
Test Case Generation for Concurrent Systems
Using Event Structures

Konstantinos Athanasiou1?, Hernán Ponce-de-León2?, and Stefan Schwoon3

1 College of Computer and Information Science, Northeastern University
konathan@ccs.neu.edu

2 Helsinki Institute for Information Technology HIIT and Department of Computer
Science and Engineering, School of Science, Aalto University

hernan.poncedeleon@aalto.fi
3 LSV (École Normale Supérieure de Cachan & CNRS), France

schwoon@lsv.ens-cachan.fr

Abstract. This paper deals with the test-case generation problem for
concurrent systems that are specified by true-concurrency models such as
Petri nets. We show that using true-concurrency models reduces both the
size and the number of test cases needed for achieving certain coverage
criteria. We present a test-case generation algorithm based on Petri net
unfoldings and a SAT encoding for solving controllability problems in
test cases. Finally, we evaluate our algorithm against traditional test-
case generation methods under interleaving semantics.

1 Introduction

The aim of testing is to execute a system under test (SUT) on a set of input data
that was selected with the aim of finding discrepancies between the actual be-
havior of the SUT and its intended behavior as described by some specification.
Model-based testing additionally requires a behavioral description of the SUT.
One of the most popular formalisms studied in model-based testing is that of
input-output labeled transition systems (IOLTS) where the correctness (or con-
formance) relation that the SUT must verify w.r.t. its specification is formalized
by the ioco relation [1]. This relation has become a standard, and it is used as
a basis in several testing theories for extended state-based models [2–5].

Model-based testing then consists of three steps: (1) exploring the specifica-
tion to obtain a representation of relevant behaviours to test; (2) generating a
suite of test cases from the mentioned representation; and (3) applying the tests
to the SUT. This paper mainly deals with step (2) in the context of concurrent
systems.

In the ioco theory, step (1) generates a complete test graph G describing the
inputs the tester may propose and the outputs the system may produce, up to a
depth that fulfills a given test purpose. Consider the example graph in Fig. 1 (a).

? This research was done while the authors were part of LSV, supported by an INRIA
internship and the TECSTES project.

It specifies that every tester should begin with input i1, to which the system
ought to respond by o1. After this, there are two choices: the tester proposes
either input i2 or input i3, to which the system should react accordingly. If the
system shows an unexpected output or no output at all, it is deemed to be
non-conformant.

?i1

!o1

?i2 ?i3

!o2 !o3

(a)

?i1

!o1

?i2

!o2

?i1

!o1

?i3

!o3

(b)

?i1 ?i2

?i2!o1 ?i1 !o2

?i2

!o1 !o2

?i1

!o2 !o1

(c)

Fig. 1. Example of (a) a complete test graph; (b) the resulting test cases; (c) test graph
for interleaving semantics of concurrent system.

A test case is a subgraph of G that tells the tester which inputs to choose
and which outputs to expect at which point during the test. For instance, no
node may have two outgoing edges labelled by inputs. The suite of test cases
corresponding to G is obtained during step (2), e.g., by using a backtracking
strategy [6]. Fig. 1 (b) shows the two test cases resulting from the graph in (a).

Model-based testing of concurrent systems has been studied in the past [7–9],
but mostly in the context of interleaving semantics which suffers from state-space
explosion. For instance, consider a system with two independent components
C1, C2, where input ik in Ck should produce output ok, for k = 1, 2. Applying
ioco-conformance methods to the interleaving semantics of this system produces
the test graph in Fig. 1 (c), which in turn produces four different test cases (see
Example 4).

To avoid this problem, concurrent systems can be modelled by Petri nets,
whose partial-order (or true-concurrency) semantics is given by its unfolding [10].
Some of the methods originally developed for Finite State Machines [11] have
been adapted to k-bounded and safe Petri nets [12, 13] while test-case gener-
ation for concurrent systems based on unfoldings has been studied in [14–16].
In particular, [16] proposed a suitable extension of ioco for testing concurrent
systems, called co-ioco. In the latter, the test graph G is replaced by an event
structure E characterizing the causal relations between inputs and outputs, and
a concurrent (or global) test case becomes a prefix of E (with suitable proper-
ties). For instance, the example with two components C1, C2 leads to just one

test case, where each component receives one input and produces one output.
An abstract algorithm for obtaining the suite of test cases from E is proposed
in [16], but it is not efficient since it enumerates linearizations of E . Moreover,
in some cases it can produce the same test case several times. Also, an actual
implementation of these concepts was lacking so far.

In [14] and [23] finite event structures are constructed from the specification
of the system and projected into the distributed components of the system;
if the projection still contains concurrency, interleaving semantics are applied.
Each path of the event structure represents a test case, but they do not give an
explicit algorithm to compute them and argue that optimization techniques to
minimize the number of test cases is out of the scope of the paper.

More recently, unfolding techniques have been applied to test multithreaded
programs [24]; their setting is different to ours since they consider a white box
implementation and construct an unfolding representing the flow of the program.
The constructed unfolding represents symbolic executions to avoid the explosion
causes by different inputs and a SMT solver is used to generate concrete test
cases.

Contributions: test-case generation based on co-ioco thus consists of two
tasks: (i) generating a suitable prefix of E , and (ii) extracting test cases from it.
In this paper we make the following contributions:

– As for task (i), we provide a concrete implementation for generating the
above-mentioned event structure E for certain coverage criteria, as an exten-
sion of the tool Mole [17].

