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In robot games onZ, two players add integers to a counter. Each player has a finite set from which he
picks the integer to add, and the objective of the first playeris to let the counter reach 0. We present
an exponential-time algorithm for deciding the winner of a robot game given the initial counter value,
and prove a matching lower bound.

1 Introduction

Robot games [3] are played by two players, a reacher and an opponent, by updating a vector ofm integer
counters. Each player controls a finite set of integer vectors inZ

m. Plays start with a given initial vector
v0 ∈ Z

m of counter values, and proceed in rounds. In each round, firstthe opponent and then the reacher
adds a vector from his set to the counter values. The reacher wins when, after his turn, the vector of
counter values is zero.

We consider the problem of determining the winner of a robot game for dimensionm= 1. Towards
this, we present an algorithm for solving this problem in EXPTIME and show that the bound is hard.

Robot games are a particular kind of reachability games. Such games are played on a graph(Q,E),
called an arena, where the set of verticesQ is partitioned intoQ1 andQ2 to designate which player is in
turn to move. Here, a play is a (possibly infinite) sequence ofverticesq0q1 . . . starting with a given initial
vertexq0. At any stagei, if qi ∈ Q1 the reacher chooses a successorqi+1 of qi such that(qi ,qi+1) ∈ E;
otherwise the opponent chooses the successor. The objective is given by a subsetQ′ of Q: the reacher
wins a play if it visits a vertex inQ′.

The winning set in reachability games, i.e., the configurations from which the reacher has a winning
strategy, can be computed by the attractor construction [9]. However, in robot games, we have infinitely
many configurations, so we will need further tools. It turns out that here, the winning set is closed under
linear combinations. For dimension one, this implies that there exists a bound such that the winning set
becomes easy to describe from this bound onwards. The key idea of our algorithm is to perform the
attractor construction up to such a bound, which we compute using a theorem from [10].

In view of the simplicity of their description, it may come asa surprise that robot games are EXPTIME-
hard. We prove this by reduction from countdown games [5], another class of reachability games, with a
nonnegative counter that can only decrease.

Robot games belong to the family of reachability games on counter systems. Such games are played
on a labelled graph(Q,E) where the set of edges isE ⊆Q×Z

m×Q and there is a vector ofmcounters.
When an edge(q,v,q′) is taken, the vector of counters is updated by addingv to it. In counter reachability
games, the objective of the reacher is either a set of vectorsor a set of pairs (vertex,vector). We can view
robot games as counter reachability games on an arena with only two vertices.
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We hope that settling the complexity of one-dimensional robot games will help improving the EX-
PSPACE upper bound that follows from [1], for deciding the winner of counter reachability games on
the integer line.

2 Definitions

When we write “positive” or “negative”, we always mean “strictly positive” or “strictly negative”. We
write−N for the set of nonpositive integers.

A robot game[3] in dimension one is a pair(U,V), whereU andV are finite subsets ofZ. The robot
game is played by areacher, who owns the subsetU , and anopponent, who owns the subsetV. Given
an initial counter valuex0 ∈ Z, a play proceeds inrounds. In a round that starts at the counter value
x∈ Z, the opponent chooses what we call amove v∈V and updates the counter tox+v, then the reacher
chooses a moveu∈U and updates the counter tox+v+u, in which the round ends. The play ends and
the reacher wins it if the round ends at 0, else a new round is played. By convention, the reacher wins
immediately when a play starts at 0.

To represent robot games, we draw their two vertices,© for the reacher and� for the opponent, and
two edges that list the set of each player.

−1,3

−1,0,4

Figure 1: Example of a robot game for the setsU = {−1,0,4} andV = {−1,3}.

Formally, a play is a finite or infinite sequenceZ(VU)∗ or Z(VU)ω . A play prefix in a robot game
is a wordπ ∈ Z(VU)∗∪Z(VU)∗V, the first letter of this word is the initial counter value andthe other
ones are the moves players do in the play prefix. We associate to a play prefixc0v0u0 . . .vh its destination
c0+v0+u0+ · · ·+vh.

A strategyfor the reacher (resp. for the opponent) is a functionσ : Z(VU)∗V → U (resp. σ :
Z(VU)∗→V). A strategyσ is memorylessif all play prefixes with the same destination have the same
image underσ . We then take the destination of a play prefixπ instead ofπ itself as argument of a
memoryless strategy, which we define from now on as a functionZ→U or Z→ V depending on the
player.

A counter valuex is winning if there exists a reacher strategy, such that for all strategies of the
opponent, the reacher wins the play that starts atx and in which each player moves according to his
strategy. We switch reacher and opponent in the last sentence to define the notion of alosing counter
value. The decision problem associated to a robot game(U,V) and an initial counter valuex∈ Z asks
whetherx is winning.

By the Gale-Stewart theorem [4], robot games are determined: In any robot game, every initial
counter value is either winning or losing. Robot games are even positionally determined, because they
are reachability games, which means that if a player has a winning strategy, then he also has a memoryless
winning strategy.

A linear setin Z is a set of the form{x+∑n
i=1 kixi | k1, . . . ,kn ∈ N}, for some integersx,x1, . . . ,xn.

In other words, it is the least set that containsx and is closed under addition of integers in{x1, . . . ,xn}.
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We denote that set byx + 〈{x1, . . . ,xn}〉N or simplyx+x1N whenn= 1. We also write〈Y〉N rather than
0+ 〈Y〉N. We say that an integer isY-reachableif, and only if, it belongs to〈Y〉N.

Theamplitudeof a robot game(U,V) is the integer interval bounded by the extremal combinations
of moves in a round. We denote it by Ampl(U,V) = Jmin(V)+min(U),max(V)+max(U)K. We also
define for anyk∈N the integer interval Amplk(U,V) = Jmin(V)+min(U)−k,max(V)+max(U)+kK.

We now give some basic properties of robot games. Let us first remark that robot games are invariant
under translation: Whenever a player can make a move fromx to x′, the same move leads fromy to
y−x+x′.

Proposition 1: If two counter values are winning in a robot game, then their sum is also winning.

