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Abstract

We introduce and study a model of collaborative data-driven
workflows. In a local-as-view style, each peer has a partial
view of a global instance that remains purely virtual. Local
updates have side effects on other peers’ data, defined via the
global instance. We also assume that the peers provide (an
abstraction of) their specifications, so that each peer can ac-
tually see and reason on the specification of the entire system.

We study the ability of a peer to carry out runtime rea-

soning about the global run of the system, and in particular

about actions of other peers, based on its own local obser-

vations. A main contribution is to show that, under a rea-

sonable restriction (namely, key-visibility), one can construct

a finite symbolic representation of the infinite set of global

runs consistent with given local observations. Using the sym-

bolic representation, we show that we can evaluate in pspace

a large class of properties over global runs, expressed in an

extension of first-order logic with past linear-time temporal

operators, PLTL-FO. We also provide a variant of the algo-

rithm allowing to incrementally monitor a statically defined

property, and then develop an extension allowing to moni-

tor an infinite class of properties sharing the same temporal

structure, defined dynamically as the run unfolds. Finally,

we consider an extension of the language, augmeting work-

flow control with PLTL-FO formulas. We prove that this

does not increase the power of the workflow specification lan-

guage, thereby showing that the language is closed under such

introspective reasoning.

1 Introduction
Process-centric workflows focus on control flow, often ab-
stracting away data almost entirely. In contrast, recently
proposed data-driven workflows treat data as first-class
citizens, e.g., the business artifact model pioneered in [20]
and deployed by IBM in commercial products. Data-
driven workflows have become ubiquitous in a wide array
of application domains. Their system architecture may
range from totally centralized to fully distributed. While
multiple-peer workflows have been extensively studied in
the process-centric case using finite-state models, little
formal research has been done on collaborative workflows
centered around a database, which have infinitely many

states (see related work). In this paper, we introduce a
simple model for collaborative data-driven workflows and
provide techniques that enable a peer to reason about
runs of the global workflow based on its local observa-
tions.

In our model, peers modify local data using condi-
tion/update actions. The connection between the data
at different peers is specified using a local-as-view ap-
proach, in which the data at each peer is an exact view
of a virtual global database. We impose restrictions (us-
ing the presence of keys) to guarantee that peer updates
can be propagated in an unambiguous manner to other
peers. We assume that update propagation is instanta-
neous, i.e., we assume some underlying synchronization
mechanism to support update propagation.

Our goal is to enable peers to reason, based on local
observations, about the global state of the system and
about actions occurring at other peers. This can serve as
the basis for a wealth of runtime tools for monitoring the
global run, detecting and diagnosing anomalous behav-
ior, balancing load to improve efficiency, or analyzing the
current run to derive competitive advantage over other
peers.

Consider a peer p in such a system. We assume p
knows the specification of all the other peers. (In fact,
p is likely to only be given an abstraction of these spec-
ifications, hiding details and confidential behavior of the
peers.) Peer p only sees a local view of the global run.
Note that there are generally infinitely many global runs
that are consistent with p’s observations. Based on this
local view, one would like to evaluate queries over the
global run, specified by an extension of first-order logic
(FO) with temporal operators (PLTL-FO), referring to
the entire history of the run. In particular, we would like
to decide whether a formula in this language is possibly
or certainly true in the global runs that correspond to
what p sees locally. Deciding such properties is at the
heart of the paper.

More precisely, our main contributions are the follow-
ing:

• developing a finite symbolic representation system
for the infinite set of global runs consistent with local
observations;
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• using the representation system to provide a pspace
algorithm for evaluating PLTL-FO properties of the
global runs consistent with the local observations,
with respect to both possible and certain world se-
mantics;

• developing an incremental variant of the algorithm
suitable for monitoring some properties specified be-
forehand; and extending this variant to monitor an
infinite class of properties sharing the same tempo-
ral structure, so that properties can be chosen in this
class while the run unfolds.

Finally, we consider the effect of integrating the rea-
soning previously described into the control of the work-
flow itself. This allows a peer to guide its actions based
on properties of the global run that can be monitored,
detecting some other peer actions that are not visible
locally. We show, somewhat surprisingly, that adding
such control features does not increase the expressiveness
of the workflow specification language. Intuitively, this
shows that the workflow specification language is closed
under such introspective reasoning.

Related work Although not focused explicitly on
workflows, Dedalus [8, 15] and Webdamlog [4, 2] are
systems supporting distributed data processing based
on condition/action rules. Local-as-view approaches are
considered in a number of P2P data management sys-
tems, e.g., Piazza [21] that also consider richer mappings
to specify views. Update propagation between views is
considered in a number of systems, e.g., based on ECA
rules in Hyperion [9].

Finite-state workflows with multiple peers have been
formalized and extensively studied using communicat-
ing finite-state systems (called CFSMs in [1, 10], and e-
compositions in the context of Web services, as surveyed
in [16, 17]). Formal research on infinite-state, data-driven
collaborative workflows is still in an early stage. The
business artifact model [20] has pioneered data-driven
workflows, but formal studies have focused on the single-
user scenario. Compositions of data-driven web services
are studied in [12], focusing on automatic verification.
Active XML [3] provides distributed data-driven work-
flows manipulating XML data.

A collaborative system for distributed data sharing
geared towards life sciences applications is provided by
the Orchestra project [14, 19]. The underlying update
propagation model among peers is based on schema map-
pings and is similar to our local-as-view approach. How-
ever, Orchestra does not address the kind of analysis
problems studied here.

Organization After some preliminaries, we introduce
the model of collaborative workflows. We then develop
in Section 3 the representation system for the infinite set
of global runs consistent with given peer observations. In
Section 4, we show how the representation system can be

used to evaluate PLTL-FO properties of global runs. We
also consider incremental and preemptive evaluation, and
discuss the expressiveness of introspection in workflow
control. An appendix contains a few detailed definitions
and some proofs.

2 The Model
In this section, we introduce the model of collaborative
workflows. We begin with some preliminaries, then in-
troduce collaborative workflows.

Preliminaries We assume an infinite data domain
dom with one distinguished element ⊥ (representing un-
defined data values). We also assume an infinite count-
able domain of variables var = {xn}n≥1 disjoint from
dom. We denote variables by x, y, z, possibly with sub-
scripts. A relation schema is a relation symbol together
with a sequence of distinct attributes (whose length is the
arity of the relation). We denote the set of attributes of
R by att(R). A database schema is a finite set of relation
schemas. An instance of a database schema is a mapping
I associating to each relation schema R a finite relation
I(R) over dom, of the same arity as R. An instance (or
tuple) containing ⊥ is called partial, and otherwise total.

We assume that each relation schema R is equipped
with a unique key K, consisting of a non-empty subset
of its attributes. We say that an instance I over R is
valid if I satisfies the key and all tuples in I are total on
the key attributes.

We recall the notion of conjunctive query with safe
negation (CQ¬ query for short). A term is a variable or
a constant. A literal is of the form R(x̄), ¬R(x̄), x = y,
x 6= y, where x̄ is a sequence of terms of appropriate ar-
ity, x is a variable, and y a term. A CQ¬ query is an
expression A1 ∧ ... ∧ An (for n ≥ 0) where each Ai is a
literal and each variable x occurs in a positive relational
literal or in an equality x = c where c ∈ dom (i.e., x is
bound).

Collaborative schema and instance A collaborative
schema S consists of:

1. A database schema D, the global schema, in which
each relation is equipped with a key.

2. A finite set of peer names {pi | 1 ≤ i ≤ m}.
3. For each peer pi, the local schema Di consisting

of a set of relation schemas R@pi, where R ∈ D,
att(R@pi) ⊆ att(R), and att(R@pi) contains the key
of R.

4. For each R ∈ D, att(R) = ∪{att(R@pi) | R@pi ∈
Di, 1 ≤ i ≤ m}.

The main motivation for item (4) is to guarantee that
the global instance (which is purely virtual) can be com-
puted from the peer instances. Consider for instance
some relation R in the global schema. Note that R may
be “invisible” from some particular pi, i.e., R@pi is not
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in Di. However because of (4) and the key constraints,
I(R) can be reconstructed from its projections on the
peer schemas.

