
Effective Verification of Weak
Diagnosability

Anoopam Agarwal, ∗ Agnes Madalinski, ∗∗ Stefan Haar ∗∗∗

∗ Student, IIT Delhi, India (e-mail: anoopamagarwal@gmail.com)
∗∗University Austral de Chile, Campus Miraflores, Valdivia, Chile

(e-mail: amadalin@uach.cl)
∗∗∗ INRIA and LSV (CNRS and ENS Cachan)

61, avenue du Président Wilson
94235 CACHAN Cedex, France

(e-mail: haar@lsv.ens-cachan.fr,stefan.haar@inria.fr).

Abstract: The diagnosability problem can be stated as follows: does a given labeled Discrete
Event System allow for an outside observer to determine the occurrence of the “invisible” fault,
no later than a bounded number of events after that unobservable occurrence, and based on
the partial observation of the behaviour? When this problem is investigated in the context of
concurrent systems, partial order semantics induces a separation between classical or strong
diagnosability on the one hand, and weak diagnosability on the other hand. The present paper
presents the first solution for checking weak diagnosability, via a verifier construction.

Keywords: Discrete event systems, diagnosis, Petri nets, events, observability, partial order
semantics, Event structures.

1. INTRODUCTION

Diagnosis under partial observation is a classical problem
in automatic control in general, and has received con-
siderable attention in discret event system (DES) theory,
among other fields. In the DES setting, the approach that
we will call “classical” here supposes that the observed
system is an automaton with transition set T , prefix-closed
language L ⊆ T ∗, and a set of observable transition labels
O. The associated labeling map λ : T → O may not
be required injective, and leaves some transitions from T
unobservable, in particular fault φ. The observations have
the form of words w ∈ O∗ obtained by applying λ to words
in T ∗. A classical definition of diagnosability is given in
Sampath et al. (1995); we follow the equivalent presentaion
of Cassandras and Lafortune (1999). Write s ∼λ s′ iff
λ(s) = λ(s′), and call any sequence s such that φ occurs in
s a faulty sequence, and all other sequences healthy. Then
:

Definition 1. (Sequential Diagnosability). A prefix-closed
language L ⊆ T ∗ is not (strongly) diagnosable iff there
exist sequences sN , sY ∈ L such that:

(1) sY is faulty, sN is healthy, and sN ∼λ sY ;
(2) sY with the property 1 can be chosen arbitrarily long

after the first fault, i. e. for every k ∈ N there exists
a choice of sN , sY ∈ L with the above properties
and such that the suffix sY/φ of sY after the first

occurrence of fault φ in sY satisfies |sY | ≥ k.

Concurrent systems are difficult to supervise using the
classical approach because of the state explosion problem.
For intrinsically asynchronous distributed systems, such
as encountered in telecommunications or more generally

in networked systems, the use of models that reflect the
local and distributed nature of the observed system, such
as Petri nets or graph grammars, is helpful not only in
terms of computational efficiency, but also conceptually.
Putting these ideas together, Benveniste et al. (2003)
extends diagnosis to asynchronous models and their non-
interleaved semantics. This generalized methodology for
fault diagnosis is based on the non-sequential executions
of labeled Petri nets, that is, the partial order semantics
in occurrence nets and event structures. Theoretical
aspects of partial order diagnosability for Petri nets, in
the spirit of the above definition, have been developped
in Haar et al. (2003); Haar (2007, 2009, 2010a,b). While
the sequential case is embedded and generalized in these
results, new features emerge in partial ordered runs that
have no counterpart in sequential behaviour; this led to
the distinction between strong and weak observability
and diagnosability properties in Haar et al. (2003); Haar
(2010a).

2. PETRI NETS AND UNFOLDINGS

Definition 2. A net is a tuple N = (P ,T ,F) where

• P 6= ∅ is a set of places,
• T 6= ∅ is a set of transitions such that P ∩ T = ∅,
• F ⊆ (P × T) ∪ (T × P) is a set of flow arcs.