– As for task (ii), we propose an improved algorithm for obtaining a test suite
from E based on SAT-solving. The new algorithm is more efficient than [16]
and does not produce the same test case several times.

– In practice, a system not only consists of inputs and outputs but also of silent
transitions not observable by the tester. Näıvely adding silent events to the
event structure would lead to huge test cases. We show how the test-case
generation can handle silent transitions gracefully.

– Moreover, we implemented the above-mentioned components for test-case
generation in a prototype tool called Tours and report on experiments.
Our experiments show that keeping concurrency explicitly in the test cases
not only reduces their size by avoiding interleavings, but it also reduces the
number of test executions to assure a certain coverage of the system.

The paper is organised as follows: Section 2 recalls background on Petri
nets, unfoldings, and test cases; Section 3 presents our theoretical contributions
towards test-case generation for co-ioco; Section 4 discusses our implementation
and experiments; we conclude in Section 6.

2 Preliminaries

This section recalls previously known concepts used throughout the paper, such
as Petri nets, event structures, and testing-related concepts. Since this paper

focuses on test-case generation from a given event structure, we focus on event
structures and present the other issues more concisely. A more detailed exposi-
tion of these subjects can be found in [16].

2.1 Petri Nets and Event Structures

We deal with concurrent, reactive systems modelled as Petri nets, where we
differentiate between actions proposed by the tester (inputs), actions produced
by the system (outputs) and internal (silent) actions. We assume familiarity of
the reader with Petri nets and merely recall some basic facts.

A Petri net consists of two disjoint finite sets P and T representing places
and transitions connected by flow arcs. A marking is a distribution of tokens
over places. In what follows, we deal with 1-safe nets where no reachable marking
places more than one token into the same place; such Petri nets can in particular
represent a collection of finite automata synchronizing on common actions. Thus,
we represent a marking as the set of marked places. Transitions are labeled by
a mapping λ : T → In]Out] {τ} over input, output and silent actions. In the
following, elements of In are prefixed by ‘?’ and elements of Out by ‘!’.

p1 p2

p3 p4

p5

t1 ?call1 t2?call2

t3

!open at1

t4

!open at2

e λ(e) ϕ(e)

e1 ?call1 t1
e2 ?call2 t2
e3 !open at2 t4
e4 !open at1 t3
e5 ?call2 t2
e6 ?call1 t1
e7 !open at2 t4
e8 !open at1 t3
e9 !open at1 t3
e10 !open at2 t4
e11 !open at1 t3
e12 !open at2 t4
e13 !open at1 t3
e14 !open at2 t4

e1 e2

e3 e4

e5 e6

e7 e8 e9 e10

e11 e12 e13 e14

Fig. 2. A Petri net and its unfolding.

Example 1 (Petri nets). Fig. 2 (left) shows a Petri net representing an elevator
serving two floors. Places are shown as circles, transitions as boxes whose shading
indicates the type of their label: inputs are shown in white, outputs in grey, and
silent actions in light grey (see Fig. 5). From the initial marking {p1, p2, p5}, the
elevator can be called concurrently at both floors (transitions t1 and t2); both
calls can be served sequentially (t3 or t4), i.e. the elevator cannot open its door
at both floors at the same time. This is because both transitions compete for
the token at place p5.

It is well-known (see, e.g., [10]) that a Petri net can be unfolded into an
acyclic, potentially infinite structure that represents the partial-order semantics
of the net with its possible branching behaviours. Such an unfolding directly
corresponds to an event structure [18] :

Definition 1. An event structure is a tuple E = (E,≤,#, λ) where: (i) E is
a set of events; (ii) ≤ ⊆ E × E is a partial order (called causality) s.t. ∀e ∈
E : |〈e〉| < ∞, where 〈e〉 = {e′ ∈ E | e′ < e}; (iii) # ⊆ E × E is an irreflexive
symmetric relation (called conflict) satisfying the property of conflict heredity,
i.e. ∀e, e′, e′′ ∈ E : e # e′ ∧ e′ ≤ e′′ ⇒ e # e′′; (iv) the mapping λ : E →
In] Out] {τ} labels events.

Causality represents dependence and conflict the inability of two actions to
occur together. Conflicts that are not hereditary are called immediate; we write
e1 #i e2 iff for any pair (e′1, e

′
2) with e′1 ≤ e1, e′2 ≤ e2, e′1 # e′2 implies e′1 = e1

and e′2 = e2. Likewise, we consider the immediate causality relation ≤i, where
e ≤i f iff e ≤ f and e ≤ g ≤ f implies e = g or g = f . In figures, events are
represented by squares, immediate causality by arrows and immediate conflict
by dashed lines. The sets of inputs, outputs and internal events are denoted
respectively by EIn , {e ∈ E | λ(e) ∈ In}, EOut , {e ∈ E | λ(e) ∈ Out} and
Eτ , {e ∈ E | λ(e) = τ}. Events that are neither related by causality nor by
conflict are called concurrent, i.e. e co e′ ⇔ ¬(e ≤ e′) ∧ ¬(e # e′) ∧ ¬(e′ < e).

An event structure derived from the unfolding of a Petri net is equipped
with a function ϕ : E → T that maps events back to the net, i.e. event e is an
occurrence of transition t iff ϕ(e) = t.

