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Abstract

We study the scalable management of XML data
in P2P networks based on distributed hash tables
(DHTs). We identify performance limitations in this
context, and propose an array o ftechniques to lift
them. First, we adapt the DHT platform to the needs
of massive data processing. (This primarily consists
of replacing the DHT store by an efficient native store
and in streaming the communications with the DHT.)
Second, we introduce a distributed hierarchical index
and efficient algorithms taking advantage of this in-
dex to speed up query processing. Third, we present
an innovative, XML-specific flavor of Bloom filters,
to reduce data transfers entailed by query processing.
Our approach is fully implemented in the KadoP DHT-
based XML processing system, used in a real-life soft-
ware manufacturing application. We present exper-
iments that demonstrate the benefits of the proposed
techniques.

Keywords: DHT, XML, P2P, bloom filters, dis-
tributed XML query processing, parallel query pro-
cessing,

1 Introduction

The current development of peer-to-peer (P2P) in-
formation sharing has opened the way for supporting
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high-level data management applications and in par-
ticular structured queries in a P2P setting. The vision
is to enable a host of data management applications
that can be realized today only through centralized and
typically expensive infrastructures. One such exam-
ple is the creation of ad-hoc content sharing commu-
nities, where users share and query information within
some specific domain. Another one is the deployment
of distributed database systems, where the principles
and technology behind P2P enables an organic scaling
to a high level of parallelism.

An issue of particular interest is the P2P manage-
ment of distributed XML data. XML has emerged as
a de-facto standard for data exchange and integration
over the Internet, and is thus well suited to represent
the variety of data that may be shared within a P2P sys-
tem. In this direction, a recent work has proposed the
KadoP platform [5] that relies on the well known tech-
nology of Distributed Hash Tables (DHT) in order to
support complex queries over the shared XML data. In
KadoP, the peers publish XML documents1 and share
the tasks of indexing the data and processing queries.
Following common practice, KadoP indexes the XML
data in the form of postings, where each posting en-
codes information on an element or a keyword. Given
a query, the system combines the postings stored in
the index to locate the peers that can contribute to the
query, and subsequently forwards the query to these
peers where the final results are computed.

A main issue with P2P indexing that could limit the

1They publish also XML schemas, ontologies and Web ser-
vices but, to simplify, these aspects will be mostly ignoredhere.



scalability of such system is the processing of large
sets of postings [33]. This processing is first costly at
the time of index construction, so (i) may delay the
publication of documents. More critically, the transfer
of large sets of postings may be damaging in terms of
(ii) query response time and (iii) data transfer load.
The purpose of this paper is to present techniques that
we have developed to address these three issues. The
techniques are fairly general as they can be applied in
any XML system that follows the same general archi-
tecture as KadoP. Moreover, they are largely orthogo-
nal and this allows for their easy composition.

To improve query processing time, we introduce a
novel optimization technique that speeds-up the ex-
change of large sets of postings, a main cause of poor
query performance. We employ a horizontal partition-
ing scheme, in which a large set of postings is dis-
tributed among different peers based on range condi-
tions. This scheme enables a highly parallel twig join
algorithm that can reduce significantly the total pro-
cessing time. Moreover, it allows the index to filter
partitions that are irrelevant to the query, thereby sav-
ing on data transfers.

To limit data transfers, we also draw inspira-
tion from distributed relational databases and intro-
duce Structural Bloom Filters for distributed structural
XML joins. A Structural Bloom Filter provides a com-
pact representation of a set of postings that is suitable
for filtering the postings of another list. In brief, given
a Structural Bloom Filter on the postings of some term
a, it is possible to check (with a configurable error
probability) whether another posting has a descendant
or an ancestor element in the set of postings ofa.
We detail the mechanism behind Structural Bloom Fil-
ters, and propose a technique, termed Bloom Reducer,
that integrates these filters in the evaluation of index
queries.

The third technique tackles the size of the index
which is a serious concern for efficient query process-
ing. When there are lots ofincludes(which often oc-
curs in real applications), we want to avoid indexing
the same information many times. Towards that goal,
we introduce techniques for indexing what we call “in-
tensional data” that haveincludesas a foremost exam-
ple. Although the size of the index is reduced, the re-
call remains 100%, i.e., no answer is missed. We also
briefly mention techniques that improve performance

by reducing the size of the index at the cost of possibly
missing some answers. This opens new avenues for
performance improvements. However, developments
in that direction are left for future research and the pri-
mary focus of this paper is on answering queries with
full recall.

We present experimental results that demonstrate
that the system scales gracefully to a large volume of
data. We validate the effectiveness of the proposed
techniques on synthetic and real-life data sets. The ex-
perimental study uses an implementation of the tech-
niques in the KadoP system and is one of the first such
studies of a real XML data management system over
a P2P network, as opposed to experiments over simu-
lated networks. (See [29, 21], for another full-fledge
systems with an experimental study). It can therefore
serve as a blueprint for future DHT-based XML man-
agement applications. Although there is an important
overhead in running such experiments, we believe that
there are essential to complement simulation-based
studies. The development of the system proved in-
valuable for highlighting important limitations of the
present DHT technology and served both as a motiva-
tion for the techniques presented here and as a test-bed
for them.

We note that the modified system is currently be-
ing tested in cooperation with the Mandriva company
(originally known as MandrakeSoftware) with a real
application entitled Edos. In Edos [16], the data con-
sists of the Mandriva Linux distribution, i.e., about
10 000 software packages and the associated meta-
data. The metadata for one Mandriva distribution is
more than 100 megabytes of XML data. Of course,
the system has to support simultaneously many (time-
based) versions of the distribution. The peers (when
the application will be deployed) will be Mandriva
Linux developers, so potentially a population in the
hundreds of peers.

The paper is organized as follows. The KadoP sys-
tem [6] is presented in Section 2. Section 3 describes
important techniques for making it scale. Section 4
introduces a technique based on partitioning and dis-
tributing index blocks, which greatly reduces query re-
sponse time. Bloom-based optimization reducing net-
work traffic are described in Section 5. Indexing of in-
tensional data is discussed in Section 6. Related works
are considered in Section 7. Finally, we conclude.



2 The KadoP system

We target applications with a possibly very large
number (millions) of XML documents stored in a large
number (tens of thousands) of peers, where the peer
volatility is not very high. Issues such as popular terms
and locality would have to be tackled for larger vol-
umes. Also, the size of posting sets and the cost of
copying them become serious concerns when peers are
very volatile. We plan to address these issues as part
of our future work. Observe however that, as it is, our
system already meets the needs of a very wide range
of applications.

For clarity, we focus on simple tree pattern queries
that correspond to a subset of XPath. Our algorithms
extend easily to more complex tree pattern queries,
such as those that can be extracted from XQuery
queries [12]. The focus of the paper is on efficient
query processing, so we ignore several aspects of the
KadoP system, such as XML schemas, ontologies, and
Web services.

KadoP processes queries in two phases, that may
be interleaved. First, an index query is computed to
focus on a hopefully small set of documents that (po-
tentially) match the query. Then the query is sent to
the peers holding these documents and the answers are
computed there. This shows the importance of index-
ing in our system. In what follows, we introduce the
data model behind KadoP, and discuss the salient fea-
tures of the indexing scheme and the query processing
framework.

Data and Query Model We assume the existence
of alphabetsuri, peer, doc, label, word, int, that are
all subsets of the alphabetstring. Each peer and each
document is identified on the Web by auri. Each peer
in the system is also internally identified by an integer
and each document by a pair(p, d) of integers, where
p is the identifier of the peer that checked it in, andd
the document identifier within this peer. The database
consists of the documents in the distributed collection
and of the relations:Peer(p, uri) (peerp has uriuri)
andDoc(p, d, uri) (doc (p, d) has uriuri). We note
that KadoP uses other relations, e.g., for XML schema
information, but we omit them to simplify exposition.