Let S be a collaborative schema with global schema
D and peers {pi | 1 ≤ i ≤ m}. A global instance of S

is a valid instance I over D. The peer view of I at pi,
denoted I@pi, is the instance over Di defined by: for
each R@pi ∈ Di, I@pi(R@pi) = πatt(R@pi)(I(R)). Ob-
serve that this introduces a constraint on the instances
I@pi: they are projections of the same global instance.
Note also that the peer views of an instance I uniquely
determine the global instance because of the key con-
straints and condition (4). More precisely, for each R
in D, I(R) = ./ {I@pi(R) | R@pi ∈ Di}. In particu-
lar, this induces a connection between the local instances
{I@pi}1≤i≤m that can be stated without reference to the
global instance I (which is purely virtual and never ma-
terialized):

for each j and R@pj ∈ Dj ,I@pj(R@pj) =
πatt(R@pj)(./ {I@pi(R@pi) | R@pi ∈ Di, 1 ≤ i ≤ m})

Remark 2.1 The views we consider are limited to sim-
ple projections. However, more complex views can be pro-
vided using actions performed by peers. For instance,
consider a selection query σ over a relation R. A peer pi
that sees a relation R can maintain in another relation,
say Rσ, the result of σ(R). Then any peer pj that sees
Rσ will see the result of that selection even if pj does not
have access to R.

Example 2.2 We use as a running example a very sim-
plified workflow to process travel expenses in a research
institute. The workflow involves the following peers: re-
searchers, e.g., Alice, who can initiate trip requests; a
travel agency that provides expense estimates; and ad-
min services that approve or deny trip expenses. The
global schema has 3 relations (each with key Id): Submit-
ted(Id, Person, Date, Location), Processing(Id, Person,
Expense, Comment, Status) and Web(Id, Person, Date,
Conference, Domain). If Domain=“inter”, the informa-
tion is published on the Internet. If Domain=“intra”, it
is only published on the Intranet of the institute. The
peers’ schemas (with the obvious associated view defini-
tions) are the following (as noted in Remark 2.1, selec-
tions in view definitions can be simulated and are used
for convenience):
Alice (and similarly for all other researchers):

Submitted(Id, “Alice”, Date, Location)
Processing(Id, “Alice”)
Web(Id, Person, Date, Conference, Domain)

Travel agency schema:
Submitted(Id, Person, Date, Location)
Processing(Id, Person, Expense)
Web(Id, Person, Date, Conference, “inter”)

Admin services schema: same as global schema. �

An update to a peer’s local data can be propagated
to the other peers so that the local instances remain the
views of a valid global instance. We assume here that
propagation of updates is instantaneous, which can be
ensured by the underlying system by a protocol involving
asynchronous communication. We do not address this
aspect here.

Formally, we define the effect on a global instance I
of performing a tuple insertion and deletion at peer pi.
The semantics will guarantee that the resulting global
instance remains valid.

Consider the deletion of a tuple t from I(R@pi). The
resulting global instance J is obtained by deleting from
I(R) the tuple whose projection on att(R@pi) equals t,
if such exists (note that there is at most one such tuple
per relation).

Now consider the insertion of a tuple t in I(R@pi) (the
more interesting case). Let t̄ be the tuple over att(R) ex-
tending t with ⊥ for all attributes in att(R)−att(R@pi).
Let J be the result of inserting into I the tuple t̄,
then chasing with respect to the key K of R. Specifi-
cally, the chase consists of the following. For each pair
of tuples u, v agreeing on K for which u(A) =⊥ and
v(A) ∈ dom − {⊥}, replace u(A) by v(A). The inser-
tion is said to be consistent if J is valid (the update is
rejected otherwise).

We next illustrate the semantics of updates.

Example 2.3 Suppose we have a relationR overABCD
with key A, R@p1 is over ABD and R@p2 over ACD.
The insertion of (0, 0, 0) and (1, 1, 1) in R@p1 propagates
to the insertion of (0,⊥, 0) and (1,⊥, 1) in R@p2. Then
the deletion of (0,⊥, 0) from R@p2 propagates to the
deletion of (0, 0, 0) from R@p1. And the insertion of
(1, 2, 2) in R@p2 is refused. A subtlety is that we cannot
consistently modify attributes of tuples with a given key
across peers without losing information. For instance,
suppose we wish to modify the D column of the tuple
(1,⊥, 1) in R@p2 from 1 to 2. This is done by deleting
(1,⊥, 1) and inserting (1,⊥, 2). However, this does not
propagate to a modification of D from 1 to 2 in R@p1.
Indeed, the previous deletion and insertion first delete
(1, 1, 1) from R@p1, then insert the tuple (1,⊥, 2). Thus,
the B column was lost as a side effect. It is not hard to
extend the model with explicit modifications circumvent-
ing this problem. �

Collaborative workflow A collaborative workflow
specification (in short workflow spec) W consists of a col-
laborative schema S and a finite set of actions for each
peer pi of W. An action at peer pi is an expression
Update :- Condition where:

• Condition is a CQ¬ query over Di.
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• Update is a non-empty sequence of positive and neg-
ative relational literals over Di such that each vari-
able occurring in a negative literal also occurs in
Condition.

Intuitively, positive literals in the update are inter-
preted as insertions, and negative literals as deletions.

Example 2.4 Continuing Example 2.2, we next show
some of the actions of the travel expense processing work-
flow. For readability, we use attribute names rather
than variables, and underline those occurring only in in-
sertions of actions, generating new values. The workflow
proceeds as follows.

1. Alice initiates a new trip request

Submitted(Id, “Alice”, Date, Location) :-

2. Alice publishes the trip on the Intranet

Web(Id, “Alice”, Date, Conference, “intra”) :-
Submitted(Id, “Alice”, Date, Location)

3. Travel agency inserts an estimate of the cost

Processing(Id, Person, Expense) :-
Submitted(Id, Person, Date, Location)

4. Admin inserts comments

Processing(Id, Expense, Comment, ⊥) :-
Processing(Id, Expense, Comment, ⊥)

5. Admin approves or rejects

Processing(Id, Expense, Comment,
“approve”/“reject”) :-

Processing(Id, Expense, Comment, ⊥)

6. Admin deletes rejected trip from the Intranet

¬ Web(Id, Person, Date, Conference, “intra”) :-
Web(Id, Person, Date, Conference, “intra”),
Processing(Id, Expense, Comment, “reject”)

7. Admin publishes approved trip on the Internet

Web(Id, Person, Date, Conference, “inter”) :-
Web(Id, Person, Date, Conference, “intra”),
Processing(Id, Expense, Comment, “approve”)

Note that the workflow imposes a number of con-
straints on the actions of participants. For instance, an
admin can modify a comment as many times as wished
before a decision is made, but once a trip has been ap-
proved or rejected, the comment cannot be modified.
Rules (6,7) are internal computations of peer Admin:
deletion of a rejected trip from the Intranet, and posting
of an approved trip on the Internet. We may prefer that
these rules be triggered automatically once a decision is
made. We could easily extend the model with immediate
triggers without affecting the results. Observe the un-
derlined variables in Rules (1-4), not bound in the body.
Such unbound values have to be supplied either by the
user or by the system; in which case, we will assume the
system chooses new values outside the active domain. To

simplify the presentation, we will ignore in the paper the
differences between user and system actions, and assume
that unbound variables are always assigned values out-
side the active domain. �

Workflow runs Intuitively, the semantics of a work-
flow spec consists of runs of consecutive global instances.
(Clearly, one could also consider trees of runs.) Note that
this also determines the runs of the corresponding peer
views. Each transition is caused by one application of
one instantiation of one action at one peer.

A run starts at an initial global instance of W, i.e.
a valid instance over D. In practice, one may wish to
impose some conditions on initial global instances. For
instance, it may make sense to require that some rela-
tions be initially total, or initially empty (for relations
recording tasks to be performed). To simplify, we ignore
here this aspect, which does not affect the results.

The transition relation ` is defined using the auxil-
iary notion of instantiation of an action at peer pi for a
global instance I. We use the notion of active domain.
First, the active domain of W, denoted adom(W), con-
sists of the constants used in W, and ⊥. The active
domain of an instance I, denoted adom(I), is the set of
constants occurring in I together with adom(W). Let α
= Update(x̄, ȳ) :- Condition(x̄) be an action at pi where
x̄ are the variables occurring in Condition and ȳ are the
variables in Update other than x̄. Let ν be a valuation
of x̄ in dom such that I@pi |= Condition(ν(x̄)). Let ν̄
be an extension of ν mapping variables in ȳ to distinct
values in dom outside the active domain of I. Then ν̄α
is an instantiation of this action at peer pi for the global
instance I.

For two global instances I and J over D, I `e J if the
following holds:

(†) There is a peer pi, an instantiation ν̄α of an
action at peer pi for I such that J is obtained
from I by applying the sequence of insertions
and deletions in Update(ν̄(x̄, ȳ)), in the specified
order, and all insertions are consistent.

