighborhood looks like θ, and runs
a copy of Bθ to make sure that the partial MSC in its neighborhood
is accepted by Bθ . Whenever p communicates with neighboring
processes, the guess is forwarded in terms of messages. Processes
receiving the guess also have to simulate Bθ . Since neighboring
processes have to verify their own guess as well, a process will
actually have to run several CA simultaneously. Note that processes
reach an agreement only if their non-deterministic guesses are
consistent. That is, at some point, they will have to guess a sphere
and may realize only later whether these spheres are compatible.
The main difficulty, however, is to verify that a (consistent) guess is
correct and reflects a neighborhood in the underlying MSC so that
the right CA is applied. The procedure of guessing and forwarding
spheres is not able to check by itself whether a cycle in a sphere is
correctly simulated in an MSC, and vice versa. It is only correct
by the fact that the underlying set T of topologies is (r + 2)-
unambiguous. Indeed, 2R + 1 = 2dr/2e + 1 ≤ r + 2 is the
maximal length of a cycle through a sphere center that is needed to
cover a given edge in the sphere.

Example 7. We resume Example 6 to illustrate the functioning of
A. So, assume T = T 2,5

grid ∈ T, r = 3, and R = dr/2e = 2.
In an accepting run of A on the MSC M from Figure 10, process
p = (2, 3) will guess the sphere θ = R-Sph(T , p) �M illustrated
in Figure 11. Accordingly, it will launch the fixed-topology CA
Bθ , which accepts the partial MSC R-Sph(M,p) (cf. again Fig-
ure 11). Actually, Bθ consists of several local automata Bθ[q], one
per sphere process q (rather than process type). Thus, p simulates
the local automaton Bθ[(2′, 3′)]. In doing so, it eventually sends
θ to process (2, 2), together with its current position (2′, 3′) in
θ. Receiving the message through interface a, (2, 2) can infer its
own position (2′, 2′) in θ, and so it learns that it has to simulate
Bθ[(2′, 2′)]. Similarly, (2, 2) has to receive a message over inter-
face d that confirms that (1, 2) has launched Bθ[(1′, 2′)], and so on.
There are subtle arguments and technical issues in A that guaran-
tee that T and θ simulate each other. We sketch only the direction
”T simulates θ”. Let w = (b, a)(d, c)(a, b)(c, d). Our construc-
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tion makes sure that, starting from p, T exhibits a w-labeled path.
A priori, this does not imply that the path returns to p. But as θ
arises from the (r + 2)-unambiguous class T, |w| = 4 ≤ r + 2,
and w forms a cycle in θ, w forms a cycle in T as well. Recall that
every process has to run several CA simultaneously, which we did
not take into account in the example. �

Remark 4. The normal form stated in Theorem 3 can be computed
effectively (it builds on Gaifman’s effective normal form [16]).
Thus, Theorem 6 is constructive if the spheres R-Sph(T , p) �M
with T ∈ T are effectively representable (which holds for all
standard classes). It follows from the word case that the PCA
cannot be computed in elementary time.
Remark 5. We cannot exploit [23, 26], dealing with universally
bounded CA, instead of [19], even if we restrict to universally
B-bounded MSCs M (all linearizations are B-bounded): while
R-Sph(M,p) is guaranteed to be (existentially) B-bounded, it is
not necessarily universally B-bounded.

7. EMSO vs. PCA over Prime Topologies
Next, we present an orthogonal approach to realizability, where
the construction of a PCA is independent of a concrete class of
topologies. For this, we will restrict the logic further.

Recall that satisfaction of an FON [Cproc,Cmsg]-formula essen-
tially depends on the {Cproc,Cmsg}-neighborhoods that occur in
an MSC5 (Theorem 3). Up to isomorphism, there are only finitely
many such neighborhoods, for a fixed radius. We slightly modify
the construction from [6] (which we had used as a black-box for
Theorem 8) and define a PCA that, when running on an MSC,
outputs the neighborhood of each event. However, this automaton
can, a priori, not detect cycles (cf. Theorem 4) and “needs some
help” from the underlying topology. It is only guaranteed to com-
pute neighborhoods correctly when it is run on prime topologies.
“Prime” is in the spirit of “unambiguous”, but on a lower level,
since it is tailored to detecting neighborhoods in MSCs rather than
in topologies. While “prime” discards all ring topologies and ring
forests, it includes all pipelines, trees, and grids. We give more in-
tuition in the proof sketch for Theorem 10 below.

Definition 5. A topology (P, ) ∈ TN is called prime if, for all
p ∈ P , w ∈ (N ×N )∗, and n ≥ 1, we have that p wn p implies
p w p.