Example 2 (Unfoldings). Fig. 2 (right) shows an initial part of the unfolding of
the net on the left, where the labeling is given as a table. Events represent dif-
ferent instances of the transitions, indicated by ϕ(e) in the table. The unfolding
shows that both calls can be made concurrently, i.e. e1 co e2 with λ(e1) =?call1
and λ(e2) =?call2, but they are served sequentially, for example e3 ≤ e8 with
λ(e3) =!open at2 and λ(e8) =!open at1.

In an event structure, the “state” of the system is represented by the events
that have occurred so far. As causality represents precedence, such a computation
must be causally closed. In addition, the computation must be conflict-free.

Definition 2. A configuration of E = (E,≤,#, λ) is a set C ⊆ E such that: (i)
C is causally closed, i.e. e ∈ C implies 〈e〉 ⊆ C; and (ii) C is conflict-free, i.e.
e ∈ C and e # e′ imply e′ 6∈ C. The set of configurations of E is denoted C(E).

For instance, C1 = {e1, e2, e3} is a configuration, but {e1, e2, e3, e4} is not as
e3 conflicts with e4. W.r.t. the original Petri net, a finite configuration represents
the set of transitions that fire in some finite execution. Let Mark(C) denote the
marking that arises from such a firing sequence, e.g. Mark(C1) = {p2, p3, p5}.

If E does not contain any events labelled by τ , we call E deterministic when its
configurations can be uniquely determined from its action labels, i.e. if C ∈ C(E)
and C] {e1}, C] {e2} ∈ C(E), then λ(e1) = λ(e2) implies e1 = e2. We extend

this to the case where E does include τ -labelled events: in that case, E is called
deterministic if for all C,C1, C2 ∈ C(E) with C1, C2 ⊇ C, if e1 resp. e2 are the
only non-τ -labelled events in C1 \ C resp. C2 \ C, then λ(e1) = λ(e2) implies
e1 = e2.

2.2 Event Structures and Coverage Criteria

In general, the unfolding of a Petri net is infinite if the net contains a cycle
of reachable markings. However, for many purposes, it suffices to study only a
finite initial portion (a prefix) of the unfolding. With respect to testing, we are
interested in finding a prefix that covers all behaviours relevant for a certain
coverage criterion or test purpose. This relation was explored in [19], which
proposes different criteria for truncating an unfolding w.r.t. certain coverage
criteria. While the topic of coverage is somewhat orthogonal to the subject of
this paper, we recall some well-known criteria:

– all-states coverage, i.e. every state (marking) of the specification must be
covered at least once;

– all-transition coverage, i.e. every transition must be covered;
– all-loops coverage, i.e. every cycle is explored at least once.

We mention that the first two of these criteria correspond to the concept of
complete prefixes known from the unfolding literature [10].

Definition 3. A prefix E of the unfolding of a Petri net N is complete if for
every reachable marking M of N there exists a configuration C ∈ C(E) such that:
(1) Mark(C) = M (i.e. M is represented in E), and (2) for every transition t
enabled in M there exists C] {e} ∈ C(E) such that ϕ(e) = t.

A prefix satisfying (1) but not necessarily (2) is also called marking-complete.
For instance, the unfolding prefix in Fig. 2 (right) is complete; a prefix containing
only events e1 and e2 would be marking-complete.

A marking-complete prefix assures all-states coverage, while a complete prefix
additionally assures all-transitions coverage. A truncation method for all-loops
coverage was developed in [19].

2.3 Test Cases

A test case is a specification of the tester’s behavior during an experiment carried
out on the system under test. A test suite is a set of test cases. During the exper-
iment, the tester serves as an “environment” of the implementation. The tester
controls the input actions and observes the output actions but does not control
the latter. While the inputs made by the tester may depend on the previously
observed outputs, the next input should always be uniquely determined, i.e. the
tester must not have a choice between different inputs. Similarly, test cases do
not contain choices between outputs and inputs, otherwise the implementation
may produce an output without allowing the tester to propose the input. This

e1?i1

e2!o1

e4 !o2e3!o2

e5 !o3

T1 e1?i1

e2!o1

e4 ?i3e3?i2

e5 !o2

T2 e1?i1

e2!o1

e4 !o3e3!o2

e5 ?i2

T3

Fig. 3. Event structures as global test cases.

property is called controllability [20]. These requirements also imply that the
test case is required to be deterministic. Finally, we require the experiment to
terminate, therefore the test case should be finite.

In the ioco theory, test cases are modeled by labeled transition systems with
some structural assumptions [6]: (i) they have an acyclic and finite structure;
(ii) they are deterministic; (iii) they contain only observable actions; (iv) there
are no choices concerning inputs; and (v) they are output-complete (in every
state of the test case where an output is enabled, the test case must handle all
the possible outputs). We refer to such objects as sequential test cases.

For the co-ioco theory, designed to handle concurrent and distributed sys-
tems, [19] proposed a different type of test case, called global test case. Here,
the tester has control over all components in the system and can observe them
all. A global test case is represented by a finite, deterministic event structure;
thus, inputs and outputs in different components may happen in parallel. In ad-
dition, immediate conflict between an input and any other event is forbidden. In
contrast to ioco, we shall also allow for silent events in the specification, since
this facilitates the work of the system designer. However, these silent events
are irrelevant for conducting a test and are not permitted in global test cases;
see also Section 3.2. Finally, since the test execution is not modeled by parallel
composition1 as in the case of ioco, we drop the output-complete assumption.

