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Abstract high-level data management applications and in par-
ticular structured queries in a P2P setting. The vision
We study the scalable management of XML datajs to enable a host of data management applications
in P2P networks based on distributed hash tables that can be realized today only through centralized and
(DHTs). We identify performance limitations in this typically expensive infrastructures. One such exam-
context, and propose an array o ftechniques to lift ple is the creation of ad-hoc content sharing commu-
them. First, we adapt the DHT platform to the needs nities, where users share and query information within
of massive data processing. (This primarily consists some specific domain. Another one is the deployment
of replacing the DHT store by an efficient native store of distributed database systems, where the principles
and in streaming the communications with the DHT.) and technology behind P2P enables an organic scaling
Second, we introduce a distributed hierarchical index to a high level of parallelism.
and efficient algorithms taking advantage of this in-  An issue of particular interest is the P2P manage-
dex to speed up query processing. Third, we preseniment of distributed XML data. XML has emerged as
an innovative, XML-specific flavor of Bloom filters, a de-facto standard for data exchange and integration
to reduce data transfers entailed by query processing.over the Internet, and is thus well suited to represent
Our approach is fully implemented in the KadoP DHT-  the variety of data that may be shared within a P2P sys-
based XML processing system, used in a real-life soft-tem. In this direction, a recent work has proposed the
ware manufacturing application. We present exper- KadoP platform [5] that relies on the well known tech-
iments that demonstrate the benefits of the proposechology of Distributed Hash Tables (DHT) in order to
techniques. support complex queries over the shared XML data. In
Keywords: DHT, XML, P2P, bloom filters, dis- KadoP, the peers publish XML documehend share
tributed XML query processing, parallel query pro- the tasks of indexing the data and processing queries.

cessing, Following common practice, KadoP indexes the XML
data in the form of postings, where each posting en-
) codes information on an element or a keyword. Given
1 Introduction

a query, the system combines the postings stored in
. the index to locate the peers that can contribute to the
The.current .development of peer-to-peer (P2P).'”'query, and subsequently forwards the query to these
formation sharing has opened the way for supporting peers where the final results are computed.

A main issue with P2P indexing that could limit the
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1They publish also XML schemas, ontologies and Web ser-
vices but, to simplify, these aspects will be mostly igndnede.



scalability of such system is the processing of large by reducing the size of the index at the cost of possibly
sets of postings [33]. This processing is first costly at missing some answers. This opens new avenues for
the time of index construction, s@)(may delay the performance improvements. However, developments
publication of documents. More critically, the transfer in that direction are left for future research and the pri-
of large sets of postings may be damaging in terms ofmary focus of this paper is on answering queries with
(77) query response time andid) data transfer load. full recall.
The purpose of this paper is to present techniques that We present experimental results that demonstrate
we have developed to address these three issues. Thfat the system scales gracefully to a large volume of
techniques are fairly general as they can be applied indata. We validate the effectiveness of the proposed
any XML system that follows the same general archi- techniques on synthetic and real-life data sets. The ex-
tecture as KadoP. Moreover, they are largely orthogo-perimental study uses an implementation of the tech-
nal and this allows for their easy composition. niques in the KadoP system and is one of the first such
To improve query processing time, we introduce a studies of a real XML data management system over
novel optimization technique that speeds-up the ex-a P2P network, as opposed to experiments over simu-
change of large sets of postings, a main cause of poofated networks. (See [29, 21], for another full-fledge
qguery performance. We employ a horizontal partition- systems with an experimental study). It can therefore
ing scheme, in which a large set of postings is dis- serve as a blueprint for future DHT-based XML man-
tributed among different peers based on range condi-agement applications. Although there is an important
tions. This scheme enables a highly parallel twig join overhead in running such experiments, we believe that
algorithm that can reduce significantly the total pro- there are essential to complement simulation-based
cessing time. Moreover, it allows the index to filter studies. The development of the system proved in-
partitions that are irrelevant to the query, thereby sav-valuable for highlighting important limitations of the
ing on data transfers. present DHT technology and served both as a motiva-
To limit data transfers, we also draw inspira- tion for the techniques presented here and as a test-bed
tion from distributed relational databases and intro- for them.
duce Structural Bloom Filters for distributed structural ~ We note that the modified system is currently be-
XML joins. A Structural Bloom Filter provides a com- ing tested in cooperation with the Mandriva company
pact representation of a set of postings that is suitable(originally known as MandrakeSoftware) with a real
for filtering the postings of another list. In brief, given application entitled Edos. In Edos [16], the data con-
a Structural Bloom Filter on the postings of some term sists of the Mandriva Linux distribution, i.e., about
a, it is possible to check (with a configurable error 10 000 software packages and the associated meta-
probability) whether another posting has a descendantdata. The metadata for one Mandriva distribution is
or an ancestor element in the set of postingsaof more than 100 megabytes of XML data. Of course,
We detail the mechanism behind Structural Bloom Fil- the system has to support simultaneously many (time-
ters, and propose a technique, termed Bloom Reducerbased) versions of the distribution. The peers (when
that integrates these filters in the evaluation of indexthe application will be deployed) will be Mandriva
queries. Linux developers, so potentially a population in the
The third technique tackles the size of the index hundreds of peers.
which is a serious concern for efficient query process- The paper is organized as follows. The KadoP sys-
ing. When there are lots aficludes(which often oc-  tem [6] is presented in Section 2. Section 3 describes
curs in real applications), we want to avoid indexing important techniques for making it scale. Section 4
the same information many times. Towards that goal, introduces a technique based on partitioning and dis-
we introduce techniques for indexing what we call “in- tributing index blocks, which greatly reduces query re-
tensional data” that havacludesas a foremost exam- sponse time. Bloom-based optimization reducing net-
ple. Although the size of the index is reduced, the re- work traffic are described in Section 5. Indexing of in-
call remains 100%, i.e., no answer is missed. We alsotensional data is discussed in Section 6. Related works
briefly mention techniques that improve performance are considered in Section 7. Finally, we conclude.



2 The KadoP system do not distinguish between elements and attributes.)
Each element is labeled with a symbol fréabel and

We target applications with a possibly very large is uniquely identified by atructural identifier(sid for
number (millions) of XML documents stored in alarge short) sid = (start,end,lev). Here, start (resp.
number (tens of thousands) of peers, where the peeend) is the number assigned to the opening (resp. clos-
volatility is not very high. Issues such as popular terms ing) tag of the element, when reading the document
and locality would have to be tackled for larger vol- and numbering its tags in the order they appear in the
umes. Also, the size of posting sets and the cost ofdocument. The third valugv denotes the element’s
copying them become serious concerns when peers artevel in the tree. Observe thgp, d, sid) provides an
very volatile. We plan to address these issues as parelement identifier that is globally unique in the col-
of our future work. Observe however that, as it is, our lection of documents. Structural ids allow deciding if
system already meets the needs of a very wide rangeelemente; is an ancestor of elemeat by verifying if
of applications. e1.start < eg.start < ej.end. We note that there ex-

For clarity, we focus on simple tree pattern queries ist other element-labeling schemes that support similar
that correspond to a subset of XPath. Our algorithmschecks [8, 30]. The one we use is particularly suited
extend easily to more complex tree pattern queries,for the techniques presented in Section 5.
such as those that can be extracted from XQuery We consider the subset of XPath consisting of tree
queries [12]. The focus of the paper is on efficient pattern queries over single documents. A tree-pattern
query processing, so we ignore several aspects of theuery is modeled as a tree wheré; dach node is la-
KadoP system, such as XML schemas, ontologies, andeled with a symbol fromabel U{x}, and §:) each
Web services. edge is labeled with “/" or “//” to denote the child or