Proof. Let x∈ Z andy∈ Z be two winning counter values. Letσx andσy be winning strategies of the
reacher fromx andy. Because the game is invariant by translation, the reacher can enforce a play that
starts atx+y to visit y after one of his turns with the strategyz 7→ σx(z−y). After this first visit toy, the
reacher wins by usingσy. He always knows whethery was visited during a play prefix(x+y)v0u0 . . .vh,
a necessary and sufficient condition is that a partial sum(x+y)+v0+u0+ · · ·+vi is y.

As a consequence, if all counter values in a setX ⊆ Z are winning in a robot game, then every
X-reachable counter value is winning. This guarantees that the winning set is linear.

The next proposition states what happens when a player can force the counter value to increase or
decrease unboundedly.

Proposition 2: Let (U,V) be a robot game.

• If max(V)≥−min(U), then each positive counter value is losing. Similarly, ifmin(V)≤−max(U),
then each negative counter value is losing.

• If max(U) > −min(V), and if there exists a bound above which each counter value iswinning,
then each counter value is winning. The same holds ifmin(U) < −max(V), and if there exists a
bound below which each counter value is winning.

Proof. • We consider a robot game(U,V) in which we have max(V)≥−min(U). For any positive
counter valuex and all movesv1, . . . ,vk ∈ V, u1, . . . ,uk ∈ U , the opponent wins by playing the
strategyxv1u1 . . .vkuk 7→max(V): every round ends in a counter value that is greater than or equal
to the previous one, no matter what the reacher does. The casewhere min(V) ≤ −max(U) is
analogous for negative counter values.

• (First case only, the second one is analogous) We consider a robot game(U,V) for which we have
max(U)>−min(V), and for any counter valuey above a certainx∈ Z, the reacher has a winning
strategyσy. Here is the winning strategy for the reacher from any initial counter value: In a play
prefix where no counter value abovex has been visited, he plays max(U); in a play prefix ending at
z where the first counter value abovex visited isy, he playsσy(z). Because max(U)> −min(V),
after every round the counter value visited grows until it goes overx where the reacher will win
afterwards. Like in the proof of Proposition 1, the reacher knows whether the first case or the
second one is the right one and what the value ofy is.
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3 The complexity of one-player robot games on the integer line

When there is only one player in a robot game, i.e.,V = {0}, the order of the moves does not matter. The
reacher has a winning strategy if, and only if, for each moveu∈U , there exists a number of times the
reacher must useu, that is to say, the negative of the initial counter value is apositive linear combination
of moves in the setU . We thus make a link between one-player robot games and linear programming.

Theorem 3: Given a robot game in dimension one withV= {0} and an initial counter value x0, deciding
whether the reacher has a winning strategy from x0 is NP-complete.

Proof.

• NP-membership: The decision of the winner in a one-player robot game reduces to the following
integer linear programming problem, which is in NP according to [7, p. 320, Th. 13.4].

Minimize x

subject to x+ ∑
u∈U

auu = −x0

x ≥ 0

au≥ 0, u∈U

The minimalx is 0 if, and only if, the reacher has a winning strategy.

• NP-hardness: We present a polynomial-time reduction from the NP-complete SUBSET-SUM prob-
lem [2, p. 1097] to the decision of the winner in a one-player robot game. For a given set
{x0, . . . ,xn−1} of positive integers and a given positive integers, the SUBSET-SUM problem asks
whether there exists a subsetI of J0,n− 1K such that∑i∈I xi = s. Let (X,s) be an instance of
SUBSET-SUM. Let n= |X|, b= max(X), andk= ⌊log2(max(nb,s))⌋+1. We build a robot game
where we write counter values as their binary encoding, so wedeal with bits in the following.

The basic idea of the reduction is that we start froms and give to the reacher the possibility to
subtract somexi and try to reach 0, but it is not enough. To prevent him from subtracting twice
the samexi , we add a control on the highest bits of the counter value. Therefore, the initial
counter value in the robot game iss+∑k+n−1

i=k 2i + n · 2k+n, and every reacher move subtracts at
least 2k+n from the counter value in order that at mostn moves can be performed. More precisely,
U = ∪n−1

i=0Ui, whereUi = {−xi −2k+i−2k+n,−2k+i −2k+n}.

We now explain the link between a potential solution to the instance of SUBSET-SUM and a strat-
egy in the robot game. Consider a subsetI of J0,n− 1K. With at mostn moves from the setU ,
the only possibility to reset the bits numberk throughk+n−1 in the robot game is to decrement
all of them once, i.e., use exactly one move from each setUi . We choose in the setUi the move
−xi −2k+i −2k+n if i is in I and−2k+i −2k+n else. After then moves, the counter value is 0 if,
and only if,∑i∈I xi = s. Consequently, it is equivalent to find a winning strategy inthe robot game
and to find a subset ofX that sums up tos.
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4 The complexity of two-player robot games on the integer line

In this section, we present the tools to build an exponential-time algorithm that decides the winner in
a robot game. First, we explain the notion of an attractor, then we define the Frobenius problem and
we give an over-approximation of the solution to this problem, in order to find bounds above and below
which we are sure that the same player always wins. The algorithm in the third part computes the attractor
and uses the bounds we get to avoid infinite recursion. At the end of the section, we prove the matching
lower complexity bound for the decision problem.

4.1 The attractor construction

We first define the one-step attractor of a set. Consider a graph (Q,Q∃,Q∀,E) for a general reachability
game, whereQ is a possibly infinite set of vertices partitioned into subsets Q∃ for the reacher andQ∀ for
the opponent, andE ⊆ Q×Q. Theone-step attractorof a subsetX of Q, written Attr(X), is the set of
states from which the reacher can force to go toX in one step, which means:

Attr(X) = {q∈Q∃ such that∃q′ ∈ X,(q,q′) ∈ E}

∪{q∈Q∀ such that∀q′ ∈Q,(q,q′) ∈ E impliesq′ ∈ X}.

The attractor of X, written Attr∗(X), is the set of states from which the reacher has a strategy to
eventually go toX no matter what the opponent plays, in other words he has a winning strategy in the
reachability game with objectiveX on the aforementioned arena. The set Attr∗(X) is the least fixpoint of
Attr containingX. We obtain it recursively: computeY = X ∪ Attr(X), if Y = X then returnY else set
X :=Y and repeat.

