
http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

Math. Struct. in Comp. Science (2010), vol. 20, pp. 75–103. c© Cambridge University Press 2010

doi:10.1017/S0960129509990260

Modal and mixed specifications: key decision

problems and their complexities

ADAM ANTONIK†, M ICHAEL HUTH‡§, K IM G. LARSEN¶‖,

ULRIK NYMAN¶ and ANDRZEJ WĄ SOWSKI�‖

†CNRS, Ecole Normale Supérieure de Cachan, France

Email: antonik@lsv.ens-cachan.fr
‡Department of Computing, Imperial College London, United Kingdom

Email: m.huth@imperial.ac.uk
¶Department of Computer Science, Aalborg University, Denmark

Email: {kgl;ulrik}@cs.aau.dk
�IT University of Copenhagen, Denmark

Email: wasowski@itu.dk

Received 16 October 2009

Modal and mixed transition systems are specification formalisms that allow the mixing of

over- and under-approximation. We discuss three fundamental decision problems for such

specifications:

— whether a set of specifications has a common implementation;

— whether an individual specification has an implementation; and

— whether all implementations of an individual specification are implementations of

another one.

For each of these decision problems we investigate the worst-case computational complexity

for the modal and mixed cases. We show that the first decision problem is

EXPTIME-complete for both modal and mixed specifications. We prove that the second

decision problem is EXPTIME-complete for mixed specifications (it is known to be trivial

for modal ones). The third decision problem is also shown to be EXPTIME-complete for

mixed specifications.

1. Introduction

Labelled transition systems are often used to define the semantics of modelling languages,

and then to reason about models in these languages. However, it is frequently the case

that a single transition system is incapable of serving multiple purposes. For example, an

over-approximating transition system can be used to establish safety properties soundly,

but not liveness properties. Similarly, an under-approximating transition system can be

used to prove liveness properties, but not safety properties. A simple remedy for this

§ This research was partially supported by the UK EPSRC projects Efficient Specification Pattern Library

for Model Validation EP/D50595X/1 and Complete and Efficient Checks for Branching-Time Abstractions

EP/E028985/1.
‖ The work of these authors was supported by MT-LAB, VKR Centre of Excellence.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

A. Antonik, M. Huth, K. Larsen, U. Nyman and A. Wąsowski 76

problem is to use two transition systems in a verification process that requires us to

capture both viewpoints: one describing an over-approximation, the other describing an

under-approximation of the same behaviour.

However, this solution introduces a lack of precision, which is caused by decoupling

the states of one abstraction from those of the other, and this means we cannot verify

nested properties, which are typical for recursive logics. For example, one cannot prove

that a state in which a certain liveness property holds is unreachable. To deal with

this problem, model checkers such as Yasm (Gurfinkel et al. 2006) handle over- and

under-approximation in a single structure based on a single transition system.

This idea can be traced back to the late eighties, when Larsen and Thomsen proposed

modal transition systems (Larsen and Thomsen 1988), which are also known as modal

specifications (Larsen 1989) and mixed specifications (Dams 1996). Modal specifications

combine over- and under-approximation in a single transition system using two transition

relations but a single set of states. However, inconsistencies may arise in such specifications

if some behaviour is both required and disallowed. We chose to call the general, and

possibly inconsistent, form of specifications mixed specifications, reserving the term modal

specifications for the subset that syntactically enforces consistency (in modal specifications,

the required transition relation is included in the allowed transition relation). For clarity,

we use this naming convention in this paper, but note that it has not been universally

adopted in the existing literature.

Mixed specifications have since been applied as suitable abstractions in, amongst other

areas, program analysis (Huth et al. 2001; Schmidt 2001), model checking (Godefroid et al.

2001; Børjesson et al. 1993; Gurfinkel et al. 2006), verification (Larsen et al. 1995; Bruns

1997), solving process algebraic equation systems (Larsen and Xinxin 1990), compositional

reasoning with interface theories (Larsen et al. 2007a), modelling of variability in software

product lines (Larsen et al. 2007a; Fischbein et al. 2006) and other model management

areas such as model merging (Uchitel and Chechik 2004; Brunet et al. 2006).

As an example, we will briefly consider a model originating in interface theories, which

can be used to explain the motivation of our work. Figure 1 shows an interface of a

communication component. This interface models communication components that retry

transmission at least once after a failure, and that optionally can check the link status

upon a failure (so that it can react appropriately). Specifically, the interface specifies five

output actions (ok, fail, trnsmt, linkStatus, log) and five input actions (send, ack, nack,

up, down), all enumerated on the rectangular frame in the figure. The interior of the

frame contains an automaton specifying the desired and allowed behaviours. Transitions

labelled by � are required by the interface, transitions labelled by � are allowed by the

interface. Thus, assuming that the state labelled 14 is the initial state, the component

must first await a send request, and when it receives one, it is obliged to transmit a

message, and then wait for an acknowledgement. If the acknowledgement arrives (state 19),

the component successfully closes the communication and sends the requester an ok!

notification, if an error message arrives (state 17), the component needs to retransmit, or,

alternatively, it may check the status of the underlying link. After the second attempt to

transmit (state 18), the component either disallows failure, or may retry again (the nack

transition).

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

Modal and mixed specifications: key decision problems and their complexities 77

Fig. 1. An interface of a simple communication module (originally presented in Larsen

et al. (2007a))

Larsen et al. (2007a) and Raclet (2008) have described interface models like this. Here

we will just observe that the underlying semantic model is that of modal specifications.

Thus, decision procedures for interfaces often relate to decision procedures for modal

specifications. For example, if a component needs to implement several interfaces, the

question arises as to whether the interfaces are consistent. A similar question is whether a

certain interface is a proper generalisation of another one, that is, does every component

implementing the former also implement the latter. In the present paper we discuss the

computational complexity of these questions, formulating them for both ‘mixed’ and

‘modal’ specifications implicitly:

C Is an individual specification consistent, that is, can it be implemented?

CI Is a collection of specifications consistent, that is, does there exist a common

implementation for them?

TRDoes one specification thoroughly refine another, that is, is every implementation of

the former an implementation of the latter?

Our results are obtained as follows. First we argue that all three decision problems are

in EXPTIME for both modal and mixed specifications. Then we prove three reductions,

which give us lower bounds:

1 We show that the EXPTIME-complete problem of acceptance of an input in a linearly

bounded alternating Turing machine reduces to CI for modal specifications. From this

we learn that CI is EXPTIME-hard for modal specifications, and thus also for mixed

specifications.

2 We show that CI for modal specifications reduces to C for mixed specifications, and

thus that the EXPTIME-hardness of CI give us the EXPTIME-hardness of C for

mixed specifications.

3 Finally, we show that C for mixed specifications reduces to TR for mixed specifications,

and thus we get the EXPTIME-hardness of TR for mixed specifications from the

EXPTIME-hardness of C for mixed specifications.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

A. Antonik, M. Huth, K. Larsen, U. Nyman and A. Wąsowski 78

This reduction chain begins with modal specifications, but has to resort to mixed,

non-modal specifications for C. Therefore, we are only able to infer that CI is EXPTIME-

complete for modal specifications, and are unable to determine any new lower bounds for

TR for modal specifications.

Structure of the paper

In Section 2, we give the background required to appreciate the technical development

of the paper. We discuss some related work in Section 3. In Sections 4, 5 and 6, we

describe the three reductions that give us the EXPTIME-completeness of CI (for modal

and mixed specifications), C (for mixed specifications) and TR (for mixed specifications).

We put these results into context in Section 7 and present conclusions in Section 8.

2. Background

We will begin by giving formal definitions for the basic models of interest in our study

(Larsen 1989; Dams 1996; Clarke et al. 1994).

Definition 1. Let Σ be a finite alphabet of actions.

1 A mixed specification M is a triple (S, R�, R�), where S is a finite set of states and

R�, R� ⊆ S × Σ × S are the must- and may-transition relations (respectively).

2 A modal specification is a mixed specification satisfying R� ⊆ R�; all of its must-

transitions are also may-transitions.

3 A pointed mixed specification (M, s) is a mixed specification M with a designated

initial state s ∈ S .

4 The size |M | of a mixed specification M is defined as |S | + |R� ∪ R� |.

Remark 1. Throughout this paper, unless stated otherwise, references to ‘mixed’ specific-

ations also apply to ‘modal’ ones, as in the last two items of Definition 1.

Refinement (Larsen 1989; Dams 1996; Clarke et al. 1994), called ‘modal refinement’ in

Larsen et al. (2007b), is a co-inductive relationship between two mixed specifications that

verifies that one such specification is more abstract than the other. This generalises the

co-inductive notion of bisimulation (Park 1981) to mixed specifications.

Definition 2. A pointed, mixed specification (N, t0) = ((SN, R
�
N, R

�
N), t0) refines another

pointed, mixed specification (M, s0)=((SM, R�
M,R�

M), s0) over the same alphabet Σ, written

(M, s0)≺(N, t0), if and only if there is a relation Q ⊆ SM × SN containing (s0, t0) such that

whenever (s, t) ∈ Q:

1 for all (s, a, s′) ∈ R�
M , there exists some (t, a, t′) ∈ R�

N with (s′, t′) ∈ Q;

2 for all (t, a, t′) ∈ R�
N , there exists some (s, a, s′) ∈ R�

M with (s′, t′) ∈ Q.

Deciding whether an individual finite-state, pointed, mixed specification refines another

is in PTIME, and can be implemented by a standard fixpoint algorithm like those used

for checking simulation or bisimilarity.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

Modal and mixed specifications: key decision problems and their complexities 79

Fig. 2. Pointed, mixed ((M, s0)) and pointed, modal ((N, t0)) specifications over alphabet Σ = {π}
with I(M, s0)=I(N, t0) but not (N, t0)≺(M, s0). Throughout this and later figures showing

specifications, solid arrows denote must-transitions, whereas dashed arrows depict may-transitions.

Example 1. The pointed, mixed specification (M, s0) and pointed, modal specification

(N, t0) in Figure 2 have the same set of implementations I(M, s0)=I(N, t0) (to be defined

shortly) with (M, s0)≺(N, t0) given by

Q = {(s0, t0), (s1, t1), (s2, t2), (s3, t2), (s4, t3)}.

But we do not have (N, t0)≺(M, s0). To see this, assume that there is a relation Q with

(t0, s0) ∈ Q satisfying the properties in Definition 2. Then, from (s0, π, s2) ∈ R�
M , we can

infer that there must be some x with (t0, π, x) ∈ R�
N and (x, s2) ∈ Q. In particular, x can

only be t1 or t2. If x is t1, then since (s2, π, s4) ∈ R�
M and (t1, s2) ∈ Q, there has to be some

R�
N transition out of t1, which is not the case. If x is t2, then (t2, π, t3) ∈ R�

N and (t2, s2) ∈ Q

imply that there is some R�
M transition out of s2, which is not the case. In conclusion,

there cannot be such a Q, so (N, t0) 	≺(M, s0).

Labelled transition systems over an alphabet Σ are pairs (S, R) where S is a non-empty

set of states and R ⊆ S × Σ × S is a transition relation. We identify labelled transition

systems (S, R) with modal specifications (S, R, R). The set of implementations I(M, s) of a

pointed, mixed specification (M, s) are all pointed labelled transition systems (T , t) refining

(M, s). Note that I(M, s) may be empty in general, but is guaranteed to be non-empty if

M is a modal specification.

Definition 3. Let (N, t) and (M, s) be pointed, mixed specifications. As in Larsen et al.

(2007b), we define thorough refinement (M, s)≺th(N, t) to be the predicate I(N, t) ⊆ I(M, s).

Refinement approximates this notion: (M, s)≺(N, t) implies (M, s)≺th(N, t) since refine-

ment is transitive. The converse is known to be false (Hüttel 1988; Xinxin 1992; Schmidt

and Fecher 2007), contrary to the claim in Huth (2005b), with Figure 2 providing a

counterexample.

We shall now formally define the decision problems informally stated above. Each

decision problem has two instances: one for modal and the other for mixed specifications:

— Common implementation (CI): Given k > 1 specifications (Mi, si), is the intersection
⋂k

i=1 I(Mi, si) non-empty?

— Consistency (C): Is I(M, s) non-empty for a specification (M, s)?

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

A. Antonik, M. Huth, K. Larsen, U. Nyman and A. Wąsowski 80

— Thorough refinement (TR): Does a specification (N, t) thoroughly refine a specification

(M, s), that is, do we have I(N, t) ⊆ I(M, s)?

As far as these decision problems are concerned, the restriction to finite implementations,

which follows from restricting our definitions to finite specifications, does not cause

any loss of generality, as explained in Antonik et al. (2008b): a mixed specification

(M, s) is consistent in the infinite sense if and only if its characteristic modal μ-calculus

formula Ψ(M,s) (Huth 2005a) is satisfiable. In general, a transition system satisfying

a modal μ-calculus formula may be infinite. The small model theorem for μ-calculus

(Kozen 1988) tells us that Ψ(M,s) is satisfiable if and only if it is satisfiable over finite-state

implementations. Hence, reasoning about consistency does not require reasoning about

infinite structures. We can reason in a similar manner about common implementation and

thorough refinement, which justifies the restriction to finite-state implementations. The

restriction to finite-state specifications is needed in order to do complexity analysis.

Now we establish an EXPTIME upper bound for our key decision problems for modal

and mixed specifications.

Lemma 4. The decision problems CI, C and TR for both modal and mixed specifications

are in EXPTIME in the sum of their sizes.

Sketch of proof. Mixed and modal specifications (M, s) have characteristic formulae

Ψ(M,s) (Huth 2005a) in the modal μ-calculus such that pointed labelled transition

systems (L, l) are implementations of (M, s) if and only if (L, l) satisfies Ψ(M,s). The

common implementation and consistency problems, CI and C, reduce to satisfiability

checks of
∧

i Ψ(Mi,si) and Ψ(M,s), respectively. The thorough refinement problem of whether

(M, s)≺th(N, t) reduces to a validity check of ¬Ψ(N,t) ