
Distributed monitoring of Peer-to-Peer systems∗

Serge Abiteboul Bogdan Marinoiu Pierre Bourhis†

INRIA Orsay and University Paris Sud
firstname.lastname@inria.fr

Abstract

Observing highly dynamic Peer-to-Peer systems is
essential for many applications such as fault man-
agement or business processing. We demonstrate
P2PMonitor, a P2P system for monitoring such sys-
tems. Alerters deployed on the monitored peers are de-
signed to detect particular kinds of local events. They
generate streams of XML data that form the primary
sources of information for P2PMonitor. The core of
the system is composed of processing components imple-
menting the operators of an algebra over data streams.

From a user viewpoint, monitoring a P2P system
can be as simple as querying an XML document. The
document is an ActiveXML document that aggregates
a (possibly very large) number of streams generated by
alerters on the monitored peers. Behind the scene,
P2PMonitor compiles the monitoring query into a dis-
tributed monitoring plan, deploys alerters and stream
algebra processors and issues notifications that are sent
to users.

The system functionalities are demonstrated by sim-
ulating the supply chain of a large company.

1 Introduction

Peer-to-peer systems gained popularity over the last
decade by providing support for community content
sharing and for loosely coupled distributed applica-
tions. A P2P system is a highly dynamic environment
with participants acting independently by exchanging
information and updating their data. In practice, it is
difficult to observe this type of systems and to gather
information about their functioning. Observation turns
out to be essential in many contexts, e.g., error man-
agement, statistics gathering, workflow control, Web
surveillance.

∗This work is partially supported by ANR-06-MDCA-005
grant DocFlow.

†ENS Cachan.

In this demonstration, we present a distributed sys-
tem whose purpose is to monitor P2P systems. Our
system, called P2P Monitor (P2PM for short), is itself
a P2P system. So, two P2P systems coexist: the moni-
tored one (possibly several monitored systems) and the
monitor (namely P2PM). Clearly, the same machine
may participate in both kinds of P2P networks.

We assume here that the monitored systems are will-
ing to cooperate by accepting to run locally software
modules, called alerters. Alerters are dedicated to the
different kinds of events one wants to detect. They
produce some information that is represented as XML
data streams. The processing of these streams is per-
formed by operators of an algebra over XML streams
derived from the one presented in [4]. The operators
of the algebra, called stream processors, are distributed
over the peers of the monitoring system. Their results
are also XML streams. Each stream is physically im-
plemented as a continuous service that produces a se-
quence of asynchronous messages from a sender to a
set of receivers. A stream at one peer is available to
other peers as a channel to which they can subscribe.

The core of monitoring in P2PM is performed by
processing queries over active documents. An (Ac-
tiveXML [6]) active document is a tree document with
some special nodes representing functions. Such a func-
tion, once activated, causes the document to subscribe
to an XML stream, so to receive a flow of XML data.
Each time a new element appears on a stream, one
copy of it is received by the active document, which
integrates it as a sibling of the function node. An ex-
ample of an active document is provided in Section 3,
Figure 6. (Function nodes are marked with ”!”). Now
consider a query over an active document. For now,
the system supports monotone queries, i.e. appending
data to the document possibly implicates new data in
the output of the query, without dropping old data.
So, each new piece of information on an input stream
possibly generates a new result for the query. Thus
a query also produces an XML stream. Using an in-
cremental algorithm, these queries are processed very

1

efficiently. In particular, a sophisticate form of garbage
collection allows removing no more relevant data from
active documents and unsubscribing to streams whose
data could not impact the query output in the future.

By using active documents, a user is able to spec-
ify in a simple way, e.g. with an XQuery query, some
complex monitoring, since an active document possibly
aggregates dozens or hundreds of streams coming from
many different peers. Moreover, these streams may be
specified intentionally (e.g., as the result of some query
evaluated on a different peer, whose result evolves over
time). The system compiles a query into a monitor-
ing plan using subscriptions (in the P2PML language).
These P2PML subscriptions trigger the deployment of
alerters and stream processors across different peers.
Resulting streams are published by a publisher based
on the user’s demands as continuous services (channels
to which other peers may subscribe), RSS feeds, emails,
Web pages or stored in XML databases maintained by
the monitoring system. Of course, it is also possible
for a user to specify a subscription directly in P2PML.

Related Work As far as we know, the process-
ing of continuous queries over active documents (with
streams) is a new topic. Previous works over active
documents mostly considered non-stream functions:
functions that, for each call, return an answer and ter-
minate [6]. Most notably, query processing on active
documents (with non-stream functions) is considered in
[3]. To some extend, our work may be viewed as the in-
cremental maintenance of the problem they study. The
domain of stream processing has recently been very ac-
tive. For instance, STREAM [12] executes continuous
queries over multiple data streams and uses an SQL-
like subscription language. Aurora [2], a centralized
system and its distributed successor Borealis [1] are
also stream processing engines. The StreamGlobe [11]
P2P system is specialized in efficiently querying data
streams represented in XML using XQuery.