A marking is a multiset M of places, i.e. a map from P
to N . A Petri net is a tuple N = (P ,T ,F ,M), where (i)
(P ,T ,F) is a finite net, and (ii) M : P → N is an initial
marking.

Elements of P ∪ T are called the nodes of N . For a
transition t ∈ T , we call •t = {p | (p, t) ∈ F} the preset

of t, t• = {p | (t, p) ∈ F} the postset of t . In Figure 1,
we represent as usual places by empty circles, transitions
by squares, F by arrows, and the marking of a place p by
putting the corresponding number of black tokens into p.

A transition t is enabled in marking M , written M
t−→ if

∀p ∈ •t , M (p) > 0; otherwise write M 6 t−→. An enabled
transition t can fire, resulting in a new marking m′ = m−
•t + t•; this firing relation is denoted by M

t−→ M ′. A
marking m is reachable if there exists a firing sequence,
i.e. transitions t0 . . . tn and markings M1, . . . ,Mn−1 such

that M0
t0−→ M1

t1−→ . . .
tn−→ Mn. A Petri net is safe if for

all reachable markings M , M (p) ⊆ {0, 1} for all p ∈ P ; all
Petri nets considered here are safe.

Occurrence nets and Unfoldings. In a net N = (P ,T ,F),
let <N the transitive closure of F , and 6N the reflexive
closure of <N . For t1, t2 ∈ T , set t1#imt2 and t2 iff t1 6= t2
and •t1 ∩ •t2 6= ∅, and define # = #N by

a # b⇔∃ta, tb ∈ T :

{
ta #im tb

∧ ta 6N a
∧ tb 6N b.

Define co = co N by setting, for any a, b ∈ P ∪ T ,

a co b ⇐⇒ ¬ (a 6 b) ∧ ¬ (a # b) ∧ ¬ (b < a)

Definition 3. Let ON = (B ,E ,G) be a net, and define the
closed and open prime configurations for e ∈ E by

[e] = {y ∈ B ∪ E | y 6ON e}
〈e〉, [e]\{e}.

Then ON is an occurrence net if and only if it satisfies

(1) 6ON is a partial order;
(2) for all b ∈ B , |•b| ∈ {0, 1};
(3) for all e ∈ E , the set [e] is finite;
(4) no self-conflict, i.e. there is no x ∈ B ∪ E such that

x#ONx;
(5) the set cut0 of 6ON -minimal nodes is contained in B

and finite.

In occurrence nets, the nodes of E are called events, and
the elements of B are denoted conditions. Occurrence nets
constitute particular cases of prime event structures (PES)
in the sense of Winskel et al Nielsen et al. (1981); .

Definition 4. A prime event structure (over alphabet A) is
a tuple E = (E ,6,#), where E is a set of events,

(1) 6⊆ E × E is a partial order satisfying the property
of finite causes, i.e. for all e ∈ E , |[e]| <∞, and

(2) # ⊆ E × E an irreflexive symmetric conflict relation
satisfying the property of conflict heredity, i.e.

∀ e, e ′, e ′′ ∈ E : e # e ′ ∧ e ′ 6 e ′′⇒ e # e ′′, (1)

Prefixes and Configurations. Restricting 6 and # to the
event set E , ”forgetting” conditions of ON , yields an event
structure. A prefix of E is any downward closed subset
V ⊆ E , i.e. such that for every e ∈ V , [e] ⊆ V . Prefixes
of E induce, in the obvious way, sub-event structures of
E in the sense of the above definition. Denote the set of
E ’s prefixes as V(E). Prefix c ∈ V(E) is a configuration if
and only if it is conflict-free, i.e. if e ∈ c and e#e ′ imply
e ′ 6∈ c. Denote as C(E) the set of E ’s configurations, and

as Cfin(E) ⊆ C(E) the set of all finite configurations. Call
any ⊆-maximal element of C(E) a run of E ; denote the set
of E ’s runs as Ω(E), or simply Ω if no confusion can arise.

