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ABSTRACT

We present the WebContent platform for managing distrithtepos-
itories of XML and semantic Web data. The platform allowsint
grating various data processing building blocks (crawlinansla-
tion, semantic annotation, full-text search, structurddLquery-
ing, and semantic querying), presented as Web services,aint
large-scale efficient platform. Calls to various services @m-
bined inside ActiveXML [9] documents, which are XML docu-
ments including service calls. An ActiveXML optimizer isags
to: (z) efficiently distribute computations among siteig) perform
XQuery-specific optimizations by leveraging an algebrai@uéry
optimizer; and {i7) given an XML query, chose among several dis-
tributed indices the most appropriate in order to answeqtlegy.

1. CONTEXT

The Web has become the platform of choice for the delivery of
business applications. In particular, the popularity ot\gervice
technologies (WSDL [18], BPELAWS [10] etc.) and their close
ness to HTML and XML, the predominant content delivery lan-
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Figure 1: WebContent architecture outline.

The crawler service returns XML documents with informatrarh
headers (crawling date, origin site etc.).slrage (2) service can

plex business applications by integrating Web servicesigead by
different parties. This model has several advantages. Brdevel-
opment viewpoint, it relies on widely accepted standandd teene-
fits from the plethora of available application buildingt#s. From
a business viewpoint, it allows organizing the activity lranly

Content warehouse. Observe that multiflanslation (3) services
are used to translate to and from English, French, Chines&et
mantic annotation (4) services are invoked to analyze the text of
the crawled pages and extract, e.g., specific aircraft lsiamanes
of edible plants or bacteria that taint food etc. The animtatare

defined modules, each of which is implemented by some Web ser- added as a semantic header to the XML documents, under the for

vices. This enables several entities to provide implentiams of a
given module, and facilitates replacing one entity withtaea
We are currently involved in a large R&D project called Web-

Content [23], whose purpose is to build and exploit largaesc
repositories of rich, semantically annotated Web data. dues-
all setting of the project, outlined in Figure 1, exemplifiee kinds
of applications discussed above.fédcused crawler (1) service re-
turns Web documents related to specific domains, in our edse,
craft sales by Airbus and Boeing (for a continuous, onlinekmia
survey), respectively, food risk information, for a cortaon of
food companies seeking to organize and structure infoomat-
lated to different food problems (contaminations, allegetc.).
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of XML-ized RDF snippets, and the modified documents are put
back in the storeMsualization (5) andquery (6) services can be
used at this point to exploit the corpus, either via advanssd in-
terfaces (e.g. “fish-eye lens” view on documents) or by gueri,
using a subset of XQuery (with full-text search) or SPARQ%][1

The WebContent warehouse is deployed in two settings., first
a "closed” scenario, in a company Intranet, all servicepeoeided
by in-house components and communication takes place via an
ESB [11]. Second, in a distributed, decentralized settogput-
ers are connected via the Internet and communication tdkes p
via Web services exchanged over SOAP [19]. In both cases the
can be several instances of each service, in particulaggecer-
vices are provided by multiple machines, to cope with larg&ad
volumes; and, services can be called from inside or outbieléed-
eration of sites implementing the warehouse.

Two problems have to be solved in both settings: identifigeg
vices that implement a given interface, and efficiently exieg the
Web service calls. Efficiency is a particularly importanhcern in
the distributed setting, since data transfers from ondaaitémother
may become the bottleneck. However, distribution is a gasaét
for large-scale warehouses such as the ones envisioned tareu
get applications, with large (and growing!) data volumbsyeéfore



we focus on the distributed setting. Another source of iniefficy
concerns repeated (redundant) execution of identicalceeoalls,
which may occur in large data processing tasks.

To combine Web services provided by different partners & th
WebContent project, our solution is based on a compositon |
guage, namely ActiveXML (or AXML in short) [9], which in our
setting can be seen as equivalent to a subset of BPEL. An Ac-
tiveXML document is an XML document specifying which ser-
vices to call, how to build their input messages, and how #lis ¢
should be ordered. AXML raises several interesting tectimimb-
lems addressed in previous works [1, 2, 3, 7]. More receatly,
conceptual AXML optimization framework [5] and an ActiveXM
optimizer, named OptimAX [6], have been developed. Given an
AXML document, OptimAX appliegquivalence-preserving rewrit-
ings that transform it into different documents, producing thme
results, but possibly very different in shape and in the tstrvices
it invokes. Thus, the execution of the rewritten documeiikedy
to both shorten response time, and consume less CPU respurce
than that of the original document.