In other words, a prime topology satisfies the following mono-
tonicity property: If p w q with p 6= q, then starting from p
and “applying” w several times will never lead back to p. Note that
“prime” is a property of a single topology, while “unambiguous”
refers to a class of topologies. Both notions are, in general, incom-
parable. For example, for every n ≥ 3, the ring topology T nring is

5 In a neighborhood, we only keep the process types, not the processes.

not prime, while the class {T nring} is k-unambiguous, for all k ∈ N.
Conversely, consider T 2,2

grid and the topology T given as follows:

a b c d b a d c

Both, T 2,2
grid and T , are prime. However, {T 2,2

grid , T } is not 4-
unambiguous, as (a, b)(c, d)(b, a)(d, c) gives rise to a cycle in
the grid, while it does not form a cycle in T .

Lemma 2. All topologies in Tlin, Ttree, and Tgrid are prime, while
none of the topologies in Tring is prime.

We build a PCA that is equivalent to a given formula ϕ on all
prime topologies. Unlike in Theorem 6, it does not depend on a
class of topologies, but only on ϕ andN .

Theorem 10. Let ϕ ∈ EMSON [Cproc,Cmsg] be a sentence. There
is a PCA A ∈ PCAN such that, for all prime topologies T ∈ TN ,
we have LT (A) = LT (ϕ).

Proof. We will sketch the idea. Thanks to Theorem 3, the prob-
lem reduces to constructing a PCA from a formula ∀yχ ∈
FON [Cproc,Cmsg] where χ is (r, {Cproc,Cmsg})-local around y,
for some r ≥ 1 (cf. proof of Theorem 6). To translate ∀yχ into a
PCA, we use the sphere automaton, a PCA that “detects” neigh-
borhoods of radius r in an input MSC (including possible inter-
pretations of free variables). More precisely, it accepts any MSC,
over any given prime topology. Moreover, in any accepting run, the
state assigned to event e tells us whether χ holds, or not, when y is
interpreted as e. A sphere automaton is presented in [6] for a fixed,
known topology, but it is actually independent of that topology. In
the proof, it is only needed that MSCs are prime, essentially in the
same sense as for topologies. But MSCs over prime topologies are
indeed prime so that we obtain the desired sphere automaton. As a
last step, the latter is restricted to states that signal that χ holds.

To compute neighborhoods, the PCA has to guarantee that cer-
tain sequences w of “directions” form a cycle in an MSC. While
there is no direct way to enforce that w forms a cycle, a PCA can
make sure that, for all n ∈ N, an event admits a wn-labeled path.
As MSCs inherit the prime-property from topologies, this implies
that w indeed gives rise to a cycle.

Remark 6. Using Hanf’s normal form (which we did not do to
avoid additional notation), the PCA can be built in elementary
time [5]. This is a priori not guaranteed using Theorem 3.

8. Conclusion
In this paper, we developed a framework for communicating sys-
tems with parameterized network topology. In particular, we pro-
vided various characterizations of PCA in terms of EMSO logic.
Our constructions and proofs are uniform and capture typical cases
such as pipelines, trees, grids, and rings. Table 1 gives a rough sum-
mary of our positive results.



Cproc Cmsg ∼ C∗proc

unambiguous, bounded (Thm. 6) • • • •

unambiguous, unbounded (Thm. 8) • • •

prime, unbounded (Thm. 10) • •

Table 1. Summary

By Theorem 7, the notion “unambiguous” is not optimal: all
EMSO{a,b}[C∗proc,Cmsg]-formulas are realizable for Tring, which is
not k-unambiguous, for all k ≥ 3. It seems difficult to characterize
exactly those classes for which all formulas from a given logic
are realizable, but it will be worthwhile to search for classes with
comparably simple characterizations that generalize our results.

Our constructions crucially rely on the bounded-degree prop-
erty. An obvious question would be a framework including topolo-
gies of unbounded degree such as star topologies or, more gener-
ally, unranked trees, possibly under restrictions like bounded-depth
processes [27]. However, it is not clear how a parameterized au-
tomaton should look like in that case. One possibility is to employ
registers so that, at any time, a process can remember “some” of its
neighbors [4, 11]. One may also consider logical characterizations
of systems with broadcast and/or FIFO communication [13].

Our framework may carry over to Zielonka’s asynchronous au-
tomata [32] with binary actions. These automata have been con-
sidered in [18] over tree architectures to get decidability of the
controller-synthesis problem. This also raises the question about
a parameterized formulation of the control problem.

It is important to study also parameterized verification: Given a
PCA A, is there a topology T such that LT (A) 6= ∅ ? Since those
questions are undecidable in general, one has to impose restrictions,
on PCA and/or on the topologies.
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