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Abstract. We study pure Nash equilibria in games on graphs with an
imperfect monitoring based on a public signal. In such games, devia-
tions and players responsible for those deviations can be hard to detect
and track. We propose a generic epistemic game abstraction, which con-
veniently allows to represent the knowledge of the players about these
deviations, and give a characterization of Nash equilibria in terms of
winning strategies in the abstraction. We then use the abstraction to
develop algorithms for some payoff functions.

1 Introduction

Multiplayer concurrent games over graphs allow to model rich interactions be-
tween players. Those games are played as follows. In a state, each player chooses
privately and independently an action, defining globally a move (one action per
player); the next state of the game is then defined as the successor (on the
graph) of the current state using that move; players continue playing from that
new state, and form a(n infinite) play. Each player then gets a reward given by
a payoff function (one function per player). In particular, objectives of the play-
ers may not be contradictory: those games are non-zero-sum games, contrary to
two-player games used for controller or reactive synthesis [30, 23].

The problem of distributed synthesis [25] can be formulated using multi-
player concurrent games. In this setting, there is a global objective Φ, and one
particular player called Nature. The question then is whether the so-called grand
coalition (all players except Nature) can enforce Φ, whatever Nature does. While
the players (except Nature) cooperate (and can initially coordinate), their choice
of actions (or strategy) can only depend on what they see from the play so far.
When modelling distributed synthesis as concurrent games, information players
receive is given via a partial observation function of the states of the game. When
the players have perfect monitoring of the play, the distributed synthesis prob-
lem reduces to a standard two-player zero-sum game. Distributed synthesis is a
fairly hot topic, both using the formalization via concurrent games we have al-
ready described and using the formalization via an architecture of processes [26].
The most general decidability results in the concurrent game setting are under
the assumption of hierarchical observation [36, 6] (information received by the
players is ordered) or more recently under recurring common knowledge [5].
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While distributed synthesis involves several players, this remains nevertheless
a zero-sum question. Using solution concepts borrowed from game theory, one
can go a bit further in describing the interactions between the players, and in
particular in describing rational behaviours of selfish players. One of the most
basic solution concepts is that of Nash equilibria [24]. A Nash equilibrium is a
strategy profile where no player can improve her payoff by unilaterally changing
her strategy. The outcome of a Nash equilibrium can therefore be seen as a
rational behaviour of the system. While very much studied by game theoretists
(e.g. over matrix games), such a concept (and variants thereof) has been only
rather recently studied over games on graphs. Probably the first works in that
direction are [17, 15, 32, 33]. Several series of works have followed. To roughly
give an idea of the existing results, pure Nash equilibria always exist in turn-
based games for ω-regular objectives [35] but not in concurrent games; they can
nevertheless be computed for large classes of objectives [35, 9, 11]. The problem
becomes harder with mixed (that is, stochastic) Nash equilibria, for which we
often cannot decide the existence [34, 10].

Computing Nash equilibria requires to (i) find a good behaviour of the sys-
tem; (ii) detect deviations from that behaviour, and identify deviating players
(called deviators); (iii) punish them. This simple characterization of Nash equi-
libria is made explicit in [18]. Variants of Nash equilibria require slightly different
ingredients, but they are mostly of a similar vein.

In (almost) all these works though, perfect monitoring is implicitly assumed:
in all cases, players get full information on the states which are visited; a slight
imperfect monitoring is assumed in some works on concurrent games (like [9]),
where actions which have been selected are not made available to all the players
(we speak of hidden actions). This can yield some uncertainties for detecting
deviators but not on states the game can be in, which is rather limited and can
actually be handled.

In this work, we integrate imperfect monitoring into the problem of deciding
the existence of pure Nash equilibria and computing witnesses. We choose to
model imperfect monitoring via the notion of signal, which, given a joint deci-
sion of the players together with the next state the play will be in, gives some
information to the players. To take further decisions, players get information
from the signals they received, and have perfect recall about the past (their own
actions and the signals they received). We believe this is a meaningful frame-
work. Let us give an example of a wireless network in which several devices
try to send data: each device can modulate its transmission power, in order to
maximise its bandwidth and reduce energy consumption as much as possible.
However there might be a degradation of the bandwidth due to other devices,
and the satisfaction of each device is measured as a compromise between energy
consumption and allocated bandwidth, and is given by a quantitative payoff
function.1 In such a problem, it is natural to assume that a device only gets

1 This can be expressed by payoffplayer i = R
poweri

(
1− e−0.5γi

)L
where γi is the signal-

to-interference-and-noise ratio for player i, R is the rate at which the wireless system
transmits the information and L is the size of the packets [29].



a global information about the load of the network, and not about each other
device which is connected to the network. This can be expressed using imperfect
monitoring via public signals.

Following [31] in the framework of repeated matrix games, we put forward a
notion of public signal (inspired by [31]). A signal will be said public whenever
it is common to all players. That is, after each move, all the players get the same
information (their own action remains of course private). We will also distinguish
several kinds of payoff functions, depending on whether they are publicly visible
(they only depend on the public signal), or privately visible (they depend on the
public signal and on private actions: the corresponding player knows his payoff!),
or invisible (players may not even be sure of their payoff).