Let us adapt a robot game to these notations. The reacher ownsQ∃ := {©}×Z and the opponent
ownsQ∀ := {�}×Z. The set of edges is the union of the set{((�,x),(©,y)) | x,y∈Z,y−x∈V}, which
represents the opponent moves, and of the set{((©,x),(�,y)) | x,y ∈ Z,y− x∈U}, which represents
the reacher moves. The objective for the reacher is the vertex (�,0). In our definition of robot games,
winning positions are counter values. They are here represented as a pair (� or© , the counter value),
but we only care for winning positions with� as left component when we solve the game, because a
play starts with the opponent.

We use here two-step attractors Attr2(X) = Attr(Attr(X)), rather than one-step attractors, because of
the round-based structure of a play in the robot game. The winning set in a robot game is Attr∗({(�,0)}).
We call it trivial if its intersection with the opponent vertices is restricted to{(�,0)}, which is the
case if, and only if, the computation of Attr∗({(�,0)}) stops at the second step because a fixpoint has
already been reached. In other words, the winning set in a robot game is trivial if, and only if, the set
Attr2({(�,0)}) is either empty or{(�,0)}.

Proposition 4: The winning set in a robot game(U,V) is non-trivial if, and only if, there exists a counter
value x6= 0 such that, for all opponent moves v∈V, there is a reacher move u∈U such that u+v=−x.

Proof. Given a counter valuex 6= 0, a configuration(�,x) is in Attr2({(�,0)}) if, and only if, for any
opponent movev ∈ V, we have(©,x+ v) ∈ Attr({(�,0)}, and this is equivalent to the existence of a
u∈U , which depends onv andx, such thatx+v+u= 0.

Let us look at the game presented in the Figure 1. Here, consider a play that starts at−3: if the
opponent chooses to play 3, then the reacher wins by playing 0, if the opponent plays−1, then the reacher
wins by playing 4. With the terminology of this section, it means that(�,−3) ∈ Attr2({(�,0)}).
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We define an integer version of Attr2, for a subsetX of Z, by

Pre(X) = {x∈ Z | (∀v∈V)(∃u∈U) x+u+v∈ X}.

Note that a round begins in Pre(X) if, and only if, the reacher can force this round to end inX. Let
X be a subset ofZ, and letXopp = {�}×X. Because the predecessor of a vertex with� in the left
component can only be a vertex with© in the left component and vice-versa, we have Attr2(Xopp) =
{�}×Pre(X).

The next result is very important for our algorithm. We will usually be in a situation where the
algorithm computes a boundb such that we can decide immediately for which player a counter valuex
that is greater in absolute value thanb is winning. The proposition presents the bounded arena we build
from the robot game, where termination is guaranteed for thecomputation of the attractor.

Proposition 5: Consider a robot game G for which there exist two integers d∈ N\{0} and b∈ N such
that no negative counter value is winning and every counter value greater than b is winning if, and only
if, it is a multiple of d. We can build a reachability game on a finite arena on which the reacher has a
winning strategy if, and only if, he has a winning strategy inG.

Proof. Let Restrbd(U,V) = (Q,Q∃,Q∀,E), where:

• Q∀ = {⊥<0,⊤>b,⊥>b}∪ ({�}× J0,bK);

• Q∃ = {©}× Jmin(V),b+max(V)K;

• Q= Q∃∪Q∀;

• E = {((�,x),(©,y)) ∈Q∀×Q∃ | y−x∈V}
∪{((©,x),(�,y)) ∈Q∃×Q∀ | y−x∈U}
∪{((©,x),⊥<0) ∈Q∃×Q∀ | ∃u∈U,x+u< 0}
∪{((©,x),⊥>b) ∈Q∃×Q∀ | ∃u∈U,x+u> b∧x+u 6∈ dZ}
∪{((©,x),⊤>b) ∈Q∃×Q∀ | ∃u∈U,x+u> b∧x+u∈ dZ}
∪{(⊥<0,⊥<0),(⊤>b,(�,0)),(⊥>b,⊥>b)}.

The reachability game played on Restrb
d(U,V) where the reacher wants to go from(�,x) to (�,0),

for a given 1≤ x≤ b, is actually the robot game(U,V) with the initial valuex, in which we stop the play
as soon as we know the winner. Indeed, we supposed that all negative counter values are losing, that
is why, on Restrbd(U,V), instead of vertices(Q∀,x) for x ∈ −N we have a losing sink⊥<0. Similarly,
because in(U,V) all counter values above b are winning if, and only if, they are multiples ofb, on
Restrbd(U,V), instead of vertices(Q∀,x) for x> b, we have two sinks, one winning and one losing, and
the redirection of edges depend on the counter value.

We allow the notation Restrb
d(U,V) for negative integersb, given that no positive counter value is

winning and every counter value less thanb is winning if, and only if, it is a multiple ofd. In fact
Restrbd(U,V) is the arenaRestr−b

d (−U,−V). Givend andb, we can decide the winner in the reachability
game on Restrb

d(U,V) using the attractor construction, because this time the arena is finite. We write
RestrAttr(G)= {x∈Z | (�,x)∈Attr∗({(�,0)})}where Attr∗({(�,0)})} is the winning set in the game
described above on the arenaG= Restrbd(U,V). The function RestrAttr is used in the main algorithm.
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4.2 The Frobenius problem

Let W be a non-empty subset ofZ. The arithmetical notions we present in this section are part of the
algorithm: W stands for a subset of the winning counter values. We denote by gcd(W) the greatest
common divisor ofW, and we compute it as follows: gcd({d}) = d, and forW 6= /0, gcd({w}∪W) is the
usual greatest common divisor ofw and gcd(W). The integers inW are mutually prime if gcd(W) = 1.

The Frobenius problemasks for the greatest integer that is notW-reachable, whereW is a set of
mutually prime positive integers.

Note that the set of non-W-reachable positive integers would be infinite without the assumption of
mutual primality. It is empty whenever the setW contains the value 1, in which case the solution to the
Frobenius problem is−1, by convention. Theorem 6, which follows from [10], gives abound to the
solution to the Frobenius problem for a given set.

Theorem 6: Let W be a set of mutually prime positive integers. The solution to the Frobenius problem
for W is less than or equal tomax(W)2.