The label e, referred to as the event causing the tran-
sition, consists of the triple (peer(e), action(e), val(e))
where peer(e) = pi, action(e) = α and val(e) = ν̄. We
denote by a special symbol init the vacuous event cre-
ating the initial instance in a run, needed for technical
reasons. From the definition, it follows that if I is valid
and I `e J , then J is valid.

Note a subtlety in the active domain semantics we use.
In the definition, the active domain refers to the current
snapshot I. However, in some applications, it is desir-
able for new values to be outside the active domain of
the entire run leading to I. For instance, new values
may represent task IDs, and we may wish for them to be
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unique in each run. Such a semantics can be easily sim-
ulated with the one adopted here, simply by keeping in
a designated relation the values that may not be reused.

We next definite runs of workflow specs.
A run of W is a finite sequence {(Ii, ei)}0≤i≤n, such

that:

• e0 = init and I0 is a valid instance over D,
• for each 0 < i ≤ n, Ii−1 `ei Ii

Note that the sequence {Ii}0≤i≤n of instances in a
run does not generally determine the events causing each
transition. However, if desired, the actions of W can be
modified so that events are explicitly recorded in desig-
nated relations. When this is the case, the sequence of
instances is sufficient to uniquely identify the events.

Remark 2.5 Although left implicit, it is easy to see that
our collaborative workflows provide an expressive model
that can simulate the execution of sets of tasks and can
capture hierarchical tasks of arbitrary depth, making use
of keys and invented values. In particular, our collab-
orative workflows subsume the popular business artifact
model [20]. This can be formalized using the framework
developed in [5] for comparing the expressiveness of work-
flow languages.

3 Symbolic representation of runs
We next develop a symbolic representation for the set of
global runs consistent with given local observations at a
peer. This will be used in the next section to carry out
reasoning about the global runs, given such local observa-
tions. As we will see, it will be necessary to impose some
simple restrictions on workflow specifications in order to
render such reasoning feasible.

Consider a global run of a workflow spec W. Let p be
a peer of W. The information about the run as observed
by p is captured by the notion of p-trace, defined next.
Intuitively, a p-trace retains only transitions caused by
actions of p, or by actions of other peers that have visible
side effects at p. In this latter case, p does not know
which action actually took place. We use the symbol ? to
denote such an unknown action. Also, some transitions
are completely invisible to p, so do not participate to the
p-trace. Formally:

Definition 3.1 Let ρ = {(Ii, ei)}0≤i≤n be a run of some
workflow spec W, and p be a peer of W. Let ρ@p =
{(Ii@p, fi)}0≤i≤n where fi = ei if peer(ei) = p and
fi = ? otherwise, where ? is a new symbol. The p-trace of
ρ, denoted νp(ρ), is the sequence obtained from ρ@p by re-
cursively deleting all (Ij@p, fj) such that Ij@p = Ij−1@p
and fj = ?.

Suppose that p observes a p-trace τ in the course of the
run of W. We would like to describe and reason about

the set of all runs ρ of W that are consistent with τ ,
i.e., such that νp(ρ) = τ . We denote this set by ν−1

p (τ).
Note that, because of silent transitions, the set ν−1

p (τ)
may contain runs of unbounded length and is generally
infinite. Unfortunately, even basic properties of such runs
are generally undecidable. To illustrate, we mention a
few such properties.

Theorem 3.2 The following are undecidable, for a
workflow spec W and a p-trace τ :

current Is it possible/certain that the current local in-
stance at some peer satisfies some first-order (FO)
property ϕ?

past Is it possible/certain that some local instance at a
peer satisfied some FO property ϕ during the run?

event Is it possible/certain that some peer q performed
some particular action α during the run?

validation Is a sequence {(Ii@p, fi)}0≤i≤n that is syn-
tactically a p-trace an actual p-trace of a global run?

The proofs are by reduction from the undecidability of
FO satisfiability (see [6]), using the fact that workflow
computations can produce the answer to an FO query.

The above undecidability results are not surprising. A
main contribution of the paper is to demonstrate decid-
ability of a wide range of properties (including the pre-
vious ones) for a large class of workflow specs. The re-
striction we impose, called key visibility, is often reason-
able in practice and is an acceptable price to pay for the
ability to perform useful reasoning tasks. Key visibility
requires that peer p sees at least some projection view
of each global relation (which by definition includes its
key). Formally (with Dp denoting the schema of peer p):

Definition 3.3 A workflow spec W with schema D is
key-visible at p if R@p ∈ Dp for each relation R ∈ D.

For instance, the workflow of Example 2.2 is key-visible
at all peers. While key visibility is a strong restriction for
arbitrary specifications, it is reasonable in the likely event
that the specification available to p is an abstraction of
the actual specification, provided to p as a surrogate (or
explanation) for it. In actual specifications, peers q will
generally use relations not revealed to p, that determine
their precise behavior. The abstraction available to p can
be expected to provide an approximation of the actual
behavior of other peers on relations they share, in some
sense a contract between p and such peers. This enables
reasoning by p while ignoring the full details of other
peers’ specification.

Even for a workflow that is key-visible at p, the set
of global runs consistent with a given p-trace is infinite.
However, we are able to provide a symbolic representa-
tion for runs of key-visible workflows given a trace. We
do this next. The representation is based on a variant
of the classic conditional tables, a formalism introduced
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to capture incomplete information [18]. Intuitively, we
capture a set of possible global instances of the system
using a table. We then consider “transitions” between
such tables to represent possible moves. So the set of
global runs consistent with a p-trace can be described by
a transition system over a set of tables.

Incomplete instances We use the following auxiliary
notions. An atomic constraint is an expression x = (6=) t
where x ∈ var and t ∈ var∪dom. An atomic constraint
is trivial if it is x = x for some x ∈ var. A constraint is
a Boolean combination of atomic constraints and a con-
junctive constraint is a conjunction of atomic constraints,
with no repetition of the same atom. As a shorthand, if
x̄ and ȳ are tuples of the same arity, we denote by x̄ = ȳ
the conjunction of the componentwise equalities, and by
x̄ 6= ȳ the disjunction of the componentwise inequalities.
The closure ϕ∗V of a conjunctive constraint ϕ on a sub-
set V of it variables is the conjunction of all non-trivial
atomic constraints implied by ϕ, whose variables are in
V . If V consists of all variables in ϕ, we simply write ϕ∗

instead of ϕ∗V .
We can now define the notion of incomplete instance, I-

instance for short. Intuitively, it includes some unknown
values (not to be confused with the ⊥ values) denoted by
variables, and a global constraint on these variables.

An I-instance over D is a pair (I, ϕ), where:

• I is a mapping associating to each R ∈ D a finite
relation over R using values in dom ∪ var.
• ϕ is a satisfiable conjunctive constraint using vari-

ables in I and a finite set of constants.
• ϕ |= ϕkey where ϕkey is a constraint stating that no

distinct tuples in I(R) agree on the key attributes of
R, for every R ∈ D.

An I-instance represents a set of possible instances as fol-
lows. For an I-instance (I, ϕ), we denote by var(I) the set
of variables occurring in tuples of I. Given an I-instance
(I, ϕ) over D, the set of instances over D represented by
(I, ϕ) is

rep(I, ϕ) = {v(I) | v is a valuation of var(I)
into dom satisfying ϕ}

It is clear that, by definition, every I ∈ rep(I, ϕ) is a valid
instance. Note also that (because of the completeness of
the keys) the number of rows in I(R) is the same as the
number of rows in I(R) for each I ∈ rep(I, ϕ) and R ∈ D.

Symbolic transitions As noted earlier, given a p-
trace, there are infinitely many corresponding runs,
which renders the analysis nontrivial. However, we will
see that we can represent such runs by “symbolic runs”,
essentially by considering I-instances and abstract ac-
tions on such I-instances. Intuitively, when applying
an abstract action to an I-instance, we obtain another

I-instance by applying symbolically the peer action to
the original I-instance. Such a transition from one I-
instance to another generates additional constraints on
the original I-instance, akin to preconditions, and transi-
tions are labeled by these constraints. We next describe
these transitions.

Intuitively, a symbolic transition (S-transition)
(I, ϕ) `f,γ (J, ψ) captures how an action f updates
instances in rep(I, ϕ) to instances in rep(J, ψ) assuming
that the transition constraint γ (to be defined) is satis-
fied. We will define S-transitions and prove that they
provide a complete representation for actual transitions
(Lemma 3.4).

