
An automaton over data words that captures

EMSO logic

Benedikt Bollig

LSV, ENS Cachan, CNRS & INRIA, France
bollig@lsv.ens-cachan.fr

Abstract. We develop a general framework for the specification and
implementation of systems whose executions are words, or partial or-
ders, over an infinite alphabet. As a model of an implementation, we in-
troduce class register automata, a one-way automata model over words
with multiple data values. Our model combines register automata and
class memory automata. It has natural interpretations. In particular, it
captures communicating automata with an unbounded number of pro-
cesses, whose semantics can be described as a set of (dynamic) message
sequence charts. On the specification side, we provide a local existential
monadic second-order logic that does not impose any restriction on the
number of variables. We study the realizability problem and show that
every formula from that logic can be effectively, and in elementary time,
translated into an equivalent class register automaton.

1 Introduction

A recent research stream, motivated by models from XML database theory,
considers data words, i.e., strings over an infinite alphabet [2, 8, 11, 17, 19]. The
alphabet is the cartesian product of a finite supply of labels and an infinite supply
of data values. While labels may represent, e.g., an XML tag or reveal the type
of an action that a system performs, data values can be used to model time
stamps [8], process identifiers [5, 21], or text contents in XML documents.

We will consider data words as behavioral models of concurrent systems. In
this regard, it is natural to look at suitable logics and automata. Logical formulas
may serve as specifications, and automata as system models or tools for deciding
logical theories. This viewpoint raises the following classical problems/tasks:
satisfiability (does a given logical formula have a model ?), model checking (do
all executions of an automaton satisfy a given formula ?), and realizability (given
a formula, construct a system model in terms of an automaton whose executions
are precisely the models of the formula). Much work has indeed gone into defining
logics and automata for data words, with a focus on satisfiability [4, 10].

One of the first logical approaches to data words is due to [8]. Since then, a
two-variable logic has become a commonly accepted yardstick wrt. expressivity
and decidability [4]. The logic contains a predicate to compare data values of
two positions for equality. Its satisfiability problem is decidable, indeed, but sup-
posedly of very high complexity. An elementary upper bound has been obtained

only for weaker fragments [4, 10]. For specification of communicating systems,
however, two-variable logic is of limited use: it cannot express properties like
“whenever a process Pid1 spawns some Pid2, then this is followed by a message
from Pid2 to Pid1”. Actually, the logic was studied for words with only one
data value at each each position, which is not enough to encode executions of
message-passing systems. But three-variable logics as well as extensions to two
data values lead to undecidability. To put it bluntly, any “interesting” logic for
dynamic communicating systems has an undecidable satisfiability problem.

Instead of satisfiability or model checking, we therefore consider realizabil-
ity. A system model that realizes a given formula can be considered correct by
construction. Realizability questions for data words have, so far, been neglected.
One reason may be that there is actually no automaton that could serve as a
realistic system model. Though data words naturally reflect executions of sys-
tems with an unbounded number of threads, existing automata fail to model
distributed computation. Three features are minimum requirements for a suit-
able system model. First, the automaton should be a one-way device, i.e., read
an execution once, processing it “from left to right” (unlike data automata [4],
class automata [3], two-way register automata, and pebble automata [17]). Sec-
ond, it should be non-deterministic (unlike alternating automata [11,17]). Third,
it should reflect paradigms that are used in concurrent programming languages
such as process creation and message passing. Two known models match the first
two properties: register automata [13,14,21] and class memory automata [2]; but
they clearly do not fulfill the last requirement.

Contribution. We provide an existential MSO logic over data words, denoted
rEMSO, which does not impose any restriction on the number of variables. The
logic is strictly more expressive than the two-variable logic from [4] and suitable
to express interesting properties of dynamic communicating systems.

We then define class register automata as a system model. They are a mix of
register automata [13,14,21] and class memory automata [2]. A class register au-
tomaton is a non-deterministic one-way device. Like a class memory automaton,
it can access certain configurations in the past. However, we extend the notion
of a configuration, which is no longer a simple state but composed of a state and
some data values that are stored in registers. This is common in concurrent pro-
gramming languages and can be interpreted as “read current state of a process”
or “send process identity from one to another process”. Moreover, it is in the
spirit of communicating finite-state machines [9] or nested-word automata [1],
where more than one resource (state, channel, stack, etc.) can be accessed at a
time. Actually, our automata run over directed acyclic graphs rather than words.
To our knowledge, they are the first automata model of true concurrency that
deals with structures over infinite alphabets.

We study the realizability problem and show that, for every rEMSO formula,
we can compute, in elementary time, an equivalent class register automaton. The
translation is based on Hanf’s locality theorem [12] and properly generalizes [7]
to a dynamic setting.

2

Outline. Sections 2 and 3 introduce data words and their logics. In Section 4,
we define the new automata model. Section 5 is devoted to the realizability
problem and states our main result. In Section 6, we give translations from
automata back to logic. We conclude in Section 7. Omitted proofs, as well as an
extension of our main result to infinite data words, can be found in the full version
of this paper available at: http://hal.archives-ouvertes.fr/hal-00558757/

2 Data Words

Let N = {0, 1, 2, . . .} denote the set of natural numbers. For m ∈ N, we denote
by [m] the set {1, . . . ,m}. A boolean formula over a (possibly infinite) set A of
atoms is a finite object generated by the grammar β ::= true | false | a ∈ A |
¬β | β ∨β | β ∧β. For an assignment of truth values to elements of A, a boolean
formula β is evaluated to true or false as usual. Its size |β| is the number of
vertices of its syntax tree. Moreover, |A| ∈ N ∪ {∞} denotes the size of a set A.
The symbol ∼= will be used to denote isomorphism of two structures.