Following the service-oriented architecture illustrate8igure 1,
we have implemented OptimAX as a Web service which, when in-
voked with an AXML document, returns the rewritten document
This step allows to benefit from the kind of performance-echsy
techniques typically applied in distributed database$, [iat in a
new setting: losely coupled (vs. tightly controlled ses)egeneric
(vs. tailored to specific indices and execution technigumggnsi-
ble to any service (vs. limited to the “inside” of the databasrver
box). Another important difference is that AXML (and OptirKA
support continuous (streaming) services, such as the erast-
vice in Figure 1, or more generally any RSS feed. XML streams
are at the core of many modern Web applications, e.g. for-keep
ing a portal’'s content up-to-date, or for implementing combus
business interactions in a workflow-style setting.

OptimAX functioning is extremelygeneric. It explores a search
space based on a given set of rewriting rules. Some rules-corr
spond to optimization techniques previously developedaraiion,
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Figure 2: Internal architecture of a WebContent peer.

platform which integrates them, and the DHT index selectae
new and have not been presented yet.
Demo scenariosNe plan to use scenariso inspired from the Web-
Content project. A first scenario concerns market surveskbafor
the European Advanced Defence System (EADS) company; inter
ested in economical news and market analysis concerningaibe
of its Airbus aircraft.

This document is organized as follows. The next sectionildeta
the WebContent peer architecture. Then, we focus on thesprec
issue of the DHT XML index selection in this context.

2. ARCHITECTURE OF AWEBCONTENT
PEER

The overall architecture of the P2P platform is outlined ig-F
ure 2. All peers are connected to a Distributed Hash Tableh(@nt,
a DHT) [12]. The DHT keeps the peers logically connected # di
tributed structure that assigns théagical IDs. Given a peer ID,
a DHT structure is typically able to route a message to that, pe

such as query pushing and lazy query evaluation [2]. The samefqm any peer in the network, in at mdsigz (V) hops across the

genericity allows us to apply several types of rewritingstipa-
larly useful in the WebContent setting:

algebraic XQuery manipulations : user queries expressed in XML
over the distributed warehouse are analyzed with the help of
an algebraic XQuery analyzer called TGV [16] which may
e.g. decompose them into smaller queries that can be effi-
ciently handled

query compiling : we have defined a few abstract services spe-
cific to the WebContent setting, for instance, a query answer
ing service over the whole distributed warehouse. OptimAX
will always replace a call to this service by a set of calls to
concrete, implemented services, which compute the desired
result.

DHT index selection : WebContent sites are connected in a DHT
network, in which several types of XML content indices can
be materialized. (Currently there are two such indices; pro
vided by the KadoP [4] and PathFinder [13] systems, but this
can clearly be extended.) OptimAX may pick one index or
another, thus realizing distributed access path selection

Demo highlights The demonstration will focus on two technical
aspects. #) The architecture of a WebContent peer; ai the
DHT XML index selection feature. While ingredients of thepl
form have been addressed in separate publications, the M@

network, whereV is the number of peers in the DHT.

The storagefunctionality is implemented jointly by peers in the
network, each of which may become responsible of storinggfar
the resources, as follows:

e WebContent resources: XML documents are stored in an
XML repository local to each peer, whereas other types of
files (such as Word documents, PDF files etc.) are stored
directly in the local file system. Modifications (such as en-
richment etc.) to any resource which is an XML document
are made via the update functionality of the local XML data
management store on each peer.

Parts of the index: an important aspect of the WebContent
P2P platform is the capability to efficiently search the dis-
tributed warehouse. To that effect, data access struchnees
built and stored collaboratively by the peers.

Other helper data structures, which (like the index) may in-
crease performance. This category mainly concerns materi-
alized views or caches (this feature is currently under ldeve
opment).

In principle, any XML database can be used to store XML re-
sources on a given peer. We have integrated so far eXist [gl] a
MonetDB/XQuery [22], and we are currently working on inserf

ing with the Microsoft SQL Server.



Several modules in each peer cooperate to implement tHenpied
searchandupdate functionality. We outline their roles next.

Local SPARQL semantic query processorEach peer is capable

evaluates the query and returns the XML answer, as in [2c6] et
other words, the query, has beemlecomposed in a set of tree pat-
tern queries, and a recomposition query which typicallyfqrers

value joins, and element construction (in cgseequires new el-

of processing semantic queries over RDF data, expressed ingments in its result). The interest of the decompositiomas the

a conjunctive subset of the SPARQL [15] language. The se-

tpq service is concretely available on all WebContent peeidgén

mantic query processor exploits RDFS (RDF Schema) infor- ficiently implemented based on distributed XML indices miate
mation in order to rewrite a query asked ata given peer, basedjzeq on the DHT. The notatidipg@any specifies that any concrete

on themappings that explain how resources are potentially

stored at several peers [8]. The output of the rewriting pro-
cess is a union of XML queries which correspond precisely
to the XML resources that are part of the answer to the query.