Definition 5. If N1 = (P1,T1,F1) and N2 = (P2,T2,F2)
are nets, a homomorphism is a mapping h : P1∪T1 → P2∪
T2 such that (i) h(P1) ⊆ P2 and (ii) for every t1 ∈ T1, the
restriction to •t1 is a bijection between the set •t1 in N1

and the •h(t1) in N2, and similarly for t1
• and (h(t1))

•
. A

branching process of safe Petri net N = (N ,M0) is a pair
β = (ON , π), where ON = (B ,E ,G) is an occurrence net,
and π is a homomorphism from ON to N such that:

(1) The restriction of π to cut0 is a bijection from cut0

to M0, and
(2) for every e1, e2 ∈ E , if •e1 = •e2 and β(e1) = β(e2)

then e1 = e2.

The unique (up to isomorphism) maximal branching pro-
cess βUnf = (ON Unf , πUnf) of N is called the unfold-
ing of N ; see Esparza and Vogler (2002) for a canon-
ical algorithm to compute the unfolding of N . We will
assume that all transitions t ∈ T have at least one out-
put place, i.e. t• is not empty. In this case, every finite
configuration c of ON Unf spans a conflict free subnet
cUnf = (Ec,Bc,G|(Ec×Bc)∪(Bc×Ec)) of ON Unf by setting

Bc ,
⋃
e∈E

(•e ∪ e•) .

The following results (see e.g. Esparza and Vogler (2002))
justify the use of unfoldings: The set cut(c) of 6-maximal
nodes of cUnf is contained in Bc. Moreover, cut(c) is a co-
set, that is, for all distinct conditions b, b′ ∈ cut(c), b co b′

holds; and cut(c) is ⊆ −maximal with this property, and
such sets in occurrence nets are called cuts. By setting, for
any cut cut and place p,

Mcut(p) , | {b ∈ cut : π (b) = p} ,
we obtain a marking of N . Now, for cut(c) as above,

Mc , Mcut(c) is a reachable marking of N , more precisely
the marking that N is in after executing firable transitions
in a sequence compatible with c. Conversely, for every
reachable marking M of N there exists (at least) one
configuration c in ON Unf such that Mc = M .

Progressive configurations. For any finite configuration c
and event e ∈ E\c such that c∪{e} is a configuration (in
particular, there is no conflict between e and any event in
c and all predecessors of e are contained in c), we have

that Mc
π(e)−→. We therefore denote this situation by c

e
;.

Now, let the height of an event e be the longest <-chain
of events leading to and including e:

(1) H(∅) , 0,

(2) H(e) , 1 + max{H(e ′) : e ′ ∈ 〈e〉)},
and for any configuration c, let

H(c) , sup
e∈c
{H(e)}.

Then configuration c is called progressive iff for every

e ∈ E\c such that c
e
;, one has H(c) < H(e). Denote

by Cprog the set of progressive configurations.

Fig. 1. Left: a Petri net N with two variants N∗ and Nw;
as indicated by the grey lines, both nets are equal up
to the presence of transition w in Nw and its absence
from N∗. On the right, a prefix of N∗’s unfolding.

Complete Prefixes. Unfoldings of safe Petri nets are infinite
in general. However, since the space of reachable markings
is finite, all states and all patterns of behaviour can be
observed on a bounded prefix of the unfolding. The shape
and size of such a complete prefix varies depending on
the information one wishes to extract, and on the method
used to truncate the unfolding. Following Khomenko et al.
(2003), we define:

Definition 6. A cutting context for UnfN is a triple Θ =
(∼,≺, (ce)e∈E), where

(1) ∼ is an equivalence relation on Cfin,
(2) ≺ is a strict well-founded partial order on Cfin such

that c ⊆ c′ implies c ≺ c′; ≺ is then called an
adequate order;

(3) ∼ and ≺ are preserved by finite extensions; i.e. for
every c1, c2, c

′
1 ∈ Cfin such that (i) c1 ∼ c2 and (ii)

c1 ⊆ c′1, there exists c′2 ∈ Cfin with c2 ⊆ c′2 such that
• c′1 ∼ c′2, and
• c1 ≺ c2 implies that c′1 ≺ c′2,

(4) and (Ce)e∈E is a family of subsets Ce ⊆ Cfin.