It is worth to notice that in practice, such global test cases are not meant to
be actually executed globally. They would rather be projected onto the different
processes of the distributed system to be executed locally; such local execution
can be formalized as in the ioco case. However, a naive projection does not
preserve information about concurrency; in order to make the observation of
concurrency possible, further machinery is needed. An approach based on vector
clocks has been proposed in [21].

Definition 4. A global test case is a finite, deterministic event structure T =
(E,≤,#, λ) such that (i) all events are labelled by inputs or outputs, and (ii)
(EIn × E) ∩ #i= ∅.

Example 3 (Global test cases). Fig. 3 presents three event structures. T1 is nonde-
terministic: from {e1, e2} it is possible to perform !o2 and reach both {e1, e2, e3}
1 See [19] for details of the test execution in the concurrent setting.

or {e1, e2, e4}; T2 has immediate conflict between actions ?i2 and ?i3. Thus nei-
ther T1 nor T2 is a global test case. However T3 is finite, deterministic, and
without inputs in immediate conflict, i.e. it is a global test case.

In a global test case, events are allowed to happen in parallel. With respect
to sequential test cases, this has two advantages: both the size and the number
of test cases can be exponentially smaller than when concurrency is represented
by interleavings. First, suppose that several outputs can happen concurrently.
Then, a sequential test case must consider all their orderings, meaning that its
size can be exponentially larger than the size of the corresponding global test
case. Secondly, suppose that several inputs can happen concurrently. In ioco
theory, concurrency between inputs is interpreted as a nondeterministic choice
between the possible interleavings, a choice that needs to be solved to avoid
uncontrollability. Thus, an ioco-based test suite may require an exponentially
larger number of test cases than in co-ioco to cover the same specification.

Example 4 (Global vs. sequential test cases). Consider a process calculus nota-
tion where “‖” is parallel composition, “;” sequentialization and “+” choices.
For a specification (i1; o1 ‖ i2; o2) (which is deterministic and has no choices),
the test suite T S1 = {i1; o1 ‖ i2; o2} contains one single test case to cover all
the behaviors. By contrast, if interleaving semantics is used, then the test suite
T S2 obtained by the ioco algorithms contains four sequential test cases:

T S2 =

?i1; !o1; ?i2; !o2
?i2; !o2; ?i1; !o1

?i1; ?i2; (!o1; !o2+!o2; !o1)
?i2; ?i1; (!o1; !o2+!o2; !o1)

3 Constructing Global Test Cases

In this section, we present a new methodology of generating test cases for
co-ioco-conformance that offers two advantages over the methods previously
presented in [16]: (i) it is more efficient in practice (it avoids enumerating lin-
earizations of the causality relation); and (ii) it avoids generating the same test
case several times.

We recall that model-based testing consists of several steps: in the first step,
one obtains a representation of the behaviours that are relevant w.r.t. a given cov-
erage criterion. In the case of co-ioco, this representation is an event structure
E , more precisely an unfolding prefix of the Petri net representing the specifica-
tion. In a second step, which is the subject of this section, one uses E to obtain
a suite of test cases. Since the choice of a coverage criterion is orthogonal to our
subject, we henceforth assume that E is given. Our task then is to extract all
global test cases from E . We make the technical assumption that E is determin-
istic; note that analogous assumptions about the complete test graph are made
in ioco settings.

A first algorithm for this purpose was presented in [16]. The algorithm takes
as an input a linearization L of the causality relation and adds events to the

e2

?from4-to2

e1?from4-to1 e3 ?from4-to3

e4!open4
e5

!open4

e6 !open4

L1 = e1 · e2 · e3 · e4 · e5 · e6
L2 = e1 · e3 · e2 · e4 · e5 · e6
L3 = e2 · e1 · e3 · e4 · e5 · e6
L4 = e2 · e3 · e1 · e4 · e5 · e6
L5 = e3 · e1 · e2 · e4 · e5 · e6
L6 = e3 · e2 · e1 · e4 · e5 · e6

Fig. 4. A first approach for test case generation.

test case following the order of L whenever they do not introduce controllability
problems. To obtain different test cases, the algorithm needs to be run with
different linearizations. Even if using these linearizations seems to reduce the
advantages of using true concurrency models, this method is only exponential
on the number of immediate conflicts between inputs, which is usually very small
compared with the number of all possible interleavings. However this method still
has a drawback: it generates several times the same test case whenever several
inputs are pairwise in immediate conflict.

Example 5 (A first approach for test case generation). Consider the event struc-
ture of Fig. 4 which represents the controller of an elevator in the 4th floor. When
calling the elevator, the user indicates which floor he wants to reach. Whatever
his choice, eventually the elevator arrives at the 4th floor and opens its door.
According to [16], linearizations L1 - L6 are needed to construct a test suite cov-
ering the specification. If events are added one by one to the test case following
these linearizations whenever they do not introduce controllability problems, L1

and L2 construct the same test case since once e1 is added, neither e2 nor e3
(nor their futures) are added. This problem comes from the fact that the conflict
relation consider pairs of events, but once an event is selected, the order of every
other event which is in immediate conflict with it becomes irrelevant.