Here, we are interested in a variant of the Frobenius problemon arbitrary subsetsW of N or −N,
where we look for a bound beyond which every integer isW-reachable if, and only if, it is a multiple
of gcd(W). WhenW is a set of mutually prime positive integers, this is exactlythe Frobenius problem.
Otherwise, letW ⊆ N andd = gcd(W). Consider the setW′ = {w

d | w∈W}, which contains mutually
prime positive integers. LetF be the solution to the Frobenius problem forW′. Then the set ofW-
reachable integers greater thandF is equal to the set of multiples ofd greater thandF. Consequently,
the solution to our problem forW is dF. ForW ⊆−N, we procede analogously.

Actually, the computation ofF is hard and the bound in Theorem 6 has at most twice the size ofW.
That is why we use the following function in the algorithm. Let W ⊆N such that gcd(W) = 1. We write
F̃(W) = max(W)2. LetW ⊆−N such that gcd(W) = 1. We writeF̃(W) =−max(−W)2 =−min(W)2,
under which all integers areW-reachable. We extend̃F(W) when gcd(W) = d 6= 1: LetW′ = {w

d | w∈
W}, we setF̃(W) := dF̃(W′) = max(|W|)2/d. In the particular case whereW is a singleton, we set
F̃(W) = 0.

Finally, whenW is neither included inN nor in −N, we decideW-reachability according to the
following lemma.

Lemma 7: Let W be a finite subset ofZ that has two elements of opposite signs. An integer is W-
reachable if, and only if, it is a multiple inZ of gcd(W).

Proof. Consider two elementsw > 0 andw′ < 0 of W. The integers−w and−w′ areW-reachable
because−w = (−w′− 1)w+ww′ and−w′ = (w− 1)w′+(−w′)w, which are combinations with only
nonnegative coefficients.

By Bézout’s identity, there exist integer coefficientsaw such that∑w∈W aww= gcd(W). We replace
aww by (−aw) · (−w) for all negative coefficientsaw. The resulting linear combination has only positive
coefficients, therefore gcd(W) is W-reachable, as well as−gcd(W). We conclude thatW-reachability is
equivalent to membership in gcd(W)Z.

4.3 A theorem by Sylvester

This section aims at giving an alternative way to bound the solution to the Frobenius problem. Using
Theorem 6 is simpler, but we can have a sharper bound.
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Theorem 8 relies on the extended Euclidean algorithm, presented in [2, p. 937]. With an iteration of
the algorithm to more than two integers according to the way we present the gcd of a set, we can prove
Corollary 9.

Theorem 8: Let a,b be two integers. B́ezout coefficients for a and b, that is to say integers u,v such
that ua+ vb= gcd(a,b), can be computed with a time complexity polynomial in the size of the binary
encoding of a and b.

Corollary 9: Bézout coefficients for a finite subset ofZ are computable with a polynomial time com-
plexity in the size of the binary encoding of the integers in the subset.

The article [6] mentions a theorem concerning the Frobeniusproblem, due to Sylvester in [8].

Theorem 10: Let W = {p,q} be an instance of the Frobenius problem. Then the greatest non-W -
reachable integer is pq− p−q. Moreover, an integer x is reachable if, and only if, pq− p−q−x is not,
which means exactly half of the integers between0 and pq− p−q are reachable.

Such a simple statement does not extend well whenW has more than two elements. If there are
two mutually prime integers inW, then we can take them, else we have to find two mutually prime
W-reachable integers to get an upper bound of the maximal non-W-reachable integer. For example,
if W = {6,10,15}, then there is no pair of mutually prime integers inW even though gcd(W) = 1.
Nevertheless, 25 isW-reachable and we have gcd(6,25) = 1, hence every integer above 6·25−6−25
is W-reachable. In any case, Proposition 11 gives a way to apply the above theorem and there is only a
finite number of integers for which we cannot find out immediately whether they areW-reachable or not.

Proposition 11: Let W be a subset ofZ such that gcd(W) = 1. There is a polynomial time algorithm
that gives a pair of mutually prime W-reachable integers.

Proof. If two integers inW are mutually prime, then there is nothing to do. Else consider the linear
combination, obtained with the extended Euclidean algorithm, ∑n

i=1aiwi = 1 for w1, . . . ,wn ∈W. We
suppose that the terms are ordered such that for a certain 1≤ k≤ n+1 all ai , i < k are positive and all
ai , i ≥ k are negative. First note thatn≥ 3, else two integers inW would be mutually prime. Let us
distinguish three cases:

• If k = 1, in other words allai are negative, then consider theW-reachable integersp := w1 and
q := ∑n

i=2(−ai)wi . We apply Bézout’s theorem:p andq are mutually prime becausea1p−q= 1.

• Similarly, if k = n+ 1, in other words allai are positive, then theW-reachable integersp := w1

andq := ∑n
i=2 aiwi are mutually prime.

• Else, theW-reachable integersp := ∑k−1
i=1 aiwi andq := ∑n

i=k−aiwi are mutually prime and defined
by a non-empty sum.

4.4 The algorithm

We have now all necessary tools to solve robot games. The mainidea is to iterate the computation of Pre
until we establish that we can describe the winning set with the finite set obtained so far.
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We prove in Proposition 12 and its corollary that, forX the set that we compute in the first step of
our algorithm and Win the winning set in the robot game,X ⊆ Win and that, for a well-chosen setY′

of X-reachable counter values, if gcd(Pre(Y′)) = gcd(X), then also gcd(Win)= gcd(X). Basically, the
first step relies on this property: We compute successive Pre, and once the step ends we get gcd(Win).
Actually, to keep control over the complexity, we do not doX := X ∪ Pre(X), but only add toX a single
elementy of the computed Pre such that gcd(X) 6= gcd(X∪{y}).

Once we find gcd(Win), there are two cases. In the first case, Lemma 7 can be applied and we are
done, because Win has two elements with opposite signs. Hence, the winning set is gcd(Win)Z. In the
second case, the winning set is included in one of the setsN or−N; we suppose without loss of generality
that the winning set is included inN. Theorem 6 yields a bound above which all multiples of gcd(Win)
and only them are winning because they areX-reachable. Therefore, the only set of counter values about
which we still do not know whether they are winning or not is empty or bounded and, by Proposition 5,
we can compute an attractor on the restricted arena.

Proposition 12: Let Win be the winning set in a robot game(U,V), and d∈N be a multiple of gcd(Win)
that is not gcd(Win). Let Y= dZ ∩ Ampld(U,V). Then we have Pre(Y)\dZ 6= /0.