KadoP processes queries in two phases, that maylescendant axis respectively. A tree pattern node may
be interleaved. First, an index query is computed to carry a value condition of the forilabel=s or text con-
focus on a hopefully small set of documents that (po- tains s, wheres is a string. Given a query and an
tentially) match the query. Then the query is sent to XML documentd in the collection,q matches(p, d)
the peers holding these documents and the answers aiié there exists a mapping from the nodesgirto ele-
computed there. This shows the importance of index-ments in(p, d) that ¢) preserves the parent/child and
ing in our system. In what follows, we introduce the ancestor/descendent relationships, d@fids@tisfies the
data model behind KadoP, and discuss the salient feaquery predicates on labels and values. For a query
tures of the indexing scheme and the query processing; with n nodes, aransweris a tuple f,d, e1, ... ey,)
framework. identifying a document where a match was found, and

the elements in this match. As an example, the answer

Data and Query Model We assume the existence for query//*[contains(.,’xml’_)]//title will consist of tu-

of alphabetsuri, peer, dog label, word, int, that are ples(p,d, e1,e2), Wheree, is atitle element and; an

all subsets of the alphabstring. Each peer and each ancestor in the same document that contains the key-
document is identified on the Web by:ai. Each peer ~ Word “xml”.

in the system is also internally identified by an integer

and each document by a pajr, ) of integers, where  |nqexing and Query Processing We index element

p is the identifier of the peer that checked itin, ahd  |apels as well as words in documents. We henceforth
the document identifier within this peer. The databaseseterm to refer to either of the two. The indexing

consists of the documents in the distributed collection gcheme of KadoP is based on therm relation, de-
and of the relationsPeer(p, uri) (peerp has uriuri)  fined as follows:
and Doc(p, d,uri) (doc (p,d) has uriuri). We note
that KadoP uses other relations, e.g., for XML schema
information, but we omit them to simplify exposition.

A document(p,d) is as a labeled unranked tree, The Term relation for each document can be eas-
comprisingelementndtextnodes. (For simplicity, we ily constructed in one traversal of the document. We

Term(p,d,sid,l) [ is the label of elementp, d, sid)
Term(p,d,sid,w)v is a word under elemeltp, d, sid)



henceforth uspostingto refer to a tuple iferm. Ac- documents that contain answers to the query. For now,
cordingly, given a terna, we use “posting list” to refer  note that KadoP index queries are complete and pre-

to the set of postings far and denote it ag,,. cise in the absence of stop words and wildcards (
The Termrelation is distributed among the peers of  Due to space constraints, several smaller indexing
the system using distributed hash tabléDHT for issues are omitted. For instancé) KadoP index-

short) [14]. A DHT is a distributed data structure im- ing distinguishes between labels and words) the
plementing a relation with a key. In brief, the interface Termrelation also contains typing information (i.e, on
of the DHT includes: the schemas of the documents); and)(other rela-
tions are indexed in KadoP, e.g. given a document’s
id (p,d), one can retrieve its actual uri and its type.
The focus here is on (a portion of) ti@rmrelation
because this is the information that is the most critical
from a query processing viewpoint and also because it

The DHT keeps the network peers connected, and disPermits describing the main techniques that we intro-
tributes (quite evenly) the keys between the nodes ofduced in KadoP towards scaling.

the network, typically using some hash function Italso ~ €oncerming index update, for the moment, a docu-
handles peers joining and leaving the network. ment modification is interpreted as deletion followed

In KadoP, XML documents are stored at their pub- PY insertion, since the structural indexing of a docu-
lishing peer, whereas th@erm relation is stored ment is not very gasily updated. We assume that peers
in the DHT using terms as keys. Thu&erm is  are not too volatile, which is acceptable for instance
split horizontally among peers, with pegiin charge I the case of the Edos distribution. The DHT replica-
of a portion Term,, defined as follows:Term, = tion protects the index entries agalnst some peer fail-
(Term(p/,d, sid,a) | locatda) = p}. The posting  Ure- (For that, we had to re-engineer the DHT based
lists in Term,, are assumed to be clustered based on©n our BerkeleyDB store for acceptable performance).

the term value, and the postings of a term are ordered
in the lexicographic order dictated by tig, d, sid) 3 Scaling KadoP
attributes.

Now, a queryg submitted at peep is processed as The KadoP system presented in [6] followed the
follows. For each terna in ¢ (not a wildcard or a stop  general ideas that were presented in the previous sec-
word), p asks the peer in charge offor the posting  tion. It was implemented over PAST [35], a standard
list L,, and subsequently performs a holistic twig join DHT overlay network. Our first experiments high-
over all the received lists. For instance, consider againlighted severe scaling limitations, primarily caused by
the query//*[contains(.,xml")]//title. The index query the processing of long posting lists. Other DHT sys-
uses theTermrelation to find thesids of all elements tems we are aware of, e.g., [3, 13, 22, 27], raise the
labeledtitle and all parents of text elements containing same issues.
the wordxml. Then, a join on thessid collections Motivated by the aforementioned issues, our goal
computes thesids of the answers. The peers holding is to develop techniques that enable the scalable dis-
the corresponding documents are then asked to sentributed indexing of a large volume of XML data.
their answers to the query peer. In this direction, we identify three important met-

In this example, the index query é®@mpleten that rics to assess the performance of a distributed in-
no answer will be missed, apdecisein the sense that, dex: () indexing time (i7) query response timeiis)
in the second phase, we only have to contact peers thabandwidth consumptio(during index query process-
contribute to the answer. For other queries, the indexing since transferring the results to the query peer is
guery may be incomplete or imprecise. For instance,unavoidable). Another interesting metric that we will
for the query/a//*, the index query cannot rule ositls mention is thehe time to the first answer
of a elements with no descendent. This leads to anim- These metrics formed the criteria in the develop-
precise result, as the index returns a superset of thenent of the techniques that we present in the following

locate(k) returns the id of peer in charge of key
put(k) enters a new posting for

get(k) returns the postings fér

delete(kq) delete a posting fok.



sections. More concretely, Section 4 introduces a spe<{p, d, sid).

cialized index data structure and associated query pro- In our experiments, enhancing the API, buffer tun-

cessing algorithms aimed at reducing query responsdng and replacing the index storage has sped publish-
time and the time to the first answer. Section 5 de-ing by two to three orders of magnitude. As a side

scribes a separate technique whose focus is on reeffect, improving the index storage has also reduced
ducing the bandwidth consumption, and possibly alsoindex query processing time by one order of magni-

(#¢). Finally, Section 6 presents an index organization tude.

scheme that reduces redundancy in the index, and can

primarily improve ¢) and ¢7). Improving query response time For each terna in

Before continuing with our presentation, we discuss the queryq to evaluate, the peer in charge of the
some technical improvements we brought to the ba‘query asks the peer in charge offor L,. Observe
sic KadoP system that enhance system performance ifhat the only retrieval operation in the DHT APIgst
terms of ¢) and ¢i). In the remainder of the paper, This is a blocking operation, i.e. it returns only when
we will assume the modified system when we refer to the content of the posting list has been fully retrieved.
KadoP. Therefore, the holistic twig join must wait until at least

two lists have been entirely received before it can start

Improving indexing time  To index a document, the processing. This poses serious performance problems
system constructs in one traversal the element postinggvhen evaluating index queries, and limits scalability.
(Section 2) and routes each posting, using the multi-We therefore modified the DHT API (and the actual
hop routing algorithm of the DHT [34], to the peer DHT system) by adding pipelined gemethod, which
in charge of the corresponding term. Postings of thetransfers posting lists in pipeline. This simple modifi-
same term are buffered and sent in batches, which recation brought important performance improvements.
duces slightly the index latency (the time it takes to ~ KadoP implements a multi-threaded, block-based
index a document) compared to the naive method ofversion of the holistic twig join from [10]. For each
routing each posting separately. More important gainsterma of query¢’, the peerp in charge ofL, runs a
are obtained byi} extending the DHT API; andi{) ~ producet whereas the query pegrruns aconsumer
replacing its store system. which is the holistic join. (We detect faulty peers with