We fix an infinite set D of data values. Note that D can be any infinite
set. For examples, however, we usually choose D = N. In a data word, every
position will carry m ≥ 0 data values. It will also carry a label from a non-
empty finite alphabet Σ. Thus, a data word is a finite sequence over Σ × D

m

(over Σ if m = 0). Given a data word w = (a1, d1) . . . (an, dn) with ai ∈ Σ and
di = (d1i , . . . , d

m
i) ∈ D

m, we let ℓ(i) refer to label ai and dk(i) to data value dki .
Classical words without data come with natural relations on word positions

such as the direct successor relation ≺+1 and its transitive closure <. In the
context of data words with one data value (i.e., m = 1), it is natural to consider
also a relation ≺∼ for successive positions with identical data values [4]. As, in
the present paper, we deal with multiple data values, we generalize these notions
in terms of a signature. A signature S is a pair (σ, I). It consists of a finite set σ of
binary relation symbols and an interpretation I. The latter associates, with every
⊳ ∈ σ and every data word w = w1 . . . wn ∈ (Σ×D

m)∗, a relation ⊳w ⊆ [n]× [n]
such that the following hold, for all word positions i, j, i′, j′ ∈ [n]:

(1) i⊳w j implies i < j
(2) there is at most one k such that i⊳w k
(3) there is at most one k such that k ⊳w i
(4) if i⊳w j and i′ ⊳w j′ and wi = wi′ and wj = wj′ , then i < i′ iff j < j′

In other words, we require that ⊳w (1) complies with <, (2) has out-degree at
most one, (3) has in-degree at most one, and (4) is monotone. Our translation
from logic into automata will be symbolic and independent of I, but its applica-
bility and correctness rely upon the above conditions. However, several examples
will demonstrate that the framework is quite flexible and allows us to capture
existing logics and automata for data words. Note that ⊳w can indeed be any
relation satisfying (1)–(4). It could even assume an order on D.

As the interpretation I is mostly understood, we may identify S with σ and
write ⊳ ∈ S instead of ⊳ ∈ σ, or |S| to denote |σ|. If not stated otherwise, we
let in the following S be any signature.

3

http://hal.archives-ouvertes.fr/hal-00558757/

8 5 3 4 3 4 5 4
r r r r a a a a

≺∼

≺+1

Fig. 1. Data word over S
1
+1,∼

n f n f n ! ? ! ! ? ?
2 2 3 2 1 2 3 1 1 3 3
2 3 2 1 2 3 2 3 3 1 1

n f

n

f !

n

?

! !

? ?
≺fork

≺proc ≺msg
≺msg

Fig. 2. Data word over S
2
dyn

Example 1. Typical examples of relation symbols include ≺+1 and ≺k
∼ relating

direct successors and, respectively, successive positions with the same k-th data
value: For w = w1 . . . wn, we let ≺w

+1 = {(i, i + 1) | i ∈ {1, . . . , n − 1}} and
(≺k

∼)
w = {(i, j) | 1 ≤ i < j ≤ n, dk(i) = dk(j), and there is no i < i′ < j

such that dk(i) = dk(i′)}. When m = 1, we write ≺∼ instead of ≺1
∼. Automata

and logic have been well studied in the presence of one single data value (m =
1) and for signature S

1
+1,∼ = {≺+1 , ≺∼} with the above interpretation [2, 4].

Here, and in the following, we adopt the convention that the upper index of a
signature denotes the number m of data values. Figure 1 depicts a data word
over Σ = {r, a} (request/acknowledgment) and D = N as well as the relations
≺+1 (straight arrows) and ≺∼ (curved arrows) imposed by S

1
+1,∼. ♦

Example 2. We develop a framework for message-passing systems with dynamic
process creation. Each process has a unique identifier from D = N. Process c ∈ N
can execute an action f(c, d), which forks a new process with identity d. This
action is eventually followed by n(d, c), indicating that d is new (created by c) and
begins its execution. Processes can exchange messages. When c executes !(c, d), it
sends a message through an unbounded first-in-first-out (FIFO) channel c→ d.
Process d may execute ?(d, c) to receive the message. Elements from Σdyn =
{f, n , ! , ?} reveal the nature of an action, which requires two identities so that
we choosem = 2. When a process performs an action, it should access the current
state of (i) its own, (ii) the spawning process if a new-action is executed, and
(iii) the sending process if a receive is executed (message contents are encoded in
states). To this aim, we define a signature S

2
dyn = {≺proc , ≺fork , ≺msg} with the

following interpretation. Assume w = w1 . . . wn ∈ (Σdyn×N×N)∗ and consider,
for a, b ∈ Σdyn and i, j ∈ [n], the property

P(a,b)(i, j) = (ℓ(i) = a ∧ ℓ(j) = b ∧ d1(i) = d2(j) ∧ d2(i) = d1(j)) .

We set ≺w
proc = (≺1

∼)
w, which relates successive positions with the same executing

process. Moreover, let i ≺w
fork j if i < j, P(f,n)(i, j), and there is no i < k < j such

that P(f,n)(i, k) or P(f,n)(k, j). Finally, we set i ≺w
msg j if i < j, P(!,?)(i, j), and

|{i′ < i | P(!,?)(i
′, j) }| = |{j′ < j | P(!,?)(i, j

′) }| .

This models FIFO communication. An example data word is given in Figure 2,
which also depicts the relations induced by S

2
dyn. Horizontal arrows reflect ≺proc,

vertical arrows either ≺fork or ≺msg, depending on the labels. Note that n(2, 2) is
executed by “root process” 2, which was not spawned by some other process. ♦

4

Our principal proof technique relies on a graph abstraction of data words.
Let Part(m) be the set of all partitions of [m]. An S-graph is a (node- and edge-
labeled) graph G = (V, (⊳G)⊳∈S, λ, ν). Here, V is the finite set of nodes, λ : V →
Σ and ν : V → Part(m) are node-labeling functions, and each ⊳G ⊆ V × V is a
set of edges such that, for all i ∈ V , there is at most one j ∈ V with i⊳G j, and
there is at most one j ∈ V with j ⊳G i. We represent ⊳G and (⊳G)−1 as partial
functions and set nextG

⊳
(i) = j if i ⊳G j, and prevG

⊳
(i) = j if j ⊳G i.