A document(p, d) is as a labeled unranked tree,
comprisingelementandtextnodes. (For simplicity, we

do not distinguish between elements and attributes.)
Each element is labeled with a symbol fromlabel and
is uniquely identified by astructural identifier(sid for
short) sid = (start, end, lev). Here, start (resp.
end) is the number assigned to the opening (resp. clos-
ing) tag of the element, when reading the document
and numbering its tags in the order they appear in the
document. The third valuelev denotes the element’s
level in the tree. Observe that(p, d, sid) provides an
element identifier that is globally unique in the col-
lection of documents. Structural ids allow deciding if
elemente1 is an ancestor of elemente2 by verifying if
e1.start < e2.start < e1.end. We note that there ex-
ist other element-labeling schemes that support similar
checks [8, 30]. The one we use is particularly suited
for the techniques presented in Section 5.

We consider the subset of XPath consisting of tree
pattern queries over single documents. A tree-pattern
query is modeled as a tree where: (i) each node is la-
beled with a symbol fromlabel ∪{∗}, and (ii) each
edge is labeled with “/” or “//” to denote the child or
descendant axis respectively. A tree pattern node may
carry a value condition of the formlabel=s or text con-
tains s, wheres is a string. Given a queryq and an
XML documentd in the collection,q matches(p, d)
if there exists a mapping from the nodes inq to ele-
ments in(p, d) that (i) preserves the parent/child and
ancestor/descendent relationships, and (ii) satisfies the
query predicates on labels and values. For a query
q with n nodes, anansweris a tuple (p, d, e1, . . . en)
identifying a document where a match was found, and
the elements in this match. As an example, the answer
for query //*[contains(.,’xml’)]//title will consist of tu-
ples(p, d, e1, e2), wheree2 is a title element ande1 an
ancestor in the same document that contains the key-
word “xml”.

Indexing and Query Processing We index element
labels as well as words in documents. We henceforth
use term to refer to either of the two. The indexing
scheme of KadoP is based on theTerm relation, de-
fined as follows:

Term(p,d,sid,l) l is the label of element(p, d, sid)
Term(p,d,sid,w)w is a word under element(p, d, sid)

The Term relation for each document can be eas-
ily constructed in one traversal of the document. We



henceforth usepostingto refer to a tuple inTerm. Ac-
cordingly, given a terma, we use “posting list” to refer
to the set of postings fora and denote it asLa.

TheTermrelation is distributed among the peers of
the system using adistributed hash table(DHT for
short) [14]. A DHT is a distributed data structure im-
plementing a relation with a key. In brief, the interface
of the DHT includes:

locate(k) returns the id of peer in charge of keyk
put(k,α) enters a new posting fork
get(k) returns the postings fork
delete(k,α) delete a posting fork.

The DHT keeps the network peers connected, and dis-
tributes (quite evenly) the keys between the nodes of
the network, typically using some hash function It also
handles peers joining and leaving the network.

In KadoP, XML documents are stored at their pub-
lishing peer, whereas theTerm relation is stored
in the DHT using terms as keys. Thus,Term is
split horizontally among peers, with peerp in charge
of a portionTermp defined as follows:Termp =
{Term(p′, d, sid, a) | locate(a) = p}. The posting
lists in Termp are assumed to be clustered based on
the term value, and the postings of a term are ordered
in the lexicographic order dictated by the(p, d, sid)
attributes.

Now, a queryq submitted at peerp is processed as
follows. For each terma in q (not a wildcard or a stop
word), p asks the peer in charge ofa for the posting
list La, and subsequently performs a holistic twig join
over all the received lists. For instance, consider again
the query//*[contains(.,’xml’)]//title. The index query
uses theTermrelation to find thesids of all elements
labeledtitle and all parents of text elements containing
the wordxml. Then, a join on thesesid collections
computes thesids of the answers. The peers holding
the corresponding documents are then asked to send
their answers to the query peer.

In this example, the index query iscompletein that
no answer will be missed, andprecisein the sense that,
in the second phase, we only have to contact peers that
contribute to the answer. For other queries, the index
query may be incomplete or imprecise. For instance,
for the query//a//*, the index query cannot rule outsids
of a elements with no descendent. This leads to an im-
precise result, as the index returns a superset of the

documents that contain answers to the query. For now,
note that KadoP index queries are complete and pre-
cise in the absence of stop words and wildcards (*s).

Due to space constraints, several smaller indexing
issues are omitted. For instance, (i) KadoP index-
ing distinguishes between labels and words; (ii) the
Termrelation also contains typing information (i.e, on
the schemas of the documents); and (iii) other rela-
tions are indexed in KadoP, e.g. given a document’s
id (p, d), one can retrieve its actual uri and its type.
The focus here is on (a portion of) theTerm relation
because this is the information that is the most critical
from a query processing viewpoint and also because it
permits describing the main techniques that we intro-
duced in KadoP towards scaling.

Concerning index update, for the moment, a docu-
ment modification is interpreted as deletion followed
by insertion, since the structural indexing of a docu-
ment is not very easily updated. We assume that peers
are not too volatile, which is acceptable for instance
in the case of the Edos distribution. The DHT replica-
tion protects the index entries against some peer fail-
ure. (For that, we had to re-engineer the DHT based
on our BerkeleyDB store for acceptable performance).

3 Scaling KadoP

The KadoP system presented in [6] followed the
general ideas that were presented in the previous sec-
tion. It was implemented over PAST [35], a standard
DHT overlay network. Our first experiments high-
lighted severe scaling limitations, primarily caused by
the processing of long posting lists. Other DHT sys-
tems we are aware of, e.g., [3, 13, 22, 27], raise the
same issues.

Motivated by the aforementioned issues, our goal
is to develop techniques that enable the scalable dis-
tributed indexing of a large volume of XML data.
In this direction, we identify three important met-
rics to assess the performance of a distributed in-
dex: (i) indexing time, (ii) query response time, (iii)
bandwidth consumption(during index query process-
ing since transferring the results to the query peer is
unavoidable). Another interesting metric that we will
mention is thethe time to the first answer.

These metrics formed the criteria in the develop-
ment of the techniques that we present in the following



sections. More concretely, Section 4 introduces a spe-
cialized index data structure and associated query pro-
cessing algorithms aimed at reducing query response
time and the time to the first answer. Section 5 de-
scribes a separate technique whose focus is on re-
ducing the bandwidth consumption, and possibly also
(ii). Finally, Section 6 presents an index organization
scheme that reduces redundancy in the index, and can
primarily improve (i) and (ii).

Before continuing with our presentation, we discuss
some technical improvements we brought to the ba-
sic KadoP system that enhance system performance in
terms of (i) and (ii). In the remainder of the paper,
we will assume the modified system when we refer to
KadoP.

Improving indexing time To index a document, the
system constructs in one traversal the element postings
(Section 2) and routes each posting, using the multi-
hop routing algorithm of the DHT [34], to the peer
in charge of the corresponding term. Postings of the
same term are buffered and sent in batches, which re-
duces slightly the index latency (the time it takes to
index a document) compared to the naive method of
routing each posting separately. More important gains
are obtained by (i) extending the DHT API; and (ii)
replacing its store system.

The originalinsert operation in a local DHT index
is very inefficient. According to the standard DHT
API [14], when a peer in charge of a keyk receives
a put request, it (1) reads the old value fork, (2) ap-
plies a DHT-specific reconciliation of the old value and
the new entry, and (3) inserts the result in the reposi-
tory. This is quadratic in the number of index entries.
To overcome this issue, we extend the DHT API de-
scribed in Section 2 with a new operation, namelyap-
pend(key, entry), to obtain an indexing of linear cost.