The originalinsert operation in a local DHT index time-outs; in this case, the answer is incomplete.) We
is very inefficient. According to the standard DHT assume that the consumer and the producers can syn-
API [14], when a peer in charge of a kéyreceives  chronize via network pipes. The consumer runs on in-
aput request, it (1) reads the old value flar(2) ap-  memory data-structures and is likely to run faster than
plies a DHT-specific reconciliation of the old value and producers, which have to read (potentially large) post-
the new entry, and (3) inserts the result in the reposi-ing lists from disk and send them over the network.
tory. This is quadratic in the number of index entries. Since the join in itself is pipelined, the index query is
To overcome this issue, we extend the DHT API de- processed at the speed of the slowest producer.
scribed in Section 2 with a new operation, namegby
pend(key, entry}o obtain an indexing of linear cost. 4 DPP Algorithm

Another measure to speedup indexing was the tun-
ing of the DHT’s communication buffers to cope with In practical applications, the distribution of post-
many small messages generated by small posting listsing list sizes is very skewed (a few terms are very
Another important improvement is the tuning of the in- frequent), leading to some very large posting lists.
dex storage. More concretely, we replace PAST’s localManaging and transmitting such lists is very costly,
index storage (based on XMjziped files) with a B+-  and essentially becomes the dominant cost factor in
tree storage provided by BerkeleyDB. ThUsgrm,, processing queries. (As previously explained, index
at peerp is organized as a clustered index, using term queries are processed at the speed of the slowest post-
as the search key. Furthermore, the postings associing list transfer.) In this section, we describe a novel
ated to a given term are lexicographically ordered by data structure for managing long posting lists and a
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modified holistic twig join algorithm taking advantage
of this structure. Together, they alloparallelizing
posting list transfers, thereby reducing query response
time. As we shall see, this will also result in reduced
data transfers.
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The distributed posting patrtitioning (DPP for short) peerp' | X
is a a distributed hierarchical data structure for man-
aging posting lists. The key idea is to split the post- Figure 1. The organization of Term
ing list for a popular term horizontally based on range
conditions, and to migrate portions to other peers. In

this seznse, DPP is similar in spirit to distributed B- comprises of a set of postings. Similar to B-trees, the
trees [24]. ) ] ) ) entries in one block satisfy all the conditions from the
Before we describe DPP in more detail, we intro- ., of the DPP-tree to that block. Formally, a DPP

sponding “pointers” to other blocks, while a leaf block

duce some necessary definitions. Consider a posting o is denoted a&C,...C, o), Where:

list L, and in particular the lexicographical ordering

dictated by its(p’, d, sid) attributes. Acondition C 1. (4..Cy is a sequence of conditions such that
is an interval[a, 3], with o the least tuple ang the C; < Cy4q for eachi;

largest. In a slight abuse of notation, we Uséo re- 2. ¢, the (pointer) function ove{C;}, assigns to
fer also to the block of postings that satisfy the corre- each non-leaf”; a pseudo-key that leads to the
sponding condition. For each, C’, we defineC' C C’ corresponding DPP-block;

if each tuple satisfying” also satisfie€’, C N C’ if . ,
there exisl?[s a tuplfey thgst satisfies both, @d C’ if 3. ifp(Ci) = (C1..Cpn, "), for eachy, CJI’ < i
each tuple satisfying’ is lexicographically less that A DPP consists of aroot DPP block and of the
all tuples satisfying”’. whole tree obtained by following the pointers. The

We now discuss the precise DPP organization. LetDPP allows distributing a posting list over several
L, be along posting list that is initially stored in peer peers, thus the list can be fetched in parallel, reducing
p. Inits simplest form, DPP partitions the li&t, in the query response time. Further, the DPP is a search
blocksL, 1, ..., L, based on condition§’, ..., C), structure, that is, the conditions attached to blocks al-
such thatC; < Cj;q1. Each blockL, ; is assigned low focusing the search only on those blocks (thus
the pseudo-keyverflowi:a and is routed to the peer peers) that may contain useful data. This may save
in charge of that key in the DHT. Thus, the storage in communication costs.
of L, is distributed among several peers, anstores Let us now consider the implementation of DPP in
only the conditiong™;, . .., C,, and the corresponding KadoP. The implementation uses the general organi-
pseudo-keys. (Observe that this information allgws zation for relationTermthat is pictured in Figure 1.
to fully reconstructL,.) The key idea is that, can Originally, the entries of one posting list are all in one
now be transferred in parallel to a query peer, and thusdata block. The system sets a bound on the number
the total latency is reduced. Moreover, as we discussof entries in a data block and a bound on the num-
later, the system can use the conditions to avoid joiningber of conditions in a condition block. When inserting
blocks that will not generate matches. tuples, a block may overflow and be split. The small-

This one-level partitioning can be generalized to est and largest elements of each new block determine
multiple levels, which leads to the more general defini- the condition of the block. In principle, the DPP may
tion of DPP. In its most general form, DPP is a tree dataneed re-balancing, just like a B-tree. In practice, we
structure consisting of internal blocks and leaf blocks. found that the conditions are rather small. Thus, as-
Each internal block comprises of conditions and corre- suming reasonable block size (e.g., 1000 entries) for



both the data and condition blocks, posting lists of up shorten the time to the first answer, we relax the con-
to 10° entries require a single level of indirection. So, straint that results be produced in lexicographical or-
to simplify, we did not set a bound on the size of a con- der, and return to the user the first results produced by
dition block in KadoP, and implemented a two level each join. When an active block in some posting list
DPP structure. If one block at the second level corre- completes, the next block in this list is activated and so
sponding to some conditiof overflows, it is splitin ~ on. Observe that if the conditions do not intersect, the
two using two conditions¢; < Cs. One of the result-  answer of the join is empty.
ing blocks is moved to another peer. The root block  Consider now an arbitrary query with n nodes.
replacesC; (and its pointer) withC', C» (and the cor-  The join algorithm works similarly except that instead
responding pointers). of joining pairs of conditions, we now have to join vec-
The DPP is an ordered search structure, thus thetors((]}l, ...,CI), one for each node of query. An
block splits respect data order. Alternatively, one issue is whether the algorithm is generating a too large
could distribute a block’s data randomly between sub- number of joins. The answer is no, because the post-
contracting peers. This still allows for parallel trans- ings are lexicographically ordered. Indeed, suppose
fers, but block conditions do no longer guide the we are joiningn postings, consisting respectively of
search, and the lists have to be merged at the receivefn,, ..., m,, blocks. Then one can prove that we don't
When tested, this approach brought performance im-have to considern; x ... x m, (as one might have
provements a few times smaller than the order-basedexpected in the worst case) but at mest+ ... + m,,
DPP. Thus, we do not consider it further. joins. In practice, it is often the case that even much
To conclude this section, we note that, in the ac- fewer joins have to be considered.
tual system, all documents have an associated (user- Note that we only have to fetch blocks that have
specified or system-inferred) type, and terms appear-a chance to provide matches. For instance, if some
ing in a document are associated to its type. Thisblock, sayog does not intersect Wit@}, for anyj, we
type information is also stored in the conditions of the don't need to fetch it. The filtering of non-matching
DPP blocks, which allows the system to filter post- blocks is performed as follows. Consider thé post-
ing blocks further based on the type constraints of theing list with conditionsC} < ..., < C}‘((i)' We com-
query. Thus, the system will avoid transferring post- pute the minimum Id of a document that may satisfy
ing lists of a term with a given type, if the other query (%, say min; and the maximum Id of a document

terms do not match that type. that may satisf)C}((i), saymax;. We know that all
answers will be (with some abuse of language) be-
4.2 Query processing in DPP tween min =Maz{min; | i € [l.n]} and max =