Proof. First, we establish that if Pre(dZ) is not included indZ, then neither is Pre(dZ ∩ Ampld(U,V)).
Let x ∈ Pre(dZ) \ dZ. All counter valuesx+ v+ u for v ∈ V and u ∈ U are included in the interval
Ampl(U,V)+x, a fortiori whenu is chosen according tox andv such thatx+v+u∈ dZ. In this case,x
modd belongs to Pre(dZ ∩ Ampld(U,V))\dZ, and it is outsidedZ too.

Second, we prove the proposition by contrapositive: Suppose that Pre(dZ ∩ Ampld(U,V)) is in-
cluded indZ. We just proved that it implies the inclusion of Pre(dZ) in dZ. As a consequence, from any
counter value outsidedZ, there exists an opponent move such that for all reacher moves, the next round
begins outsidedZ too, in particular it is impossible for the reacher to have a winning strategy. Hence,d
divides gcd(Win).

We need to adapt this result because we do not know whetherY ⊆Win and we look for a statement
that allows us to find winning counter values. That is why we define the regularity intervalI(U,V)(X) of a
finite subsetX of Z neither empty nor equal to{0} in a robot game(U,V). The elements of this interval
areX-reachable if, and only if, they are multiples of gcd(X).

• If X ⊂ N, thenI(U,V)(X) := (F̃(X)−min(V)−min(U)+d)+ Ampld(U,V), the lower bound of
this interval isF̃(X).

• If X ⊂ −N, thenI(U,V)(X) := (F̃(X)−max(V)−max(U)−d)+ Ampld(U,V), the upper bound
of this interval isF̃(X).

• Else,I(U,V)(X) := Ampld(U,V).

Corollary 13: Let Win be the winning set in a robot game(U,V), and X⊂Win such that gcd(X) = d >
gcd(Win). Let Y′ = I(U,V)(X)∩dZ. Then we have Pre(Y′)\dZ 6= /0. As a consequence, if Win6⊆ dZ, then
we can compute a certain element of the difference in space polynomial in |U | and |V|.

We apply this idea to the game in Figure 1 and find that−2 is a winning counter value outside−3N,
because if the opponent plays 3, then the reacher can play−1 and win, and if the opponent plays−1,
then the reacher can play 0, and in the next round he can play the difference between 3 and the opponent
move to win. With the notations of the last proposition and ofits corollary, we havẽF({−3}) = 0, the
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Algorithm 1: Algorithm for solving robot games on the integer line.

Data: A robot game(U,V).
Result: A description of the winning set.
/* Require: Functions computing the sets we use, as defined in the

Section 4. */

begin
d← 0
X← Pre({0})∪{0} /* to avoid handling gcd({0}) in the first step */

if X = {0} then return X

/* Step 1. */

while d = 0 do
d′← gcd(X)
I ← I(U,V)(X)
/* I is a set of X-reachable counter values with a large absolute

value */

Y← Pre(I ∩d′Z)
/* From Y, the reacher can force the next round to end at a counter

value known to be winning */

if Y \d′Z 6= /0 then X← X∪{min(Y \d′Z)} /* minimum in absolute value */

elsed← d′ /* We know that d is gcd(Win): we exit the loop */

/* Step 2. */

if X 6⊆N∧X 6⊆ −N then return dZ /* Lemma 7 */

else
I ← Ampl(U,V)
b← F̃(X)
if X ⊆N then

if −N ∩Pre(I ∩dN) 6= /0 then return dZ /* Lemma 7, second try */

elseUnbd←{x∈ dZ | x> b} /* Half-line of winning counter values */

else
if N ∩Pre(I ∩−dN) 6= /0 then return dZ
elseUnbd←{x∈ dZ | x< b}

G← Restrbd(U,V)
/* Between 0 and b, we compute the attractor on the restricted arena

according to Proposition 5 */

return Unbd ∪RestrAttr(G)
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interval I({−1,0,4},{−1,3})({−3}) is (0−3−4−3)+ J−5,10K = J−15,0K, and Pre({−15,−12, . . . ,0}) is
not included in 3Z. We pick−2 in it. Since gcd({−2,−3}) = 1, we know that gcd(Win) is 1.

Theorem 14: Algorithm1 computes the winning set in a robot game in exponential time.

Proof of termination.The only loop in the algorithm is in the first step. Each iteration either lowers the
variabled′, more precisely replaces it by one of its divisors, or assigns the variabled to the value ofd′,
which makes the loop stop because this value is positive. Thelowering ofd′ occurs less times than the
gcd of Pre({0})∪{0}, and if this set is{0}, then the algorithm stops before the first step begins.

Proof of correctness.Let Win be the actual winning set, and letd = gcd(Win).

• In the first step, the variableX is a subset of Win. We prove it by recurrence:

– The step begins withX = Pre({0})∪{0}, which contains only winning counter values.

– Let X ⊆Win, letd′ = gcd(X). In the loop, when a counter valuey is included inX, it belongs
to Pre(I ∩ d′Z), whereI is the regularity interval ofX. Thus the reacher has a move to go
from y to a subset ofX-reachable counter values, which justifies thaty is a winning counter
value too.

• On the other hand, if no element of Win\dZ is found and included inX, then by Corollary 13,
there exists none. It remains to look for elements of Win\〈X〉N, necessarily indZ.

• We distinguish three cases to prove the second step.

– If two counter values inX have opposite signs, then Win= 〈X〉N = dZ by Lemma 7.

– Else ifX ⊆N and−N ∩Pre(Ampl(U,V)∩dN) 6= /0, then we also have Win= dZ. Actually
we here prove this equivalent to the fact that two counter values in Win have opposite signs.
(⇐) Let x0 ∈ −N ∩Win. Consider a playπ that starts atx0 and in which the reacher uses a
winning strategy. The playπ ends in 0 and every round finishes in winning counter values,
i.e., multiples ofd. Letx∈−N be the counter value in which a round inπ ended and no more
round ended in−N afterwards. Whatever the opponent did, the reacher forced the round that
began inx to end in a nonnegative winning counter value. To sum up,x is a negative counter
value in Pre(Ampl(U,V)∩dN).
Note that Ampl(U,V) necessarily contains negative counter values, else there would not be
any positive winning counter value.
(⇒) Let x ∈ −N ∩Pre(Ampl(U,V)∩ dN). In other words, for every opponent move, the
reacher has a move such that a round that begins inx ends in a positive multiple ofd in one
round, and this multiple is less than max(U)+max(V). Consider the reacher move as the
image of the opponent move by a functionϕ : V →U . If the reacher plays the image byϕ
of the last opponent movedk times, fork ∈ N big enough, then a great multiple ofd, i.e., a
counter value in〈X〉N, is reached. This justifies thatx is winning.
If X ⊆−N andN ∩Pre(Ampl(U,V)∩−dN) 6= /0, we have the same result.