3.1 Encoding Test Cases by SAT

In order to solve controllability problems and avoid constructing the same test
case several times as mentioned in Example 5, we propose a new, non-redundant
characterization of global test cases. This characterization can be encoded in
propositional logic, hence we will be able to employ a SAT solver to obtain the
global test cases. Given a finite event structure, we use a SAT variable ϕe for
each event e and construct a formula whose satisfying assignments correspond
to global test cases. A solution assigning 1 to variable ϕe means that event e
belongs to the test case, while assignment 0 means that it does not.

As test cases need to preserve causality from the specification, whenever the
condition of an event is true, the conditions of its immediate causal predecessors

(and, by transitivity, all indirect precedessors) should also be true:

∀e, f ∈ E :
∧
f≤ie

ϕe ⇒ ϕf (1)

In addition, for each pair of immediate conflicts involving an input, at most
one of them belongs to the test case (remember that immediate conflict between
outputs is accepted). This is encoded as:

∀e ∈ E, f ∈ EIn :
∧
f#ie

¬ϕe ∨ ¬ϕf (2)

We intend the test suite to cover the whole prefix, therefore the test cases
should be maximal in the sense that adding any event should violate (1) or (2).
An event of the prefix does not belong to the test case only if (i) neither does one
of its immediate predecessors, or (ii) it is in immediate conflict with an input of
the test case. We encoded this by the SAT formula

∀e, f ∈ E, g ∈ EIn : ¬ϕe ⇒
(∨
f≤ie

¬ϕf ∨
∨
g#ie

ϕg

)
(3)

Global test cases are encoded by the conjunction of (1), (2) and (3).

Example 6 (Avoiding redundancy by the SAT encoding). Consider the event
structure of Fig. 4. The SAT formula of this event structure is

AMO(ϕe1 , ϕe2 , ϕe3)∧(ϕe1∨ϕe2∨ϕe3)∧(ϕe1 ⇔ ϕe4)∧(ϕe2 ⇔ ϕe5)∧(ϕe3 ⇔ ϕe6)

where AMO(x1, . . . , xn) is satisfied iff at most one of x1, . . . , xn is satisfied. The
formula has three solutions representing the test cases e1; e4, e2; e5 and e3; e6
which cover the whole specification and avoid the redundancy seen in Example 5.

3.2 Removing Silent Events

It is natural for a system specification to include silent events, e.g. to express
that two components in the system synchronize without producing an output
observable by the tester. In this case, such a silent event also forms part of E ,
and the test cases identified by the formula in Section 3.1 are not yet guaranteed
to satisfy condition (i) of Definition 4. In this section we show how to remove
internal events from E while preserving the causality and conflict relations for
the remaining events.

The data structure that we use to represent an event structure does not
keep explicit information of the whole causality and conflict relation, but only
information about the immediate relations. We associate each event e with the
following sets: Pe and Se consisting of the immediate predecessors and successors
of e respectively, and Ce consisting of events e′ such that e #i e′. Algorithm 1
updates the sets Pe and Se so that the causality relation between the remain-
ing events is preserved (lines 2–5). Also, it propagates the immediate conflict

Algorithm 1 Removal of Silent Events

1: for each e in Eτ do
2: for each p in Pe do
3: Sp := Sp ∪ Se \ {e}
4: for each s in Se do
5: Ps := Ps ∪ Pe \ {e}
6: for each c in Ce do
7: if NotInConflict(s, c) then
8: Cs := Cs ∪ {c}; Cc := Cc ∪ {s}
9: for each c in Ce do

10: Cc := Cc \ {e}
11: E := E \ {e}

relation of the silent event to all its immediate successors (line 8). Function
NotInConflict is responsible for checking whether two events are already in
(not necessarily immediate) conflict.

The non-immediate causality and conflict relations are not stored per se but
are computed from the sets Se, Pe and Ce. For any pair of events ei, ej ∈ E,
the relation ei ≤ ej can be computed starting from Si and recursively traversing
its successors until ej is found, meaning that there is a path from ei to ej with
arcs in

⋃
{Sk | ei ≤ ek }. The relation ei # ej can be computed by checking

that there exist events ek ∈ Cl and el ∈ Ck, i.e. ek #i el, such that ek ≤ ei
and el ≤ ej . We show that both relations are preserved after removing the silent
events of E .

Proposition 1 Let E be an event structure and E ′ be the resulting event struc-
ture after applying Algorithm 1. For every pair of observable events ei, ej, we
have ei ≤E ej iff ei ≤E′ ej.

Proof. Suppose ei ≤E ej , then there exists a path from ei to ej in E . Suppose
that Algorithm 1 removes an event e in the path. Since line 3 sets Sp := Sp ∪
Se \ {e}, the path still exists after removing e: any event reachable from e can
be reached from p now. This invariant holds after removing every internal event
and therefore the result holds. The counterpart is immediate since causalities
are not added, only some immediate ones are removed. ut

Proposition 2 Let E be an event structure and E ′ be the resulting event struc-
ture after applying Algorithm 1. For every pair of observable events ei, ej, we
have ei #E ej iff ei #E′ ej.

Proof. Whenever an immediate conflict e #i e′ is removed (while removing
event e), for every successor s of e, either s and e′ are already in conflict (this is
checked by NotInConflict), or the new direct conflict s #i e′ is added (line
8). Since conflict is inherited w.r.t causality, all the conflicts remain represented.
The counterpart is immediate since immediate conflicts are only added whenever
the events were not already in conflict. ut

e1 e2

e4 e3

e6 e5

e8 e7

e11

e9

e10
e15

.

e1 e2

e4

e6

e5

e8

e7

e11

e9

e10
e15

. . .