Local component of a distributed execution enginePeers collab-
orate in order to ship data from one to another and to com-
pute query results in a collaborative fashion. To that effec
each peer is endowed with several functionalities which re-
side in its local execution module. Thus, a peer is capable
of sending and receiving data (including XML subtrees, in-
dex entries etc.), as well as information on how a given query
should be evaluated.

Local optimizer The volume and variety of resources considered
in WebContent raise a significant challenge from the perfor-

endpoint for thetpq service can be used; they are all guaranteed to
give the same answers, and useny informs the optimizer that
the processing of these tree pattern queries can be pustay to
particular site, as is judged best for performance purposes

As previously mentioned, two DHT-based XML indexing mod-
els are currently supported in WebContent. In our curreatfqim,
all peers provide thus two concrete implementations ofpheser-
vice, each using a distinct index. The choice of which oneswis
again made by OptimAX, based on the particular tree patteemnq
ti that is a parameter of ead¢pq call (this will be detailed in the
next section).

Starting from the AXML expressiorkX) previously mentioned,
OptimAX enumerates some distributed execution strategissk-
ing to replace thany locations of theqp calls with specific peers,
so as to reduce the amount of index data transfers necessary f

mance viewpoint. To address these challenges, the indexingevaluating thetpg calls. To do this, OptimAX uses cardinality

framework and the execution engine provide several tools,
such as data access support structures (or indices, dascrib
in the next section), efficient join algorithms, alternateval-

uation strategies etc. Furthermore, peers in the WebCon-

tent network may have different capabilities (e.g. diffare
computing power) which make them more or less interesting
choices to process a given query. All these choices are-avail
able to the OptimAX optimizer on the query peer; OptimAX
explores them using its local cost and catalog information.

Based on Figure 2, thguery processing chain in WebContent
can be described as follows.

Assume that peer receives a query,, expressed in a dialect of
XQuery (for the time being, restricted to downward navigatand
excluding type-dependent features suctcas, typeswitch etc.).
The semantics of the query is: return results for qugryrom all
the documents published in the WebContent warehouse. I lear
a naive semantics-driven implementation would exhibit/ y@or
performance.

This query is modeled in our setting as an ActiveXML docu-
ment including a call to th&\ebContentQuery@p service. Here,
WebContentQuery is an abstract service, i.e. it is not provided by
any concrete endpoint [18]. For a human reader-friendigivar
of AXML, we use the notatiorf@p to refer to a servicef pro-
vided by peemp. OptimAX is aware thai\ebContentQuery is an
abstract service, and includes a rewriting rule that regddhbe call
to WebContentQuery(q..) with an expression containing nested ser-
vice calls, of the form:

(©) GenericQueryService@p(recomposeQ,

tpa@any(t1), tpg@any(t2), . . ., tpa@any(tn) )
wheretl, t2 etc. are conjunctive tree pattern querigs is a tree
pattern query processing service (to be detailed next) recon-

poseQ is an XQuery query such that, for any set of XML documents
indexed in the WebContent warehouse:

q = recomposeQ(tl1,t2,. . .,tn)

TheGenericQueryServiceis a query service available on all peers
which, given an XQuery and some locally available XML inputs

statistics maintained in the network, locally cached cepiavhich
reside on every peer. The search space is potentially ltngyefore
OptimAX can employ a set of heuristics such as greedily expdo
the best cost-saving rewritings, exploring at most 30 riéngietc.,
in the style of classical distributed query processing Hfjlied to
the specific OptimAX search space. The expression is tharghto
to a form:

(O)  GenericQueryService@p(recomposeQ,

tpg@p1(t1), tha@p2(t2), . . ., tpa@pm(tn) )

and handled to the local AXML evaluation engine, which wrilfjt
ger the calls to peensl, p2, ..., pm, receive the results, and inte-
grate them in the document (as siblings of the service callag
last call to be triggered is the one @enericQueryService, which
performs the last computations needed in order to prod@c¥NL
result ofg,, at peem.

An important extra layer to this query processing chain edeel
when queries are not asked at the level of XML (syntax), bthet
level of RDF classes (semantics). WebhContent documentbe&an
enriched with semantic annotations (recall Figure 1), esat may
be interested in retrieving resources that are pertinena fgiven
semantic concepts. Consider such a semantic gueryxpressed
at peemp in a SPARQL-style language. Peemay know of some
mappings describing how a concept inrelates to other concepts
present in the WebContent warehouse. Thenjtiates a semantic
rewriting step, which traverses the available mappings refat-
mulates (enriches). For instance, ifjs asks for documents relevant
to the concept “Airbus aircraft”, if a mapping specifies tt#320
iSA Airbus aircraft”, then documents annotated with the “A320”
concepts should also be part of the result.