The payoff functions we will focus on in this paper are Boolean ω-regular
payoff functions and mean payoff functions. Some of the decidability results can
be extended in various directions, which we will mention along the way.

As initial contributions of the paper, we show some undecidability results, and
in particular that the hypothesis of public signal solely is not sufficient to enjoy
all nice decidability results: for mean payoff functions, which are privately visible,
one cannot decide the constrained existence of a Nash equilibrium. Constrained
existence of a Nash equilibrium asks for the existence of a Nash equilibrium
whose payoff satisfies some given constraint.

The main contribution of the paper is the construction of a so-called epistemic
game abstraction. This abstraction is a two-player turn-based game in which we
show that winning strategies of one of the players (Eve) actually correspond
to Nash equilibria in the original game. The winning condition for Eve is rather
complex, but can be simplified in the case of publicly visible payoff functions. The
epistemic game abstraction is inspired by both the epistemic unfolding of [4] used
for distributed synthesis, and the suspect game abstraction of [9] used to compute
Nash equilibria in concurrent games with hidden actions. In our abstraction,
we nevertheless not fully formalize epistemic unfoldings, and concentrate on
the structure of the knowledge which is useful under the assumption of public
signals; we show that several subset constructions (as done initially in [27], and
since then used in various occasions, see e.g. [14, 20, 19, 22]) made in parallel,
are sufficient to represent the knowledge of all the players. The framework of [9]
happens to be a special case of the public signal monitoring framework of the
current paper. This construction can therefore be seen as an extension of the
suspect game abstraction.

This generic construction can be applied to several frameworks with publicly
visible payoff functions. We give two such applications, one with Boolean ω-
regular payoff functions and one with mean payoff functions.

Further Related Works. We have already discussed several kinds of related works.
Let us give some final remarks on related works.

We have mentioned earlier that one of the problems for computing Nash
equilibria is to detect deviations and players who deviated. Somehow, the epis-
temic game abstraction tracks the potential deviators, and even though players
might not know who exactly is responsible for the deviation (there might be



several suspects), they can try to punish all potential suspects. And that what
we do here. Very recently, [7] discusses the detection of deviators, and give some
conditions for them to become common knowledge of the other players. In our
framework, even though deviators may not become fully common knowledge, we
can design mechanisms to punish the relevant ones.

Recently imperfect information has also been introduced in the setting of
multi-agent temporal logics [20, 21, 2, 3], and the main decidability results as-
sume hierarchical information. However, while those logics allow to express rich
interactions, it can somehow only consider qualitative properties. Furthermore,
no tight complexity bounds are provided.

In [11], a deviator game abstraction is proposed. It twists the suspect game
abstraction [9] to allow for more general solution concepts (so-called robust equi-
libria), but it assumes visibility of actions (hence remove any kind of uncertain-
ties). Relying on results of [13], this deviator game abstraction allows to compute
equilibria with mean payoff functions. Our algorithms for mean payoff functions
will also rely on the polyhedron problem of [13].

A full version of this paper will all proofs is available as [8]. In this extended
abstract, we made the choice to focus on the construction of the epistemic game
abstraction and to be more sketchy on algorithms to compute Nash equilibria.
We indeed believe the structure of the knowledge represented by the abstraction
is the most important contribution, and that algorithms are more standard.
However we believe it is important to be able to apply the abstract construction
for algorithmics purpose.

2 Definitions

Throughout the paper, if S ⊆ R, we write S for S ∪ {−∞,+∞}.

2.1 Concurrent Multiplayer Games with Signals

We consider the model of concurrent multi-player games, based on the two-player
model of [1]. This model of games was used for instance in [9]. We equip games
with signals, which will give information to the players.

Definition 1. A concurrent game with signals is a tuple

G = 〈V, vinit, P ,Act, Σ,Allow,Tab, (`A)A∈P , (payoffA)A∈P 〉

where V is a finite set of vertices, vinit ∈ V is the initial vertex, P is a finite set
of players, Act is a finite set of actions, Σ is a finite alphabet, Allow : V × P →
2Act \ {∅} is a mapping indicating the actions available to a given player in a
given vertex, Tab : V × ActP → V associates, with a given vertex and a given
action tuple the target vertex, for every A ∈ P , `A :

(
ActP × V

)
→ Σ is a signal,

and payoffA : V ·
(
ActP · V

)ω → D is a payoff function with values in a domain

D ⊆ R. We say that the game has public signal if there is ` :
(
ActP × V

)
→ Σ

such that for every A ∈ P , `A = `.



The signals will help the players monitor the game: for taking decisions, a player
will have the information given by her signal and the action she played earlier. A
public signal will be a common information given to all the players. Our notion
of public signal is inspired by [31] and encompasses the model of [9] where only
action names were hidden to the players. Note that monitoring by public signal
does not mean that all the players have the same information: they have private
information implied by their own actions.