Local graph patterns, so-called spheres, will also play a key role. For nodes
i, j ∈ V , we denote by distG(i, j) the distance between i and j, i.e., the length of
the shortest path from i to j in the undirected graph (V ,

⋃

⊳∈S
⊳G ∪ (⊳G)−1)

(if such a path exists). In particular, distG(i, i) = 0. For some radius B ∈ N,
the B-sphere of G around i, denoted by B-SphG(i), is the substructure of G
induced by {j ∈ V | distG(i, j) ≤ B}. In addition, it contains the distinguished
element i as a constant, called sphere center.

These notions naturally transfer to data words: With word w of length n,
we associate the graph G(w) = ([n], (⊳w)⊳∈S, λ, ν) where λ maps i to ℓ(i) and
ν maps i to {{l ∈ [m] | dk(i) = dl(i)} | k ∈ [m]}. Thus, K ∈ ν(i) contains
indices with the same data value at position i. Now, nextw

⊳
, prevw

⊳
, distw, and

B-Sphw(i) are defined with reference to the graph G(w). We hereby assume that
S is understood. We might also omit the index w if it is clear from the context.

Data words u and v are called (S-)equivalent if G(u) ∼= G(v). For a language
L, we let [L]S denote the set of words that are equivalent to some word in L.

Given the data word w from Figure 1, we have distw(1, 8) = 3. The picture

r r a a

on the right shows 1-Sphw(4). The sphere center is framed by a
rectangle; node labelings of the form {{1}} are omitted.

3 Logic

We consider monadic second-order logic to specify properties of data words. Let
us fix countably infinite supplies of first-order variables {x, y, . . .} and second-
order variables {X,Y, . . .}.

The set MSO(S) of monadic second-order formulas is given by the grammar

ϕ ::= ℓ(x) = a | dk(x) = dl(y) | x⊳ y | x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃X ϕ

where a ∈ Σ, k, l ∈ [m], ⊳ ∈ S, x and y are first-order variables, and X is a
second-order variable. The size |ϕ| of ϕ is the number of nodes of its syntax tree.

Important fragments of MSO(S) are FO(S), the set of first-order formulas,
which do not use any second-order quantifier, and EMSO(S), the set of formulas
of the form ∃X1 . . .∃Xn ϕ with ϕ ∈ FO(S).

The models of a formula are data words. First-order variables are interpreted
as word positions and second-order variables as sets of positions. Formula ℓ(x) =
a holds in data word w if position x carries an a, and formula dk(x) = dl(y)
holds if the k-th data value at position x equals the l-th data value at position
y. Moreover, x ⊳ y is satisfied if x ⊳w y. The atomic formulas x = y and x ∈ X

as well as quantification and boolean connectives are interpreted as usual.

5

For realizability, we will actually consider a restricted, more “local” logic: let
rMSO(S) denote the fragment of MSO(S) where we can only use dk(x) = dl(x)
instead of the more general dk(x) = dl(y). Thus, data values of distinct positions
can only be compared via x ⊳ y. This implies that rMSO(S) cannot distinguish
between words u and v such that G(u) ∼= G(v). The fragments rFO(S) and
rEMSO(S) of rMSO(S) are defined as expected.

In the case of one data value (m = 1), we will also refer to the logic
EMSO2(S

1
+1,∼ ∪ {<}) that was considered in [4] and restricts EMSO logic to

two first-order variables. The predicate < is interpreted as the strict linear or-
der on word positions (strictly speaking, it is not part of a signature as we
defined it). We shall later see that rEMSO(S1+1,∼) is strictly more expressive
than EMSO2(S

1
+1,∼ ∪ {<}), though the latter involves the non-local predicates

d1(x) = d1(y) and <. This gain in expressiveness comes at the price of an unde-
cidable satisfiability problem.

A sentence is a formula without free variables. The language defined by
sentence ϕ, i.e., the set of its models, is denoted by L(ϕ). By MSO(S), rMSO(S),
rEMSO(S), etc., we refer to the corresponding language classes.

Example 3. Think of a server that can receive requests (r) from an unbounded
number of processes, and acknowledge (a) them. We let Σ = {r, a}, D = N,
and m = 1. A data value from D is used to model the process identity of the
requesting and acknowledged process. We present three properties formulated in
rFO(S1+1,∼). Formula ϕ1 = ∃x∃y (ℓ(x) = r ∧ ℓ(y) = a ∧ x ≺∼ y) expresses that
there is a request that is acknowledged. Dually, ϕ2 = ∀x∃y (ℓ(x) = r → ℓ(y) =
a ∧ x ≺∼ y) says that every request is acknowledged before the same process
sends another request. A last formula guarantees that two successive requests
are acknowledged in the order they were received:

ϕ3 = ∀x, y

(

ℓ(x) = r ∧ ℓ(y) = r ∧ x ≺+1 y

→ ∃x′, y′
(

ℓ(x′) = a ∧ ℓ(y′) = a ∧ x ≺∼ x′ ≺+1 y
′ ∧ y ≺∼ y′

)

)

This is not expressible in EMSO2(S
1
+1,∼ ∪ {<}). We will see that ϕ1, ϕ2, ϕ3 form

a hierarchy of languages that correspond to different automata models, our new
model capturing ϕ3. ♦

Example 4. We pursue Example 2 and consider Σdyn with signature S
2
dyn. Recall

that we wish to model systems where an unbounded number of processes com-
municate via message-passing through unbounded FIFO channels. Obviously,
not every data word represents an execution of such a system. Therefore, we
identify some well formed data words, which have to satisfy ϕ1 ∧ ϕ2 ∧ ϕ3 ∈
rFO(S2dyn) given as follows. We require that there is exactly one root process:

ϕ1 = ∃x
(

ℓ(x) = n ∧ d1(x) = d2(x) ∧ ∀y (d1(y) = d2(y) → x = y)
)