One defines recursively sets coffΘ and fsbΘ, respectively
of cut-off and feasible events, by :

(1) e ∈ fsbΘ iff 〈e〉 ∩ coffΘ = ∅;
(2) e is a static cut-off event iff (i) e is feasible and (ii)

there is a corresponding configuration c = c(e) ∈
(ce)e∈E such that

• c ⊆ (fsbΘ\coffΘ),
• c ∼ [e] and c ≺ [e].

The branching process of N obtained by restricting to the
events in fsbΘ is called the Θ-canonical prefix of UnfN .

As shown in Khomenko et al. (2003), the canonical prefix
is finite whenever there is no infinite <-chain of feasible
events.

3. OBSERVABILITY AND DIAGNOSABILITY

Let N = (P ,T ,F ,M0) a safe Petri net, λ : T → A a
labeling mapping into an alphabet A that contains the
empty symbol ε, UnfN = (B ,E ,G , cut0) its unfolding

net, with labeling morphism α : E → T given by the
unfolding morphism. Denote as U , λ−1({ε}) the set

of unobservable transitions, and as O , T\U the set of

observable transitions; accordingly, let EU , α−1(U) and

EO , α−1(O) be the set of unobservable and observable
events of UnfN , respectively.

Due to partial observation, different configurations can
be equivalent in terms of the observable behaviour. The
following notations formalize this fact.

Definition 7. Write c ∼O c′ iff for the restrictions of 6
to cO , c ∩ EO and c′O , c′ ∩ EO, there exists a label-
preserving order isomorphism I : cO → c′O. If c1 ⊆ c2 and
c2 ∼O c3, then write c1 ⊆O c3.

Definition 8. Let σ = t1t2 . . . ∈ Tω , T ∗ ∪ T∞ be a
transition sequence that is enabled in M0, i.e. assume there
exist reachable markings M1,M2, . . . of N such that

M0
t1−→ M1

t2−→ M2
t3−→ . . .

Then σ is weakly fair iff for any t ∈ T and i ∈ N for which

Mi
t−→, there exists j > i such that M 6 t−→.

In other words, weakly fair executions are such that no
transition remains enabled ”forever”: after any transition
t ’s enabling on σ, t must eventually become disabled,
either by its own firing, or by the firing of a conflicting
transition. In the unfolding of N , a fair run corresponds
to a set of events ω such that for any event e, either e ∈ ω,
or there exists e ′ ∈ ω such that e#e ′. Of course, this is
equivalent to ω being a maximal configuration, i.e. ω ∈ Ω.
Let φ ∈ U be a fault transition, and let Eφ , α−1(φ).
With these preparations, we are ready to define:

Definition 9. We say that N is weakly observable
w.r.t. λ iff for every ω ∈ Ω(N), |ω ∩ EO| =∞. A weakly
observable (w.r.t. λ) N is weakly diagnosable w.r.t. λ
and φ iff for every faulty run ωφ ∈ Ω(N), it holds that any
ω ∈ Ω(N) such that ω ∼O ωφ satisfies ω ∩ eφ 6= ∅.

Example. In the net N∗ in Figure 1 on the left , let the
fault be φ = v, and assume that a is the only observable
transition. Then:

a) In sequential semantics, the run which consists only
of occurrences of u and v is infinite but produces no
observation; N∗ is therefore not (strongly) observable
in the classical sense. Moreover, N∗ is not (strongly)
diagnosable, since all runs without an occurrence of y are
observationally indiscernable from the run ω′ formed only
by occurrences of a and b; there exist thus observationally
equivalent runs some of which are faulty, and some healthy.

b) However, with the same assumptions, N∗ is both weakly
observable and weakly diagnosable. In fact, every run ω is
fault-definite since v must have occured.