An element of ActP is called a move. When an explicit order is given on
the set of players P = {A1, . . . , A|P |}, we will write a move m = (mA)A∈P as

〈mA1
, . . . ,mA|P|〉. If m ∈ ActP and A ∈ P , we write m(A) for the A-component

of m and m(−A) for all but the A components of m. In particular, we write
m(−A) = m′(−A) whenever m(B) = m′(B) for every B ∈ P \ {A}.

A full history h in G is a finite sequence

v0 ·m0 · v1 ·m1 . . .mk−1 · vk ∈ V ·
(
ActP · V

)∗
such that for every 0 ≤ i < k, mi ∈ Allow(vi) and vi+1 = Tab(vi,mi). For

readability we will also write h as v0
m0−−→ v1

m1−−→ . . .
mk−1−−−→ vk.

We write last(h) for the last vertex of h (i.e., vk). If i ≤ k, we also write h≤i
for the prefix v0 ·m0 · v1 ·m1 . . .mi−1 · vi. We write HistG(v0) (or simply Hist(v0)
if G is clear in the context) for the set of full histories in G that start at v0.

Let A ∈ P . The projection of h for A is denoted πA(h) and is defined as:

v0 · (m0(A), `A(m0, v1)) . . . (mk−1(A), `A(mk−1, vk)) ∈ V · (Act×Σ)
∗

This will be the information available to player A: it contains both the actions
she played so far and the signal she received. Note that we assume perfect recall,
that is, while playing, A will remember all her past knowledge, that is, all of
πA(h) if h has been played so far. We define the undistinguishability relation ∼A
as the equivalence relation over full histories induced by πA: for two histories h
and h′, h ∼A h′ iff πA(h) = πA(h′). While playing, if h ∼A h′, A will not be
able to know whether h or h′ has been played. We also define the A-label of h
as `A(h) = `A(m0, v1) · `A(m1, v2) . . . `A(mk−1, vk).

We extend all the above notions to infinite sequences in a straightforward
way and to the notion of full play. We write PlaysG(v0) (or simply Plays(v0) if G
is clear in the context) for the set of full plays in G that start at v0.

We will say that the game G has publicly (resp. privately) visible payoffs if for
every A ∈ P , for every v0 ∈ V , for every ρ, ρ′ ∈ Plays(v0), `A(ρ) = `A(ρ′) (resp.
ρ ∼A ρ′) implies payoffA(ρ) = payoffA(ρ′). Otherwise they are said invisible.
Private visibility of payoffs, while not always assumed (see for instance [19, 3]),
are reasonable assumptions: using only her knowledge, a player knows her payoff.
Public visibility is more restrictive, but will be required for some of the results.

Let A ∈ P be a player. A strategy for player A from v0 is a mapping
σA : Hist(v0)→ Act such that for every history h ∈ Hist(v0), σ(h) ∈ Allow(last(h)).
It is said `A-compatible whenever furthermore, for all histories h, h′ ∈ Hist(v0),
h ∼A h′ implies σA(h) = σA(h′). An outcome of σA is a(n infinite) play



ρ = v0 ·m0 · v1 ·m1 . . . such that for every i ≥ 0, σA(ρ≤i) = mi(A). We write
out(σA, v0) for the set of outcomes of σA from v0.

A strategy profile is a tuple σP = (σA)A∈P , where, for every player A ∈ P , σA
is a strategy for player A. The strategy profile is said info-compatible whenever
each σA is `A-compatible. We write out(σP , v0) for the unique full play from v0,
which is an outcome of all strategies part of σP .

When σP is a strategy profile and σ′A a player-A strategy, we write σP [A/σ′A]
for the profile where A plays according to σ′A, and each other player B plays
according to σB . The strategy σ′A is a deviation of player A, or an A-deviation.

Definition 2. A Nash equilibrium from v0 is an info-compatible strategy profile
σ such that for every A ∈ P , for every player-A `A-compatible strategy σ′A,

payoffA

(
out(σ, v0)

)
≥ payoffA

(
out(σ[A/σ′A], v0)

)
.

In this definition, deviation σ′A needs not be `A-compatible, since the only mean-
ingful part of σ′A is along out(σ[A/σ′A], v0), where there are no ∼A-equivalent
histories: any deviation can be made `A-compatible without affecting the prof-
itability of the resulting outcome. Note also that there might be an A-deviation
σ′A which is not observable by another player B (out(σ, v0) ∼B out(σ[A/σ′A], v0)),
and there might be two deviations σ′B (by player B) and σ′C (by player C) that
cannot be distinguished by player A (out(σ[B/σ′B ], v0) ∼A out(σ[C/σ′C ], v0)).
Tracking such deviations will be the core of the abstraction we will develop.

Payoff Functions. In the following we will consider various payoff functions. Let
Φ be an ω-regular property over some alphabet Γ . The function payΦ : Γω →
{0, 1} is defined by, for every a ∈ Γω, payΦ(a) = 1 if and only if a |= Φ. A publicly
(resp. privately) visible payoff function payoffA for player A is said associated
with Φ over Σ (resp. Act×Σ) whenever it is defined by payoffA(ρ) = payΦ(`A(ρ))
(resp. payoffA(ρ) = payΦ(πA(ρ)−v0), where πA(ρ)−v0 crops the first v0). Such a
payoff function is called a Boolean ω-regular payoff function.