. . .

. . .

e1 e2

e7e11

.

Fig. 5. Removing silent events.

Algorithm 1 does not take in account whether two events are already causally
related when it updates Se and Pe (lines 2–5), potentially leading to redundant
(non immediate) relations getting stored. Such redundant relations can be elim-
inated: we temporarily remove ei and ej from Pj and Si respectively. If ej is still
reachable from ei, then the information was redundant and can be permanently
removed.

Example 7 (Removing Silent Events). Fig. 5 shows how Algorithm 1 works: the
structure in the middle is obtained by removing event e3 from the original prefix
while the final result of the algorithm is shown on the right. In the original event
structure (left) we have S1 = P5 = C4 = {e3} and P3 = {e1}, S3 = {e5}, C3 =
{e4}. The structure in the middle is obtained as follows: line 3 updates S1 to
{e5} and line 5 sets P5 = {e1}; since e5 and e4 are not in conflict yet, line 8 adds
e4 to C5 and e5 to C4; finally e3 is removed from C4 (line 10).

Consider that some events are removed from the prefix in the middle in the
following order: e3, e5, e10, e9. Whenever e5 is removed, its immediate conflict
with e4 is propagated to both e7 and e9, however, when e9 is eliminated, the
conflict does not need to be propagated since e4 and e15 are already in (non-
immediate) conflict: we have e4 #i e7 and e7 ≤ e15. Such situations are handled
by the NotInConflict function.

4 Experiments

We implemented a prototype tool called Tours (Testing On Unfolded Reactive
Systems) for co-ioco-based test-case generation. Tours is based on the Mole
unfolding tool [17] with the following main additions:

– variable cut-off criteria, including all-loops coverage by the criterion of [19];
– implementation of the algorithms presented in Section 3;
– computation of the immediate conflict and immediate predecessor relation.

Tours computes a first over-approximation of ≤i by inserting all pairs (e, f)
such that f consumes a token produced by e. Redundant pairs are then elimi-
nated in the same way as in Section 3.2. The immediate-conflict relation #i is
obtained by considering all event pairs (e, f) that compete directly for a token,
and testing whether there exists a configuration that can be extended with e
and with f , but not with both. The latter is a simple variant of a subroutine
frequently used by Mole. Tours is publicly available under

http://www.lsv.ens-cachan.fr/~ponce/tours

The rest of this section presents experimental results based on two families of
examples: a parametric version of the elevator, where we also consider internal
behaviors, and an example (called Diamonds) showing how our approach deals
with immediate conflict between inputs.

4.1 The Examples

The Elevator Example: we extend the elevator example of Section 2 for several
floors and elevators, and we also model its internal behavior. The example is
modeled as a network of automata synchronizing on shared actions which can
be equivalently captured by a Petri net; we obtain a finite prefix of its unfolding
and construct test cases with the SAT encoding using the Tours prototype.

The system consists of the following components, represented by the au-
tomata of Fig. 6 for two floors and one elevator:

Floors: each floor consists of a button that can be pressed to call an elevator.
The floor is in an idle state where the elevator can be called (?calli), and af-
terwards sends the call to the controllers of every elevator ej (ej-takes-calli)
followed by a synchronization action that the door of elevator ej has been
opened at that floor (ej-opened-at-fi), returning to the idle state. Once the
elevator is called, it cannot be called again until it returns to the idle state
since the ?calli actions are not enabled in the remaining states.

Controllers of elevators: the controller of each elevator ej starts at an idle
state and can take a call from any floor fi. From there the controller can
either move the elevator to the corresponding floor (ej-go-to-fi) or acknowl-
edge that the elevator is already at that floor (ej-at-fi).

Elevators: each elevator starts at some floor, i.e. state ati. From this state
it can tell its controller that it is already on the floor, or it can move to
another floor. When the elevator is at floor fi, it opens the door (!openj-i)
and acknowledges this action to the corresponding floor.

This system is given as an input to the unfolding algorithm (using the all-
loops criterion). Tours returns a prefix whose observable behavior (after re-
moval of silent actions) is shown in Fig. 2 (right). This prefix contains no imme-
diate conflict between inputs, therefore the SAT encoding has a unique solution:
the entire prefix. Thus, our method generates exactly one test case in this ex-
ample.

http://www.lsv.ens-cachan.fr/~ponce/tours

idle1

called1

waiting1

?call1

e1-takes-call1

e 1
-o
p
en
ed

-a
t-
f 1

floor1

idle2

called2

waiting2

?call2

e1-takes-call2

e
1 -op

en
ed

-a
t-f

2

floor2

idle

e1tc1 e1tc2

e1-takes-call1 e1-takes-call2

e1-go-to-f1 e1-go-to-f2

e1-at-f1 e1-at-f2

controller-elevator1

at1 at2

wait1 wait2

opened1 opened2

e1-go-to-f2

e1-go-to-f1

e1-at-f1 e1-at-f2

!open1-1 !open1-2

e 1
-o
p
en
ed

-a
t-
f 1

e
1 -op

en
ed

-a
t-f

2

elevator1

Fig. 6. Network of automata of the elevator example with one elevator and two floors.