Another measure to speedup indexing was the tun-
ing of the DHT’s communication buffers to cope with
many small messages generated by small posting lists.
Another important improvement is the tuning of the in-
dex storage. More concretely, we replace PAST’s local
index storage (based on XMLgziped files) with a B+-
tree storage provided by BerkeleyDB. Thus,Termp

at peerp is organized as a clustered index, using term
as the search key. Furthermore, the postings associ-
ated to a given term are lexicographically ordered by

(p, d, sid).
In our experiments, enhancing the API, buffer tun-

ing and replacing the index storage has sped publish-
ing by two to three orders of magnitude. As a side
effect, improving the index storage has also reduced
index query processing time by one order of magni-
tude.

Improving query response time For each terma in
the queryq to evaluate, the peerp in charge of the
query asks the peer in charge ofa for La. Observe
that the only retrieval operation in the DHT API isget.
This is a blocking operation, i.e. it returns only when
the content of the posting list has been fully retrieved.
Therefore, the holistic twig join must wait until at least
two lists have been entirely received before it can start
processing. This poses serious performance problems
when evaluating index queries, and limits scalability.
We therefore modified the DHT API (and the actual
DHT system) by adding apipelined getmethod, which
transfers posting lists in pipeline. This simple modifi-
cation brought important performance improvements.

KadoP implements a multi-threaded, block-based
version of the holistic twig join from [10]. For each
term a of queryq′, the peerp in charge ofLa runs a
producer, whereas the query peerp runs aconsumer,
which is the holistic join. (We detect faulty peers with
time-outs; in this case, the answer is incomplete.) We
assume that the consumer and the producers can syn-
chronize via network pipes. The consumer runs on in-
memory data-structures and is likely to run faster than
producers, which have to read (potentially large) post-
ing lists from disk and send them over the network.
Since the join in itself is pipelined, the index query is
processed at the speed of the slowest producer.

4 DPP Algorithm

In practical applications, the distribution of post-
ing list sizes is very skewed (a few terms are very
frequent), leading to some very large posting lists.
Managing and transmitting such lists is very costly,
and essentially becomes the dominant cost factor in
processing queries. (As previously explained, index
queries are processed at the speed of the slowest post-
ing list transfer.) In this section, we describe a novel
data structure for managing long posting lists and a



modified holistic twig join algorithm taking advantage
of this structure. Together, they allowparallelizing
posting list transfers, thereby reducing query response
time. As we shall see, this will also result in reduced
data transfers.

4.1 Distributed Posting Partitioning

The distributed posting partitioning (DPP for short)
is a a distributed hierarchical data structure for man-
aging posting lists. The key idea is to split the post-
ing list for a popular term horizontally based on range
conditions, and to migrate portions to other peers. In
this sense, DPP is similar in spirit to distributed B-
trees [24].

Before we describe DPP in more detail, we intro-
duce some necessary definitions. Consider a posting
list La and in particular the lexicographical ordering
dictated by its(p′, d, sid) attributes. AconditionC
is an interval[α, β], with α the least tuple andβ the
largest. In a slight abuse of notation, we useC to re-
fer also to the block of postings that satisfy the corre-
sponding condition. For eachC,C ′, we defineC ⊆ C ′

if each tuple satisfyingC also satisfiesC ′, C ∩ C ′ if
there exists a tuple that satisfies both, andC < C ′ if
each tuple satisfyingC is lexicographically less that
all tuples satisfyingC ′.

We now discuss the precise DPP organization. Let
La be a long posting list that is initially stored in peer
p. In its simplest form, DPP partitions the listLa in
blocksLa,1, . . . , La,n based on conditionsC1, . . . , Cn
such thatCi < Ci+1. Each blockLa,i is assigned
the pseudo-keyoverflow:i:a and is routed to the peer
in charge of that key in the DHT. Thus, the storage
of La is distributed among several peers, andp stores
only the conditionsC1, . . . , Cn and the corresponding
pseudo-keys. (Observe that this information allowsp
to fully reconstructLa.) The key idea is thatLa can
now be transferred in parallel to a query peer, and thus
the total latency is reduced. Moreover, as we discuss
later, the system can use the conditions to avoid joining
blocks that will not generate matches.

This one-level partitioning can be generalized to
multiple levels, which leads to the more general defini-
tion of DPP. In its most general form, DPP is a tree data
structure consisting of internal blocks and leaf blocks.
Each internal block comprises of conditions and corre-
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Figure 1. The organization of Term

sponding “pointers” to other blocks, while a leaf block
comprises of a set of postings. Similar to B-trees, the
entries in one block satisfy all the conditions from the
root of the DPP-tree to that block. Formally, a DPP
block is denoted as(C1...Cn, ϕ), where:

1. C1...Cn is a sequence of conditions such that
Ci < Ci+1 for eachi;

2. ϕ, the (pointer) function over{Ci}, assigns to
each non-leafCi a pseudo-key that leads to the
corresponding DPP-block;

3. if ϕ(Ci) = (C ′
1...C

′
m, ϕ

′), for eachj, C ′
j ⊆ Ci.

A DPP consists of aroot DPP block and of the
whole tree obtained by following theϕ pointers. The
DPP allows distributing a posting list over several
peers, thus the list can be fetched in parallel, reducing
the query response time. Further, the DPP is a search
structure, that is, the conditions attached to blocks al-
low focusing the search only on those blocks (thus
peers) that may contain useful data. This may save
in communication costs.

Let us now consider the implementation of DPP in
KadoP. The implementation uses the general organi-
zation for relationTerm that is pictured in Figure 1.
Originally, the entries of one posting list are all in one
data block. The system sets a bound on the number
of entries in a data block and a bound on the num-
ber of conditions in a condition block. When inserting
tuples, a block may overflow and be split. The small-
est and largest elements of each new block determine
the condition of the block. In principle, the DPP may
need re-balancing, just like a B-tree. In practice, we
found that the conditions are rather small. Thus, as-
suming reasonable block size (e.g., 1000 entries) for



both the data and condition blocks, posting lists of up
to 106 entries require a single level of indirection. So,
to simplify, we did not set a bound on the size of a con-
dition block in KadoP, and implemented a two level
DPP structure. If one block at the second level corre-
sponding to some conditionC overflows, it is split in
two using two conditions,C1 ≤ C2. One of the result-
ing blocks is moved to another peer. The root block
replacesC1 (and its pointer) withC1, C2 (and the cor-
responding pointers).

The DPP is an ordered search structure, thus the
block splits respect data order. Alternatively, one
could distribute a block’s data randomly between sub-
contracting peers. This still allows for parallel trans-
fers, but block conditions do no longer guide the
search, and the lists have to be merged at the receiver.
When tested, this approach brought performance im-
provements a few times smaller than the order-based
DPP. Thus, we do not consider it further.

To conclude this section, we note that, in the ac-
tual system, all documents have an associated (user-
specified or system-inferred) type, and terms appear-
ing in a document are associated to its type. This
type information is also stored in the conditions of the
DPP blocks, which allows the system to filter post-
ing blocks further based on the type constraints of the
query. Thus, the system will avoid transferring post-
ing lists of a term with a given type, if the other query
terms do not match that type.

4.2 Query processing in DPP

We now describe a modification to the holistic twig
join algorithm that can exploit the parallel transfer op-
portunities provided by the DPP.

We first explain the technique for an index queryq′

joining two long posting lists. The DPP splits the first
list into blocks corresponding toC1, ..., Cn and sim-
ilarly for the second list with conditionsC ′

1, ..., C
′
m .