Let Γ be a finite alphabet and w : Γ → Z be a weight assigning a value to
every letter of that alphabet. We define two payoff functions over Γω by, for ev-
ery a = (ai)i≥1 ∈ Γω, payMPw

(a) = lim infn→∞
1
n

∑n
i=1 w(ai) and payMPw

(a) =

lim supn→∞
1
n

∑n
i=1 w(ai). A publicly visible payoff function payoffA for player

A is said associated with the liminf (resp. limsup) mean payoff of w whenener it
is defined by payoffA(ρ) = payMPw

(`A(ρ)) (resp. payMPw
(`A(ρ))). A privately

visible payoff function payoffA for player A is said associated with the lim-
inf (resp. limsup) mean payoff of w whenener it is defined by payoffA(ρ) =
payMPw

(πA(ρ)−v0) (resp. payMPw
(πA(ρ)−v0)).

Example 1. We now illustrate most notions on the game of Fig. 1. This is a game
with three players A1, A2 and A3, and which is played basically in two steps,
starting at v0. Graphically an edge labelled 〈a1, a2, a3〉 between two vertices v
and v′ represents the fact that ai ∈ Allow(v,Ai) for every i ∈ {1, 2, 3} and
that v′ = Tab(v, 〈a1, a2, a3〉). As a convention, ∗ stands for both a and b. For
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Fig. 1. An example of a concurrent game with public signal (yellow and green: public
signal). Edges in red and bold are part of the strategy profile. Dashed edges are the
possible deviations. One can notice that none of the deviations is profitable to the
deviator, hence the strategy profile is a Nash equilibrium. Convention in the drawing:
edges with no label are for complementary labels (for instance the edge from v5 to
0, 0, 0 is labelled by all 〈a1, a2, a3〉 not in the set {〈a, a, a〉, 〈b, a, a〉, 〈b, a, b〉})

readability, bottom vertices explicitely indicate the payoffs of the three players
(same order as for actions) if the game ends in that vertex.

After the first step of the game, signal yellow or green is sent to all the
players. Histories v0 · 〈a, b, a〉 ·v2 and v0 · 〈a, a, a〉 ·v1 are undistinguishable by A1

and A3 (same action, same signal), but they can be distinguished by A2 because
of different actions (even if the same signal is observed).

In bold red, we have depicted a strategy profile, which is actually a Nash
equilibrium. We analyze the possible deviations in this game to argue for this.

– First there is an A2-deviation to v1. This deviation is invisible to both players
A1 and A3. For this reason, the strategy out of v1 for A1 is to play a (same as
out of v2). On the other hand, even though this would be profitable to her,
A1 cannot deviate from v1, since we are in a branch where A2 has already
deviated, and at most one player is allowed to deviate at a time (and anyway
A1 does not know that they are in state v1).

– There is an A1-deviation from v2 to 0, 1, 0, which is not profitable to A1.
– On the other hand, there is no possible deviation to v3, since this would

require two players to change their actions simultaneously (A1 and A2).
– Then, there is an A1-deviation to v4 and another A3-deviation to v5; both

activate the green signal. A2 knows there has been a deviation (because of
the green signal), but she doesn’t know who has deviated and whether the
game proceeds to v4 or v5 (but she knows that if A1 has deviated, then we
are in v4, and if A3 has deviated, we are in v5). Then, A2 has to find a way
to punish both players, to be safe. On the other hand, both players A1 and
A3 precisely know what has happened: in case she didn’t deviate herself, she



knows the other one deviated! And she knows in which state the game is
in. Hence in state v4, A3 can help player A2 punishing A1, whereas in state
v5, A1 can help player A2 punishing A3. Examples of punishing moves are
therefore those depicted in red and bold; and they are part of the global
strategy profile. Note that the action of A2 out of v5 has to be the same as
the one out of v4: this is required given the imperfect knowledge of A2. On
the other hand, the action of A3 can be different out of v4 and out of v5
(which is the case in the given example profile).

Two-Player Turn-Based Game Structures. They are specific cases of the previous
model, where at each vertex, at most one player has more than one action in her
set of allowed actions. But for convenience, we will give a simplified definition,
with only objects that will be useful. A two-player turn-based game structure
is a tuple G = 〈S, SEve, SAdam, sinit, A,Allow,Tab〉, where S = SEve t SAdam is a
finite set of states (states in SEve belong to player Eve whereas states in SAdam
belong to player Adam), sinit ∈ S is the initial state, A is a finite alphabet,
Allow : S → 2A \ {∅} gives the set of available actions, and Tab : S × A → S is
the next-state function. If s ∈ SEve (resp. SAdam), Allow(s) is the set of actions
allowed to Eve (resp. Adam) in state s.