Min{maz; | i € [1.n]}. We do not have to fetch any

We now describe a modification to the holistic twig block that does not intersect this interval. Furthermore,
join algorithm that can exploit the parallel transfer op- instead of transferring a b|0(IRJZ» that intersects, it suf-
portunities provided by the DPP. fices to transfer its intersection within, mazx]. Ob-

We first explain the technique for an index quety ~ Serve that by approximating;v...v i, by the doc-
joining two long posting lists. The DPP splits the first umentintervalmin;, max;], we may let through some
list into blocks corresponding t6'1, ..., C,, and sim-  blocks that have no possible match. Since we parti-
ilarly for the second list with condition§’;, ..., C/ . . tion a posting list in blocks of equal size, the gaps be-
For each paifi, j), we have to perform the join of the tween consecutive intervals are small on average and
blocks C; and C}. The idea is to parallelize the join this does not happen often.
of blocks(C;, C'}) and that of some othéC, 7). In To conclude this section, we note that other well-
our system, the maximum degree of paralleligms known distributed query optimization techniques [31]
set in advance. When processing a query, the first could clearly apply. For instance, some structural joins
blocks for each posting are fetched in parallel, e.g., could be pushed to the peer holding the longest posting
C1,...,Ckg and(1, ..., C%. The meaningful joins are list involved in the query, thus reducing data transfers.
computed in parallel and start producing answers. ToReplication is another source of potential optimiza-



tions, as the transfer of a posting list can be optimized
by replicating it and transferring fragments from dif-
ferent copies. DPP blocks can also be replicated to
several peers based on their popularity (i.e. how often
they are accessed) and their position in the DPP (the
root is always accessed, thus it should be replicated
more). The DHT does replicate its index for reliabil-
ity. However, this replication does not fit our needs,
because the replication factorfisedand has to be set
prior to creating the network. In contrast, we would
need to control the replication degree on a block-by-
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4.3. Experiments

In this section, we present an experimental study Figure 2. Indexing time.

on the effectiveness of the DPP scheme. The study 2
uses a deployment of actual KadoP peers on the
Grid5000 platform fww.grid5000.fr), a testbed (9
sites in France) for wide-area distributed applications.
Each Grid5000 node has 2 CPUs, and the nodes are
connected in a 10GB network. As we could not re-
serve a large number of nodes, we deployed 10 KadoP
peers per Grid5000 node. We report on experiments
on up to 500 peers (so 50 Grid5000 nodes). We have
used the Aug. 2006 version of the DBLP bibliographic
data (340 MB, available ablp.uni-trier.de). To exper- I
iment with larger data volumes, we cut the DBLP cor- O e e e T L L
pus in small XML documents of 20 KB each, and pub- Size of indexed data (MB)

lish several copies of the same documents when larger

volumes are needed. When multiple peers publish, the
data set is split evenly among them.

Our implementation of DPP employs a maximum traces theotal size of published data (over all peers).
block size of 4MB before it performs a split. In all Thanks to our robust replacement of the DHT’s index
our experiments, we apply the optimizations describedstore, publication now scales linearly in all settings.
in Section 3, since they brought significant improve- When 1 peer publishes, the network size increase from
ments. 200 to 500 peers brings a negligible overhead, demon-

We first verified the belief that long postings are strating thatlocate() costs incurred by the DHT are
frequent and important in size in standard XML col- small. Also with 1 publisher, the usage of a DPP brings
lections. Even for a 200 MB fragment of DBLP data, a negligible overhead when compared with the default
there are posting lists larger than 200K entriesifier ~ KadoP index. This demonstrates that DPP block split-
proceedings, 1M entries forauthor, and 500K entries  ting has a moderate cost. Most importantly, Figure 2
for title, to name a few. Observe that these frequentshows that many publishers drastically cut indexing
tags are typically queried often. time, as they work in parallel.

I ——{3F—— Total time with DPP
- ----O---- Total time without DPP /Q—
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Figure 3. Query response time.

Indexing time. Figure 2 reports the indexing time Query response time. Figure 3 reports index-
for several copies of DBLP. We varied the size of the query evaluation times for the query: //arti-
KadoP network, and also varied the number of peerscle//author//Ullman. The query was chosen to study
that index data, th@ublishers The horizontal axis the processing of long postings, in this casehor



(a stress test for our approach). The results clearly 1 8]

demonstrate the benefits of the DPP: query processing  [1 4[5 8]

is cut by a factor of three, and its growth is really slow [t 213 s 617 8]
’ , ) (1.1][2,2][3,3][4.,4] [5,5] [6,6][7.,7] [8,8]

as the data volumes grow. With or without the DPP,

query processing is network-bound. When the DPP is  Figure 4. Dyadic decompositions for  [1,

used, the largest posting list fragment stored on a peer

is of moderate size, thus transfer time does not grow

much as the size of the indexed data grows. and computes a sét’ of b postings that is a superset of

Traff on. | h , q b[\\al, that is, theb postings having an ancestor. At

_ rg IC f(f:_onsumptlon: n a\r;\;)t er experllment, Wf Std- i point, Peetocate(b) can sendB’ to the peer that

: trg Ic c'onsumpfuon.M € run S|'mu| taneously manli/ submitted the query without compromising the recall

| atg m}:nengwe queries. r:)refpreh(_:lshe Y, wle run avlvor ~of the result. Depending on the characteristics of the

oad of 5 QEer'TS’ each o V\ll Ic Ilnvo ves at lea?t filter and the data, we expect the sizeBF (a) to be

one_term W'; aoong ppstmg 'St'd n ?n mLer\_/a g much smaller than the size of the completpostings

5 minutes, the 50 queries are randomly submitted 0,4 16 gjze of3’ to be much smaller than the size of

execution at 50 distinct nodes, generating a mediumy, completeh postings. Thus, we expect important
throughput of one query each 6 sec_onds. We repeat th%avings in data transfer at a moderate cost in terms
test for several values of the total indexed XML data of local processing time. As we will see, similarly

(DBLP documents). The total traffic registered for Peerlocate(h) may compute Descendant Bloom Fil-
_ZOOMB’ ,A'OOMB',600MB’ and 800MB of XML data ter (DB Filter for short) DBF(b) of b and send it to
mdexed_ in DHT, Is 32M|_3’ 66MB, 95_MB’ and 127MB Peerlocate(a), so that the latter can select a superset
respectively. In conclusion, the traffic was not a pro_b- of a[//b], thea postings that have ladescendant.

lem for the 10GB network. However, since the traffic
increases linearly with the size of the indexed data, it In what follows, we describe in detail AB and DB
necessarily becomes a bottleneck, which motivated theFilters and introduce strategies that integrate them in
work on Bloom Filter of the next section. We mention query processing. Before continuing with our pre-
that these values are registered using a simple quergentation, we discuss briefly two key mechanisms on
execution plan, where all postings are transferred at thewhich we develop our framework: a canonical base
peer that executes the query. We are currently develfor representing arbitrary intervals ¢gadicbase), and
oping a cost model and an optimizer to select the bestconventional Bloom Filters.

execution plan that minimizes query response time or

3
2
1
0
2

3].

traffic consumption, depending on the setting. Dyadic Intervals. Let! be a positive integer and con-
sider the intervall, 2']. The dyadic decomposition of
5 Structural Bloom Filters [1,2!] at levelj, 0 < j < I, is its partition in2!—J

disjoint intervals of lengtl2’, termeddyadicintervals.