. Next, we
assume that every fork is followed by a corresponding new-action, the first ac-
tion of a process is a new-event, and every new process was forked by some other
process:

ϕ2 = ∀x

ℓ(x) = f → ∃y (x ≺fork y)
∧ ℓ(x) = n ↔ ¬∃y (y ≺proc x)
∧ ℓ(x) = n →

(

d1(x) = d2(x) ∨ ∃y (y ≺fork x)
)

6

Finally, every send should be followed by a receive, and a receive be preceded
by a send action: ϕ3 = ∀x

(

ℓ(x) ∈ { ! , ? } → ∃y (x ≺msg y ∨ y ≺msg x)
)

. This for-
mula actually ensures that, for every c, d ∈ N, there are as many symbols !(c, d)
as ?(d, c), the N -th send symbol being matched with the N -th receive symbol.
We call a data word over Σdyn and S

2
dyn a message sequence chart (MSC, for

short) if it satisfies ϕ1 ∧ ϕ2 ∧ ϕ3. Figure 2 shows an MSC and the induced rela-
tions. When we restrict to MSCs, our logic corresponds to that from [16]. Note
that model checking rMSO(S2dyn) specifications against fork-and-join grammars,
which can generate infinite sets of MSCs, is decidable [16].

A last rFO(S2dyn)-formula (which is not satisfied by all MSCs) specifies that,
whenever a process c forks some d, then this is followed by a message from d to
c: ∀x1, y1 (x1 ≺fork y1 → ∃x2, y2 (x1 ≺proc x2 ∧ y1 ≺proc y2 ≺msg x2)). ♦

4 Class Register Automata

In this section, we define class register automata, a non-deterministic one-way au-
tomata model that captures rEMSO logic. It combines register automata [13,14]
and class memory automata [2]. When processing a data word, data values from
the current position can be stored in registers. The automaton reads the data
word from left to right but can look back on certain states and register contents
from the past (e.g., at the last position that is executed by the same process).
Positions that can be accessed in this way are determined by the signature S.
Their register entries can be compared with one another, or with current values
from the input. Moreover, when taking a transition, registers can be updated by
either a current value, an old register entry, or a guessed value.

Definition 1. A class register automaton (over signature S) is a tuple A =
(Q,R,∆, (F⊳)⊳∈S

, Φ) where Q is a finite set of states, R is a finite set of reg-
isters, the F⊳ ⊆ Q are sets of local final states, and Φ is the global acceptance
condition: a boolean formula over { ‘q ≤ N ’ | q ∈ Q and N ∈ N}. Moreover, ∆
is a finite set of transitions of the form

(p, g)
a

−→ (q, f) .

Here, p : S⇀ Q is a partial mapping representing the source states. Moreover, g
is a guard, i.e., a boolean formula over { ‘θ1 = θ2’ | θ1, θ2 ∈ [m]∪ (dom(p) × R)}
to perform comparisons of values that are are currently read and those that are
stored in registers. Finally, a ∈ Σ is the current label, q ∈ Q is the target state,
and f : R ⇀ (dom(p)×R) ∪ ([m]×N) is a partial mapping to update registers.

Hereby, dom(p) denotes the domain of p. In the following, we write p⊳ instead

of p(⊳). Transition (p, g)
a

−→ (q, f) can be executed at position i of a data word
if the state at position prev

⊳
(i) is p⊳ (for all ⊳ ∈ dom(p)) and, for a register

guard (⊳1, r1) = (⊳2, r2), the entry of register r1 at prev
⊳1

(i) equals that of r2
at prev

⊳2
(i). The automaton then reads the label a together with a tuple of data

values that also passes the test given by g, and goes to q. Moreover, register r

7

obtains a new value according to f(r): if f(r) = (⊳, r′) ∈ dom(p)×R, then the
new value of r is the value of r′ at position prev

⊳
(i); if f(r) = (k,B) ∈ [m]×N,

then r obtains any k-th data value in the B-sphere around i. In particular,
f(r) = (k, 0) assigns to r the (unique) k-th data value of the current position.
To some extent, f(r) = (k,B) calls an oracle to guess a data value. The guess is
local and, therefore, weaker than [14], where a non-deterministic reassignment
allows one to write any data value into a register. This latter approach can indeed
simulate our local version (this is not immediately clear, but can be shown using
the sphere automaton from Section 5).

Let us be more precise. A configuration of A is a pair (q, ρ) where q ∈ Q

is the current state and ρ : R ⇀ D is a partial mapping denoting the current
register contents. If ρ(r) is undefined, then there is no entry in r. Let w =
w1 . . . wn ∈ (Σ×D

m)∗ be a data word and ξ = (q1, ρ1) . . . (qn, ρn) be a sequence
of configurations. For i ∈ [n], k ∈ [m], and B ∈ N, let D

k
B(i) = {dk(j) | j ∈ [n]

such that distw(i, j) ≤ B}. We call ξ a run of A on w if, for every position

i ∈ [n], there is a transition (pi, gi)
ℓ(i)
−→ (qi, fi) such that the following hold:

(1) dom(pi) = {⊳ ∈ S | prev
⊳
(i) is defined}

(2) for all ⊳ ∈ dom(pi) : (pi)⊳ = qprev
⊳
(i)

(3) gi is evaluated to true on the basis of its atomic subformulas: θ1 = θ2 is true iff
val i(θ1) = val i(θ2) ∈ D where val i(k) = dk(i) and val i((⊳, r)) = ρprev

⊳
(i)(r)

(the latter might be undefined and, therefore, not be in D)

(4) for all r ∈ R :

ρi(r) = ρprev
⊳
(i)(r

′) if fi(r) = (⊳, r′) ∈ dom(p)× R

ρi(r) ∈ D
k
B(i) if fi(r) = (k,B) ∈ [m]×N

ρi(r) undefined if fi(r) undefined

Run ξ is accepting if qi ∈ F⊳ for all i ∈ [n] and ⊳ ∈ S such that next⊳(i) is
undefined. Moreover, we require that the global condition Φ is met. Hereby, an
atomic constraint q ≤ N is satisfied by ξ if |{ i ∈ [n] | qi = q}| ≤ N . The language
L(A) ⊆ (Σ ×D

m)∗ of A is defined in the obvious manner. The corresponding
language class is denoted by CRA(S).