In this context, strategies will see sequences of states and actions, with full in-
formation. Note that we do not include any winning condition or payoff function
in the tuple, hence the name structure.

2.2 The Problem

We are interested in the constrained existence of a Nash equilibrium. For sim-
plicity, we define constraints using non-strict thresholds constraints, but could
well impose more involved constraints.

Problem 1 (Constrained existence problem). Given a game with signals G =
〈V, vinit, P ,Act, Σ,Allow,Tab, (`A)A∈P , (payoffA)A∈P 〉 and threshold vectors (νA)A∈P ,

(ν′A)A∈P ∈ QP
, can we decide whether there exists a Nash equilibrium σP from

vinit such that for every A ∈ P , νA ≤ payoffA(out(σP , vinit)) ≤ ν′A? If so, compute
one. If the constraints on the payoff are trivial (that is, νA = −∞ and ν′A = +∞
for every A ∈ P ), we simply speak of the existence problem.

2.3 First Undecidability Results

In this section we state two preliminary undecidability results.

Theorem 1. – The existence problem in games with signals is undecidable
with three players and publicly visible Boolean ω-regular payoff functions.

– The constrained existence problem in games with a public signal is undecid-
able with two players and privately visible mean payoff functions.



Proofs of these results rely on the distributed synthesis problem [26] for the
first one, and on blind two-player mean-payoff games [19] for the second one.
While there is no real surprise in the first result since we know that arbitrary
partial information yields intrinsic difficulties, the second one suggests restric-
tions both to public signals and to publicly visible payoff functions.

In the following we will focus on public signals and develop an epistemic
game abstraction, which will record and track possible deviations in the game.
This will then be applied to get decidability results in two frameworks assuming
publicly visible payoff functions.

3 The Epistemic Game Abstraction

Building over [9] and [4], we construct an epistemic game, which will record
possible behaviours of the system, together with possible unilateral deviations.
In [4], notions of epistemic Kripke structures are used to really track the precise
knowledge of the players. These are mostly useful since undistinguishable states
(expressed using signals here) are assumed arbitrary (no hierarchical structure).
We could do the same here, but we think that would be overly complex and hide
the real structure of knowledge in the framework of public signals. We therefore
prefer to stick to simpler subset constructions, which are more commonly used
(see e.g. [27] or later [14, 19, 22]), though it has to be a bit more involved here
since also deviations have to be tracked.

Let G = 〈V, vinit, P ,Act, Σ,Allow,Tab, `, (payoffA)A∈P 〉 be a concurrent game
with public signal. We will first define the epistemic abstraction as a two-player
game structure EG = 〈SEve, SAdam, sinit, Σ′,Allow′,Tab′〉, and then state the cor-
respondence between G and EG . The epistemic abstraction will later be used
for decidability and algorithmics purposes. For clarity, we use the terminology
“vertices” in G and “states” (or “epistemic states”) in EG .

3.1 Construction of the Game Structure EG

The game EG will be played between two players, Eve and Adam. The aim of
Eve is to build a suitable Nash equilibrium, whereas the aim of Adam is to prove
that it is not an equilibrium; in particular, Adam will try to find a profitable
deviation (to disprove the claim of Eve that she is building a Nash equilibrium).
Choices available to Eve and Adam in the abstract game have to reflect partial
knowledge of the players in the original game G. States in the abstract game will
therefore store information, which will be sufficient to infer the undistinguisha-
bility relation of all the players in the original game. Thanks to the public signal
assumption, this information will be simple enough to have a simple structure.

In the following, we set P⊥ = P ∪ {⊥}, where ⊥ is a fresh symbol. For
convenience, if m ∈ ActP , we extend the notation m(−A) when A ∈ P to P⊥ by
setting m(−⊥) = m. We now describe all the components of EG .

A state of Eve will store a set of vertices of the original game one can be
in, together with possible deviators. More precisely, states of Eve are defined as



SEve = {s : P⊥ → 2V | |s(⊥)| ≤ 1}. Let s ∈ SEve. If A ∈ P , vertices of s(A) are
those where the game can be in, assuming one has followed the suggestions of
Eve so far, up to an A-deviation; on the other hand, if s(⊥) 6= ∅, the single vertex
v ∈ s(⊥) is the one the game is in, assuming one has followed all suggestions by
Eve so far (in particular, if Eve is building a Nash equilibrium, then this vertex
belongs to the main outcome of the equilibrium). We define sit(s) = {(v,A) ∈
V × P⊥ | v ∈ s(A)} for the set of situations the game can be in at s:

(a) (v,⊥) ∈ sit(s) is the situation where the game has proceeded to vertex v
without any deviation;

(b) (v,A) ∈ sit(s) with A ∈ P is the situation where the game has proceeded to
vertex v benefitting, from an A-deviation.

Structure of state s will allow to infer the undistinguishability relation of all
the players in game G: basically (and we will formalize this later), if she is not
responsible for a deviation, player A ∈ P will not know in which of the situations
of sit(s) \ V × {A} the game has proceeded; if she is responsible for a deviation,
player A will know exactly in which vertex v ∈ s(A) the game has proceeded.