We introduce a mechanism, termed Structural Figure 4 shows an example of this decompaosition for
Bloom Filters, for reducing the volume of transferred | = 3. We usel;; to refer to thei-th dyadic inter-
data in query evaluation. As the name suggests, ouwal at levelj andZ = {I;;} to refer to the complete
techniques are inspired by the use of simple Bloom set of dyadic intervals. It is easy to see that each ar-
Filters in the evaluation of distributed relational joins. bitrary interval[z,] C [1,2'] can be represented as
The details are more involved, however, as we dealthe union of at mos® - [ disjoint intervals fromZ.
with structural joins over tree-structured data. Moreover, there is a unique representation that con-

To illustrate the proposed mechanism, assume thatains the least number of intervals, termed dyadic
the simple query/a//b is initiated at peemp. Peer  coverof [z, y] and denoted &B[z, y]. Returning to the
locate(a) computes anAncestor Bloom Filter(AB example of Figure 4D[1,7] is {[1,4], [5,6],[7,7]}. A
Filter for short) of the posting list.,, denoted as dyadic interval containing an intervét, y] is called
ABF(a), and sends it to Peefocate(b). Peer adyadic containerof [z,y]. The set of dyadic con-
locate(b) filters the posting list ob based oA BF'(a), tainers of [z,y] is denotedD.[z,y]. For instance,



Dc[374] = {[374]7 [174]7 [17 8]}

Bloom Filter. A Bloom Filter [9] provides a concise
representation of a sétin a form that is suitable for
membership queries. The filter consists of a vedior

andD(L,) = Ue,er,D(eq). The containerd,(e,)
andD.(L,) are defined similarly. The essence of the

Ancestor Bloom Filter technique comes from the fol-

lowing theorem:

of n bits (initialized to zero) and a set of hash func- Theorem 1 For eache, € Lj, e, € b[\\d] iff for each

tions Hy,...,H,. An elemente € S is inserted in
the Bloom Filter by setting bitF[H;(e)] to 1, for ev-
eryl < i < k. Similarly, a membership query for an
elementa is answered positively if all bitsF[H;(e)]

(o, dp, I) in D(ey), there existd’ in D.(I) such that
(b, dp, I') In D(Lg).

The AB Filter encodes the s@(L,) using a Ba-

are equal td. We refer to these operations as an insert Si¢ Bloom Filter. The parameters of the Basic Bloom

and a look-up respectively.

Filter can be determined based [@ L, )|, which can

Clearly, the Bloom Filter always returns true for the Pe maintained incrementally at pderate(a) as new
look-up of an inserted element. On the other hand, Postings are inserted. The AB Filter also records an

a look-up on an element not isi may return afalse

integerdclev that denotes the highest leveK dclev

positiveanswer due to the existence of collisions in the Such that an interval;; appears inD(L,). As we
hash functions. The probability of obtaining a false discuss next, this is used to implement efficiently the

positive, denoted agp, is termed thefalse positive

rate of the filter and it can be computed precisely based Lete, = (Po, dp, starty :

on |S| and the parameters and k. For a given set
S and a given false positive ratfp, it is possible to
choosek so thatn is minimal, i.e., communications

probing mechanism.

endy : levy) be in Ly,
To check whether it belongs 9\ \a], we compute the
coverB = D(ep) and then process eachy, : dy, : I) in
B as follows. We compute the dyadic contaifn(]),

are minimized. An essential aspect of a Bloom Filter and test whethelp, : d, : I') is in the Bloom Filter for
is that the vector size is typically much smaller than the €achl’ in D.(I). If we cannot find any sucl’, then
size of the set that it encodes, so its transmission costd is not covered by any interval i®(L,) and we can
much less than that of the original set. The trade-off, decide by Theorem 1 thaf is not inb[\\a|. If every
of course, is the introduction of false positive errors I in D(ep) is covered then we conclude thatis in

when the filter is used for membership queries.
5.1 Ancestor Bloom Filters

The AB Filter for a, denotedABF(a), is used to
filter the posting list ob to obtain a sublist 06|\ \a],
denotedF’ (b, ABF'(a)). (Recall that[\\a|] comprises
theb postings having an ancestor.) Consider a post-
ing e, = (pa,dq, start, : end, : lev,) € L, and
a postinge, = (pp, dp, starty : endy : levy) € Ly.
Clearly, e, is a descendant &, iff p, = py, dy = dp
and [starty, endy] C [start,,end,]. The key obser-

b[\\a], and this is correct up to collisions in the Bloom
Filter.

It is interesting to note that we can realize the AB
Filter using a simpler containment condition, one that
employs only the start valugart,. More concretely,
note that the conditiontart, < start, < end, IS
sufficient to ensure thay, is a descendant ef,, since
posting intervals cannot be partially contained. We can
thus determine i, is in b]\\a] by checking whether
(pp @ dp : [starty, starty)) is covered by an interval
in D(//a). Clearly, this simpler approach is equiva-
lent to Theorem 1 whetfD(e;)| = 1. As we show

vation is that we can express the previous contain-later, however, the conjunction of containment condi-
ment condition in terms of the dyadic covers of the tions in Theorem 1 leads to an error probability that
two intervals. More concretely, one can show that is exponential inD(e;)|. Hence, while the two ap-

[starty, endy| C [start,,end,) iff for each interval
I € Distarty, end,) there exists an interval’ €
D[start,, end,] that contains it, i.e., such thatC I'.

This suggests the following generalization to postings.

The coverof a postinge, = (pa, dq, start, : end, :
levy) isD(eq) = {(pa,da,I) | I € D[start,,end,]};

proaches have the same expected performance when
|D(ep)| = 1, Theorem 1 leads to lower error probabil-
ity in the general case.

Space overhead In a worst case scenario, every
coverD(e,) containg2l intervals and the number of in-



| Dataset [| Elementcouni [D(e)| | 2! | turn a false positive. We notice that this mechanism

IMDB 100K 1.37 | 32 encompasses two counter-forces: while an increased
XMark 200K 1.50 | 34 ) implies better accuracy at levgl it also implies
Swiss Prot 3.2M 1.29 | 42 V() imp Y & b

a larger number of insertions which can hurt the false
positive rate. We revisit this issue later, and describe
our choice ofy, when we analyze the false positive
probability of an AB Filter.

NASA 500K 155 | 38
DBLP 1.5M 1.23 | 40

Table 1. Average size of the dyadic cover.

sertions in the Bloom Filter thus grows asymptotically
with 21. In practice, however, we expect a much lower Analysis of error probability We define theAnces-
number of elements. A main reason for that is that thetor false positive ratéfor « andb), denotedfp” (a, b)
number of dyadic intervals in the cover|af y] essen-  (or simply fp* whena, b are understood), as the prob-
tially depends on the width— = + 1. Given that XML ability that an AB Filter falsely identifies & posting
documents are typically small and bushy, this implies as a member 0b[\\a|. Let fp[y] be the false posi-
that the average width of element is very short, so ontive rate, i.e. the probability that the underlying Bloom
average, an posting is likely to be covered by a small Filter returns a false positive answer. Note the depen-
number of dyadic intervals. dency of the probability ta), since the latter affects

To verify this conjecture, we have performed a sim- the number of insertions in the Bloom Filter. Lef
ple experiment on real-life and synthetic data sets. Forbe aL; posting not inb[\\a| and letk be the num-
each data set, we generated the start/end encoding dfer of elements ifD(e;) that are not covered by some
its elements and then measured the size of the dyadielement inD(L,). The posting is falsely selected by
cover for each element. The results are shown in Ta-the AB Filter if each of thek not covered elements is
ble 1. These results validate our assumption for prac-covered by a false positive answer of the Bloom Fil-
tical data sets and demonstrate that the space overheddr. Consider the containment check for a single not
of ABF(a) is likely to be much lower than the worst- covered intervalp, dy, I). In the worst case, the set
case bound dfl. D.(pw, dy, I) will contain I + 1 elements (ifs, = ;)

and there will bel + 1 probes to the Bloom Filter.