The acceptance conditions are inspired by Björklund and Schwentick [2], who
also distinguish between local and global acceptance. Local final states can be
motivated as follows. When data values model process identities, a ≺∼-maximal
position of a data word is the last position of some process and must give rise to
a local final state. Moreover, in the context of S2dyn, a sending position that does
not lead to a local final state in F≺msg

requires a matching receive event. Thus,
local final states can be used to model “communication requests”. The global
acceptance condition of class register automata is more general than that of [2]
to cope with all possible signatures. However, in the special case of S1+1,∼, there
is some global control in terms of ≺+1. We could then perform some counting
up to a finite threshold and restrict, like [2], to a set of global final states.

We can classify many of the non-deterministic one-way models from the lit-
erature (most of them defined for m = 1) in our unifying framework:

8

– A class memory automaton [2] is a class register automaton where, in all
transitions (p, g)

a
−→ (q, f), the update function f is undefined everywhere.

The corresponding language class is denoted by CMA(S).

– As an intermediary subclass of class register automata, we consider non-
guessing class register automata: for all transitions (p, g)

a
−→ (q, f) and

registers r, one requires f(r) ∈ (dom(p) ×R) ∪ ([m] × {0}). We denote the
corresponding language class by CRA−(S).

– A register automaton [11,13] is a non-guessing class register automaton over
S
m
+1 = {≺+1}. Moreover, non-guessing class register automata over S

1
+1,∼

capture fresh-register automata [21], which can dynamically generate data
values that do not occur in the history of a run. Actually, this feature is
also present in dynamic communicating automata [5] and in class memory
automata over S

1
+1,∼ where a fresh data value is guaranteed by a transition

(p, g)
a

−→ (q, f) such that p≺∼
is undefined.

– Class register automata are a model of distributed computation: considered
over Σdyn and S

2
dyn, they subsume dynamic communicating automata [5]. In

particular, they can handle unbounded process creation and message passing.
Updates of the form f(r) = (≺fork, r

′) and f(r) = (≺msg, r
′) correspond to

receiving a process identity from the spawning/sending process. Moreover,
when a process requests a message from the thread whose identity is stored
in register r, a corresponding transition is guarded by (≺proc, r) = (≺msg, r0)
where we assume that every process keeps its identity in some register r0.

Example 5. Let us give a concrete example. Suppose Σ = {r, a} and D = N.
We pursue Example 3 and build a non-guessing class register automaton A over
S
1
+1,∼ for L = [{(r, 1) . . . (r, n)(a, 1) . . . (a, n) | n ≥ 1}]S1

+1,∼
. Roughly speaking,

there is a request phase followed by an acknowledgment phase, and requests
are acknowledged in the order they are received. Figure 3 presents A and an
accepting run on (r, 8)(r, 5)(a, 8)(a, 5). The states of A are q1 and q2. State q1 is
assigned to request positions (first phase), state q2 to acknowledgments (second
phase). Moreover, A is equipped with registers r1 and r2. During the first phase,
r1 always contains the data value of the current position, and r2 the data value
of the ≺+1-predecessor (unless we deal with the very first position, where r2 is
undefined, denoted ⊥). These invariants are ensured by transitions 1 and 2. In
the second phase, by transition 3, position n+1 carries the same data value as the
first position, which is the only request with undefined r2. Guard (≺∼, r2) = ⊥
is actually an abbreviation for ¬((≺∼, r2) = (≺∼, r2)). By transition 4, position
n+ i with i ≥ 2 has to match the request position whose r2-contents equals r1
at n+ i− 1. Finally, F≺∼

= {q2}, F≺+1
= {q2}, and Φ = ¬(q1 ≤ 0). ♦

For the language L from Example 5, one can show L 6∈ CMA(S1+1,∼), using
an easy pumping argument. Next, we will see that non-guessing class register
automata, though more expressive than class memory automata, are not yet
enough to capture rEMSO logic. Thus, dropping just one feature such as registers
or guessing data values makes class register automata incomparable to the logic.
Assume m = 2 and consider S

2
∼ = {≺1

∼ , ≺
2
∼} (cf. Example 1).

9

Transitions Run

source (p) guard (g) input q update (f) input state r1 r2

≺∼
≺+1

1 (r, d) q1 r1 := d (r, 8) q1 8 ⊥

2 q1 (r, d) q1
r1 := d

r2 := (≺+1, r1)
(r, 5) q1 5 8

3 q1 q1 (≺∼, r2) = ⊥ (a, d) q2 r1 := d (a, 8) q2 8 ⊥

4 q1 q2 (≺∼, r2) = (≺+1, r1) (a, d) q2 r1 := d (a, 5) q2 5 ⊥

Fig. 3. A non-guessing class register automaton over S
1
+1,∼ and a run

Lemma 1. rFO(S2∼) 6⊆ CRA−(S2∼).

The proof of Lemma 1 can be adapted to show rFO(S2dyn) 6⊆ CRA−(S2dyn). It
reveals that non-guessing class register automata can in general not detect cycles.
However, this is needed to capture rFO logic [12]. In Section 5, we show that full
class register automata capture rFO and, as they are closed under projection,
also rEMSO logic. Closure under projection is meant in the following sense. Let
Γ be a non-empty finite alphabet. Given S = (σ, I), we define another signature
SΓ for data words over (Σ×Γ)×D

m. Its set of relation symbols is {⊳Γ | ⊳ ∈ S}.
For w ∈ ((Σ×Γ)×D

m)∗, we set i ⊳w
Γ j iff i ⊳projΣ(w) j. Hereby, the projection

projΣ just removes the Γ component while keeping Σ and the data values. For
C ∈ {CRA,CRA−,CMA}, we say that C(S) is closed under projection if, for
every Γ and L ⊆ ((Σ × Γ)×D

m)∗, L ∈ C(SΓ) implies projΣ(L) ∈ C(S).