The next section will make these intuitions more precise.
Here, let us make one further observation in the context of
the example. In fact, in decentralized systems with weak
synchronization between subsystems, faults may elude
diagnosis under the interleaved viewpoint, while being
weakly captured under partial order semantics. In the
example, consider now b the fault event, instead of v, and
let still a be observable. Then, the new system is neither

Fig. 2. The verifier net V of the running example syn-
chronized on the observable transition a (highlighted).
The superscript is used to distinguish nodes belonging
to N1 and N2, respectively.

classically observable nor classically diagnosable. However,
removing the loop u−v from the system leaves a classically
diagnosable system. In other words, it is the presence of the
second loop, running in parallel and without influence on
the fault occurrence, that blocks diagnosis of the fault. 1

Thus, the partial order approach actually increases preci-
sion for partial observation of highly concurrent systems.

4. VERIFICATION OF WEAK DIAGNOSABILITY

The Verifier Net. For the practical verification, we propose
use an extension of the unfolding-based verifier method
developped in Madalinski et al. (2010). The basic idea
is to synchronize, via the observable labels, two copies
of the supervised net N and to check for the existence
of executions of the product net in which the projection
to the first component is faulty while that to the sec-
ond component is healthy. Formally, with the setup of
Definition 7, let V , N1 × N2 be the α-synchronized
product of two isomorphic copies N1 and N2 of N , i.e.
Ni = (Pi,Ti,Fi,M

i
0). That is, with

(1) PV = p1] p2,

(2) for i ∈ {1, 2}, T ε
i , {t ∈ Ti | α(t) = ε},

(3) T12 , t{t ∈ T1 | α(t) 6= ε},
(4) Fε ,

⋃2
i=1(Fi ∩ Pi × T ε

i) ∪
⋃2
i=1(Fi ∩ T ε

i × Pi),

(5) F12 ,
⋃2
i=1(Fi ∩ Pi × T12) ∪

⋃2
i=1(Fi ∩ T12 × Pi),

(6) TV , T ε
1] T ε

2] T12 and FV , Fε] F12,

(7) M0 , M 1
0]M 2

0 ,

V is the Petri netNV = (pV ,TV ,FV ,M0), with the labeling
α : TV → A inherited from N . The verifier of the running
example is depicted in Figure 2.

Lemma 1. The configurations of V are given by pairs c =
(c1, c2) of configurations of N1,N2, respectively, where

(1) ci is the projection of c to the occurrences and
conditions for Ni, and

(2) there exists a partial mapping ψ : c→ c′ such that

• setting cO , EO ∩ c and cU , EU ∩ c (and
analogously for c′), ψ(e) is defined for all e ∈ cO,
and undefined for all e ∈ cU ;

• the restriction ψ|cO defines a bijection ψ|cO :
cO → c′O,

1 Thanks to A. Guia who made us discover this aspect by a remark
in a workshop discussion with the third author.

Fig. 3. A safe Petri net having two weakly fair runs
ω1, ω2 such that the observable image λ(ω1) of ω1 is a
proper prefix of λ(ω2): ω1 has only one interleaving
σ1 = t1t3t4t3t4t3t4 . . ., while ω2 is formed by one
occurrence of t2 and infinitely many occurrences of
t5 and t6.

• for all e1, e2 ∈ cO such that e1 6= e2, if e1 < e2

then ¬(ψ(e2) < ψ(e1)).

Proof: The decomposition of c follows from the synchro-
nized product and the construction of UnfV ; since c is
free of cycles, it follows that e1 < e2 implies. 2

For the construction of a verifier, we follow Madalinski
et al. (2010) in using a fault indicator variable whose
value is one for all configurations on which a fault occurs,
and 0 otherwise. For this, let Φ : E → {0, 1} be such
that Φ(e) = 1 if e ∈ eΦ, and 0 otherwise; then, define
recursively ν : E → {0, 1} by ν(cut0) = 0 and

ν(e) , max

[
Φ(e),max

e′<e
ν (e ′)

]
Mapping ν extends naturally to a mapping ν : C →
{0, 1} by setting ν(c) , supe∈c ν(e). Moreover, recall
that every configuration c of UnfV is given as a pair
(c1, c2) of configurations of UnfN ; we therefore have a
2-vector valued mapping ν : C(V) → {0, 1}2 given by