Tracing Wide Intervals  Observe that the AB Filter ~Note also that a probe at levglill translate toy ()
returns a false positive for a postiagif each interval ~ Probes, one for each replica. Thus, the probability that
(py, dp, I) € D(ep) is covered by somép,,d,,I') € (v, dp, I) is correctly not covered by any interval is
D(L,). Now suppose that there is a collision in the not smaller thar [, (1 — Fpl))Y@. In turn, this
Bloom Filter between some, and some(py, dy, K).  implies that the probability thalps, dy, I) is wrongly
The larger the size ok, the more false positive this covered is bounded by — [Ty <, (1 — fp[])¥V).
collision may generate. At the limit, a collision with Since the Bloom Filter returns a positive answeevf
(py, dy, [1,2!]) will generate a false positive with any ~€ry uncovered intervalp,, dy, I) is covered, the prob-
b-element in documer(tpb’db)_ This connection be- ablllty that the filter faISEIy selects, is bounded by
tween the size of an interval and its potential damaging (1 — [To<;<i(1 — fp[¥"])*))*. The worst case occurs
effect on the false positive rate suggests the idea of uswhenk = 1 and we can thus bound the overall false
ing more “traces” at higher levels to boost the accuracy Negative rate as follows:

of the filter.

More precisely, we assume the existence of a func-
tione : [0,1] — [1, 00) that assigns a positive number
to each level. In essenceyj) specifies the number
of replicas (or, traces) that are inserted per intefyal Observe that function) encodes an interesting
at the same levej. Accordingly, it specifies that a trade-off: as we increase(j) at a level we in-
look-up of I;; is implemented as the conjunction of crease the number of insertions and tfipg)], but we
1 (7) look-ups, one for each trace. Thus, an increasedalso increase the number of probes and thus decrease
¥(j) means that probes at levghre less likely to re-  fp[/]*9). Given that the upper levels are not likely to

<1 [ - fplw)*@

0<s5<!



generate a lot of insertions and that (as already men- @ o Q R
tioned) they are potentially very damaging in terms of o
false positive, it is desirable to sé{j) high for high ABF(@) DBFE)
v
Ievels' 9 @ b' = F(b,ABF(a)) e @ b' = F(b,DBF(c) A DBF(d))

In our work, we consider the functiop[j] = [1 +

j/c] (for some integerc > 1) that essentially adds 0 . ABF(®) o oam/ \osm
one extra trace evewrylevels. This choice is driven by 0o \ @ @
the following heuristic. Consider an interv}; that @ @

is not present irD(L,). If I;; is a false positive in FrressTEndmraRrey

the Basic Bloom Filter, then the effect on accuracy is Figure 5. AB Figure 6. DB
intuitively captured by the width’. We can thus use Reducer Reducer

27 fp[y]“1)) as a measure of the expected effect, where
fply]*V) is precisely the probability that; is a false any further the DB Filter. Note that, in particular, an

positive. We can show that the particularfunction 551 js along the lines of that presented in Section 5.1
ensures the following “balancing” propertyfip[¢] < can also be obtained.
1/2¢: every intervall;; has the same expected effect

and it is bounded by /2¢. In our experiments, we set

¢ = 4 as we expect the basic false positive rate to be
less thanl/16. We will see in Section 5.4 that this
scheme yields good performance in practice.

5.3 Query Evaluation with Bloom Filters

We introduce three query processing strategies
based on Structural Bloom FiltersAncestor Bloom
Reducer Descendant Bloom Reduc@ndBloom Re-
ducerthat can be seen as a hybrid of the previous two.
In the interest of space, we present the strategies by
example using the twig queia//b[//c][//d]. For ease
of exposition, we assume that each tag is handled by a
distinct peer and use the name of the tag to refer to the
corresponding peer.

All strategies proceed in two phases: in the first
phase, the peers exchange filters and reduce their post-
ing lists; in the second phase, the reduced lists are sent
to the query peer for the final join. The strategies es-
Theorem 2 For eache, € Lq, e, € a//b] iff sentially differ in the realization of the first filtering
D(ey) N Dy(Ly) # 0. phase. Figure 5 depicts the filtering phase of Ancestor

Bloom Reducer (AB Reducer, for short) on the exam-

The filter is created by inserting in the Bloom Fil- ple query. In a nutshell, each peer receives an AB Fil-
ter, for each posting, in L;, each element i®.(e;). ter from its parent, filters its postings, and forwards an
For a postinge,, it suffices to perform a look-up in  AB Filter of the reduced postings to its children peers.
the filter for each element i(e,). Observe that Thus, peers (except the root) filter their postings ac-
eachb posting typically entails many more insertions cording to the corresponding incoming path from the
in the Bloom than with the AB, i.eD.(ep) vs. D(ey). root query variable. Descendant Bloom Reducer (DB
So, intuitively we should expect a DB Filter to have a Reducer, for short) follows an inverse process, for-
higher space overhead compared to the AB Filter or,warding DB Filters along the leaf-to-root paths and
equivalently, less accuracy for the same storage spaceessentially filtering based on outgoing paths. (This
We revisit this point in Section 5.4 when we present a is shown in Figure 6.) Finally, Bloom Reducer per-
comparison between the two techniques. forms a combination of the two previous strategies: it

Due to space constraints and since the technique isnitially forwards AB Filters top-down, and then DB
very similar to that of the AB Filter, we will not discuss  Filters bottom-up.

5.2 Descendant Bloom Filters

A Descendant Bloom Filtefor b, denotedDBF'(b),
is used to filter the postings ih, to obtain a sublist
of //a[//b], denotedF (a, DBF(b)). The key idea re-
mains essentially the same d€B3F (a) but reversed:
we send in a Bloom Filter traces ofpostings (using
again dyadic intervals), and then perform some tests
for the a postings. The crux of the DB Filter is given
by the following theorem:



The intuition behind each strategy is to perform function that uses a single trace per level.
some Bloom Filter-based pre-processing to focus the _ _
query to a (hopefully) small set of documents and Performance of Fllter'-based Query Strgtegles.ln
peers. The hope is that the savings in reduced post—the next set of experiments, we examine t_he perfor-
ing list transfers offset the relatively small overhead of Mance of the three query evaluation strategies that we
transmitting compact Bloom Filters. Of course, this Nave introduced earlier, namely, AB Reducer, DB Re-
trade-off depends heavily on the data and query char-ducer, and Bloom Reducer. We use the total vol-
acteristics, and the use of Structural Bloom Filters may Ume of transferred data as the performance metric for
not always decrease the total network traffic. We ex- €aCh strategy, since this is the major cost factor in
amine this point in more detail in Section 5.4 where distributed query evaluation over wide-area networks.

we evaluate experimentally the performance of theseFOr €ach strategy, we report its total data volume nor-
strategies. malized by the amount of data shipped by the conven-

tional query processing strategy. Thus, a normalized
_ data volume of.4 implies that the strategy transfers
5.4. Experiments 60% less data overall. We base our evaluation on the
real-life DBLP data set described in Section 4. In all
In this section, we present the results of an exper-cases, AB and DB Filters are initialized with a basic
imental study to evaluate the performance of AB and false positive rate of 20% and 1% respectively. The
DB Filters. idea is to allocate fewer bits to AB filters since our pre-
vious experiments have shown their resilience to errors