– Else, we know that all counter values in Win have the same sign. Suppose without loss of
generality thatX ⊆ N. From a negative counter value, only negative or positive but surely
losing counter values can be visited, therefore Win is included indN. We use Theorem 6:
every counter value abovẽF(X) is winning. Between 0 and̃F(X), we decide the winner
using the result of Proposition 5 about the attractor on the restricted arena.
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Proof of complexity.We consider the input size as∑w∈U∪V log(|w|). The algorithm first computes the
set Pre({0}), which contains at most|U | counter values, all of them have a lower size than the input size.

Let us consider the loop in the first step of the algorithm. Forany subsetX of Z, let d′ be the gcd
of X and letI be the regularity interval ofX. The size ofI is 2 gcd(X)+min(U)+max(U)+min(V)+
max(V), one of its bounds is̃F(X), and the size of a representation of this integer is at most twice the
size ofX. The size of the counter valuey obtained in the loop using Pre onI ∩ d′Z is bounded by a
polynom in the size of the integers inX. There is a logarithmic number of iterations in the loop, because
each assignment ofd′ sets it to one of its strict divisors.

We now look at the second step of the algorithm. It first checkswhether two integers inX have
opposite signs, and in case of fail makes another test on the Pre of an interval included in the amplitude
of the game. This can be done in polynomial time. If the secondtest fails, then the boundb := F̃(X)
is computed, the arenaG := Restrbd(U,V) is built and the reachability game onG is solved with the
computation of an attractor, for a time complexity polynomial in the size ofG. This size is linear in the
value ofb+max(V)−min(V). With a binary encoding, the algorithm uses then exponential time.

Let us illustrate the second step of the algorithm with the example in Figure 1 again. We exit the first
step with a subsetX = {−2,−3} of the winning set such that gcd(X) = 1. Because 1= −min(U) <
max(V) = 3, the opponent wins from any positive counter value (Proposition 2), it is indeed impossi-
ble that Pre({−2,−1,0}) contains any positive counter value. Every nonpositive{−2,−3}-reachable
counter value, i.e., every nonpositive counter value but−1, is winning. We only have to decide whether
the reacher wins from−1, and it is not the case because the opponent can play 3 every time, which guar-
antees that only positive counter values are visited after the first move. The algorithm decides it when it
calls RestrAttr on the arena Restr−1

1 (U,V).

4.5 The lower complexity bound

We are now showing EXPTIME-hardness of robot games. In orderto do this, we give the definition
of countdown games [5], which are games with one positive andstrictly decreasing counter. We then
introduce a variant of countdown games and show two successive reductions from countdown games to
our variant and then from this variant to robot games.

A countdown gamebetween two players 1 and 2 is represented by a pair((S,T),c0) whereSis a finite
set of locations,T ⊆ S× (N\{0})×S is a set of weighted transitions andc0 ∈N\{0}. We consider that
Shas a particular locations0. Configurations in the game are pairs(s,c) ∈ S×N, wherec is a counter
value. A play is a sequence of moves, done in the following way: from a configuration(s,c), initially
(s0,c0), player 1 chooses a valued ≤ c called duration such that there exists a transition inT with s as
first component andd as second component, then player 2 chooses(s,d,s′) among these transitions. This
move updates the configuration to(s′,c−d).

The winner of a play in a countdown game is determined once theplay is blocked. Because only
nonnegative integers appear in the configurations and positive integers in the transitions, the game is
finite and ends when player 1 cannot find any duration to make a move. At this point, player 1 wins if,
and only if, the counter value is 0. Deciding the winner in countdown games is EXPTIME-complete. [5]

We now definerestricted countdown games: On the one hand, the winning condition for player 1 is
now that the play ends in(⊥,0) for a particular sink⊥ ∈ S, i.e., there are no transitions with⊥ as first
component; on the other hand, if there are two transitions(s1,d,s′1), (s2,d,s′2) in T, thens1 = s2; in other
words, a duration is specific to a location.
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Proposition 15: Countdown games reduce in polynomial time to restricted countdown games.

Proof. There are two steps in the construction. Consider an arbitrary countdown gameG= ((S,T),c),
whereS= {s0, . . . ,sn−1}. Let d′ be the least positive integer that does not appear in any transition in
T. First, we build the countdown gameG′ = ((S∪{⊥}),T ∪{(s,d′,⊥) | s∈ S},c+ d′), The winning
condition for player 1 inG′ is to reach(⊥,0).

Notice that player 1 wins a playπ in G′ if, and only if, in the last move ofπ, the configuration is
(s,d′) for any locations, and player 1 choosesd′, in order that player 2 can only pick the transition
(s,d′,⊥). The partial play from(s0,c+d′) to (s,d′), corresponds inG to a play that starts at(s0,c) and
ends in(s,0), where player 1 wins.

Second, we build fromG′ a restricted countdown game that we prove equivalent toG. Let G′′ =
((S∪S′ ∪ {⊥},T ′′),2N(c+ d′)), whereS′ = {s′1, . . . ,s

′
N−1} and T ′′ = {(s0,2nd,s) | (s0,d,s) ∈ T ′} ∪

{(si , i,s′i),(s
′
i ,2nd− i,sj ) | (si ,d,sj) ∈ T ′}. Matching transitions are(s0,2nd,s) ∈ T ′′ and(s0,d,s) ∈ T ′,

as well as(s′i ,2nd− i,sj) ∈ T ′′ and(si ,d,sj) ∈ T ′. Matching plays areπ ′′ ∈ T ′′ andπ ′ ∈ T ′ such that,
when we exclude the moves froms∈ S to s′ in π ′′, the transitions of every move inπ ′′ and inπ ′ match.