Let s ∈ SEve. From state s, Eve will suggest a tuple of moves M , one for each
possible situation (v,A) ∈ sit(s). This tuple of moves has to satisfy the undis-
tinguishability relation: if a player does not distinguish between two situations,
her action should be the same in these two situations:

Allow′(s) =
{
M ∈

∏
(v,A)∈sit(s)

Allow(v) | ∀(vB , B), (vC , C) ∈ sit(s),

∀A ∈ P \ {B,C}, M(vB , B)(A) = M(vC , C)(A)
}

In the above set, the constraint M(vB , B)(A) = M(vC , C)(A) expresses the fact
that player A should play the same action in the two situations (vB , B) and
(vC , C), since she does not distinguish between them. Obviously, we assume Σ′

contains all elements of Allow′(s) above.

States of Adam are then copies of states of Eve with suggestions given by
Eve, that is: SAdam = {(s,M) | s ∈ SEve × Allow′(s)}. And naturally, we define
Tab′(s,M) = (s,M) if M ∈ Allow′(s).

Let (s,M) ∈ SAdam. From state (s,M), Adam will choose a signal value which
can be activated from some situation allowed in s, after no deviation or a single-
player deviation w.r.t. M . From a situation (v,A) ∈ sit(s) with A ∈ P , only
A-deviations can be allowed (since we look for unilateral deviations), hence any
signal activated by an A-deviation (w.r.t. M(v,A)) from v should be allowed.
From the situation (v,⊥) ∈ sit(s) (if there is one), one can continue without any
deviation, or any kind of single-player deviation should be allowed, hence the
signal activated by M(v,⊥) from v should be allowed, and any signal activated



by some A-deviation (w.r.t. M(v,⊥)) from v should be allowed as well. Formally:

Allow′(s,M) =

β ∈ Σ |||||
∃A ∈ P
∃v ∈ s(A)
∃m ∈ ActP

s.t.
(i) m(−A) = M(v,A)(−A)
(ii) `(m,Tab(v,m)) = β


∪

β ∈ Σ |||||
∃v ∈ s(⊥)
∃m ∈ ActP

∃A ∈ P
s.t.

(i) m(−A) = M(v,⊥)(−A)
(ii) `(m,Tab(v,m)) = β


Note that we implicitly assume that Σ′ contains Σ.

It remains to explain how one can compute the next state of some (s,M) ∈
SAdam after some signal value β ∈ Allow′(s,M). The new state has to repre-
sent the new knowledge of the players in the original game when they have
seen signal β; this has to take into account all possible deviations that we have
already discussed which activate the signal value β. The new state is the re-
sult of several simultaneous subset constructions, which we formalize as follows:
s′ = Tab′((s,M), β), where for every A ∈ P⊥, v′ ∈ s′(A) if and only if there is
m ∈ ActP such that β = `(m, v′), and

1. either there is v ∈ s(A) such thatm(−A) = M(v,A)(−A) and v′ = Tab(v,m);
2. or there is v ∈ s(⊥) such that m(−A) = M(v,⊥)(−A) and v′ = Tab(v,m).

Note that in case A = ⊥, the two above cases are redundant.

Before stating properties of EG , we illustrate the construction.

Example 2. We consider again the example of Fig. 1, and we assume that the
public signal when reaching the leaves of the game is uniformly orange. We de-
pict (part of) the epistemic game abstraction of the game on Fig. 2. One can
notice that from Eve-states s1 and s2, moves are multi-dimensional, in the sense
that there is one move per vertex appearing in the state. There are neverthe-
less compatibility conditions which should be satisfied (expressed in condition
Allow′); for instance, from s2, player A2 does not distinguish between the two
options (i) A1 has deviated and the game is in v4, and (ii) A3 has deviated and
the game is in v5, hence the action of player A2 should be the same in the two
moves (a in the depicted example, written in red).

3.2 Interpretation of this Abstraction

While we gave an intuitive meaning to the (epistemic) states of EG , we now need
to formalize this. And to do that, we need to explain how full histories and plays
in EG can be interpreted as full histories and plays in G.

Let v0 ∈ V , and define s0 : P⊥ → 2V ∈ SEve such that s0(⊥) = {v0} and
s0(A) = ∅ for every A ∈ P . In the following, when M ∈ Allow′(s) for some
s ∈ SEve, if we speak of some M(v,A), we implicitly assume that (v,A) ∈
sit(s). Given a full history H = s0

M0−−→ (s0,M0)
β0−→ s1

M1−−→ (s1,M1)
β1−→



⊥7→{v0}

A1 7→∅

A2 7→∅

A3 7→∅

s0

Eve-state

s0,〈a,b,a〉

Adam-state ⊥7→{v2}

A1 7→∅

A2 7→{v1}

A3 7→∅

s1

⊥7→∅

A1 7→{v4}

A2 7→∅

A3 7→{v5}

s2

...