For each pair(i, j), we have to perform the join of the
blocksCi andC ′

j . The idea is to parallelize the join
of blocks(Ci, C

′
j) and that of some other(Ck, C ′

l). In
our system, the maximum degree of parallelismK is
set in advance. When processing a query, the firstK
blocks for each posting are fetched in parallel, e.g.,
C1, ..., CK andC ′

1, ..., C
′
K . The meaningful joins are

computed in parallel and start producing answers. To

shorten the time to the first answer, we relax the con-
straint that results be produced in lexicographical or-
der, and return to the user the first results produced by
each join. When an active block in some posting list
completes, the next block in this list is activated and so
on. Observe that if the conditions do not intersect, the
answer of the join is empty.

Consider now an arbitrary queryq′ with n nodes.
The join algorithm works similarly except that instead
of joining pairs of conditions, we now have to join vec-
tors (C1

i1
, ..., Cnin), one for each node of queryq′. An

issue is whether the algorithm is generating a too large
number of joins. The answer is no, because the post-
ings are lexicographically ordered. Indeed, suppose
we are joiningn postings, consisting respectively of
m1, ...,mn blocks. Then one can prove that we don’t
have to considerm1 × ... × mn (as one might have
expected in the worst case) but at mostm1 + ...+mn

joins. In practice, it is often the case that even much
fewer joins have to be considered.

Note that we only have to fetch blocks that have
a chance to provide matches. For instance, if some
block, sayCk5 does not intersect withC lj, for anyj, we
don’t need to fetch it. The filtering of non-matching
blocks is performed as follows. Consider thei-th post-
ing list with conditionsCi1 ≤ ...,≤ CiK(i). We com-
pute the minimum Id of a document that may satisfy
Ci1, saymini and the maximum Id of a document
that may satisfyCi

K(i), saymaxi. We know that all
answers will be (with some abuse of language) be-
tween min =Max{mini | i ∈ [1.n]} and max =
Min{maxi | i ∈ [1.n]}. We do not have to fetch any
block that does not intersect this interval. Furthermore,
instead of transferring a blockCij that intersects, it suf-
fices to transfer its intersection with[min,max]. Ob-
serve that by approximatingCii∨...∨C

i
K(i) by the doc-

ument interval[mini,maxi], we may let through some
blocks that have no possible match. Since we parti-
tion a posting list in blocks of equal size, the gaps be-
tween consecutive intervals are small on average and
this does not happen often.

To conclude this section, we note that other well-
known distributed query optimization techniques [31]
could clearly apply. For instance, some structural joins
could be pushed to the peer holding the longest posting
list involved in the query, thus reducing data transfers.
Replication is another source of potential optimiza-



tions, as the transfer of a posting list can be optimized
by replicating it and transferring fragments from dif-
ferent copies. DPP blocks can also be replicated to
several peers based on their popularity (i.e. how often
they are accessed) and their position in the DPP (the
root is always accessed, thus it should be replicated
more). The DHT does replicate its index for reliabil-
ity. However, this replication does not fit our needs,
because the replication factor isfixedand has to be set
prior to creating the network. In contrast, we would
need to control the replication degree on a block-by-
block basis.

4.3. Experiments

In this section, we present an experimental study
on the effectiveness of the DPP scheme. The study
uses a deployment of actual KadoP peers on the
Grid5000 platform (www.grid5000.fr), a testbed (9
sites in France) for wide-area distributed applications.
Each Grid5000 node has 2 CPUs, and the nodes are
connected in a 10GB network. As we could not re-
serve a large number of nodes, we deployed 10 KadoP
peers per Grid5000 node. We report on experiments
on up to 500 peers (so 50 Grid5000 nodes). We have
used the Aug. 2006 version of the DBLP bibliographic
data (340 MB, available atdblp.uni-trier.de). To exper-
iment with larger data volumes, we cut the DBLP cor-
pus in small XML documents of 20 KB each, and pub-
lish several copies of the same documents when larger
volumes are needed. When multiple peers publish, the
data set is split evenly among them.

Our implementation of DPP employs a maximum
block size of 4MB before it performs a split. In all
our experiments, we apply the optimizations described
in Section 3, since they brought significant improve-
ments.

We first verified the belief that long postings are
frequent and important in size in standard XML col-
lections. Even for a 200 MB fragment of DBLP data,
there are posting lists larger than 200K entries forin-
proceedings, 1M entries forauthor, and 500K entries
for title, to name a few. Observe that these frequent
tags are typically queried often.

Indexing time. Figure 2 reports the indexing time
for several copies of DBLP. We varied the size of the
KadoP network, and also varied the number of peers
that index data, thepublishers. The horizontal axis
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traces thetotal size of published data (over all peers).
Thanks to our robust replacement of the DHT’s index
store, publication now scales linearly in all settings.
When 1 peer publishes, the network size increase from
200 to 500 peers brings a negligible overhead, demon-
strating thatlocate() costs incurred by the DHT are
small. Also with 1 publisher, the usage of a DPP brings
a negligible overhead when compared with the default
KadoP index. This demonstrates that DPP block split-
ting has a moderate cost. Most importantly, Figure 2
shows that many publishers drastically cut indexing
time, as they work in parallel.

Query response time. Figure 3 reports index-
query evaluation times for the query: //arti-
cle//author//Ullman. The query was chosen to study
the processing of long postings, in this caseauthor



(a stress test for our approach). The results clearly
demonstrate the benefits of the DPP: query processing
is cut by a factor of three, and its growth is really slow
as the data volumes grow. With or without the DPP,
query processing is network-bound. When the DPP is
used, the largest posting list fragment stored on a peer
is of moderate size, thus transfer time does not grow
much as the size of the indexed data grows.

Traffic consumption. In another experiment, we stud-
ied traffic consumption. We run simultaneously many
data intensive queries. More precisely, we run a work-
load of 50 queries, each of which involves at least
one term with a long posting list. In an interval of
5 minutes, the 50 queries are randomly submitted to
execution at 50 distinct nodes, generating a medium
throughput of one query each 6 seconds. We repeat the
test for several values of the total indexed XML data
(DBLP documents). The total traffic registered for
200MB, 400MB, 600MB, and 800MB of XML data
indexed in DHT, is 32MB, 66MB, 95MB, and 127MB
respectively. In conclusion, the traffic was not a prob-
lem for the 10GB network. However, since the traffic
increases linearly with the size of the indexed data, it
necessarily becomes a bottleneck, which motivated the
work on Bloom Filter of the next section. We mention
that these values are registered using a simple query
execution plan, where all postings are transferred at the
peer that executes the query. We are currently devel-
oping a cost model and an optimizer to select the best
execution plan that minimizes query response time or
traffic consumption, depending on the setting.

5 Structural Bloom Filters

We introduce a mechanism, termed Structural
Bloom Filters, for reducing the volume of transferred
data in query evaluation. As the name suggests, our
techniques are inspired by the use of simple Bloom
Filters in the evaluation of distributed relational joins.
The details are more involved, however, as we deal
with structural joins over tree-structured data.

To illustrate the proposed mechanism, assume that
the simple query//a//b is initiated at peerp. Peer
locate(a) computes anAncestor Bloom Filter(AB
Filter for short) of the posting listLa, denoted as
ABF (a), and sends it to Peerlocate(b). Peer
locate(b) filters the posting list ofb based onABF (a),
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and computes a setB′ of b postings that is a superset of
b[\\a], that is, theb postings having ana ancestor. At
this point, Peerlocate(b) can sendB′ to the peer that
submitted the query without compromising the recall
of the result. Depending on the characteristics of the
filter and the data, we expect the size ofABF (a) to be
much smaller than the size of the completea postings
and the size ofB′ to be much smaller than the size of
the completeb postings. Thus, we expect important
savings in data transfer at a moderate cost in terms
of local processing time. As we will see, similarly,
Peerlocate(b) may compute aDescendant Bloom Fil-
ter (DB Filter for short)DBF (b) of b and send it to
Peerlocate(a), so that the latter can select a superset
of a[//b], thea postings that have ab descendant.