Lemma 2. For every signature S, CRA(S), CRA−(S), and CMA(S) are closed
under union, intersection, and projection. They are, in general, not closed under
complementation.

5 Realizability of EMSO Specifications

In this section, we solve the realizability problem for rEMSO specifications:

Theorem 1. For all signatures S, rEMSO(S) ⊆ CRA(S). An automaton can be
computed in elementary time and is of elementary size.

Classical procedures that translate formulas into automata follow an induc-
tive approach, use two-way mechanisms and tools such as pebbles, or rely on
reductions to existing translations. There is no obvious way to apply any of
these techniques to prove our theorem.

We therefore follow a technique from [7], which is based on ideas from [18,20].
We first transform the first-order kernel of the formula at hand into a normal
form due to Hanf [12]. According to that normal form, satisfaction of a first-
order formula wrt. data word w only depends on the spheres that occur in
G(w), and on how often they occur, counted up to a threshold. The size of a
sphere is bounded by a radius that depends on the formula. The threshold can
be computed from the radius and |S|. We can indeed apply Hanf’s Theorem, as

10

the structures that we consider have bounded degree: every node/word position
has at most |S| incoming and at most |S| outgoing edges. In a second step, we
transform the formula in normal form into a class register automaton.

Recall that B-SphG(i) denotes the B-sphere of graph/data word G around i
(cf. Section 2). Its size (number of nodes) is bounded by maxSize := (2|S|+2)B.
Let B-Spheres

S
= {B-SphG(i) | G = (V, . . .) is an S-graph and i ∈ V }. We do

not distinguish between isomorphic structures so that B-SpheresS is finite.

Theorem 2 (cf. [6, 12]). Let ϕ ∈ rFO(S). One can compute, in elementary
time, B ∈ N and a boolean formula β over { ‘S ≤ N ’ | S ∈ B-SpheresS and
N ∈ N} such that L(ϕ) is the set of data words that satisfy β. Here, we say that
w = w1 . . . wn satisfies atom S ≤ N iff |{i ∈ [n] | B-Sphw(i) ∼= S}| ≤ N . The
radius B and the size of β and its constants N are elementary in |ϕ| and |S|.

By Theorem 2, it will be useful to have a class register automaton that,
when reading a position i of data word w, outputs the sphere of w around i. Its
construction is actually the main difficulty in the proof of Theorem 1, as spheres
have to be computed “in one go”, i.e., reading the word from left to right, while
accessing only certain configurations from the past.

Proposition 1. Let B ∈ N. One can compute, in elementary time, a class reg-
ister automaton AB = (Q,R,∆, (F⊳)⊳∈S

, true) over S, as well as a mapping
π : Q → B-SpheresS such that L(AB) = (Σ × D

m)∗ and, for every data word
w = w1 . . . wn, every accepting run (q1, ρ1) . . . (qn, ρn) of AB on w, and every
i ∈ [n], π(qi) ∼= B-Sphw(i). Moreover, |Q| and |R| are elementary in B and |S|.

The proposition is proved below. Let us first show how we can use it, together
with Theorem 2, to translate an rEMSO formula into a class register automaton.

Proof (of Theorem 1). Let ϕ = ∃X1 . . . ∃Xn ψ ∈ rEMSO(S) be a sentence with
ψ ∈ rFO(S) (we also assume n ≥ 1). Since Theorem 2 applies to first-order for-
mulas only, we extend Σ to Σ × Γ where Γ = 2{1,...,n}. Consider the extended
signature SΓ (cf. Section 4). From ψ, we obtain a formula ψΓ ∈ rFO(SΓ) by re-
placing ℓ(x) = a with

∨

M∈Γ ℓ(x) = (a,M) and x ∈ Xj with
∨

a∈Σ,M∈Γ ℓ(x) =
(a,M ∪ {j}). Consider the radius B ∈ N and the normal form βΓ for ψΓ due to
Theorem 2. Let AB = (Q,R,∆, (F⊳)⊳∈SΓ

, true) be the class register automaton
over SΓ from Proposition 1 and π be the associated mapping. The global accep-
tance condition of AB is obtained from βΓ by replacing every atom S ≤ N with
π−1(S) ≤ N (which can be expressed as a suitable boolean formula). We hold
A′

B, a class register automaton satisfying L(A′
B) = L(ψΓ). Exploiting closure

under projection (Lemma 2), we obtain a class register automaton over S that
recognizes L(ϕ) = projΣ(L(ψΓ)). ⊓⊔

The Sphere Automaton. In the remainder of this section, we construct the
class register automaton AB = (Q,R,∆, (F⊳)⊳∈S

, true) from Proposition 1,
together with π : Q → B-SpheresS. The idea is that, at each position i in the
data word w at hand, AB guesses the B-sphere S of w around i. To verify that
the guess is correct, i.e., S ∼= B-Sphw(i), S is passed to each position that is

11

connected to i by an edge in G(w). That new position locally checks label and
data equalities imposed by S, then also forwards S to its neighbors, and so on.
Thus, at any time, several local patterns have to be validated simultaneously
so that a state q ∈ Q is actually a set of spheres. In fact, we consider extended
spheres E = (S, α, col) where S = (U, (⊳E)⊳∈S, λ, ν, γ) is a sphere (with universe
U and sphere center γ), α ∈ U is the active node, and col is a color from a finite
set, which will be specified later. The active node α indicates the current context,
i.e., it corresponds to the position currently read.