Intuitively, the specification of the elevator is that every call at any floor
ought to be served eventually (i.e., the door opens at that floor) in any correct
implementation; infinite many calls are possible only if infinite many opens hap-
pens since the ?calli actions are not allowed at every state. Consider the test
case of Fig. 2 (right) and the ?call2 action represented by event e2. This call is
followed by an !open2 action in any maximal configuration. Event e3 corresponds
to the scenario where the call is immediately served; e10 reflects the fact that the
elevator can be called concurrently from another floor (?call1) and that that call
can be served first (e4 ≤ e10); e14 shows that two calls from the first floor (e1
and e6) can be served before serving the call from the second floor. The latter
shows that there are no priorities between serving different floors; however all
the calls are eventually served. A similar analysis can be made for the other call
actions.

The example can easily be parametrized to add floors and elevators. If a
new floor fi is added, in addition to adding a new automaton for the floor with
transitions ej-takes-calli for each elevator ej , the existing automata representing
elevators and controllers need to be extended: a new state ejtci is added to the
controller of every elevator ej with transitions

idle
ej-takes-calli−−−−−−−−−→ ejtci ejtci

ej-go-to-fi−−−−−−−→ ejtci ejtci
ej-at-fi−−−−−→ idle

Furthermore, the states ati, waiti and openedi are added to the elevator ej
with transitions

ati
ej-at-fi−−−−−→ waiti waiti

!openj-i−−−−−→ openedi openedi
ej-opened-at-fi−−−−−−−−−−→ ati

?i1 ?in. . .

Inputs

!o1 !o2

. . .

?i′1 ?i′n. . .

!o′1 !o′2

. . .

L
ev
el
s

Comp
. . .

Fig. 7. The diamonds example.

and for each floor k < i all the possible movements between them and the new
floor are added, i.e.

atk
ej-go-to-fi−−−−−−−→ ati ati

ej-go-to-fk−−−−−−−→ atk

If a new elevator is added, two automata (representing the elevator itself and
its controller) are added, and for every floor fi we add the possibility that the
new elevator ej serves its call, i.e. we add transitions

calledi
ej-takes-calli−−−−−−−−−→ waitingi

The Diamonds Example: We present another example (see Fig. 7) that possesses
several global test cases. The example consists on several components where
the user has a number of choices (inputs), after which the system can produce
several outputs. This behavior can be repeated several times depending on the
levels of the components. We run the experiments using different parameters
for the components, the inputs and the levels as shown in Table 2.

4.2 The Experimental Setup

In order to make a fair comparison of the algorithms presented in this article
and the algorithms of the ioco theory, we need to use the same test selection
method. Available tools such as TGV [6] or JtorX [22] use test purposes rather
than a testing criterion. We therefore proceed as follows to compare with ioco:
(i) the Petri net is translated into its reachability graph; (ii) since co-ioco
coincides with ioco in the absence of concurrent events, we apply Tours to the
reachability graph.

In the ioco setting, using the all-loops criterion led to test graphs of large size
even for simple examples, making it impractical to compute all the test cases.
For more meaningful comparisons to be possible, we run the experiments using
the original cut-off criterion of Mole which assures all-transitions and all-states
coverage.

4.3 Results

Tables 1 and 2 report the number of events in the unfolding prefix obtained
by our method, the number of global test cases (event structures), the number
of transitions in an under-approximation2 of the complete test graph and the
number of sequential test cases (labeled transition systems) for the two examples
introduced in the last section. The unfolding tool and the SAT encoding consider
internal events, while the sizes displayed on the prefix and complete test graph
columns only consider observable events.

Floors Elevators Prefix Global Tests Test Graph Sequential Tests

2 1 11 1 95 14

2 2 29 1 3929 7SAT
3 1 43 1 2299 7SAT
3 2 220 1 3911179 7SAT
3 3 1231 1 7unf 7unf
4 1 219 1 7unf 7unf
4 2 1853 1 7unf 7unf
4 3 17033 1 7unf 7unf

Table 1. The elevator example results.

Comp Inputs Levels Prefix Global Tests Test Graph Sequential Tests

2 1 3 19 1 307 98

2 2 3 37 16 613 794

2 3 3 55 49 919 2938

3 1 1 7 1 133 21

3 1 2 13 1 853 125

3 2 2 25 27 1705 13255

Table 2. The diamonds example results.

We can easily observe the exponential explosion in the number of events when
interleavings are used. In addition we see that irrespectively of how many floors
or elevators are added in the elevator example, the obtained global test case is al-
ways unique since the example does not introduce conflict between input events.
In contrast, the number of sequential test cases increases in the interleaving
setting since concurrency is transformed into conflict. The diamonds example
introduces conflicts between inputs generating several global test cases, however
the number of tests can still be exponentially smaller than in the sequential case.

The 7unf symbol indicates that the unfolding tool was not able to obtain
a finite prefix (complete test graph), while the 7SAT symbol indicates that the

2 This graph is not output-complete.

SAT solver was not able to find solutions (for more than 3 floors and 2 elevators,
we were not able to run the SAT solver with interleaving semantics since the
unfolding had not finished).