In what follows, we describe in detail AB and DB
Filters and introduce strategies that integrate them in
query processing. Before continuing with our pre-
sentation, we discuss briefly two key mechanisms on
which we develop our framework: a canonical base
for representing arbitrary intervals (adyadicbase), and
conventional Bloom Filters.

Dyadic Intervals. Let l be a positive integer and con-
sider the interval[1, 2l]. The dyadic decomposition of
[1, 2l] at level j, 0 ≤ j ≤ l, is its partition in2l−j

disjoint intervals of length2j , termeddyadicintervals.
Figure 4 shows an example of this decomposition for
l = 3. We useIij to refer to thei-th dyadic inter-
val at levelj andI = {Iij} to refer to the complete
set of dyadic intervals. It is easy to see that each ar-
bitrary interval [x, y] ⊆ [1, 2l] can be represented as
the union of at most2 · l disjoint intervals fromI.
Moreover, there is a unique representation that con-
tains the least number of intervals, termed thedyadic
coverof [x, y] and denoted asD[x, y]. Returning to the
example of Figure 4,D[1, 7] is {[1, 4], [5, 6], [7, 7]}. A
dyadic interval containing an interval[x, y] is called
a dyadic containerof [x, y]. The set of dyadic con-
tainers of [x, y] is denotedDc[x, y]. For instance,



Dc[3, 4] = {[3, 4], [1, 4], [1, 8]}.

Bloom Filter. A Bloom Filter [9] provides a concise
representation of a setS in a form that is suitable for
membership queries. The filter consists of a vectorF
of n bits (initialized to zero) and a set of hash func-
tionsH1, . . . ,Hk. An elemente ∈ S is inserted in
the Bloom Filter by setting bitF [Hi(e)] to 1, for ev-
ery 1 ≤ i ≤ k. Similarly, a membership query for an
elementa is answered positively if all bitsF [Hi(e)]
are equal to1. We refer to these operations as an insert
and a look-up respectively.

Clearly, the Bloom Filter always returns true for the
look-up of an inserted element. On the other hand,
a look-up on an element not inS may return afalse
positiveanswer due to the existence of collisions in the
hash functions. The probability of obtaining a false
positive, denoted asfp, is termed thefalse positive
rateof the filter and it can be computed precisely based
on |S| and the parametersn andk. For a given set
S and a given false positive ratefp, it is possible to
choosek so thatn is minimal, i.e., communications
are minimized. An essential aspect of a Bloom Filter
is that the vector size is typically much smaller than the
size of the set that it encodes, so its transmission costs
much less than that of the original set. The trade-off,
of course, is the introduction of false positive errors
when the filter is used for membership queries.

5.1 Ancestor Bloom Filters

The AB Filter for a, denotedABF (a), is used to
filter the posting list ofb to obtain a sublist ofb[\\a],
denotedF (b,ABF (a)). (Recall thatb[\\a] comprises
theb postings having ana ancestor.) Consider a post-
ing ea = (pa, da, starta : enda : leva) ∈ La and
a postingeb = (pb, db, startb : endb : levb) ∈ Lb.
Clearly,eb is a descendant ofea iff pa = pb, da = db
and [startb, endb] ⊆ [starta, enda]. The key obser-
vation is that we can express the previous contain-
ment condition in terms of the dyadic covers of the
two intervals. More concretely, one can show that
[startb, endb] ⊆ [starta, enda] iff for each interval
I ∈ D[startb, endb] there exists an intervalI ′ ∈
D[starta, enda] that contains it, i.e., such thatI ⊆ I ′.
This suggests the following generalization to postings.
Thecoverof a postingea = (pa, da, starta : enda :
leva) is D(ea) = {(pa, da, I) | I ∈ D[starta, enda]};

andD(La) = ∪ea∈La
D(ea). The containersDc(ea)

andDc(La) are defined similarly. The essence of the
Ancestor Bloom Filter technique comes from the fol-
lowing theorem:

Theorem 1 For eacheb ∈ Lb, eb ∈ b[\\a] iff for each
(pb, db, I) in D(eb), there existsI ′ in Dc(I) such that
(pb, db, I

′) in D(La).

The AB Filter encodes the setD(La) using a Ba-
sic Bloom Filter. The parameters of the Basic Bloom
Filter can be determined based on|D(La)|, which can
be maintained incrementally at peerlocate(a) as new
postings are inserted. The AB Filter also records an
integerdclev that denotes the highest levelj ≤ dclev
such that an intervalIij appears inD(La). As we
discuss next, this is used to implement efficiently the
probing mechanism.

Let eb = (pb, db, startb : endb : levb) be inLb.
To check whether it belongs tob[\\a], we compute the
coverB = D(eb) and then process each(pb : db : I) in
B as follows. We compute the dyadic containerDc(I),
and test whether(pb : db : I ′) is in the Bloom Filter for
eachI ′ in Dc(I). If we cannot find any suchI ′, then
I is not covered by any interval inD(La) and we can
decide by Theorem 1 thateb is not inb[\\a]. If every
I in D(eB) is covered then we conclude thateb is in
b[\\a], and this is correct up to collisions in the Bloom
Filter.

It is interesting to note that we can realize the AB
Filter using a simpler containment condition, one that
employs only the start valuestartb. More concretely,
note that the conditionstarta < startb < enda is
sufficient to ensure thateb is a descendant ofea, since
posting intervals cannot be partially contained. We can
thus determine ifeb is in b[\\a] by checking whether
(pb : db : [startb, startb]) is covered by an interval
in D(//a). Clearly, this simpler approach is equiva-
lent to Theorem 1 when|D(eb)| = 1. As we show
later, however, the conjunction of containment condi-
tions in Theorem 1 leads to an error probability that
is exponential in|D(eb)|. Hence, while the two ap-
proaches have the same expected performance when
|D(eb)| = 1, Theorem 1 leads to lower error probabil-
ity in the general case.

Space overhead In a worst case scenario, every
coverD(ea) contains2l intervals and the number of in-



Data set Element count |D(e)| 2l

IMDB 100K 1.37 32
XMark 200K 1.50 34

Swiss Prot 3.2M 1.29 42
NASA 500K 1.55 38
DBLP 1.5M 1.23 40

Table 1. Average size of the dyadic cover.

sertions in the Bloom Filter thus grows asymptotically
with 2l. In practice, however, we expect a much lower
number of elements. A main reason for that is that the
number of dyadic intervals in the cover of[x, y] essen-
tially depends on the widthy−x+1. Given that XML
documents are typically small and bushy, this implies
that the average width of element is very short, so on
average, ana posting is likely to be covered by a small
number of dyadic intervals.

To verify this conjecture, we have performed a sim-
ple experiment on real-life and synthetic data sets. For
each data set, we generated the start/end encoding of
its elements and then measured the size of the dyadic
cover for each element. The results are shown in Ta-
ble 1. These results validate our assumption for prac-
tical data sets and demonstrate that the space overhead
of ABF (a) is likely to be much lower than the worst-
case bound of2l.

Tracing Wide Intervals Observe that the AB Filter
returns a false positive for a postingeb if each interval
(pb, db, I) ∈ D(eb) is covered by some(pa, da, I ′) ∈
D(La). Now suppose that there is a collision in the
Bloom Filter between someea and some(pb, db,K).
The larger the size ofK, the more false positive this
collision may generate. At the limit, a collision with
(pb, db, [1, 2

l]) will generate a false positive with any
b-element in document(pb, db). This connection be-
tween the size of an interval and its potential damaging
effect on the false positive rate suggests the idea of us-
ing more “traces” at higher levels to boost the accuracy
of the filter.