RDF semantic annotations are serialized in XML in our plat-
form, and indexed like any other XML resource. Thereforezeon
gs has been fully rewritten based on mappings, it is automigtica
translated into an XML query.., and processed just as explained
above.

3. DHT-BASED XML INDEXING

We now outline the two XML indexing models employed in We-
bContent and show how they can be used during query progessin



KadoP indexing The first WebContent XML indexing model is
provided by the KadoP system [4]. In this modeblex keys are ex-
tracted from: all XML element and attribute names; and, alidg
(after stemming and ignoring stop-words) that appear ihrieges
and attribute values in XML documentdndex values are struc-
tural identifiers of the forndoclID, start, end characterizingll the
locations where each individual key occurs in the system. For in-
stance, for an element nartidle, the key isn-title (opposed tow-
title which stands for a text word “title”), and the value is the lis
(sorted bydoclID, start) of the structural identifiers of “title” ele-
ments occuring in all WebContent documents. KadoP’s trée pa
tern language consists of trees where each node is labelbGwi
XML node or a word, and edges stand for parent-child or ancest
descendant relationships. KadoP processes such treenpatte
performing a Holistic Structural Twig Join on the lists okii-
fiers (also known aposting lists) associated to the query node la-
bels. Observe that KadoP cannot process tree pattern swetfe
inequalities, e.g//articlefyear>2005]. The KadoP index distribu-
tion on peers is left to the DHT’s hash function.

PathFinder indexing The second indexing model comes from the
PathFinder platform [13], which seeks to place index estoa

the DHT peers in such a way as to reduce the number of hops [4]

(peers contacted) for answering a query. PathFinder keySrar

ear parent-child rooted paths encountered in XML documents of
the networks, and the values are the sodmaD lists of identifiers

of documents exhibiting a given path. The last step in Pathéfi
paths may be either an element or attribute name, or a text nod
(word occuring in an XML string) or attribute value. Sampte i
dex keys are:article, titleftitle, article/title/\WebContent etc. By
appropriately tuning the hash function, PathFinder is ablen-
sure that index entries corresponding to keys thatimse (in lex-
icographic order) are placed on peers that are close (inghse s
of proximity in the DHT structure). Therefore, it is capaldé
answering queries such asticle[title/’ XML']/author efficiently.
Observe that the PathFinder index requires less data érartsfan
the KadoP one, because of its larger granularity (docunasmp-
posed to element). It can also answer inequality queriels asc
[article[year>2005], because it can find all index paths starting
whose prefix idarticle/lyear and whose last step is a value larger
than 2005. In exchange, it does not support queries inwplthe

// axis.

Putting it all together Given an XQuery query,, the TGV al-
gebraic analyzer extracts the recomposition query and af $ete
patterns, which are then analyzed. Depending on their sy@tp-
timAX will dispatch them to the KadoP, resp. to the PathFinde
index. For instance, consider the quémy $x in //report[//' A320'],

$y in/airbudib/report] year >2005] where $x/author=$y/author re-
turn <res>{$x/title, $y/title} </res>. The patterr/report[//' A320']
will be handled by KadoP, whilkirbuslib/report[ year >2005] will

be handled by PathFinder. The recomposition queryds:$ in
Hesl, § in $res2 where $i/author=F/author return <res>{ filtitle,
Jltitle} </res>. Patterns featuring both // and inequalities are cur
rently handled to KadoP ignoring the value predicate, wigcp-
plied as a post-processing step.

4. RELATED WORKS AND CONCLUSION

We have mentioned in the introduction how the current work re
lates to previous AXML results. More generally, WebContegnh
be seen as an attempt to bridge the numerous existing tegies!
for handling XML data, distributed queries, Semantic Wethte
nologies and Web services into building new-generation dwn-
agement platforms. From this perspective, our approacbnigpe-
rable with similar project such as [20]. WebContent diffénam

these in the focus on distributed data management, whichewe b
lieve is a must for large-scale, growing data warehousek asc
those we envision; in this context, WebContent leverage§-DH
based XML indexing technologies [4, 16] that follow the fipsb-
posal in this area [14]. Finally, a specific innovative asped\e-
bContent is the presence of OptimAX, an “external” optimithet
attempts to coordinate distributed data management staigies
out requiring a tight connection between the pluggable rresdu
(implemented as Web services), facilitating the consioncof ef-
ficient distributed Web applications.
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