We describe symbolic transitions informally. It
will be useful to consider a normal form for actions
Update(x̄, ȳ) :- Condition(x̄). The normal form requires
that each variable occurs at most once in the relational
atoms of the rule. It is easy to see that all specifica-
tions can be rewritten in normal form by introducing
additional variables and equalities between variables re-
sulting from repeated occurrences. In the following, we
assume the actions are all in normal form.

Consider an I-instance (I, ϕ). Let q be a peer. We
define the local I-instance at peer q by (I, ϕ)@q =
(I@q, ϕ@q) where I@q is the projection view of I at peer
q, and ϕ@q is the closure of ϕ on the variables in I@q.

Consider an action Update(x̄, ȳ) :- Condition(x̄) at
peer q (assumed to be in normal form). Intuitively, the
action is applied to a local I-instance in two stages: first
find a valuation v of x̄ into the I-instance. The valuation
transfers to v(x̄) the constraints from Condition(x̄), and
imposes ”new value” constraints on ȳ. These become
part of the transition constraints. Next, the updates in
Update(v(x̄), v(ȳ)) are applied for the valuation v. When
a tuple is inserted, this may yield several transitions, de-
pending on agreement with already existing tuples on the
key. In each case, the resulting I-instance is obtained by
chasing with the key. When a tuple is deleted, the re-
sult depends once again on the possible equalities of the
deleted tuple with existing tuples in the instance. Each
such equality is captured by a constraint and generates
a separate transition. If the final transition constraint is
γ, the resulting I-instance is (J, ψ) where J is obtained
by applying a sequence of updates to I corresponding to
Update(v(x̄), v(ȳ)), and ψ is the closure of ϕ ∧ γ on the
variables of J. The transition constraint γ involves vari-
ables from both I and J, so cannot be absorbed into the
static I-instance constraints. The detailed construction
of S-transitions is presented in the appendix.

If (J, ψ) is obtained from (I, ϕ) by an S-transition with
transition constraint γ, action α at peer q and valuation
v, we say that e = (q, α, v) is the event of the transition.
If furthermore ψ ∧ γ is satisfiable, we write (I, ϕ) `e,γ
(J, ψ). It is easy to see that, by construction, ψ |= ϕkey,
so (J, ψ) is an I-instance. This defines the S-transition
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relation among I-instances over D.
Similarly to I-instances, the purpose of S-transitions

is to represent a set of actual transitions among global
instances. Let (I, ϕ) `e,γ (J, ψ) be an S-transition, where
e is the event (q, α, v). The set of transitions represented
by the above S-transition is

rep((I, ϕ) `e,γ (J, ψ)) = {(ν(I) `ν(e) ν(J)) | ν is a
valuation of the variables in I ∪ J into dom
satisfying ϕ ∧ γ ∧ ψ and ν(e) = (q, α, v ◦ ν)}

The following key lemma says that, starting from some
I-instance, the S-transitions capture all possible actual
transitions from instances represented by the I-instance.
Thus, S-transitions are a complete representation of ac-
tual transitions.

Lemma 3.4 For each I-instance (I, ϕ),

{(I `e J) | I ∈ rep(I, ϕ), e is an event} =
{(I `e J) | there exists (I, ϕ) `f,γ (J, ψ) such that

(I `e J) ∈ rep((I, ϕ) `f,γ (J, ψ))}

Lemma 3.4 follows from the construction of S-
transitions. The fact that I-instances satisfy ϕkey is criti-
cal, because it guarantees that no distinct tuples in (I, ϕ)
may represent the same tuple in some I ∈ rep(I, ϕ). The
construction would not be correct otherwise.

Symbolic runs We now turn to the notion of symbolic
run, and to the connection between symbolic runs and
actual runs. A symbolic run (S-run) of W is a sequence
{((Ii, ϕi), (ei, γi))}0≤i≤n such that

• e0 = init and γ0 = true
• for each 0 < i ≤ n, (Ii−1, ϕi−1) `ei,γi (Ii, ϕi)

Thus, an S-run is a finite sequence of consec-
utive symbolic transitions. Let s be an S-run
{((Ii, ϕi), (ei, γi))}0≤i≤n. The set of actual runs
represented by s, denoted rep(s), consists of all
runs {(Ii, gi)}0≤i≤n for which (Ii−1 `gi Ii) ∈
rep((Ii−1, ϕi−1) `ei,γi (Ii, ϕi)) for all 0 < i ≤ n.

As a consequence of Lemma 3.4, S-runs provide a com-
plete representation of actual runs.

Symbolic runs constrained by traces Next, con-
sider a p-trace τ . We wish to use S-runs to represent
precisely the global runs in ν−1(τ). To this end, we need
to constrain symbolic runs by p’s observations as given by
τ . Since all relations in D are key-visible at p, we need
to only consider I-instances that are fully instantiated
on the attributes visible at p (which include all key at-
tributes). Therefore, we need to compute specializations
of transitions limited to such instances.

Let Ip be an instance over Dp (at peer p). We say
that an I-instance (I, ϕ) is Ip-instantiated if I@p = Ip
for every I ∈ rep(I, ϕ). Now consider an Ip-instantiated
I-instance (I, ϕ) and let Jp be another instance of Dp

(which may equal Ip, as allowed in a p-trace). We
wish to find representations of transitions from (I, ϕ)
constrained to produce Jp-instantiated instances. Such
constrained transition define a new relation among
I-instances, that we call Jp-constrained transition
relation, denoted `Jp . The relation `Jp is obtained
by specializing the unrestricted transition relation `
as follows. Consider an I-transition (I, ϕ) `e,γ (J, ψ).
Let V be the set of valuations ν mapping variables
in J@p into values in Jp such that ν satisfies ψ and
ν(J@p) = Jp. Let θν be the constraint consisting of
the conjunction of all equalities x = ν(x). The set of
Jp-constrained transitions generated by (I, ϕ) `e,γ (J, ψ)

consists of all expressions (I, ϕ) `Jpe,(γ∧θν) (J, ψ ∧ θν)

for ν ∈ V. The semantics of Jp-constrained transitions
is the same as for unconstrained transitions. More
precisely, rep((I, ϕ) `Jpe,π (J, ξ)) = {ν(I) `ν(e) ν(J) |
ν is a valuation from the variables of I ∪ J into dom
satisfying ϕ ∧ π ∧ ξ}.

The next result follows easily by construction.

Lemma 3.5 There is a ptime nondeterministic al-
gorithm that, given (I, ϕ) and Jp, outputs each Jp-
constrained transition from (I, ϕ).

Next, consider a p-trace τ = {(Pi, fi)}0≤i≤k. Let us
first ignore the order of the local instances and the oper-
ations fi. So, let Pτ = {Pi | 0 ≤ i ≤ k}. Recall that each
instance in ν−1(τ) is Pj-instantiated for some Pj ∈ Pτ .
We are therefore interested in runs in which each tran-
sition is Pj-constrained for some Pj ∈ Pτ . We call such
runs Pτ -constrained.

Definition 3.6 A Pτ -constrained run is a finite se-
quence {((Ii, ϕi), (ei, γi, Pji))}0≤i≤n such that

(i) e0 = init, τ0 = true, J0@p = Pj0 , and var(J0) =
{x1, . . . , xm} for some m ≥ 0.

(ii) for each 0 < i ≤ n, (Ii−1, ϕi−1) `Pjiei,γi (Ii, ϕi)

Note that, in the initial instance of a Pτ -constrained
run, there are no variables occurring in the attributes
visible at p. Moreover, the variables occurring in J0 are
picked among those of smallest index. This is a harmless
assumption useful for technical reasons. In particular, we
can show the following (see Appendix for proof).

Lemma 3.7 For each finite Pτ , the set of I-instances
reachable by Pτ -constrained runs is finite.

We are close to our goal. The Pτ -constrained runs
we defined produce p-traces using only instances in the
p-trace τ = {(Pi, fi)}0≤i≤k, but not necessarily in the
correct order nor with proper fi. In order to define pre-
cisely ν−1(τ) we need to further constrain the runs. We
do this using a nondeterministic finite-state automaton
Aτ defined as follows:
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the set of states of Aτ is {p0} ∪ {qi | 0 ≤ i ≤ k}, with
initial state p0 and final state qk.

the alphabet consists of the finite set of all
((I, ϕ), (e, γ, P )) occurring in Pτ -constrained
runs of W.

the transition mapping δ is defined as follows:

start δ(p0, ((I, ϕ), (e, γ, P ))) = q0 if
((I, ϕ), (e, γ, P )) is the initial instance of
a Pτ -constrained run and P = P0,

visible for 0 ≤ i < k, δ(qi, ((I, ϕ), (e, γ, P ))) = qi+1

if P = Pi+1, and (nonlocal) fi+1 = ? and
peer(e) 6= p, or (local) fi+1 = p and peer(e) = p.

silent for 0 ≤ i ≤ k, δ(qi, ((I, ϕ), (e, γ, P ))) = qi if
P = Pi and peer(e) 6= p,

Let Aτ (Pτ ) denote the set of Pτ -constrained runs ac-
cepted by Aτ . We have the following (see Appendix for
proof).