More precisely, we assume the existence of a func-
tion ψ : [0, l] → [1,∞) that assigns a positive number
to each level. In essence,ψ(j) specifies the number
of replicas (or, traces) that are inserted per intervalIij
at the same levelj. Accordingly, it specifies that a
look-up of Iij is implemented as the conjunction of
ψ(j) look-ups, one for each trace. Thus, an increased
ψ(j) means that probes at levelj are less likely to re-

turn a false positive. We notice that this mechanism
encompasses two counter-forces: while an increased
ψ(j) implies better accuracy at levelj, it also implies
a larger number of insertions which can hurt the false
positive rate. We revisit this issue later, and describe
our choice ofψ, when we analyze the false positive
probability of an AB Filter.

Analysis of error probability We define theAnces-
tor false positive rate(for a andb), denotedfpA(a, b)
(or simplyfpA whena, b are understood), as the prob-
ability that an AB Filter falsely identifies ab posting
as a member ofb[\\a]. Let fp[ψ] be the false posi-
tive rate, i.e. the probability that the underlying Bloom
Filter returns a false positive answer. Note the depen-
dency of the probability toψ, since the latter affects
the number of insertions in the Bloom Filter. Leteb
be aLb posting not inb[\\a] and letk be the num-
ber of elements inD(eb) that are not covered by some
element inD(La). The posting is falsely selected by
the AB Filter if each of thek not covered elements is
covered by a false positive answer of the Bloom Fil-
ter. Consider the containment check for a single not
covered interval(pb, db, I). In the worst case, the set
Dc(pb, db, I) will contain l + 1 elements (ifsb = eb)
and there will bel + 1 probes to the Bloom Filter.
Note also that a probe at levelj will translate toψ(j)
probes, one for each replica. Thus, the probability that
(pb, db, I) is correctly not covered by any interval is
not smaller than

∏
0≤j≤l(1 − fp[ψ])ψ(j). In turn, this

implies that the probability that(pb, db, I) is wrongly
covered is bounded by1 −

∏
0≤j≤l(1 − fp[ψ])ψ(j).

Since the Bloom Filter returns a positive answer ifev-
ery uncovered interval(pb, db, I) is covered, the prob-
ability that the filter falsely selectseb is bounded by
(1−

∏
0≤j≤l(1− fp[ψ])ψ(j))k. The worst case occurs

whenk = 1 and we can thus bound the overall false
negative rate as follows:

fpA ≤ 1 −
∏

0≤j≤l

(1 − fp[ψ])ψ(j)

Observe that functionψ encodes an interesting
trade-off: as we increaseψ(j) at a level we in-
crease the number of insertions and thusfp[ψ], but we
also increase the number of probes and thus decrease
fp[ψ]ψ(j). Given that the upper levels are not likely to



generate a lot of insertions and that (as already men-
tioned) they are potentially very damaging in terms of
false positive, it is desirable to setψ(j) high for high
levels.

In our work, we consider the functionψ[j] = d1 +
j/ce (for some integerc ≥ 1) that essentially adds
one extra trace everyc levels. This choice is driven by
the following heuristic. Consider an intervalIij that
is not present inD(La). If Iij is a false positive in
the Basic Bloom Filter, then the effect on accuracy is
intuitively captured by the width2j . We can thus use
2jfp[ψ]ψ(j) as a measure of the expected effect, where
fp[ψ]ψ(j) is precisely the probability thatIij is a false
positive. We can show that the particularψ function
ensures the following “balancing” property iffp[ψ] <
1/2c: every intervalIij has the same expected effect
and it is bounded by1/2c. In our experiments, we set
c = 4 as we expect the basic false positive rate to be
less than1/16. We will see in Section 5.4 that this
scheme yields good performance in practice.

5.2 Descendant Bloom Filters

A Descendant Bloom Filterfor b, denotedDBF (b),
is used to filter the postings inLa to obtain a sublist
of //a[//b], denotedF (a,DBF (b)). The key idea re-
mains essentially the same asABF (a) but reversed:
we send in a Bloom Filter traces ofb postings (using
again dyadic intervals), and then perform some tests
for thea postings. The crux of the DB Filter is given
by the following theorem:

Theorem 2 For eachea ∈ La, ea ∈ a[//b] iff
D(ea) ∩ Dc(Lb) 6= ∅.

The filter is created by inserting in the Bloom Fil-
ter, for each postingeb in Lb, each element inDc(eb).
For a postingea, it suffices to perform a look-up in
the filter for each element inD(ea). Observe that
eachb posting typically entails many more insertions
in the Bloom than with the AB, i.e.,Dc(eb) vs.D(ea).
So, intuitively we should expect a DB Filter to have a
higher space overhead compared to the AB Filter or,
equivalently, less accuracy for the same storage space.
We revisit this point in Section 5.4 when we present a
comparison between the two techniques.

Due to space constraints and since the technique is
very similar to that of the AB Filter, we will not discuss
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any further the DB Filter. Note that, in particular, an
analysis along the lines of that presented in Section 5.1
can also be obtained.

5.3 Query Evaluation with Bloom Filters

We introduce three query processing strategies
based on Structural Bloom Filters:Ancestor Bloom
Reducer, Descendant Bloom Reducer, andBloom Re-
ducerthat can be seen as a hybrid of the previous two.
In the interest of space, we present the strategies by
example using the twig query//a//b[//c][//d]. For ease
of exposition, we assume that each tag is handled by a
distinct peer and use the name of the tag to refer to the
corresponding peer.

All strategies proceed in two phases: in the first
phase, the peers exchange filters and reduce their post-
ing lists; in the second phase, the reduced lists are sent
to the query peer for the final join. The strategies es-
sentially differ in the realization of the first filtering
phase. Figure 5 depicts the filtering phase of Ancestor
Bloom Reducer (AB Reducer, for short) on the exam-
ple query. In a nutshell, each peer receives an AB Fil-
ter from its parent, filters its postings, and forwards an
AB Filter of the reduced postings to its children peers.
Thus, peers (except the root) filter their postings ac-
cording to the corresponding incoming path from the
root query variable. Descendant Bloom Reducer (DB
Reducer, for short) follows an inverse process, for-
warding DB Filters along the leaf-to-root paths and
essentially filtering based on outgoing paths. (This
is shown in Figure 6.) Finally, Bloom Reducer per-
forms a combination of the two previous strategies: it
initially forwards AB Filters top-down, and then DB
Filters bottom-up.



The intuition behind each strategy is to perform
some Bloom Filter-based pre-processing to focus the
query to a (hopefully) small set of documents and
peers. The hope is that the savings in reduced post-
ing list transfers offset the relatively small overhead of
transmitting compact Bloom Filters. Of course, this
trade-off depends heavily on the data and query char-
acteristics, and the use of Structural Bloom Filters may
not always decrease the total network traffic. We ex-
amine this point in more detail in Section 5.4 where
we evaluate experimentally the performance of these
strategies.

5.4. Experiments

In this section, we present the results of an exper-
imental study to evaluate the performance of AB and
DB Filters.

Filter Sensitivity Analysis. The first set of experi-
ments performs a sensitivity analysis of the structural
filters. We use the simple querya//b and consider
two scenarios: filteringb with ABF (a), and filtering
a with DBF (b). We measure filter performance as the
fraction of false positive answers. We term this metric
theempirical false positive rate of the filter.

Due to space constraints, we only present a brief
overview of our findings. (The complete experiments
can be found in the full version of this paper.) Our ex-
periments have indicated that the AB Filter achieves
a lower error probability compared to the DB Filter
when they both use an equally accurate Basic Bloom
Filter. For instance, the error rate of the AB filter
remains below 10% even whenfp[ψ] reaches 20%,
whereas the error rate of the DB Filter remains below
10% only whenfp[ψ] < 5% and rises to over 50% as
fp[ψ] increases. The difference is due mainly to the
tighter probing mechanism of the AB Filter. Recall
that the answer of the AB Filter is generated through
a conjunction of containment predicates, which in turn
reduces exponentially the probability of committing an
error. The DB Filter, on the other hand, relies on a
disjunction of probes that proves detrimental for the
overall error rate. Our results have also demonstrated
the benefits of the proposedψ function for the AB Fil-
ter. For a filter of the same size, the proposed func-
tion achieved a lower error rate compared to the default

function that uses a single trace per level.