Filter Sensitivity Analysis. The first set of experi- . i )
y y P in the Basic Bloom Filter.

ments performs a sensitivity analysis of the structural
filters. We use the simple quewry//b and consider Figure 7(a) shows the performance of the three
two scenarios: filtering with ABF(a), and filtering ~ strategies on the simple queffarticle[.contains "Ull-
a with DBF(b). We measure filter performance as the man”]. (The graph breaks down the normalized data
fraction of false positive answers. We term this metric volume in terms of the size of AB and DB filters, and
theempirical false positive rate of the filter the size of the filtered posting lists.) We observe that
Due to space constraints, we only present a briefPB Reducer is very effective in ﬁltering posting; that
overview of our findings. (The complete experiments &€ irrelevant to_the guery, leading to a reduction of
can be found in the full version of this paper.) Our ex- More than 90% in transfer load. Essentially, the key-
periments have indicated that the AB Filter achieves word predlcate_ls very selective as there are relatively
a lower error probability compared to the DB Filter f€WUliman postings (compared to the numbeauitie
when they both use an equally accurate Basic BloomP0Stings) , and this leads to a DB Filter that can se-
Filter. For instance, the error rate of the AB filter |€Ct very effectively the matching postings aficle.
remains below 10% even whefp[¢] reaches 20%, In contrast, Bloom Reducer and AB Reducer are less
whereas the error rate of the DB Filter remains below €féctive as they transfer a large AB filter article,
10% only whenfp[y] < 5% and rises to over 50% as without ggttlng any significant bene'flt's from fllterlng
#p[y] increases. The difference is due mainly to the the small list ofUIIman. _AB Reducer is in fact costlier
tighter probing mechanism of the AB Filter. Recall than thg baseline n_o-fllter strategy, as it also transfers
that the answer of the AB Filter is generated through the unfilterecarticle list.
a conjunction of containment predicates, which inturn  Figure 7(b) depicts the performance of the three
reduces exponentially the probability of committing an strategies on the slightly more involved quersrti-
error. The DB Filter, on the other hand, relies on a cle//author[.contains "Ullman”]. The injection ofuthor
disjunction of probes that proves detrimental for the is interesting, as it represents one of the largest posting
overall error rate. Our results have also demonstratedists in this data set. We observe that AB- and Bloom
the benefits of the proposedfunction for the AB Fil- Reducer become more efficient than in the previous
ter. For a filter of the same size, the proposed func-experiment, since the overhead of the AB filteranti-
tion achieved a lower error rate compared to the defaultcle is now offset by the savings of reduciagthor, the
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dominant list in this query. DB Reducer remains the (?xml version="1.0" encoding="UTF-8"7?)
dominant strategy, as the DB filter asilman is still IDOCTYPE document [

(
(
the most cost-effective filter for this query. (IENTITY thisabstract SYSTEM "2445abstract.xml”)
The final experiment, shown in Figure 7(c), eval- (!ENTITY paper SYSTEM "2445paper.xml”)
uates the performance of the three strategies on the ('ENTITY md SYSTEM "MartinDoe.xml")
(
(

branching query/article[//title]//author[.contains "UlI- IENTITY dj SYSTEM "DanJones.xml”) ])

man”]. (The Figure also depicts a fourth strategy that (article)

we will discuss later.) Clearly, the proposed strate-  (author name="Jones”) &dj; (/author)
gies do not enable any savings for this particular query.  (author name="Doe”) &md; (/author)
This is due to the existence of thide branch, which (title)More on XML (/title)

has a detrimental effect on the performance of each  (abstract) &thisabstract (/abstract) &paper

strategy. For DB Reducer, the branch leads to the cre- (/article)

ation of a large DB Filter that is not useful in filtering

article elements. (Essentially, all articles have a title.)

For AB Reducer, the AB filter ouarticle is not suffi-

cient to filter thetitle postings, and this leads to a high (Thusititle is sent to the query peer in its entirety.) The

number of unfiltered postings. Finally, Bloom Reducer performance of this approach is plotted in Figure 7(c)

suffers from a combination of the previous two factors as the fourth strategy. As shown, the modified strategy

as itis a hybrid strategy. offers close to 70% of savings in total transfer load. As
Overall, Structural Bloom Filters can enable a sig- part of our future work, we plan to investigate more

nificant reduction in the volume of transferred data. principled optimization techniques that select the opti-

Our results indicate that there is no dominant strategy,mal strategy based on a formal cost model.

as the performance depends heavily on the characteris-

tics of the query and the data. In our current work, we 6 The Fundex

employ the following simple heuristic in order to se-

lect the filtering strategy: we identify the subset of the ~ We first present the motivation for intensional data.

query that has a guaranteed low selectivity factor, by We then consider a technique that we dalindexto

examining the sizes of the stored posting lists, and weindex and query intensional data. We then shortly de-

apply Structural Bloom Filters on the specific subset. scribe some experiments.

Of course, this implies that only lists that correspond to

the selected sub-query will be filtered, but this can still Motivation The XML standard proposes two im-

yield significant savings if the lists are large. To verify portant features for managing intensional information,

this, we have applied the DB Reducer strategy on thenamely includes (using the entity keyword) and ref-

subset//article//author|.contains "Ullman”] of the pre-  erences (using id, idref). Figure 8 shows an example

vious query and have thus excludit from filtering. of includes with a bibliography document. Observe

Figure 8. Intensional data using includes



for instance that thabstractis kept in a separate file. e We treat an occurrence of a call (u) as a
This classical idea of storing data in separate files is pointer to the virtual documertp, &' (w)). We

typically very convenient for maintenance purposes. use a relationRev to capture thaeversepoint-
There are differences between includes and references, ers that provides all occurrences of a particular
e.g., in the way queries are stated, but from a func- function call. This relation is also supported by
tional viewpoint (e.g., in a user interface) and from an the DHT and given a paifp, ' (w)), we can use
indexing viewpoint, this comes to the general idea of the DHT to obtain the structural identifiers of all
having portions of the data beingtensionalinstead occurrence of the corresponding function call.
of extensional.

Consider again the documediin Figure 8 and the We now discuss the integration of these features in