Let B-eSpheresS denote the set of extended spheres, which is finite up to
isomorphism. For E = (S, α, col) ∈ B-eSpheresS, S = (U, (⊳E)⊳∈S, λ, ν, γ), and
j ∈ U , we let E[j] refer to the extended sphere (S, j, col) where the active node α
has been replaced with j. Now suppose that the state q of AB that is reached after
reading position i of data word w contains E = (S, α, col). Roughly speaking,
this means that the neighborhood of i in w shall look like the neighborhood of
α in S. Thus, if S contains j′ such that α⊳E j′, then we must find i′ such that
i ⊳w i′ in the data word. Local final states will guarantee that i′ indeed exists.
Moreover, the state assigned to i′ in a run of AB will contain the new proof
obligation E[j′] and so forth. Similarly, an edge in (the graph of) w has to be
present in spheres, unless it is beyond their scope, which is limited by B. All
this is reflected below, in conditions T2–T6 of a transition.

We are still facing two major difficulties. Several isomorphic spheres have
to be verified simultaneously, i.e., a state must be allowed to include isomor-
phic spheres in different contexts. A solution to this problem is provided by
the additional coloring col . It makes sure that centers of overlapping isomorphic
spheres with different colors refer to distinct nodes in the input word. To put
it differently, for a given position i in data word w, there may be i′ such that
0 < distw(i, i′) ≤ 2B+1 and B-Sphw(i) ∼= B-Sphw(i′). Fortunately, there cannot
be more than (2|S|+1) ·maxSize2 such positions. As a consequence, the coloring
col can be restricted to the set {1, . . . , (2|S|+ 1) ·maxSize2 + 1}.

Implementing these ideas alone would do without registers and yield a class
memory automaton. But this cannot work due to Lemma 1. Indeed, a faithful
simulation of cycles in spheres has to make use of data values. They need to be
anticipated, stored in registers, and locally compared with current data values
from the input word. We introduce a register (E, k) for every extended sphere
E and k ∈ [m]. To get the idea behind this, consider a run (q1, ρ1) . . . (qn, ρn)
of AB on w = (a1, d1) . . . (an, dn). Pick a position i of w and suppose that
E = (U, (⊳E)⊳∈S, λ, ν, γ, α, col) ∈ qi. If α is minimal in E, then there is no
pending requirement to check. Now, as α shall correspond to the current position
i of w, we write, for every k ∈ [m], dki into register (E, k) (first case of T8 below).
For all j ∈ U \ {α}, on the other hand, we anticipate data values and store them
in (E[j], k) (also first case of T8). They will be forwarded (second case of T8)
and checked later against both the guesses made at other minimal nodes of E
(second line in T7) and the actual data values in w (end of line 1 in T7). This
procedure makes sure that the values that we carry along within an accepting
run agree with the actual data values of w.

12

Now, as prevw
⊳

and nextw
⊳

are monotone wrt. positions with identical labels
and data values, two isomorphic cycles cannot be “merged” into one larger one,
unlike in non-guessing class register automata where different parts may act
erroneously on the assumption of inconsistent data values (cf. Lemma 1). As a
consequence, spheres are correctly simulated by the input word.

Let us formalize AB = (Q,R,∆, (F⊳)⊳∈S
, true) and the mapping π : Q →

B-SpheresS, following the above ideas. The set of registers is R = B-eSpheresS×
[m]. A state from Q is a non-empty set q ⊆ B-eSpheresS such that

(i) there is a unique E = (U, (⊳E)⊳∈S, λ, ν, γ, α, col) ∈ q such that γ = α (we
set π(q) = (U, (⊳E)⊳∈S, λ, ν, γ) to obtain the mapping required by Prop. 1),

(ii) there are a ∈ Σ and η ∈ Part(m) such that, for all E = (. . . , λ, ν, . . .) ∈ q,
we have λ(α) = a and ν(α) = η (we let label (q) = a and data(q) = η), and

(iii) for every (S, α, col), (S, α′, col) ∈ q, we have α = α′.

Before we turn to the transitions, we introduce some notation. Below, E will
always denote (S, α, col) with S = (U, (⊳E)⊳∈S, λ, ν, γ); in particular, α refers
to the active node of E. The mappings nextE

⊳
, prevE

⊳
, and distE are defined for

extended spheres in the obvious manner. For j ∈ U , we set type−(j) = {⊳ ∈ S |
prevE

⊳
(j) is defined}. Let us fix, for all E ∈ B-eSpheresS such that type−(α) 6= ∅,

some arbitrary ⊳E ∈ type−(α). Finally, for state q and k1, k2 ∈ [m], we write
k1 ∼q k2 if there is K ∈ data(q) such that {k1, k2} ⊆ K.

We have a transition (p, g)
a

−→ (q, f) iff the following hold:

T1 label (q) = a

T2 for all ⊳ ∈ S, E ∈ q : ⊳ 6∈ dom(p) =⇒ prevE
⊳
(α) is undefined

T3 for all ⊳ ∈ dom(p), E ∈ q, j ∈ U : j ⊳E α ⇐⇒ E[j] ∈ p⊳
T4 for all ⊳ ∈ dom(p), E ∈ p⊳, j ∈ U : α⊳E j ⇐⇒ E[j] ∈ q

T5 for all ⊳ ∈ dom(p), E ∈ q : prevE
⊳
(α) undefined =⇒ distE(γ, α) = B

T6 for all ⊳ ∈ dom(p), E ∈ p⊳: nextE
⊳
(α) undefined =⇒ distE(γ, α) = B

T7 g =
∧

k1,k2∈[m]
k1 ∼q k2

k1 = k2 ∧
∧

k1,k2∈[m]
k1 6∼q k2

¬ (k1 = k2) ∧
∧

k∈[m] E ∈ q

⊳∈type−(α)

k = (⊳, (E, k))

∧
∧

k∈[m] E ∈ q j ∈U

⊳1,⊳2∈type−(α)

(⊳1, (E[j], k)) = (⊳2, (E[j], k))

T8 for all k ∈ [m] and E ∈ B-eSpheresS :

f((E, k)) =

(k, distE(j, α)) if ∃j ∈ U : E[j] ∈ q and type−(j) = ∅
(⊳E[j], (E, k)) if ∃j ∈ U : E[j] ∈ q and type−(j) 6= ∅
undefined otherwise

For every ⊳ ∈ S, the local acceptance condition is given by F⊳ = {q ∈ Q |
for all E ∈ q, nextE

⊳
(α) is undefined}. Recall that the global one is true.