Theorem 3.8 Let τ be a p-trace for a peer p of W. Then
ν−1(τ) = ∪{rep(s) | s ∈ Aτ (Pτ )}.

Thus, Aτ together with our transition system on Pτ -
constrained instances provide a finite representation of
the infinite set of runs in ν−1(τ).

Remark 3.9 It is easy to see that the size of Aτ (Pτ ) is
exponential in τ . However, the evaluation algorithm of
the next section never materializes the full Aτ (Pτ ). In-
stead, the S-runs in Aτ (Pτ ) are explored lazily, one tran-
sition at a time. As we shall see, this yields an algorithm
of complexity pspace in τ .

4 Peer reasoning
We next formalize the properties of global runs that we
focus on, and show how they can be evaluated using the
representation system developed in the previous section.

Temporal properties of runs Recall that we are in-
terested in verifying and monitoring properties of global
runs based on local observations at a given peer. We
specify the properties of interest in an extension of Past
Linear-Time Temporal Logic (PLTL). The language, de-
noted PLTL-FO, is obtained from propositional PLTL
with past operators (e.g., see [13]) by interpreting each
proposition as an FO formula.

We first recall the language PLTL that is obtained by
augmenting propositional logic with: past temporal oper-
ators Z (initially), X−1 (previously), S (since) and G−1

(always previously) as follows. If φ and φ′ are formulas,
then so are Zφ, X−1φ, φ S φ′ and G−1φ. A PLTL for-
mula is evaluated on finite sequences σ0 . . . σn of truth
assignments to its propositions. The semantics is defined
as follows (we omit the standard definition of ∧ and ¬).

• σ0 . . . σn |= r for a proposition r if σn(r) = 1.

• σ0 . . . σn |= Zφ if n = 0 and σ0 |= φ.
• σ0 . . . σn |= X−1φ iff n > 0 and σ0 . . . σn−1 |= φ.
• σ0 . . . σn |= φ S φ′ iff σ0 . . . σj |= φ′ for some j ≤ n

and σ0 . . . σk |= φ for every h, j < h ≤ n.
• σ0 . . . σn |= G−1φ iff σ0 . . . σj |= φ for each j ∈ [0, n].

Consider a PLTL formula φ, the set P of propositions
occurring in φ and the set of sequences of truth assign-
ments over P satisfying φ. It is straightforward to con-
struct a finite-state alternating automaton with alphabet
2P that accepts precisely this set of sequences, with a
number of states linear in φ. This alternating automaton
can then be converted to a nondeterministic automaton
Aφ with a number of states exponential in φ. Moreover,
there is a nondeterministic pspace algorithm (w.r.t. φ)
that, given a state q of Aφ and a truth assignment σ,
outputs the successors of q under input σ (see [22, 11]).

We next define the extension PLTL-FO. A PLTL-FO
formula over W is an expression φf = (φ, f) where φ is a
propositional PLTL formula and f maps each proposition
r of φ to an FO formula f(r). Each FO formula f(r)
is called an FO component of φf . FO components are
formulas over the global schema D, extended as follows:
for each action α = Update(x̄, ȳ):-Condition(x̄) at peer
q, we add to D an action-relation αq of arity |x̄| + |ȳ|
(with the semantics that αq(ā, b̄) holds at some step if
the corresponding action is taken with valuation ν(x̄) = ā
and ν(ȳ) = b̄ ).

In addition, FO components may use constants in
adom(W). (It is always possible, if desired, to introduce
any fixed set of constants considered significant in the
active domain).

In a run {(Ii, ei)}0≤i≤n, an FO component f(r) with
no free variables holds in (Ii, ei), denoted (Ii, ei) |= f(r),
if f(r) is true in the structure Ii extended to the action
relations as above.

The semantics of φf is defined as follows. Consider a
run ρ = {(Ii, ei)}0≤i≤n of W. For each i, let σi be the
truth assignment to propositions in φ defined by σi(r) =
1 iff (Ii, ei) |= f(r). The run ρ satisfies φf iff σ0 . . . σn |=
φ. Clearly, checking that ρ |= φf can be done in pspace
by nondeterministically running the automaton Aφ on
the sequence of truth assignments σ0 . . . σn computed on
ρ.

In the presence of incomplete information on runs, we
are interested in giving possible and certain world seman-
tics to PLTL-FO formulas. Let φf (x̄) be a PLTL-FO for-
mula and R a set of runs of W. We say that poss(φf (x̄))
holds in R if there exists a run ρ ∈ R and there exists
a valuation ν for x̄ in the active domain of ρ, such that
ρ satisfies φf (ν(x̄)). Likewise, cert(φf (x̄)) holds in R if
φf (ν(x̄) holds for each run ρ ∈ R and each valuation ν
of x̄ into the active domain of ρ. Thus, the free variables
are quantified existentially in possible world semantics
and universally in certain world semantics.
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Example 4.1 Consider the rules in Example 2.4. Sup-
pose that a researcher, say Bob, would like to know if
Alice’s trip Id455 has been rejected. Bob does not have
direct access to this information. However, he does see
the trips that are inserted and deleted from the Intranet
and Internet. Based on these local observations, he can
infer, once Alice’s trip is posted on the Internet, that the
trip has been approved; and, if the trip is first posted on
the Intranet and then deleted, Bob can infer that it has
been rejected. On the other hand, if the trip is posted on
the Intranet but not (yet) deleted, the trip may or may
not have been rejected. Clearly, the acceptance/rejection
of Alice’s trip can be expressed in PLTL-FO (with certain
or possible semantics). We will see next how such prop-
erties can be evaluated using the local observations. �

Evaluating PLTL-FO properties Given a p-trace
τ , we are interested in evaluating poss(φf (x̄)) and
cert(φf (x̄)) on the set of global runs of W compatible
with τ , that is, ν−1(τ). We now show how this can be
done using the framework developed earlier. To simplify
the presentation, we assume without loss of generality
that FO components of PLTL-FO formulas are over the
schema D, without the extension to action relations de-
fined above. (Intuitively, one can simulate the reasoning
in the extended global schema by considering a schema
with additional “normal” relations carrying the extra in-
formation.)

We next show how to use this to evaluate and monitor
temporal properties of runs in ν−1(τ).

Let us fix a PLTL-FO property φf we wish to evaluate
under possible and certain semantics on ν−1(τ). Suppose
for the moment that φf has no free variables. In order
to evaluate FO components of φf we will use I-instances
in which the equality type of all variables and constants
is completely specified. More precisely, let (I, ϕ) be an
I-instance. We call (I, ϕ) complete if for each x ∈ var(I)
and t ∈ var(I) ∪ adom(I, ϕ), ϕ |= x = t or ϕ |= x 6= t. A
Pτ -constrained run is complete if each of its I-instances
is complete.

Observe the following (see Appendix).

Lemma 4.2 (i) Let (I, ϕ) be a complete I-instance and
f(r) an FO component of φf . Then f(r) has the
same truth value in every I ∈ rep(I, ϕ). (ii) If
{((Ii, ϕi), (ei, γi, Pji))}0≤i≤n is a Pτ -constrained run and
(I0, ϕ0) is a complete I-instance, then (Ii, ϕi) is a com-
plete I-instance for every i > 0.

Because of (i), complete runs are convenient in or-
der to evaluate φf , because the truth value of each
FO component is well defined on each I-instance of the
run. More precisely, given a complete Pτ -constrained run
s = {((Ii, ϕi), (ei, γi, Pji))}0≤i≤n, the truth value of an
FO component f(r) at (Ii, ϕi) can be defined as its truth

value on any instance Ii ∈ rep(Ii, ϕi), and can clearly be
computed in pspace.

We are now ready to show the following main result.

Theorem 4.3 Let W be a workflow spec, p a peer of W,
τ a p-trace of W and φf (x̄) a PLTL-FO property over
W. Then poss(φf (x̄)) and cert(φf (x̄)) can be evaluated
in pspace with respect to φf and τ .