Performance of Filter-based Query Strategies. In
the next set of experiments, we examine the perfor-
mance of the three query evaluation strategies that we
have introduced earlier, namely, AB Reducer, DB Re-
ducer, and Bloom Reducer. We use the total vol-
ume of transferred data as the performance metric for
each strategy, since this is the major cost factor in
distributed query evaluation over wide-area networks.
For each strategy, we report its total data volume nor-
malized by the amount of data shipped by the conven-
tional query processing strategy. Thus, a normalized
data volume of0.4 implies that the strategy transfers
60% less data overall. We base our evaluation on the
real-life DBLP data set described in Section 4. In all
cases, AB and DB Filters are initialized with a basic
false positive rate of 20% and 1% respectively. The
idea is to allocate fewer bits to AB filters since our pre-
vious experiments have shown their resilience to errors
in the Basic Bloom Filter.

Figure 7(a) shows the performance of the three
strategies on the simple query//article[.contains ”Ull-
man”]. (The graph breaks down the normalized data
volume in terms of the size of AB and DB filters, and
the size of the filtered posting lists.) We observe that
DB Reducer is very effective in filtering postings that
are irrelevant to the query, leading to a reduction of
more than 90% in transfer load. Essentially, the key-
word predicate is very selective as there are relatively
few Ullman postings (compared to the number ofarticle
postings) , and this leads to a DB Filter that can se-
lect very effectively the matching postings ofarticle.
In contrast, Bloom Reducer and AB Reducer are less
effective as they transfer a large AB filter onarticle,
without getting any significant benefits from filtering
the small list ofUllman. AB Reducer is in fact costlier
than the baseline no-filter strategy, as it also transfers
the unfilteredarticle list.

Figure 7(b) depicts the performance of the three
strategies on the slightly more involved query//arti-
cle//author[.contains ”Ullman”]. The injection ofauthor
is interesting, as it represents one of the largest posting
lists in this data set. We observe that AB- and Bloom
Reducer become more efficient than in the previous
experiment, since the overhead of the AB filter onarti-
cle is now offset by the savings of reducingauthor, the
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Figure 7. Performance of Bloom-based strategies for differ ent queries

dominant list in this query. DB Reducer remains the
dominant strategy, as the DB filter onUllman is still
the most cost-effective filter for this query.

The final experiment, shown in Figure 7(c), eval-
uates the performance of the three strategies on the
branching query//article[//title]//author[.contains ”Ull-
man”]. (The Figure also depicts a fourth strategy that
we will discuss later.) Clearly, the proposed strate-
gies do not enable any savings for this particular query.
This is due to the existence of thetitle branch, which
has a detrimental effect on the performance of each
strategy. For DB Reducer, the branch leads to the cre-
ation of a large DB Filter that is not useful in filtering
article elements. (Essentially, all articles have a title.)
For AB Reducer, the AB filter onarticle is not suffi-
cient to filter thetitle postings, and this leads to a high
number of unfiltered postings. Finally, Bloom Reducer
suffers from a combination of the previous two factors
as it is a hybrid strategy.

Overall, Structural Bloom Filters can enable a sig-
nificant reduction in the volume of transferred data.
Our results indicate that there is no dominant strategy,
as the performance depends heavily on the characteris-
tics of the query and the data. In our current work, we
employ the following simple heuristic in order to se-
lect the filtering strategy: we identify the subset of the
query that has a guaranteed low selectivity factor, by
examining the sizes of the stored posting lists, and we
apply Structural Bloom Filters on the specific subset.
Of course, this implies that only lists that correspond to
the selected sub-query will be filtered, but this can still
yield significant savings if the lists are large. To verify
this, we have applied the DB Reducer strategy on the
subset//article//author[.contains ”Ullman”] of the pre-
vious query and have thus excludedtitle from filtering.

〈?xml version=”1.0” encoding=”UTF-8”?〉
〈!DOCTYPE document [
〈!ENTITY thisabstract SYSTEM ”2445abstract.xml”〉
〈!ENTITY paper SYSTEM ”2445paper.xml”〉
〈!ENTITY md SYSTEM ”MartinDoe.xml”〉
〈!ENTITY dj SYSTEM ”DanJones.xml”〉 ]〉
〈article〉

〈author name=”Jones”〉 &dj; 〈/author〉
〈author name=”Doe”〉 &md; 〈/author〉
〈title〉More on XML〈/title〉
〈abstract〉 &thisabstract 〈/abstract〉 &paper

〈/article〉

Figure 8. Intensional data using includes

(Thus,title is sent to the query peer in its entirety.) The
performance of this approach is plotted in Figure 7(c)
as the fourth strategy. As shown, the modified strategy
offers close to 70% of savings in total transfer load. As
part of our future work, we plan to investigate more
principled optimization techniques that select the opti-
mal strategy based on a formal cost model.

6 The Fundex

We first present the motivation for intensional data.
We then consider a technique that we callFundexto
index and query intensional data. We then shortly de-
scribe some experiments.

Motivation The XML standard proposes two im-
portant features for managing intensional information,
namely includes (using the entity keyword) and ref-
erences (using id, idref). Figure 8 shows an example
of includes with a bibliography document. Observe



for instance that theabstractis kept in a separate file.
This classical idea of storing data in separate files is
typically very convenient for maintenance purposes.
There are differences between includes and references,
e.g., in the way queries are stated, but from a func-
tional viewpoint (e.g., in a user interface) and from an
indexing viewpoint, this comes to the general idea of
having portions of the data beingintensionalinstead
of extensional.

Consider again the documentd in Figure 8 and the
query: Retrieve the bibliography references containing
the wordgraph in the abstract. We have two alterna-
tives: (naive) do not returnd because its abstract ele-
ment does not contain the wordgraph; or (brutal) re-
turnd and similarly return any document including in-
tensional data since this intensional data possibly con-
tains the desired pattern. Thenaivealternative corre-
sponds to simply indexing the documents as they are,
and is very incomplete. Thebrutal one may be eas-
ily implemented and is very imprecise. It may result
in contacting (almost) all peers for each query. We
will show that it is possible to be complete at a lower
cost using an indexing technique called theFundex
(for functional indexing).

For simplicity, assume that intensional data is ob-
tained by function calls (this also covers includes and
referencing). The indexing is modified as follows:

• The element identifier specifies in addition
whether the subtree rooted at that node is purely
extensional or whether it contains some inten-
sional data, i.e., it is anintensional-node.

• Let w = f(u) be the string corresponding to a
function call occurring in some document. The
peerp in charge of this function call is the peer in
charge of the keyfun:w (so anyone can find who it
is). The identifier of the result of this call ish′(w)
for some hash functionh′. The functional id(in
short, fid) (p, h′(w)) plays the role of the pair
(p, d) for regular documents. When first asked
to indexf(u), Peerp materializesf(u) and in-
dexes it using(p, h′(w)) in place of the standard
docid. Once indexed, the resultf(u) does not
have to be kept. Suppose another peer encounters
another occurrence of the same function-call, and
requests fromp the indexing off(u). Thenp has
nothing to do.

• We treat an occurrence of a call tof(u) as a
pointer to the virtual document(p, h′(w)). We
use a relationRev to capture thereversepoint-
ers that provides all occurrences of a particular
function call. This relation is also supported by
the DHT and given a pair(p, h′(w)), we can use
the DHT to obtain the structural identifiers of all
occurrence of the corresponding function call.