As the maximal size of a sphere is exponential in B and polynomial in |S|,
the numbers |Q| and |R| are elementary in B and |S|. Note that AB can actually
be constructed in elementary time.

13

MSO(S1
+1,∼) = rMSO(S1

+1,∼)

CRA(S1
+1,∼)

CRA−(S1
+1,∼)

EMSO(S1
+1,∼)

rEMSO(S1
+1,∼)

EMSO2(S
1
+1,∼ ∪ {<}) = CMA(S1

+1,∼)

CRA(S1
+1) = CRA−(S1

+1)

Thm. 1

[2]

[2,4]

Fig. 4. A hierarchy of automata and logics over one-dimensional data words

6 From Automata to Logic

Next, we give translations from automata back to logic. Note that rEMSO(S1+1) $
CRA(S1+1), as rEMSO(S1+1) cannot reason about data values. However, we show
that the behavior of a class register automaton is always MSO definable and,
in a sense, “regular”. There are natural finite-state automata that do not share
this property: two-way register automata (even deterministic ones) over one-
dimensional data words are incomparable to MSO(S1+1,∼) [17].

Theorem 3. For every signature S, we have CRA(S) ⊆ MSO(S).

In the proof, the non-local predicate dk(x) = dl(y) is indeed essential to simulate
register assignments, as we need to compare data values at positions where
registers are updated. For one-dimensional data words, however, the predicate
can be easily defined in rMSO(S1+1,∼). The following theorem is dedicated to
this classical setting over S1+1,∼.

Theorem 4. We have the inclusions depicted in Figure 4. Here, −→ means
‘strictly included’ and 99K means ‘included’.

The remaining (strict) inclusions are left open. When there are no data values,
we have expressive equivalence of EMSO logic and class register automata (which
then reduce to class memory automata). The translation from automata to logic
follows the standard approach. The following theorem is a proper generalization
of the main result of [7].

Theorem 5. Suppose m = 0. For every signature S, EMSO(S) = CRA(S).

7 Conclusion

We studied the realizability problem for data-word languages. A particular case
of this general framework constitutes a first step towards a logically motivated
automata theory for dynamic message-passing systems. As future work, it re-
mains to study alternative specification formalisms such as temporal logic [15].
It would also be interesting to extend [16], whose logic corresponds to ours in
the case of S2dyn, to general data words.

14

References

1. R. Alur and P. Madhusudan. Adding nesting structure to words. Journal of the

ACM, 56(3):1–43, 2009.
2. H. Björklund and Th. Schwentick. On notions of regularity for data languages.

Theoretical Computer Science, 411(4-5):702–715, 2010.
3. M. Bojańczyk and S. Lasota. An extension of data automata that captures XPath.

In LICS 2010, pages 243–252. IEEE Computer Society, 2010.
4. M. Bojańczyk, A. Muscholl, Th. Schwentick, L. Segoufin, and C. David. Two-

variable logic on words with data. In LICS 2006, pages 7–16. IEEE Computer
Society, 2006.

5. B. Bollig and L. Hélouët. Realizability of dynamic MSC languages. In F. Ablayev
and E. Mayr, editors, CSR 2010, volume 6072 of LNCS, pages 48–59, 2010.

6. B. Bollig and D. Kuske. An optimal construction of Hanf sentences, 2011.
arXiv:1105.5487.

7. B. Bollig and M. Leucker. Message-passing automata are expressively equivalent
to EMSO logic. Theoretical Computer Science, 358(2):150–172, 2006.

8. P. Bouyer. A logical characterization of data languages. Information Processing

Letters, 84(2):75–85, 2002.
9. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of

the ACM, 30(2), 1983.
10. C. David, L. Libkin, and T. Tan. On the satisfiability of two-variable logic over

data words. In C. Fermüller and A. Voronkov, editors, LPAR 2010, LNCS, pages
248–262. Springer, 2010.

11. S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. ACM

Transactions on Computational Logic, 10(3), 2009.
12. W. Hanf. Model-theoretic methods in the study of elementary logic. In J. W.

Addison, L. Henkin, and A. Tarski, editors, The Theory of Models. North-Holland,
Amsterdam, 1965.

13. M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer

Science, 134(2):329–363, 1994.
14. M. Kaminski and D. Zeitlin. Finite-memory automata with non-deterministic re-

assignment. International Journal of Foundations of Computer Science, 21(5):741–
760, 2010.

15. A. Kara, Th. Schwentick, and Th. Zeume. Temporal logics on words with multiple
data values. In K. Lodaya and M. Mahajan, editors, FSTTCS 2010, volume 8 of
LIPIcs, pages 481–492, 2010.

16. M. Leucker, P. Madhusudan, and S. Mukhopadhyay. Dynamic message sequence
charts. In M. Agrawal and A. Seth, editors, FSTTCS 2002, volume 2556 of LNCS,
pages 253–264. Springer, 2002.

17. F. Neven, Th. Schwentick, and V. Vianu. Finite state machines for strings over
infinite alphabets. ACM Transactions on Computational Logic, 5(3):403–435, 2004.

18. Th. Schwentick and K. Barthelmann. Local normal forms for first-order logic
with applications to games and automata. Discrete Mathematics & Theoretical

Computer Science, 3(3):109–124, 1999.
19. L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In

Z. Ésik, editor, CSL 2006, volume 4207 of LNCS, pages 41–57. Springer, 2006.
20. W. Thomas. Elements of an automata theory over partial orders. In POMIV 1996,

volume 29 of DIMACS. AMS, 1996.
21. N. Tzevelekos. Fresh-register automata. In Th. Ball and M. Sagiv, editors, POPL

2011, pages 295–306. ACM, 2011.

15

	An automaton over data words that captures EMSO logic