Proof: Since cert(φf (x̄)) is equivalent to ¬poss(¬φf (x̄)),
it is enough to consider the possible world semantics.
We outline a nondeterministic algorithm for evaluating
poss(φf (x̄)) given a p-trace τ , of complexity pspace wrt
φf and τ . Consider first the case when φf has no free
variables x̄. We need to check whether there exists a
run ρ ∈ ν−1(τ) such that ρ |= φf . The algorithm con-
sists of nondeterministically generating a complete Pτ -
constrained run together with computations of Aτ (Pτ )
and Aφ on the run. The algorithm outputs YES if both
automata accept. To make sure the Pτ -constrained run
is complete, it is enough, as noted in Lemma 4.2, that
its initial I-instance be complete. Note that the size of
each generated I-instance in the run is polynomial in the
number of constants occurring in previous I-instances in
the run or in W. By Lemma 3.5, the Pτ -constrained
transitions from an I-instance (I, ϕ) can be computed
nondeterministically in ptime wrt (I, ϕ) and Pτ . Also
recall that each transition of Aφ can be computed non-
deterministically in pspace wrt φ, and each transition of
Aτ (Pτ ) can clearly be computed in ptime with respect
to τ . Thus, the algorithm has complexity pspace wrt
φf and τ , for fixed W. If W is not fixed, then the algo-
rithm is expspace (with the maximum arity of relations
in D in the exponent). The correctness of the algorithm
follows from Theorem 3.8 and Lemma 4.2.

Now consider the case when φf has free variables x̄.
We need to check whether there exists a run ρ ∈ ν−1(τ)
and a valuation v of x̄ into the active domain of ρ such
that ρ |= φf (v(x̄)). To verify this, we augment the pre-
vious algorithm generating a complete Pτ -constrained
run accepted by Aφ and Aτ (Pτ ) by guessing a consis-
tent connection between the variables in x̄ and the vari-
ables or constants in the I-instances in the run, and
evaluating the FO components of φf (x̄) according to
that guess. More precisely, this is done as follows.
Let s = {((Ii, ϕi), (ei, γi, Pji))}0≤i≤n be a complete Pτ -
constrained run generated as in the earlier algorithm. As
the run is generated, an additional conjunctive constraint
ψi(x̄) over x̄ is computed nondeterministically for every
i. The formula ψi(x̄) is of the form βi(x̄) ∧ γi(x̄). Intu-
itively, βi(x̄) guesses the connection of x̄ with variables
and constants in the current I-instance, and γi(x̄) consists
of the constraints on x̄ inherited from previous guesses.
Specifically, ψi(x̄) = βi(x̄) ∧ γi(x̄) is defined inductively
as follows. For i = 0, β0(x̄) consists, for each z ∈ x̄, of
an equality z = t for some t ∈ var(I0) ∪ adom(I0, ϕ0),
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or the conjunction of all inequalities z 6= t for all such
t. The constraint γ0(x̄) = true. For i > 0, γi(x̄) =
(ϕi−1 ∧ ψi−1(x̄))∗x̄ and βi(x̄) consists, as for the base
case, of a nondeterministically chosen conjunction con-
sisting, for each z ∈ x̄, of an equality z = t for some
t ∈ var(Ii) ∪ adom(Ii, ϕi), or the conjunction of all in-
equalities z 6= t for all such t, such that ϕi ∧ ψi(x̄) is
satisfiable.

We can show the following:

(†) Let s = {((Ii, ϕi), (ei, γi, Pji))}0≤i≤n be a Pτ -
constrained run. There exists a sequence
{ψi(x̄)}0≤i≤n computed as above for s iff there exists
a run ρ = {(Ii, gi)}0≤i≤n in rep(s), and a valuation
v of x̄ into adom(ρ) such that the following holds for
every i (0 ≤ i ≤ n), z ∈ x̄, t ∈ var(Ii)∪adom(Ii, ϕi),
and the unique valuation vi such that Ii = vi(Ii):
βi(x̄) |= z = t iff v(z) = vi(t).

Intuitively, (†) says that each equality type induced by
βi(x̄) wrt the constants and variables in Ii is realiz-
able in a run ρ ∈ rep(s) for some fixed valuation of
x̄ in the adom(ρ). Furthemore, the sequence of for-
mulas {ψi(x̄)}0≤i≤n can be computed successfully for
s iff such a run ρ and valuation v exists. We define
the following extension of our notion of Pτ -constrained
run. A parameterized Pτ -constrained run is a se-
quence s(x̄) = {((Ii, ϕi, ψi(x̄)), (ei, γi, Pji))}0≤i≤n where
{((Ii, ϕi), (ei, γi, Pji))}0≤i≤n is a Pτ -constrained run and
the sequence {ψi(x̄)}0≤i≤n is computed as above. Also,
we refer to each (Ii, ϕi, ψi(x̄)) as a parameterized I-
instance.

We will use the following notion of isomorphic pa-
rameterized I-instances. Given (I, ϕ, ψ(x̄)), let ∼ be
the equivalence relation on variables and constants in
var(I)∪ {x̄} ∪ adom(I, ϕ) defined by z ∼ t iff ϕ∧ψ(x̄) |=
z = t, and let [z] be the equivalence class of z wrt ∼.
Let I/∼ be obtained by replacing in I each variable z
by the unique constant in [z], if it exists, or otherwise
by the variable of smallest index in [z]. We say that
(I1, ϕ1, ψ1(x̄)) and (I2, ϕ2, ψ2(x̄)) are isomorphic if I1/∼
and I2/∼ are isomorphic when variables are frozen as dis-
tinct constants. The isomorphism type of h = (I, ϕ, ψ(x̄))

is its equivalence class under isomorphism, denoted ĥ.
Let s(x̄) = {((Ii, ϕi, ψi(x̄)), (ei, γi, Pji))}0≤i≤n be a

Pτ -constrained parameterized run. Consider the eval-
uation of φf (x̄). Clearly, for each i ≥ 0, ϕi ∧
ψi(x̄) completely determines the isomorphism type of
(Ii, ϕi, ψi(x̄)). Thus, the truth value of each FO compo-
nent f(r)(x̄) of φf (x̄) is well defined and can be evaluated
at each (Ii, ϕi, ψi(x̄)). As before, the algorithm outputs
YES if a Pτ -constrained parameterized run s(x̄) can be
generated that is accepted by both Aφ and A(Pτ ). The
complexity remains pspace wrt φf (x̄) and τ . �

Remark 4.4 As stated in Theorem 4.3, the algorithm
described above has complexity pspace wrt φf (x̄) and τ .

It is of interest to note the impact of the length of τ
on complexity. It is easy to see that, if adom(τ) and
ϕf (x̄) are fixed, the algorithm is in NL (nondeterministic
logarithmic space) in the length of τ .

Remark 4.5 Theorem 3.2 provided examples of useful
properties that are undedecidable without the key-visible
restriction. As a consequence of Theorem 4.3, all ques-
tions of Theorem 3.2 become decidable for key-visible
specs.

Incremental monitoring We next adapt the algo-
rithm described in the proof of Theorem 4.3 in order to
incrementally monitor PLTL-FO properties. The goal is
to avoid re-evaluating the formula after each move. We
will present an incremental algorithm that avoids com-
putations that depend on the entire trace. However, as
we will see, this is at the cost of maintaining a possibly
very large auxiliary structure.

Consider a PLTL-FO property φf (x̄) to be monitored.
An incremental algorithm for evaluating poss(φf (x̄)) on
a p-trace τ uses two functions, aux and incaux. As we
shall see, aux(τ) provides enough information to answer
poss(φf (x̄)), and provides additional information needed
to incrementally maintain its own value using the second
function incaux. More precisely, for a new observation
(J, f) at peer p, aux(τ · (J, f)) = incaux(aux(τ), (J, f)).

The functions aux and incaux are defined as follows.
Consider first aux. Intuitively, aux(τ) consists of all I-
instances (I, ϕ) with associated formula ψ(x̄) reachable
by complete runs in ν−1(τ), together with the set of
states of Aφ reachable on such runs. More precisely,
aux(τ) consists of the set of tuples (I, ϕ, ψ(x̄), Q) where:

• there exists a complete Pτ -constrained parameter-
ized run s(x̄) = {((Ii, ϕi, ψi(x̄)), (ei, γi, Pji))}0≤i≤n
accepted by Aτ , defined as in the proof of Theorem
4.3, for which (I, ϕ) = (In, ϕn), and ψ(x̄) = ψn(x̄),
• Q is the set of states of Aφ reachable from the initial

state on some run s as above.

Clearly, poss(φf (x̄)) is true on τ iff there exists
(I, ϕ, ψ(x̄), Q) in aux(τ) for which Q contains an accept-
ing state of Aφ.