query: Retrieve the bibliography references containingquery processing. To simplify exposition, we will il-
the wordgraph in the abstract. We have two alterna-  |ystrate the techniques on the previous example query
tives: (haive do not returnd because its abstract ele- //article//abstract].contains “graph”]. Query processing
ment does not contain the wogtaph; or (brutal) re-  ytjlizes the same twig join algorithm as before, except
turnd and similarly return any document including in-  that a match may be marked as incomplete if the cor-
tensional data since this intensional data possibly conyesponding element is intensional. Returning to the
tains the desired pattern. Theaive alternative corre- example, this will occur when the abstract of an arti-
sponds to simply indexing the documents as they arecle includes a reference to another document (see also
and is very incomplete. Therutal one may be eas- Figure 8). In this case, the algorithm will generate an
ily implemented and is very imprecise. It may result gnswer tuple = (e1,e2?), wheree, is the id of the ar-
in contacting (almost) all peers for each query. We ticle elementg, is the id of the abstract element, and
will show that it is possible to be complete at a lower the “>” denotes an incomplete match since the abstract
cost using an indexing technique called thendex s intensional. We refer toas a potential answer and
(for functional indexing). use R to refer to the set of such tuples. We also say
For simplicity, assume that intensional data is ob- thatapstract is an incomplete query variable . In
tained by function calls (this also covers includes and parallel to the main twig join algorithm, the system
referencing). The indexing is modified as follows: evaluates the predicat®ntains "graph” on the func-
tional documents (i.e., documents appearing in refer-
ences), and computes the sgtcomprising the ids of
documents that satisfy the predicate. UsiRey, S,
is mapped in turn to a sét, of element ids that con-
tain references to the matching functional ids. Having
e Letw = f(u) be the string corresponding to a computedi andR,, the incomplete answers i can
function call occurring in some document. The be completed by performing @&join betweenR and
peerp in charge of this function call is the peer in  Ra.
charge of the kefun:w (so anyone can find who it It is straightforward to generalize this approach to
is). The identifier of the result of this call ig(w) the case where a potential answer contains several in-
for some hash function’. Thefunctional id(in complete variables. The intuition is that the system
short, fid) (p, '(w)) plays the role of the pair has to compute several relatiohs, one for each in-
(p,d) for regular documents. When first asked complete variable, and then perform a multi-way join
to index f(u), Peerp materializesf(u) and in-  betweenR and relationsR; to complete the answers.
dexes it usingp, ' (w)) in place of the standard We note that it is possible to optimize the final join by
docid. Once indexed, the resyf{u) does not  grouping R on incomplete variables and then joining
have to be kept. Suppose another peer encountergach group with the corresponding subset of the rela-
another occurrence of the same function-call, andtions R;.
requests fronp the indexing off (v). Thenp has Clearly, the new processing algorithm results in im-
nothing to do. proving completeness if comparednaive or preci-

e The element identifier specifies in addition
whether the subtree rooted at that node is purely
extensional or whether it contains some inten-
sional data, i.e., it is amtensional-node



o Fundorsimple 3 document is referenced several times, in-lining poten-
[ féf rnuli:?negx-represemaﬁve data instance ] tially generates a lot of extra indexing cost.
Representative-data-indexing The full indexing of
intensional data may be quite expensive, suggesting
some less precise or less complete indexing. To il-
lustrate, we briefly outline a technique of particular
interest, based on lossy indexing of intensional data.
For instance, consider the intensional paper in Fig-
ure 8. We may have some information about its type
as provided, e.g., by an XML schema or a DTD. In
o the spirit of the representative objects of [28], we can
5 1o 15 20 25 make the index aware of such typing information us-
Number of indexed documents (x1000) . . . X . .

ing the notion ofrepresentative-data-indexingrhink

of the document?’ obtained by replacing i inten-
Figure 9. Query processing times with the sional data by a skeleton of the data they provide, i.e.,
Fundex. by a representative instance. Instead of indexing
we indexd’. Now, omitting details, we can answer

. gueries more precisely tharaiveif not as completely
sion if compared tdrutal. We have tested the Fun- as within-lining. For instance, consider the query:

dex glgorlth?ﬂzgg\()tge INEXt[38I]E Hi% coIIectl?n, /larticle//contains(.//section-title, Graph’) and the doc-
consisting o ocuments. ach document Con-, et g in Figure 8. The tagarticle is matched by

:alns a S (etscrltpt(lontqf a publlcattlor}:l anc_J”? referlf nced’ the tagsection-title is matched by a node of the
totaln ? 5862)%% ep IIIr)]<I3ILS ((ejparae Ite- E ma EIS epresentive-data-indexing fak And because: is

o'al Of 0F sma ocuments, each roughly only representative, the conditions underneath are ig-
1KB. We illustrate these tests with the queryarti- d

le[contains(.//title,system’) and contains (.//abstract nored.

¢ . e . ) N ' In experiments, we found that the representative-
'interface’) The posting lists fottitle, article and ab- . . . . . .

tract have at least 28000 entri The wors data-indexing technique brings important savings. It
strac a. © ateas entries. € WoRys- does that by pruning the search space: a number
tem and interface are reasonably frequent, but there . L .

. . of backward pointer chasing is avoided because the
are very few actual query matches, precisely 10. Fig-., »
. . . type” does not match.

ure 9 shows query evaluation time on a collection of

increasing size. The figure also shows the impact of
two other optimizations, namely in-lining and repre-
sentative data indexing. We briefly discuss them next.

Query processiing time (seconds)

7 Related Work

Many works have studied P2P keyword search, e.g.,
[25, 33]. The transfer of long posting lists is high-
In-lining In-lining consists in actually inserting lighted as an important problem in DHT networks
some intensional data in the documdrim the in- in [25].
dexing viewpoint So for instance, for the example of We share motivations with a number of works on
Figure 8, the includes are replaced by the actual filesP2P data-sharing platforms, [20]. Unlike our system,
before indexing the document. As Figure 9 indicates, [7, 19, 29] are based on unstructured networks. A large
in-lining results in important savings. This also re- emphasis on scaling is also considered in [29], but in
flects measures the cost of following backward point- the context of the relational model. They often rely on
ers. When references are used to split (and possiblymulticasting queries to all the peers, which we try to
distribute) an XML tree as in [10, 11], in-lining does avoid in KadoP. Like us, [17] deals with XML but their
not generate any extra cost and works nicely. Whenindexing is based on paths (queries including text key-
the data resembles a graph, i.e. the same portion of avords cannot be processed based on the index). Iris-



Net [18] supports distributed hierarchical queries over system has been extensively tested and measured on
the Internet. Like KadoP, IrisNet uses XML (trees) as a large number of peers. The Edos platform based on
a data model. However, it is very different from KadoP KadoP is now almost complete and we are planning its
in that it builds on a hierarchical overlay network (a deployment.
DNS) to route queries and data. We are currently working on improvements of the
The idea to use a streaming algebra in such a conKadoP system. We have started building a query opti-
text is very natural and can be found, e.g., in [2, 20]. mizer able to explore other strategies, such as Bloom-
The DPP structure is based on the idea of distribut- based strategies, and standard distributed database op-
ing a tree over a network. This idea has been usedimization techniques, such as load balancing. Also,
to support range queries in a DHT in BATON and the index construction for a large collection of docu-
in PTrees [23, 26]. Using BATON instead of PAST ments (such as a new Linux release in Edos) places
would enable KadoP to process index queries witha lot of stress on the system. We are exploring tech-
range conditions, too. nigues to improve index construction time. Finally, we
The twig join algorithm that we use is an exten- are working to improve the system’s existing support
sion of [10]. The idea of distributing portions of doc- for peers joining and leaving the network.
uments in other documents (an aspect of what we To reduce the index size, one could also consider
call intensional data) and the problem of evaluation indexing at a coarser level of details, e.g., record only
queries over such distributed documents is not new,the document and peer ids in the index. This strongly
see, e.g., [4, 32, 36]. The most obvious difference reduces the index, but renders index queries imprecise.
is that KadoP stresses indexing over a structured P2FAn interesting middle ground is, instead of indexing
network to focus on the relevant data query, while the the document, to index a representative instance [28]
mentioned works execute queries using the local in-in the spirit of [17]. We may also consider indexing
formation available at one site (peer) and route sub-words (not tags) selectively, e.g. index the words in
queries to the neighbors sites, following the link be- abstracts but not in the bodies of papers. We believe
tween documents. [11] studies the same problem for ahat carefully trading precision and completeness for
single XML tree distributed horizontally and vertically performance is a fascinating avenue of research.
over sites. However, they use a bottom-up algorithm
while ours is top-down in the spirit of [10]. Acknowledgments We thank Nitin Gupta and
The proposed structural bloom filters are inspired Gabriel Vasile for participating to implementing
by the use of basic bloom filters for processing dis- KadoP. We thank Sophie Cluet and Karl Schnaitter
tributed relational joins [31]. Clearly, the details of our for discussions on P2P XML indexing. We thank
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