The unfolding of the Petri net for 3 floors - 2 elevators example using in-
terleaving semantics (when internal actions are considered) contains 15353982
events, showing that the unfolding tool can handle very big examples. Since
causality is transitive and conflict is inherited w.r.t causal dependence, the SAT
encoding can be improved by just considering observable events. However im-
mediate causality and immediate conflict between only observable events need
to be computed as explained in Section 3.2 increasing again the computational
time of the method. We are currently working on the implementation to achieve
a better performance by just considering observable events.

5 Conclusion

This paper shows the advantages of using true-concurrency models to describe
the behavior of test cases in concurrent systems. We have shown how to split a
finite prefix of the specification’s unfolding into a test suite even in the presence
of internal actions. Finally, the results of this article have been implemented in
the prototype tool Tours and run on several examples showing the advantages
of our method compared with traditional ioco test-case generation algorithms.

The obtained global test cases are not meant to be actually executed, they
would rather be projected onto the different processes of the distributed system
to be executed locally. In order to make the observation of concurrency possible,
further machinery is needed [21]. We will study the concretization of the gener-
ated abstract test cases into inputs that can be given to the actual system under
test to allow the automatic execution of test cases and thus completely automate
the testing procedure. A possible approach is to consider labeling actions as a
symbolic representation of the input and output domain and apply SMT for the
concretization.

Future work also includes a tighter integration of the test-case generation
part of Tours with the unfolding component to improve its performance.

References

1. Tretmans, J.: Model based testing with labelled transition systems. In: Formal
Methods and Testing. Volume 4949 of LNCS. (2008) 1–38

2. Heerink, L., Tretmans, J.: Refusal testing for classes of transition systems with
inputs and outputs. In: Proc. FORTE. IFIP 107 (1997) 23–38

3. Jéron, T.: Symbolic model-based test selection. Electronic Notes in Theoretical
Computer Science 240 (2009) 167–184

4. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal
Methods in System Design 34(3) (2009) 238–304

5. Hierons, R.M., Merayo, M.G., Núñez, M.: Implementation relations for the dis-
tributed test architecture. In: Proc. FATES. Volume 5047 of LNCS. (2008) 200–215

6. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. International Journal
on Software Tools for Technology Transfer 7(4) (2005) 297–315

7. Hennessy, M.: Algebraic theory of processes. MIT Press series in the foundations
of computing. MIT Press (1988)

8. Peleska, J., Siegel, M.: From testing theory to test driver implementation. In:
Formal Methods Europe. Volume 1051 of LNCS. (1996) 538–556

9. Schneider, S.: Concurrent and Real Time Systems: The CSP Approach. 1st edn.
John Wiley & Sons, Inc., New York, NY, USA (1999)

10. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding
algorithm. Formal Methods in System Design 20(3) (2002) 285–310

11. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
A survey. In: Proceedings of the IEEE. Volume 84. (1996) 1090–1123

12. Jourdan, G., von Bochmann, G.: On testing 1-safe petri nets. In: TASE 2009, Third
IEEE International Symposium on Theoretical Aspects of Software Engineering,
29-31 July 2009, Tianjin, China. (2009) 275–281

13. von Bochmann, G., Jourdan, G.: Testing k -safe petri nets. In: Testing of Soft-
ware and Communication Systems, 21st IFIP WG 6.1 International Conference,
TESTCOM 2009 and 9th International Workshop, FATES 2009, Eindhoven, The
Netherlands, November 2-4, 2009. Proceedings. (2009) 33–48

14. Jard, C.: Synthesis of distributed testers from true-concurrency models of reactive
systems. Information & Software Technology 45(12) (2003) 805–814

15. Ulrich, A., König, H.: Specification-based testing of concurrent systems. In: Proc.
FORTE. Volume 107 of IFIP Conference Proceedings. (1997) 7–22

16. Ponce de León, H., Haar, S., Longuet, D.: Model-based testing for concurrent
systems with labeled event structures. STVR 24(7) (2014) 558–590

17. Schwoon, S.: The MOLE unfolding tool. http://www.lsv.ens-cachan.fr/

~schwoon/tools/mole/

18. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part I. Theoretical Computer Science 13 (1981) 85–108

19. Ponce de León, H., Haar, S., Longuet, D.: Unfolding-based test selection for con-
current conformance. In: Proc. ICTSS. Volume 8254 of LNCS. (2013) 98–113

20. Jéron, T., Morel, P.: Test generation derived from model-checking. In: Proc. CAV.
Volume 1633 of LNCS. (1999) 108–121

21. Ponce de León, H., Haar, S., Longuet, D.: Distributed testing of concurrent sys-
tems: vector clocks to the rescue. In: International Colloquium on Theoretical As-
pects of Computing. Volume 8687 of Lecture Notes in Computer Science., Springer
(2014) 369–387

22. Belinfante, A.: JTorX: A tool for on-line model-driven test derivation and execu-
tion. In: Proc. TACAS. Volume 6015 of LNCS. (2010) 266–270

23. Henniger, O.: On test case generation from asynchronously communicating state
machines. In: International Workshop on Testing Communicating Systems. IFIP
Conference Proceedings. Springer (1997) 255–271

24. Kähkönen, K., Saarikivi, O., Heljanko, K.: Using unfoldings in automated testing of
multithreaded programs. In: IEEE/ACM International Conference on Automated
Software Engineering, ASE’12, Essen, Germany, September 3-7, 2012. (2012) 150–
159

http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/
http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/

	Test Case Generation for Concurrent Systems Using Event Structures