ν(c) , (ν(c1), ν(c2)). The canonical prefix VV . For the
practical verification of weak diagnosability, we need to
adapt our choice of cutting context to obtain a sufficient
finite prefix of the verifier. The crucial point is the choice
of the collection Ce ⊆ Cfin for each event. Denote by

Ceprog , {c ∈ Cprog | e ∈ c}
the set of progressive configurations containing event e,
i.e. the progressive extensions of [e], and by

Ceprog ,
{
c ∈ Ceprog | ∀c′ ∈ Ceprog : c′ ⊆ c⇒ c′ = c

}
the set of progressive [e]-extensions that are minimal with
this property. First, we note that for e ∈ E , Ceprog 6= ∅;
in fact, one obtains all configurations of Ceprog by the
following non-deterministic algorithm:

• Set N , H(e) and c0 , [e].

• For n > 1, set En , {e ∈ E\cn−1 | H(e) 6 n}
• Choose e ∈ En such that 〈e〉 ⊆ cn−1 (i.e. cn−1

e
; -

and set cn , cn−1 ∪ {e}.
• Repeat until En = ∅.

Fig. 4. The complete prefix of the running examples N∗ (left) and Nw (right) from Figure 1. The cut-off events are
represented with double boxes. Both are weakly observable; the left prefix - for N∗- shows weak diagnosability,
whereas the right prefix - for Nw - does not.

Then, the definition of the cutting context for verification
of weak diagnosability reads as follows:

(1) c ∼ c′ iff (i) Mc = Mc′ and (ii) φ ∈ π(c) iff φ ∈ π(c′);
(2) c ≺ c′ iff c ⊆ c′ and

(3) Ce , Ceprog .

One checks that the relations ∼ and ≺ thus defined satisfy
the conditions of Definition 6. Moreover:

Lemma 2. There is no infinite <-chain of feasible events.

Proof: Assume there exist such e1 < e2 < Since ∼
has only finitely many distinct classes in C (a fact that
follows from 1-safeness), there must exist i < j such that
[ei] ∼ [ej]. Therefore one finds ci ∈ Cei and cj ∈ Cej such
that ci ∼ cj and ci ⊆ cj , which contradicts the feasibility
of ej . 2

Therefore, by Khomenko et al. (2003), we obtain a
complete canonical finite prefix VN of N for any safe Petri
net N . Specializing to the verifier net V defined above,
denote VV by V for simplicity.

We first observe:

Theorem 1. With the above notation, let UnfV be the
unfolding of V. Then N is weakly diagnosable iff for every
progressive configuration c = (c1, c2) of V such that both
c1 and c2 are progressive for N , either both c1 and c2 are
faulty, or both are healthy, that is: ν(c) ∈ {(0, 0), (1, 1)}.

Proof: Follows directly from the definitions. 2

We have :

Theorem 2. Assume N is weakly observable. If for every
e ∈ coff(V), one has ν([e]) ∈ {(0, 0), (1, 1)}, then N is
weakly diagnosable.

Proof: Assume that all cut-off events e satisfy ν([e]) ∈
{(0, 0), (1, 1)}, but that there exists c = (c1, c2) such that,
w.l.o.g., ν(c) = (1, 0) and c1 is progressive. Choose c ≺-
minimal with this property, and let φ be the <-minimal
occurrence of a fault event eφ in c. By construction of V
and Theorem 1, there exists a corresponding event e ′φ in

V; if e ′φ is a cut-off event, we have a contradiction, since

ν(e ′φ) = (1, 0) by construction. Hence assume e ′φ is not cut-
off; then there is ce′

φ
∈ Ce such that ce′

φ
≺ c, contradicting

the ≺-minimal choice of c, and we are done. 2

The converse of Theorem 1 does not hold. In fact, note
first that there are in general progressive configurations of
V that do not project to progressve configurations of the
components N1 and N2. This is the case for the net N
shown in figure 3: in N , with a and b the only observable
transitions, take the configuration c1 obtained by firing
t1, t3, t4 exactly once, and let c2 be the configuration ob-
tained by one firing each of t2, t3, t4, t5, t6. Now, the verifier
(which we do not draw here due to space limitations) V has
a progressive configuration c = (c1, c2) whose projection
to N1 is c1 and whose N2-image is the configuration c2

obtained by firing t2, t3, t4 exactly once. Clearly, c2 is a
proper prefix of c2, and c2 is not progressive. This means
that, for a general net N , the verifier V’s verdict provides
a semi-decision, which has to be complemented:

(1) If there is no ambiguous c ∈ Cprog, then N is weakly
diagnosable.