We now discuss the integration of these features in
query processing. To simplify exposition, we will il-
lustrate the techniques on the previous example query
//article//abstract[.contains ”graph”]. Query processing
utilizes the same twig join algorithm as before, except
that a match may be marked as incomplete if the cor-
responding element is intensional. Returning to the
example, this will occur when the abstract of an arti-
cle includes a reference to another document (see also
Figure 8). In this case, the algorithm will generate an
answer tuplet = (e1, e2?), wheree1 is the id of the ar-
ticle element,e2 is the id of the abstract element, and
the “?” denotes an incomplete match since the abstract
is intensional. We refer tot as a potential answer and
useR to refer to the set of such tuples. We also say
that abstract is an incomplete query variable inR. In
parallel to the main twig join algorithm, the system
evaluates the predicatecontains ”graph” on the func-
tional documents (i.e., documents appearing in refer-
ences), and computes the setSa comprising the ids of
documents that satisfy the predicate. UsingRev, Sa
is mapped in turn to a setRa of element ids that con-
tain references to the matching functional ids. Having
computedR andRa, the incomplete answers inR can
be completed by performing aθ-join betweenR and
Ra.

It is straightforward to generalize this approach to
the case where a potential answer contains several in-
complete variables. The intuition is that the system
has to compute several relationsRi, one for each in-
complete variable, and then perform a multi-way join
betweenR and relationsRi to complete the answers.
We note that it is possible to optimize the final join by
groupingR on incomplete variables and then joining
each group with the corresponding subset of the rela-
tionsRi.

Clearly, the new processing algorithm results in im-
proving completeness if compared tonaive; or preci-
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Figure 9. Query processing times with the
Fundex.

sion if compared tobrutal. We have tested the Fun-
dex algorithm with the INEX [38] HCO collection,
consisting of 28000 documents. Each document con-
tains a description of a publication, and a reference
to an abstract kept in a separate file. This makes a
total of 56000 small XML documents, each roughly
1KB. We illustrate these tests with the query://arti-
cle[contains(.//title,’system’) and contains (.//abstract,
’interface’) The posting lists fortitle, article and ab-
stract have at least 28000 entries. The wordssys-
tem and interface are reasonably frequent, but there
are very few actual query matches, precisely 10. Fig-
ure 9 shows query evaluation time on a collection of
increasing size. The figure also shows the impact of
two other optimizations, namely in-lining and repre-
sentative data indexing. We briefly discuss them next.

In-lining In-lining consists in actually inserting
some intensional data in the documentfrom the in-
dexing viewpoint. So for instance, for the example of
Figure 8, the includes are replaced by the actual files
before indexing the document. As Figure 9 indicates,
in-lining results in important savings. This also re-
flects measures the cost of following backward point-
ers. When references are used to split (and possibly
distribute) an XML tree as in [10, 11], in-lining does
not generate any extra cost and works nicely. When
the data resembles a graph, i.e. the same portion of a

document is referenced several times, in-lining poten-
tially generates a lot of extra indexing cost.

Representative-data-indexing The full indexing of
intensional data may be quite expensive, suggesting
some less precise or less complete indexing. To il-
lustrate, we briefly outline a technique of particular
interest, based on lossy indexing of intensional data.
For instance, consider the intensional paper in Fig-
ure 8. We may have some information about its type
as provided, e.g., by an XML schema or a DTD. In
the spirit of the representative objects of [28], we can
make the index aware of such typing information us-
ing the notion ofrepresentative-data-indexing. Think
of the documentd′ obtained by replacing ind inten-
sional data by a skeleton of the data they provide, i.e.,
by a representative instance. Instead of indexingd,
we indexd′. Now, omitting details, we can answer
queries more precisely thannaiveif not as completely
as with in-lining. For instance, consider the query:
//article//contains(.//section-title,’Graph’) and the doc-
umentd in Figure 8. The tagarticle is matched by
d, the tagsection-title is matched by a nodee of the
representive-data-indexing ford. And becausee is
only representative, the conditions underneath are ig-
nored.

In experiments, we found that the representative-
data-indexing technique brings important savings. It
does that by pruning the search space: a number
of backward pointer chasing is avoided because the
“type” does not match.

7 Related Work

Many works have studied P2P keyword search, e.g.,
[25, 33]. The transfer of long posting lists is high-
lighted as an important problem in DHT networks
in [25].

We share motivations with a number of works on
P2P data-sharing platforms, [20]. Unlike our system,
[7, 19, 29] are based on unstructured networks. A large
emphasis on scaling is also considered in [29], but in
the context of the relational model. They often rely on
multicasting queries to all the peers, which we try to
avoid in KadoP. Like us, [17] deals with XML but their
indexing is based on paths (queries including text key-
words cannot be processed based on the index). Iris-



Net [18] supports distributed hierarchical queries over
the Internet. Like KadoP, IrisNet uses XML (trees) as
a data model. However, it is very different from KadoP
in that it builds on a hierarchical overlay network (a
DNS) to route queries and data.

The idea to use a streaming algebra in such a con-
text is very natural and can be found, e.g., in [2, 20].
The DPP structure is based on the idea of distribut-
ing a tree over a network. This idea has been used
to support range queries in a DHT in BATON and
in PTrees [23, 26]. Using BATON instead of PAST
would enable KadoP to process index queries with
range conditions, too.

The twig join algorithm that we use is an exten-
sion of [10]. The idea of distributing portions of doc-
uments in other documents (an aspect of what we
call intensional data) and the problem of evaluation
queries over such distributed documents is not new,
see, e.g., [4, 32, 36]. The most obvious difference
is that KadoP stresses indexing over a structured P2P
network to focus on the relevant data query, while the
mentioned works execute queries using the local in-
formation available at one site (peer) and route sub-
queries to the neighbors sites, following the link be-
tween documents. [11] studies the same problem for a
single XML tree distributed horizontally and vertically
over sites. However, they use a bottom-up algorithm
while ours is top-down in the spirit of [10].

The proposed structural bloom filters are inspired
by the use of basic bloom filters for processing dis-
tributed relational joins [31]. Clearly, the details of our
mechanism are more involved, as we are dealing with
structural joins over hierarchical data. We note that
the underlying framework of dyadic interval decom-
position has been used in several applications, such as,
the estimation of quantiles over streams [1], approxi-
mating the selectivity of spatial joins [15], or evaluat-
ing stabbing queries [37]. None of the previous works,
however, has considered the application of this mech-
anism and its analysis in the context of XML filtering
with one-sided errors.

8 Conclusions

The work presented here is motivated by the scal-
ing of XML indexing and query processing in a P2P
context, and in particular by the Edos application. The

system has been extensively tested and measured on
a large number of peers. The Edos platform based on
KadoP is now almost complete and we are planning its
deployment.

We are currently working on improvements of the
KadoP system. We have started building a query opti-
mizer able to explore other strategies, such as Bloom-
based strategies, and standard distributed database op-
timization techniques, such as load balancing. Also,
the index construction for a large collection of docu-
ments (such as a new Linux release in Edos) places
a lot of stress on the system. We are exploring tech-
niques to improve index construction time. Finally, we
are working to improve the system’s existing support
for peers joining and leaving the network.

To reduce the index size, one could also consider
indexing at a coarser level of details, e.g., record only
the document and peer ids in the index. This strongly
reduces the index, but renders index queries imprecise.
An interesting middle ground is, instead of indexing
the document, to index a representative instance [28]
in the spirit of [17]. We may also consider indexing
words (not tags) selectively, e.g. index the words in
abstracts but not in the bodies of papers. We believe
that carefully trading precision and completeness for
performance is a fascinating avenue of research.
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