s1,
〈a,−,−〉
〈a,−,−〉

⊥7→{(1,1,0)}

A1 7→{(0,1,0)}

A2 7→{(1,1,0)}

A3 7→∅

s1,
〈b,a,b〉
〈a,a,a〉

⊥7→∅

A1 7→{(0,0,0)}

A2 7→∅

A3 7→{(1,0,0),(0,0,0)}

s1,
〈b,−,−〉
〈b,−,−〉

⊥7→{(0,1,0)}

A1 7→{(1,1,0)}

A2 7→{(2,0,0)}

A3 7→∅

〈a,b,a〉 •

•

〈a,−,−〉
〈a,−,−〉 •

〈b,a,b〉
〈a,a,a〉 •

〈b
,−
,−
〉

〈b
,−
,−
〉

•

Fig. 2. Part of the epistemic game corresponding to the game of Fig. 1. For clarity,
symbol − is for any choice a or b (the precise choice is meaningless).

s2 . . . (sk−1,Mk−1)
βk−1−−−→ sk in EG , we write concrete(H) for the set of full his-

tories in the original game, which correspond to H, up to a single deviation,

that is: v0
m0−−→ v1

m1−−→ v2 . . . vk−1
mk−1−−−→ vk ∈ concrete(H) whenever for every

0 ≤ i ≤ k − 1, vi+1 = Tab(vi,mi) and βi = `(mi, vi+1), and:

(a) either mi = Mi(vi,⊥) for every 0 ≤ i ≤ k − 1;
(b) or there exist A ∈ P and 0 ≤ i0 ≤ k − 1 such that

(i) for every 0 ≤ i < i0, mi = Mi(vi,⊥);
(ii) mi0 6= Mi0(vi0 ,⊥), but mi0(−A) = Mi0(vi0 ,⊥)(−A);
(iii) for every i0 < i ≤ k − 1, mi(−A) = Mi(vi, A)(−A).

Case (a) corresponds to a concrete history with no deviation (all moves suggested
by Eve have been followed). Case (b) corresponds to a deviation by player A,
and i0 is the position at which player A has started deviating.

We write concrete⊥(H) for the set of histories of type (a); there is at most
one such history, which is the real concrete history suggested by Eve. And we
write concreteA(H) for the set of histories of the type (b) with deviator A. The
correctness of the approach is obtained thanks to the following characterization
of the undistinguishability relations along H: for every A ∈ P , for every h1 6=
h2 ∈ concrete(H),

h1 ∼A h2 iff h1, h2 /∈ concreteA(H).



In particular, a player may not distinguish between deviations by other players,
or between a deviation by another player and the real concrete history suggested
by Eve. But of course, in any case, a player will know that she has deviated!

We extend all these notions to full plays. A full play visiting only Eve-states
s such that s(⊥) 6= ∅ is called a ⊥-play.

3.3 Winning Condition of Eve

A zero-sum game will be played on the game structure EG , and the winning
condition of Eve will be given on the branching structure of the set of outcomes
of a strategy for Eve, and not individually on each outcome, as standardly in
two-player zero-sum games. We write sinit for the state of Eve such that sinit(⊥) =

{vinit} and sinit(A) = ∅ for every A ∈ P . Let p = (pA)A∈P ∈ RP
, and σEve be a

strategy for Eve in EG ; it is said winning for p from sinit whenever payoff(ρ) = p,
where ρ is the unique element of concrete⊥(out⊥(σEve, sinit)) (where we write
out⊥(σEve, sinit) for the unique outcome of σEve from sinit which is a ⊥-play),
and for every R ∈ out(σEve, sinit), for every A ∈ P , for every ρ ∈ concreteA(R),
payoffA(ρ) ≤ pA.

For every epistemic state s ∈ SEve, we define the set of suspect players
susp(s) = {A ∈ P | s(A) 6= ∅} (this is the set of players that may have deviated).

By extension, if R = s0
M0−−→ (s0,M0)

β0−→ s1 . . . sk
Mk−−→ (sk,Mk)

βk−→ sk+1 . . .,
we define susp(R) = limk→∞ susp(sk). Note that the sequence (susp(sk))k is
non-increasing, hence it stabilizes.

Assuming public visibility of the payoff functions in G, we can define when R
is a full play in EG , and A ∈ P , payoff′A(R) = payoffA(ρ), where ρ ∈ concrete(R).
It is easy to show that payoff′A is well-defined for every A ∈ P . Under this assump-
tion, the winning condition of Eve can be rewritten as: σEve is winning for p from
sinit whenever payoff′(out⊥(σEve, sinit)) = p, and for every R ∈ out(σEve, sinit), for
every A ∈ susp(R), payoff′A(R) ≤ pA.

3.4 Correction of the Epistemic Abstraction

The epistemic abstraction tracks everything that is required to detect Nash
equilibria in the original game, which we make explicit in the next result. Note
that this theorem does not require public visibility of the payoff functions.

Theorem 2. Let G be a concurrent game with public signal, and p ∈ RP
. There

is a Nash equilibrium in G with payoff p from vinit if and only if Eve has a
winning strategy for p in EG from sinit.