Demonstration We demonstrate our system by
monitoring a simulator of a distributed business pro-
cess described in [10] and summarized in Section 3 of
this paper. We show how to provide a distributed
supervisor capable of monitoring and regulating the
business process. We also show the simplicity of use
of such a system as well as inherent properties of our
distributed monitoring system: efficiency in terms of
load balancing on peers, transparency for the user (the
system is the one deciding where to place operators),
savings on network bandwidth by pushing filters closer
to the sources, savings on storage and on CPU due to
incremental query evaluation.

for $order in channel(gOs@localhost)
where $order//status ="NotAv"
return
<alert type="stock">{$order//orderId}</alert>

by publish as channel "blockedOrders"

Figure 1. A simple P2PML subscription

Figure 2. Stream Processing Subsystem

2 The monitoring system

Consider the P2PML subscription in Figure 1. Ob-
serve that the language is similar to XQuery. Main
syntactic differences are the use of the keyword chan-
nel and of the publish clause. The first one designates
the data stream sources, whereas the second specifies
what to do with the resulting stream.

A simplified model of the stream processing archi-
tecture of P2PM is presented in Figure 2. A peer may
host one or more alerters, stream processors and pub-
lishers. Besides such components that produce and
process streams, a peer may host a subscription man-
ager that is in charge of managing subscriptions, and in
particular of supporting a subscription catalogue. Any
peer may decide to reuse the stream of results of an
existing subscription or to issue a new one. In case
of a new subscription, the subscription manager is in
charge of detecting (in a “Bits-and-pieces” catalogue)
which parts of that subscription are already supported
somewhere, and based on that, generates a monitoring
algebraic plan for the new subscription and deploys it.
In particular, the subscription manager is in charge of
optimizing the algebraic plans, e.g. by pushing pro-
cessing close to the data sources.

P2PM already supports the surveillance of vari-
ous systems as described next. An WS Alerter in-
tercepts inbound-outbound Web service calls and pro-
duces alerts including the SOAP envelopes expended

2

Figure 3. Query Processing Subsystem

with annotations such as timestamps and caller/called
entities’ identifiers (DNS/IP). An ActiveXML Alerter
detects updates to the ActiveXML peer repository. A
WebPage Alerter detects changes in XML or XHTML
pages by comparing their snapshots. The alert may
provide (if desired) the delta between the two pages.
(This alerter uses an auxiliary Web crawler for the
surveillance of collections of Web pages.) An RSS
Alerter detects changes in an RSS feed by comparing
snapshots. With RSS, the alerts have more semantics
than with arbitrary XML pages: e.g., add entry, re-
move entry and modify entry.

The streams generated by these alerters are pro-
cessed by algebraic stream processors that operate on
one or more input XML streams (local or not) and
produce output XML streams. Web services are used
for communications between peers. Some operators are
memory-less, e.g., filter or fusion. Others require infor-
mation about (a window of) the stream history, e.g.,
join, aggregation, duplicate elimination. This history
information is stored in an eXist [8] XML database.
Operators such as join may use some application de-
pendent function, e.g. a similarity function.

To be able to support heavy streams, an essential
aspect of the work is performance. In particular, we
filter streams by combining two kinds of filters. Some
simple queries can be performed on-line basically at the
speed of receiving this stream using some automata in
the spirit of [7]. For more complex queries or when the
streams return active documents, we can use the query
processor over active documents already described in
introduction and illustrated in Figure 3.

P2PM has been implemented in Java as a Web ap-
plication using support of Axis2 Web services engine
[5]. It uses JavaCC [9] for generating P2PML parsers.
An applet-based GUI (see a fragment of a snapshot
in Figure 4) allows visualizing in real-time the de-

Figure 4. Graphical user interface snapshot

ployed subscriptions on a peer and the state of the
deployed stream processors at the level of a peer: how
they are interconnected, the received/generated data
on streams etc. The GUI also allows specifying new
subscriptions in P2PML and placing queries on Ac-
tiveXML documents.