(2) If V exhibits an ambiguity witness, i.e.c = (c1, c2) ∈
cprog(V) such that (w.l.o.g) c1 is a faulty configu-
ration of N1 and c2 a healthy configuration of N2, it
must be verified (this can be done on finite prefixes of
N whose size is bounded by that of V(V)) whether
both c1 ∈ Cprog(N1) and c2 ∈ Cprog(N2) hold. If
so , then N is not weakly diagnosable. Otherwise, if
there is another witness from V, inspect that witness;
otherwise N is weakly diagnosable.

The net N∗ of the running example (Figure 1 on the left) is
weakly diagnosable. This can be analyzed on the verifier’s
unfolding prefix depicted in Figure 4 on the left. To avoid
a lengthy enumeration, consider the following informal
analysis: there exist maximal configurations of the verifier
prefix with (i) one or (ii) zero occurrences of a. With
one occurrence of a, we must have also, in every maximal
configuration of V, one occurrence each of v and v′. This
is reflected by the cut-off c = {e1, e2, e3, e4, e5, e7, e9} with
ν(c) = (1, 1). Finally, if a does not occur, then we must
have occurrence of the highest (in the figure) instances
of y and y′, which is only possible if there is exactly one
occurrence each of v and v′. This is illustrated by the cut-
off c′ = {e1, e2, e3, e4, e6, e8, e12, e13} with ν(c′) = (1, 1).

Consider Nw from Figure 4. On the right hand side,
c = {e2, e3, e4, e6, e10, e13, e19, e21} with ν(c) = (1, 0)
witnesses a violation of weak diagnosability. In fact, in

the entire example one cannot distinguish between runs
on which only w occurs - that is, healthy runs - from the
faulty ones that contain occurrences of v; Nw is not weakly
diagnosable.

5. CONCLUSION AND OUTLOOK

We have provided a cornerstone for partial order diagnosis
for safe Petri nets, by showing how weak diagnosability can
be effectively verified using a finite occurrence net. The
main construction is that of a complete finite prefix of the
unfolding of the verifier net obtained as the product of to
copies of the system model N , synchronized by fusing only
observable transitions.

In Madalinski et al. (2010), the verifier construction with
Petri net unfoldings, on which our approach builds up,
had been developped in the context of verification of strong
diagnosability. Moving to the problem of weak diagnosabil-
ity required a subtle modification of the cutting context.
In fact, unfoldings are most frequently exploited, and cut
off, using prime configurations [e] only; this was shown in
Madalinski et al. (2010) to capture efficiently violations of
(strong) diagnosability. However, these configurations are
in general not progressive, and do not allow to detect faults
in unsynchronized parts of the net, such as in N∗ above.
For analyzing nets that are not strongly diagnosable but
might still allow weak diagnosis (”based on the observa-
tion, v is eventually inevitable”), like N∗, the system of
prime configurations is not adequate. The key to extending
the verifier approach was therefore the adaptation of the
cutting context, in the sense of Khomenko et al. (2003),
so that the cut-off criteria could be based on a suitable
collection of finite progressive configurations. Showing the
validity of the adapted verifier approach for weak diagnos-
ability is the main contribution of the paper.

The efficiency of the unfolding-based construction - which
is PSCPACE-complete in general - hinges upon the size of
the complete prefix , and thus upon the wise choice of cut-
off context. Here, a very conservative adequate order was
chosen, which orders configurations merely by inclusion;
exploring more sophisticated ordering relations can be a
source of important space reductions. Future work will
explore different choices of such cutting contexts adapted
to the weak diagnosability setting.