The proof of this theorem highlights a correspondence between Nash equilib-
ria in G and winning strategies of Eve in EG . In this correspondence, the main
outcome of the equilibrium in G is the unique ⊥-concretisation of the unique
⊥-play generated by the winning strategy of Eve.



3.5 Remarks on the Construction

We did not formalize the epistemic unfolding as it is made in [4]. We believe we
do not really learn anything for public signal using it. And the above extended
subset construction can much better be understood.

One could argue that this epistemic game gives more information to the
players, since Eve explicitely gives to everyone the move that should be played.
But in the real game, the players also have that information, which is obtained
by an initial coordination of the players (this is required to achieve equilibria).

Finally, notice that the espitemic game constructed here generalizes the sus-
pect game construction of [9], where all players have perfect information on the
states of the game, but cannot see the actions that are precisely played. Some-
how, games in [9] have a public signal telling the state the game is in (that is,
`(m, v) = v). So, in the suspect game of [9], the sole uncertainty is in the players
that may have deviated, not in the set of states that are visited.

Remark 1. Let us analyze the size of the epistemic game abstraction. The size of
the alphabet is bounded by |Σ|+ |Act||P |·|V |·(1+|P |). Furthermore, |Σ| is bounded

by |V | · |Act||P |. The number of states is therefore in O(2|P |·|V | · |Act||P |2·|V |). The
epistemic game is therefore of exponential size w.r.t. the initial game. Note that
we could reduce the bounds by using tricks like those in [9, Prop. 4.8], but this
would not avoid an exponential blowup.

4 Two Applications with Publicly Visible Payoffs

While the construction of the epistemic game has transformed the computation
of Nash equilibria in a concurrent game with public signal to the computation
of winning strategies in a two-player zero-sum turn-based game, we cannot ap-
ply standard algorithms out-of-the-box, because the winning condition is rather
complex. In the following, we present two applications of that approach in the
context of publicly visible payoffs, one with Boolean payoff functions, and an-
other with mean payoff functions. Remember that in the latter case, public
visibility is required to have decidability (Theorem 1).

The epistemic game has a specific structure, which can be used for algorith-
mics purpose. The main outcome of a potential Nash equilibrium is given by a
⊥-play, that is, a play visiting only epistemic states s with s(⊥) 6= ∅. There are
now two types of deviations:

(i) those that are invisible to all players (except the deviator): they are tracked
along the main ⊥-play. Assuming public visibility of the payoff functions,
such a deviation cannot be profitable to any of the players (the payoff of
all concrete plays along that ⊥-play coincides with the payoff of the main
outcome), hence no specific punishing strategy has to be played.

(ii) those that leave the main ⊥-play at some point, and visit only epistemic
states s such that s(⊥) = ∅ from that point on: those are the deviations that
need to be punished. Note nevertheless that the deviator may not precisely



be known by all the players, hence punishing strategies need to take this
into account. However, the set of potential deviators along a deviating
play is non-increasing, and we can solve subgames with specific subsets of
potential deviators separately (e.g. in a bottom-up approach). The winning
objectives in those subgames will depend on the payoff functions (and will
mostly be conjunctions of constraints on those functions), and also on the
value of those payoff functions along the main outcome.

Using such an approach and results of [16] on generalized parity games, we
obtain the following result for Boolean ω-regular payoff functions:

Theorem 3. The constrained existence problem is in EXPSPACE and EXPTIME-
hard for concurrent games with public signal and publicly visible Boolean payoff
functions associated with parity conditions. The lower bound holds even for Büchi
conditions and two players.

The same approach could be used for the ordered objectives of [9], which
are finite preference relations over sets of ω-regular properties. Also, we believe
we can enrich the epistemic game construction and provide an algorithm to
decide the constrained existence problem for Boolean ω-regular invisible payoff
functions.

We have also investigated publicly visible mean payoff functions. While we
could have used the same bottom-up approach as above and applied results
from [12, 13], we adopt an approach similar to that of [11], which consists in
transforming the winning condition of Eve in EG into a so-called polyhedron
query in a multi-dimensional mean-payoff game. Given such a game, a polyhe-
dron query asks whether there exists a strategy for Eve which achieves a payoff
belonging to some given polyhedron. Using this approach, we get the following
result:

Theorem 4. The constrained existence problem is in NPNEXPTIME (hence in
EXPSPACE) and EXPTIME-hard for concurrent games with public signal and
publicly visible mean payoff functions.

5 Conclusion

In this paper, we have studied concurrent games with imperfect monitoring mod-
elled using signals. We have given some undecidability results, even in the case of
public signals, when the payoff functions are not publicly visible. We have then
proposed a construction to capture single-player deviations in games with public
signals, and reduced the search of Nash equilibria to the synthesis of winning
strategies in a two-player turn-based games (with a rather complex winning con-
dition though). We have applied this general framework to two classes of payoff
functions, and obtained decidability results.

As further work we wish to understand better if there could be richer com-
munication patterns which would allow representable knowledge structures for
Nash equilibria and thereby the synthesis of Nash equilibria under imperfect
monitoring. A source of inspiration for further work will be [28].
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