3 Demonstration

We demonstrate the system with a distributed ap-
plication simulating the supply chain of a computer
manufacturer, namely Dell, as described in [10] and il-
lustrated in Figure 5. The manufacturing system pro-
cesses continuous flows of orders and has to cope with
issues such as distant suppliers. The main modules are
as follows. WWW interface is the Web site, in charge of
processing forms completed by customers and of gen-
erating orders to the dispatcher. For a given order,
Dispatch selects a plant close to the customer to dele-
gate order processing. Each Plant processes an order
upward, by forwarding orders for different parts to the
relevant revolvers. It processes an order downward, by
combining the parts that are received into objects (e.g.
computers) that are then physically sent to the cus-
tomers. Revolver (or warehouse) is a platform acting
as a buffer between suppliers and Dell’s plants, per-
forming flow desynchronization; it works in a predic-
tive mode based on statistical information maintained
by the supervisor (our monitoring system). Supplier
corresponds to Dell’s suppliers. They rarely ship com-
ponents in large quantities to revolvers, so there is an
issue of stock management. Finally, Bank is a third
party in charge of checking the validity of credit card
payments.

The monitoring system is in charge of the surveil-
lance of the entire process. A large number of plants,
revolvers as well as banks are involved in the process.

3

Figure 5. Architecture of the example

Each of these involved participants publishes notifica-
tions, e.g., when they receive or submit orders. Con-
sider for instance the supervisor’s document in Figure
6. A !gOs function (an abbreviation for getOrders)
is a function denoting the stream of orders issued by
the dispatcher, e.g. !gOs@d, a plant, e.g. !gOs@p2 or
a revolver, e.g. !gOs@rev3. Figure 6 shows the order
129 arriving at the dispatcher, then forwarded to plant
p2. The order’s object has not yet been delivered (sta-
tus NotDel) because rev3 blocks the fabrication process
since a component is not available (status NotAv). The
example has been simplified: there is only one type of
products to be ordered and one plant uses a single re-
volver, e.g. plant p2 uses revolver rev3.

As a scenario, we show how different peers are kept
up-to-date of the progress of some Web orders. We also
show how a customer is informed of the processing of
her on-going orders. In another scenario, a plant is
warned of revolvers low stocks to avoid ordering some
part to a revolver that is soon going to be out of stock.

Let us suppose a supervisor wants to know details
about orders blocked at some revolver. The details
about all the orders are available on the dispatcher’s
gOs channel. To see the blocked orders, one can di-
rectly inspect the streams originating at the revolvers.

A subscription (expressed in XQuery) is initially
sent to the user’s computer P2PM entity, called here
the supervisor peer, which could simply wait for data
to accumulate in its active document (Figure 6) and
repeat the query evaluation on each update. This is
non-incremental and centralized query evaluation.

In the demonstration, we will see how our system
pushes filters close to the sources, i.e. the revolvers
that publish each a stream of alerts for blocked orders
as channel blockedOrders (a subscription as in Figure
1 is sent to each revolver). The supervisor simply sub-
scribes to channels blockedOrders, as well as to the dis-
patcher’s gOs channel for obtaining orders’ details. A

Figure 6. An active document with streams

join of these streams is finally done at the supervisor.

References

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel,
M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B.
Zdonik. The design of the Borealis stream processing
engine. In CIDR, pages 277–289, 2005.

[2] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. B. Zdonik. Aurora: a new model and architecture
for data stream management. VLDB J., 12(2):120–
139, 2003.

[3] Serge Abiteboul, Omar Benjelloun, Bogdan Cautis,
Ioana Manolescu, Tova Milo, and Nicoleta Preda. Lazy
query evaluation for Active XML. In SIGMOD Con-
ference, pages 227–238, 2004.

[4] Serge Abiteboul, Ioana Manolescu, and Emanuel
Taropa. A framework for distributed XML data man-
agement. In EDBT, pages 1049–1058, 2006.

[5] http://ws.apache.org/axis2/.

[6] http://www.activexml.net.

[7] Y. Diao, P. M. Fischer, M. J. Franklin, and R. To. Yfil-
ter: Efficient and scalable filtering of XML documents.
In ICDE, pages 341–, 2002.

[8] http://exist.sourceforge.net/.

[9] https://javacc.dev.java.net/.

[10] Roman Kapuscinski, Rachel Q. Zhang, paul Carbon-
neau, Robert Moore, and Bill Reeves. Inventory deci-
sions in Dell’s supply chain. Interfaces, 34(3):191–205,
2004.

[11] R. Kuntschke, B. Stegmaier, A. Kemper, and
A. Reiser. Streamglobe: Processing and sharing Data
Streams in Grid-Based P2P infrastructures. In VLDB,
pages 1259–1262, 2005.

[12] R. Motwani, J. Widom, A. Arasu, B. Babcock,
S. Babu, M. Datar, G. Singh Manku, C. Olston,
J. Rosenstein, and R. Varma. Query processing,
approximation, and resource management in a data
stream management system. In CIDR, 2003.

4