More generally, there is room to explore further improve-
ments in the exploration and storage of V. In fact, the pre-
fixes proposed above tend to have greater width that those
obtained with prime configuration-based cutting criteria.
We will strive to identify efficient techniques for pruning
away unnecessary branches at as early a stage as possible.

Another approach to partial observation in concurrent
systems, which has been introduced in Haar (2007, 2009,
2010a,b), consists in looking for inevitable occurrences
that are revealed by observation, regardless of the possible
time for occurrence (which may be concurrent with the
observation, with no synchronization). Knowledge of such
relations in the system allows to raise alarms and start
countermeasures as soon as the threat becomes apparent,
without waiting for evidence of its actual occurrence.

Acknowledgments: This work was partly supported by
the European Community’s 7th Framework Programme

under project DISC (DI stributed Supervisor C ontrol of
large plants), Grant Agreement INFSO-ICT-224498, the
Fondecyt project No. 11090257, and the ARCUS project
Ile de France/Inde, conv. F-68-1309/R.

REFERENCES

Paolo Baldan, Thomas Chatain, Stefan Haar, and Barbara
König. Unfolding-based diagnosis of systems with an
evolving topology. Information and Computation, 208
(10):1169–1192, October 2010.

Albert Benveniste, Éric Fabre, Stefan Haar, and Claude
Jard. Diagnosis of asynchronous discrete event systems:
A net unfolding approach. IEEE Transactions on
Automatic Control, 48(5):714–727, May 2003.

C. G. Cassandras and S. Lafortune. Introduction to
Discrete Event Systems. Kluwer Academic Publishers,
Boston etc, 1999.

Stefan Haar. Unfold and cover: Qualitative diagnosability
for Petri nets. In: Proc. 46th IEEE CDC, pp. 1886–1891,
New Orleans, LA, USA, December 2007. IEEE Control
System Society.

Stefan Haar. Qualitative diagnosability of labeled Petri
nets revisited. In: Proc. Joint 48th IEEE Conference on
Decision and Control (CDC’09) and 28th Chinese Con-
trol Conference (CCC’09), pp. 1248–1253, Shanghai,
China, December 2009. IEEE Control System Society.

Stefan Haar. Types of asynchronous diagnosability and the
reveals-relation in occurrence nets. IEEE Transactions
on Automatic Control, 55(10):2310–2320, October 2010.

Stefan Haar. What topology tells us about diagnosability
in partial order semantics. In. Proc. 10th Workshop on
Discrete Event Systems (WODES’10), 2010.

Stefan Haar, Albert Benveniste, Éric Fabre, and Claude
Jard. Partial order diagnosability of discrete event
systems using Petri net unfoldings. In Proc. 42nd
CDC’03, vol 4, pp. 3748–3753, Hawaii, USA, December
2003. IEEE Control System Society.

S. Römer J. Esparza and W. Vogler. An improvement
of McMillan’s unfolding algorithm. Formal Methods in
System Design 20(3):285–310, 2002.

V. Khomenko and M. Koutny and W. Vogler. Canonical
Prefixes of Petri net unfoldings. Acta Informatica
40(2):95–118, 2003.

Agnes Madalinski, Farid Nouioua, and Philippe Dague.
Diagnosability verification with Petri net unfoldings.
KES Journal, 14(2):49–55, 2010. Long version: RR No.
1516, UMR 8623, CNRS, UParis-Sud, March 2009.

M. Nielsen, G. Plotkin, and G. Winskel. Petri nets,
event structures, and domains (I). Theoretical Computer
Science, 13:85–108, 1981.

M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamo-
hideen, and D. Teneketzis. Diagnosability of discrete-
event systems. IEEE Transactions on Automatic Con-
trol, 40(9):1555–1575, 1995.

G. Winskel. Event structures. In Advances in Petri
nets, LNCS 255, pp. 325–392, 1987, DOI: 10.1007/3-
540-17906-2. Springer Verlag.