Next, consider the function incaux. Given aux(τ)
as above, and a new observation (J, f) at peer p,
incaux(aux(τ), (J, f)) consists of all (I′, ϕ′, ψ′(x̄), Q′) such
that, for some (I, ϕ, ψ(x̄), Q) in aux(τ):

• there exists a J-constrained parameterized run suffix
s(x̄) = {((Ii, ϕi, ψi(x̄)), (ei, γi, J))}0≤i≤n, where:

(i) (I′, ϕ′) = (In, ϕn) and ψ′(x̄) = ψn(x̄),
(ii) (I, ϕ) `Je0,γ0 (I0, ϕ0), peer(e0) = p if f = p and

peer(e0) 6= p if f = ?, and peer(ei) 6= p for
i > 0,
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(iii) ψ0(x̄) is computed from ψ(x̄) and the initial
transition (I, ϕ) `Je0,γ0 (I0, ϕ0)

• Q′ is the set of states of Aφ reachable from some
q ∈ Q on runs s as above.

Clearly, incaux(aux(τ), (J, f)) = aux(τ ·(J, f)), as desired.
Since cert(φf (x̄)) = ¬poss(¬φf (x̄)), the incremental

evaluation algorithm for poss(¬φf (x̄)) also provides an
incremental evaluation algorithm for cert(φf (x̄)).

Clearly, the size of aux(τ) is exponential in adom(τ)
and φ (for W fixed). The function incaux can be com-
puted in exptime wrt adom(τ) and φ. In terms of com-
plexity, the main advantage of incremental evaluation
over re-evaluation on the entire run is that the complex-
ity wrt τ depends only on the size adom(τ) and not on
the length of τ . However, this has to be balanced against
the need to create intermediate results of exponential size
wrt adom(τ) and φ.

Pre-emptive monitoring We have so far considered
the incremental monitoring of statically specified prop-
erties. Suppose that the properties to be monitored are
not known ahead of time but instead may be specified dy-
namically as the run unfolds. Is some form of incremen-
tal evaluation still possible? We provide here a partially
affirmative answer. Indeed, we show that large classes
of properties can be preemptively monitored, as long as
partial information is available on the type of temporal
property they specify. More precisely, the temporal type
of a PLTL-FO property φf (x̄) is the propositional for-
mula φ. For example, commonly arising types include
G−1r, or F−1r, or G−1(r1 → F−1r2). In addition to
the temporal type, we also need to know the maximum
number of free variables |x̄|.

Definition 4.6 A PLTL-FO property type is a pair
(Φ,m), where Φ is a finite set of PLTL formulas and
m ≥ 0. A PLTL-FO formula φf (x̄) for W is of type
(Φ,m) if φ ∈ Φ and |x̄| ≤ m.

For example, ({G−1r, F−1r, G−1(r1 → F−1r2)}, 10)
is a PLTL-FO type.

We next outline an incremental algorithm that allows
to evaluate all formulas of a given type (Φ,m). Note
that there are infinitely many such formulas. Let PΦ be
the set of propositions occuring in Φ. The main idea of
the algorithm is to modify the incremental algorithm for
monitoring φf (x̄) described in the previous section as fol-
lows. Recall that the algorithm generates constrained pa-
rameterized runs and produces the tuples (I, ϕ, ψ(x̄), Q)
of reachable I-instances, constraint ψ(x̄) on the free vari-
ables x̄, and the set Q of corresponding states reachable
in the automaton Aφ. The input of Aφ at each tran-
sition consists of the truth value to the propositions of
φ induced by the FO components f(r). In our case, the
FO components are unknown. Instead of evaluating each

f(r), the new algorithm simply guesses the truth assign-
ments σ for the propositions in φ, for the isomorphism
types of all reachable I-instances and free variables x̄.

Let τ be a p-trace. Let S(τ) be the set
of all isomorphism types1 of (I, ϕ, ψ(x̄)) such that
there is a Pτ -constrained parameterized run s(x̄) =
{((Ii, ϕi, ψi(x̄)), (ei, γi, Pji))}0≤i≤n accepted by Aτ , with
I = Ij , ϕ = ϕj , ψ(x̄) = ψj(x̄) for some j ∈ [0, n]. A truth
assignment mapping for S(τ) is a mapping Σ from S(τ)
to truth assignments of PΦ.

The auxiliary information aux(τ) computed by the in-
cremental algorithm now consists of the set of all pairs
(Σ,H) where Σ is a truth assignment mapping for S(τ)
and H is the set of tuples (I, ϕ, ψ(x̄), {Qπ | π ∈ Φ})
where:

• there exists a complete Pτ -constrained parameter-
ized run s(x̄) = {((Ii, ϕi, ψi(x̄)), (ei, γi, Pji))}0≤i≤n
accepted by Aτ , for which (I, ϕ) = (In, ϕn), and
ψ(x̄) = ψn(x̄),
• for each π ∈ Φ, Qπ is the set of states of Aπ reach-

able from the initial state on some run s(x̄) as above,
where the truth assignment for PΦ at the i-th tran-
sition is Σ(ĥ), for h = (Ii, ϕi, ψi(x̄)).

The function aux(τ) can be maintained incrementally by
a function incaux similar to the previous section. The set
Σ of truth assignment mappings is maintained by aug-
menting it with truth assignments for isomorphism types
of newly reached instances in the run suffixes generated
when a new observation (J, f) is added (we ommit the
straightforward details).

Now suppose that we wish evaluate poss(φf (x̄)) for a
PLTL-FO formula φf (x̄) of type (Φ,m), for the p-trace
τ . Let aux(τ) be as defined above. Let Σ be such that for

each proposition r of φ and every ĥ ∈ S(τ), f(r) holds in

ĥ iff Σ(ĥ)(r) = 1. Let H be such that (Σ,H) ∈ aux(τ).
Then poss(φf (x̄)) holds iff there exists (I, ϕ, ψ(x̄), {Qπ |
π ∈ Φ}) ∈ H such that Qφ contains an accepting state
of Aφ.

To evaluate the size of aux(τ), note that the number
of isomorphism types in S(τ) is exponential in the max-
imum size of an I-instance in τ (and independent of its
active domain). Thus, the number of truth assignment
mappings Σ is double exponential in the same (single ex-
ponential for fixed type (Φ,m)). For each Σ, the size
of H is exponential in (Φ,m) and adom(τ). Finally, the
evaluation of a PLTL-FO property φf (x̄) of type (Φ,m)
on aux(τ) is in pspace.

Clearly, the use of preemptive incremental monitoring
becomes beneficial compared to direct evaluation over the
entire p-trace τ only under certain conditions, including
the following: (i) adom(τ) is small relative to the length
of τ , (ii) the number of isomorphism types of parame-
terized I-instances in runs of Aτ (Pτ ) is small relative to

1Recall the definition in the proof of Theorem 4.3.
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adom(τ), and (iii) the number of formulas of type (Φ,m)
to be evaluated is large.

Introspective closure We showed how a peer can rea-
son about temporal properties of global runs based on its
local observations. In many cases, it would be desirable
for a peer to be able to use the information gained by
such reasoning to make decisions on the actions it takes
in the workflow. A natural question is whether the spec-
ification language we defined would need to be extended
or whether it is already closed under such introspective
reasoning. We next show that it is closed under intro-
spective reasoning, for a natural definition of simulation.

We can straightforwardly define an extension of work-
flow specs allowing the use in conditions of atoms of the
form poss(φf (x̄)) and cert(φf (x̄)), that we refer to as in-
trospective atoms. The semantics of these atoms (that
refer to the global run) is as previously defined. Specif-
ically, poss(φf (x̄)) is evaluated on the p-trace of the run
leading to the current application of the action. We refer
to specs that allow introspective atoms in the actions of
peers p for which the spec is key-visible, as introspective
specs.

In order to compare the expressiveness of introspective
and regular specs, we define a natural notion of simula-
tion. Intuitively, a spec simulating W is allowed to use
additional relations and actions, but its restriction to the
relations and actions of W must yield exactly the runs
of W. We make this more precise. First, consider a spec
W, let D0 be a subset of its schema and A0 a subset
of its actions. For each run ρ of W, the projection of
ρ = {(Ii, ei)}0≤i≤n on D0 and A0, denoted πD0,A0(ρ),
is the sequence obtained by removing from ρ all terms
(Ii, ei) for which action(ei) 6∈ A0 and restricting each
instance in the remaining sequence to D0.

Let W1 and W2 be specs with the same set of peers,
both key-visible at p. We denote by Di the schema of
Wi. We say that W2 simulates W1 if: (i) D1 ⊆ D2, (ii)
each action α of W1 has a corresponding action ᾱ in W2

at the same peer (we denote Ā1 = {ᾱ | α ∈ A1}), and

(iii) {πD1,Ā1
(ρ2) | ρ2 is a run of W2} =

{{(Ii, ēi)}0≤i≤n | {(Ii, ei)}0≤i≤n is a run of W1,
peer(ei) = peer(ēi), action(ēi) = action(ei),
val(ēi) = val(ei), i ∈ [0, n]}

We can show the following (see Appendix).

Theorem 4.7 For every introspective workflow spec W1

there exists a workflow spec W2 that simulates W1.
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Appendix

A Symbolic transitions

We describe the symbolic transitions of Section 3 in de-
tail. For convenience, we first define transition con-
straints that are not necessarily conjunctive. Subse-
quently, each such transition is replaced with a set of
transitions, one for each disjunct in the disjunctive nor-
mal form (DNF) of the constraint, yielding conjunctive
transition constraints.

We will need the notion of active domain of (I, ϕ),
denoted adom(I, ϕ). This consists of the set of constants
c in dom that

• occur explicitly in some tuple of I; or
• occur in a conjunct x = c of ϕ; or
• occur in W or {⊥}.

Consider, as above, an I-instance (I, ϕ), a peer q and an
action Update(x̄, ȳ) :- Condition(x̄) at peer q. A valua-
tion for the variables of the action into I@q is a mapping
v from x̄ ∪ ȳ (extended with the identity on constants)
such that:

• v maps x̄ to variables and constants in I@q, and ȳ
to the first |ȳ| distinct variables in var−var(I) with
the smallest index2.

• for each R@q(z̄) of Condition(x̄), R@q(v(z̄)) is a
tuple in I@q.

The transition constraint γv induced by v is the con-
junction of the following:

• v(x) = ( 6=) v(y) where x = (6=) y is an (in)equality
in Condition(x̄)

• for each ¬R@q(z̄) in Condition(x̄) and tuple
R@q(w̄) in I@q, the constraint v(z̄) 6= w̄.

• v(y) 6= t where y ∈ ȳ and t is a variable in I or a
constant in the active domain of (I, ϕ).

Note that the above is not a conjunctive constraint be-
cause of the tuple inequality in the second item.

Next, fix a valuation v as above and consider
Update(v(x̄), v(ȳ)). We describe the effect of tuple inser-
tions and deletions, with the associated transition con-
straints. Consider first a tuple insertion R@q(v(z̄)). Let
R(v(z̄) ⊥∗) be the extension of R@q(v(z̄)) to att(R) ob-
tained by padding the missing attributes with ⊥. For
each tuple R(w̄), denote by w̄K the subsequence of w̄
corresponding to the key K of R. Similarly, let z̄K con-
sist of the subsequence of z̄ correponding to K. If z̄K
contains some variable in ȳ then the result of the inser-
tion consists of adding R(v(z̄) ⊥∗) to R. Otherwise, the
result depends on whether R(v(z̄) ⊥∗) agrees with an

2This is done to use variables economically, which is needed for
technical reasons explained further.
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existing tuple on the key. More precisely, the transitions
generated by the insertion are as follows:

• For each tuple R(w̄) in I, the result of the inser-
tion under the transition constraint v(z̄K) = w̄K
is obtained by chasing R(w̄) as follows. Let A be
an non-key attribute of R and zA, wA be the val-
ues of R(v(z̄) ⊥∗) and R(w̄) for attribute A. If
zA, wA ∈ dom − {⊥}, the chase fails and there is
no transition. If wA =⊥ then it is replaced by zA.
If wA and zA are both variables, then wA = zA is
added to the transition constraint.

• Finally, one transition occurs for each disjunct in the
DNF of the constraint consisting of the conjunction
of w̄K 6= v(z̄K) for all tuples R(w̄) in I, yielding the
instance obtained by inserting the tuple R(v(z̄) ⊥∗)
into I.

Consider now a tuple deletion ¬R@q(v(z̄)). The result
depends again on agreement with existing tuples on the
key attributes. Recall that deleted tuples contain no
”new” variables among ȳ. There is one possible tran-
sition for each tuple R(w̄) in I, consisting of deleting the
tuple under the transition constraint w̄K = z̄K . In ad-
dition there are transitions leaving I unchanged, for the
constraint consisting of the conjunction of all inequalities
z̄K 6= w̄K for all tuples R(w̄) in I. As earlier, each dis-
junct in the DNF of the constraint generates a separate
transition.

Finally, the transitions caused by the sequence of up-
dates in Update(x̄, ȳ) are the compositions of the transi-
tions for each update. Each transition constraint is the
conjunction of the constraints for the composed transi-
tions. Note that, by construction, these are conjunctive
constraints. The local constraint ψ for each resulting I-
instance (J, ψ) consists of the closure of ϕ ∧ γ on the
variables of J, where γ is the corresponding transition
constraint. Note that this again yields a conjunctive con-
straint.

B Some proofs

Proof of Lemma 3.7 First note that there ex-
ists M > 0 so that for every Pτ -constrained run
{((Ii, ϕi), (ei, γi, Pji))}0≤i≤n, the set of variables occur-
ring in Ij is included in {x1, . . . , xM} for each j. This is
due to the following:

• there is a fixed bound on the number of tuples (and
therefore variables) in a P -instantiated I-instance for
P ∈ Pτ ,
• the variables in J0 are {x1, . . . , xm} for some m ≥ 0,

and
• by construction of S-transitions, new variables in-

troduced by transitions are picked among those of
smallest index that are currently unused.

Finally, there are finitely many conjunctive constraints
using the variables {x1, . . . , xM} and constants occurring
in Pτ , W, or {⊥}.

Proof of Theorem 3.8 We use the following property,
that considers partial instantiations of S-transitions. Let
(I, ϕ) `e,γ (J, ψ) be an S-transition and ν a partial valu-
ation of the variables of I∪ J into dom. For a constraint
β, let ν(β) denote the constraint obtained by replacing
in β each variable x ∈ dom(ν) by ν(x). For an event
e = (p, α, v) we denote by ν(e) the event (p, α, v ◦ ν).
The following is shown similarly to Lemma 3.4.

(†) Let (I, ϕ) `e,γ (J, ψ) be an S-transition and ν
a partial valuation of the variables of I ∪ J into
dom such that ν(ϕ ∧ γ ∧ ψ) is satisfiable. Then
(ν(I), ν(ϕ)) `ν(e),ν(γ) (ν(J), ν(ψ)) is also an S-
transition.

Lemma 3.4 together with (†) shows the following com-
pleteness result.

(‡) For each I-instance (I, ϕ) and instance Jp at peer p,

{(I `e J) | I ∈ rep(I, ϕ), e is an event, , J@p = Jp} =

{(I `e J) | there exists (I, ϕ) `Jpe,γ (J, ψ) such that

(I `e J) ∈ rep((I, ϕ) `Jpe,γ (J, ψ))}

Theorem 3.8 now follows from (‡) and the construction
of Aτ .

Proof of Lemma 4.2 (i) Consider Ji ∈ rep(I, ϕ), such
that Ji = νi(I), i = 1, 2. Define the mapping h from J1

to J2 by h(ν1(t)) = ν2(t) for t ∈ var(I) ∪ adom(I, ϕ). It
is easy to see that, because of completeness of (I, ϕ), h
is well defined and an isomorphism from J1 to J2 fixing
adom(W). Since f(r) uses only constants in adom(W), it
has the same truth value on J1 and J2. (ii) The preser-
vation of completeness by transitions is due to the fact
that all newly introduced variables in a transition are
constrained to differ from all variables and constants in
the active domain of the current I-instance.

Proof of Theorem 4.7 Let W1 be an introspective
workflow. Let p be a peer such as W1 is key-visible at
p. The simulation by W2 of introspective atoms used in
actions of p has two main aspects. First, W2 uses addi-
tional relations to store the p-trace of the current run.
This is done by copying, at each transition caused by p
or with side-effects at p, the corresponding observation
in the p-trace. Moreover, each copy is timestamped by a
new value created using a variable occurring only in the
updates of an action, and the timestamps are ordered.
Doing this at each transition requires additional control,
which is enforced using additonal propositions. Second,
peer p must evaluate introspective atoms poss(φf (x̄)) or
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cert(φf (x̄)) on the currently stored p-trace. This can be
done because sets of actions at p, with appropriate con-
trol provided by propositions, are computationally com-
plete. Once again, this is due to the ability to create new
values using variables occurring only in the updates of
actions. The proof is similar to the query completeness
of nondeterministic Datalog¬ with value invention (using
variables occurring only in heads of rules), see [7].
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