The gameG′′ is a restricted countdown game because the duration of a transition that starts insi ∈ S
is a multiple of 2N plus i and the duration of a transition that starts ins′i ∈ S′ is a multiple of 2N minusi.

Moreover, player 1 wins inG′′ if, and only if, he wins inG′, thus inG. Indeed, consider matching
plays π ′′ of G′′ and π ′ of G′. When the location is inS∪ {⊥}, the counter value inπ ′′ is 2n times
the counter value inπ ′, because at the beginning ofπ ′′ the configuration is(s0,2n(c0 +d′)) and at the
beginning ofπ ′ the configuration is(s0,c0+d′).

Hence, a play inG′′ reaches(⊥,0) if, and only if, the matching play inG′ reaches(⊥,0).

Theorem 16: Given a robot game onZ and an initial counter value, deciding whether the reacher has
a winning strategy from this counter value is EXPTIME-hard.

We prove the theorem by a reduction from restricted countdown games to unidimensional robot
games. Let((S,T),c) be a restricted countdown game, where we suppose without loss of generality that
S= J0,n−1K,s0 = 0 and⊥ = n−1. We nameD = {d0, . . . ,dh−1} the set of values that appear inT as
durations. Letk= ⌊log4(c)⌋+1 andk′ = ⌊log4(k)⌋+1.

We write the counter value in the robot game in base 4 and withh+n+k+k′+1 digits, which we split
in four parts. These parts encodedurations, locations, value in the countdown game andcontrols from
the least significant digit to the most significant one. We explain these notions after the presentation of the
sets of movesU andV. The initial counter value is 4h+c0 ·4h+n+k ·4h+n+k+4h+n+k+k′ , it corresponds
to no duration given, the initial state, the valuec0 in the countdown game, and a default value for the
control part.

Let us use an example to see how we represent a configuration ina restricted countdown game by the
counter value in the robot game. Consider the countdown gamepictured in Figure 2. We represent in Fig-
ure 3 the first move of a play that starts at 0 with value 8 (first line) and where player 1 chooses duration
3 (second line), after which player 2 moves to the location 1 (third line). We setD = {1,2,3,4,5,6}.

For simplicity, we decide that the reacher begins in the robot game, but the winning condition is still
that the counter value becomes 0 after the turn of the reacher. It remains computationally equivalent.

We first give the moves of both players in the robot games as codes, in order to explain the way we
encode a play in the restricted countdown game. Intuitively, because we split the counter in four parts, a
risk appears that the encoding no longer corresponds to a configuration in the reduced countdown game,
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2 ⊥
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3
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2

2

14
4

5

duration
︷ ︸︸ ︷

0 0 0 0 0 0

location
︷ ︸︸ ︷

1 0 0 0

countdown
︷ ︸︸ ︷

0 2

control
︷ ︸︸ ︷

2 1

0 0 1 0 0 0 0 0 0 0 1 1 2 1

0 0 0 0 0 0 0 1 0 0 1 1 2 1

Figure 2: Restricted countdown game. Figure 3: Counter values in the robot game.

for example because of a carry. We prove that if a player triesto create such a bad behaviour, then the
other one can react with a winning strategy.

In a restricted countdown game, let us writesd for the location uniquely determined by a durationd.
The codes for the set of opponent moves are{DURATION d GOTO s′ | (sd,d,s′) ∈ T}, which

correspond to the choice by player 2 of the next location according to the given duration.
The codes for the set of reacher moves are{STATE s CHOOSEd | ∃s′,(s,d,s′) ∈ T}, which corre-

spond to the choice by player 1 of an available duration;{FINISH}, played when the winning configu-
ration is reached;{CANCEL (d,s′) ERASE ( j,a) | (sd,d,s′) ∈ T, 0≤ j < k, 0≤ a≤ 3}, to modify the
third and fourth part of the counter value and eventually reach 0 when it seems that the opponent cheated;
and{CANCEL (d,s′) REMOVE d′ | (sd,d,s′) ∈ T, d 6= d′}, to point out a cheating from the opponent,
i.e., cancel the last move and subtract the real duration that was chosen. When we do not specify the
parameters likesandd in the codes, we write the type of the moves, for example STATE/CHOOSE.

We callgood encodinga sequence that alternates reacher and opponent moves such that:

• The first move is STATE s0 CHOOSEd for a certaind.

• The last move is FINISH and the move before is DURATION d GOTO⊥ for a certaind.

• There are neither CANCEL/ERASE nor CANCEL/REMOVE nor other FINISH moves.

• For two consecutive moves STATE s CHOOSEd and DURATION d′ GOTO s′, we haved = d′.

• For two consecutive moves DURATION d GOTO sand STATE s′ CHOOSEd′, we haves= s′.

All sequences that are not the prefix of a good encoding and that have no good encoding as a prefix are
bad encodings, and the first move that refutes in this case the first or one of the three last properties of
a good encoding is calleddeviating move. A sequence that only refutes the second property is neithera
good nor a bad encoding, and we deal separately with sequences that continue after a finish move.

Note that for each play in the restricted countdown game the players have the possibility in the robot
game to build with their moves a good encoding and the codes ofthis good encoding trace the play. The
hard part is to handle bad encodings. To understand how it canbe done, let us give the integers that
correspond to each code.

• DURATION di GOTO s′ ==−4i +4h+s′ ;

• STATE s CHOOSEdi == 4i −4h+s−di ·4h+n;
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• FINISH ==−4h+n−1−k ·4h+n+k−4h+n+k+k′ ;

• CANCEL (di ,s′) ERASE ( j,a) ==−(DURATION di GOTO s′)−a·4h+n+ j −4h+n+k;

• CANCEL (di ,s′) REMOVE d j ==−(DURATION di GOTO s′)−4 j −4h+n+k+k′ .

It appears that every opponent move is positive and every reacher move is negative. Moreover, any
opponent move plus any reacher move is negative, hence, if the counter value becomes negative, the
opponent wins.

The next proposition shows the need for both players to buildgood encodings.

Proposition 17: If a sequence is a bad encoding, then the adversary of the player who has played the
deviating move has a winning strategy from this move onwards.

Proof. Let us consider a bad encoding and every possibility for the deviating move:

• An opponent move DURATION di GOTO s′ whereas the expected duration wasd j .

In this case, the counter value has theith digit at 3. The reacher then has the occasion to play
CANCEL (di ,s′) REMOVE d j , in order that the first two parts of the counter value become 0. From
this point on, the reacher just has to cancel every further opponent move and erase step by step
every digit of the third part of the counter until the value 0 is encountered.

This case is illustrated in the Figure 4. The first line corresponds to the second line in the Figure 3.
Imagine that the opponent plays the deviating move DURATION 6 GOTO 0 (second line). The
reacher can react with CANCEL (6,0) REMOVE 3 (third line), and then, whatever the opponent
does (fourth and sixth line), the reacher cancels every moveand erases the first and second digits
of the third part (fifth and seventh line), which makes him winbecause the counter is 0.

• A reacher move STATE s CHOOSEdi whereas the expected location wass′.

In this case, the counter value has theh+sth digit at 3. Now, the opponent can take advantage of
this error and play a move with GOTO s if, and only if, theh+ sth digit has been lowered to 2 by
the previous reacher move, therefore this digit will alwaysbe 3 after an opponent move and never
0 again after a reacher move, because none of them permits to increase a digit of the second part
or to decrease it by 2 or more, even with carries. In particular, the counter value cannot become 0.

• A reacher CANCEL/REMOVE move.

Here, the first part of the counter value had only digits at 0 just before because the opponent did
not do a deviating move and now one digit is at 3, let us say it isthe ith one. The opponent will
always use moves with DURATION di when theith digit is 3 and other moves when it is 2 such that
this digit can no longer be put to 0 after the reacher plays, therefore the opponent wins.

• A reacher CANCEL/ERASE move.

Here, the fourth part of the counter value has been reduced, hence the move FINISH, which would
lead to a negative counter value, should be avoided by the reacher. In other words, the opponent
just has to match the duration of his move to the one that the reacher chose right before, like in a
good encoding, to be sure that he wins. Indeed, the only possibility for the reacher to win is now
to use a CANCEL/REMOVE move, but he will lose whenever he does this meanwhile the first part
of the counter value has only digits at 0.
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0 0 1 0 0 0 0 0 0 0 1 1 2 1 Expected duration: 3
0 0 1 0 0 3 0 0 0 0 1 1 2 1 DURATION 6 GOTO 0
0 0 0 0 0 0 0 0 0 0 1 1 2 0 CANCEL (6,0) REMOVE 3
0 0 0 0 3 3 3 3 3 0 1 1 2 0 DURATION 5 GOTO⊥

0 0 0 0 0 0 0 0 0 0 0 1 1 0 CANCEL (5,⊥) ERASE (1,1)
0 0 0 0 3 3 3 3 3 0 0 1 1 0 DURATION 5 GOTO⊥

0 0 0 0 0 0 0 0 0 0 0 0 0 0 CANCEL (5,⊥) ERASE (2,1)

Figure 4: Deviating move of the opponent and reaction of the reacher.

We now restrict to good encodings, for which the next proposition decides the winner depending on
the winner of the corresponding play in the countdown game. We first need the following lemma.

Lemma 18: Consider a prefix of a good encoding without anyFINISH move. The following invariants
hold:

• The digits in the first part of the counter value are all0 after an opponent move and all0 except
one1 after a reacher move.

• The digits in the second part of the counter value are all0 after a reacher move and all0 except
one1 after an opponent move.

Proof. At the beginning of the play, before the first reacher move, there is one 1 and other digits are 0 in
the second part, and all the digits in the first part are 0. Thiscan also be seen in the Figure 3. Consider
a good encoding. The following alternation happens: reacher STATE/CHOOSE moves erase the 1 in
the second part and increment a digit, hence a 0, in the first part; and opponent moves erase the 1 that
appeared in the first part and increment a 0, in the second part.

Proposition 19: Consider a good encodingπ ′ built from a playπ in the restricted countdown game. If
player1 winsπ, then the reacher wins any play that begins with the prefixπ ′ in the robot game when he
plays theFINISH move, else the opponent has a winning strategy after theFINISH move.

Proof. We look at the evolution of the counter value along a good encoding. Every DURATION d cancels
the previous CHOOSEd, every STATE scancels the previous GOTO s, STATE s0 cancels the 1 in the initial
counter value, and FINISH cancels the digit that correspond to⊥ and the fourth part. In other words, all
parts except possibly the third one are zero at the end of a good encoding. Here, we do not consider
possible carries from the third to the fourth part, which make the reacher lose. As for the third part, it
first represents the initial value in the countdown game and the reacher subtracts from it the values of the
durations chosen by player 1 in the simulated play. The counter value is also 0 at the end of the good
encoding in the robot game if, and only if, the correspondingplay in the countdown game ends in the
configuration(⊥,0).

Let us show why we need the FINISH move. According to Lemma 18, the reacher cannot win if
he plays STATE/CHOOSE moves forever, even if he tries to make a carry appear from thethird to the
fourth part of the counter value, because there will always be a digit at 1 in the first part of the counter.
However, with a FINISH move, no digit is incremented in the first part of the counter.Hence, the reacher
should use this move at least once at the end of a good encoding.
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Note that, in particular, the reacher loses if he subtracts to the third part more than the initial value in
the countdown game.

Now, we present the winning strategy for the opponent if the reacher did not win at the moment where
he played FINISH. The fourth part of the counter is now nullified, hence the reacher can afterwards only
use STATE/CHOOSEmoves because other moves would make the counter value negative. Consequently,
the opponent can do a move with GOTO⊥ and guarantee at the next step that the digit that corresponds
to⊥ is never 0 again.

We conclude from Propositions 17 and 19 that the reacher has awinning strategy in the robot game
if, and only if, player 1 has a winning strategy in the countdown game. Indeed, both players need to
generate a good encoding, else they know that they will lose,thus, it is just a matter of checking whether
the reacher can enforce the good encoding to make him win.

5 Conclusion and perspectives

In this paper, we give an EXPTIME algorithm for solving robotgames on the integer line, and prove
EXPTIME-hardness by a reduction from countdown games. According to [3], it is open whether deciding
the winner of robot games is decidable in dimension two. It will be interesting to see if the game on a
grid has enough regularity properties so as to adapt our algorithm for the dimension two problem.
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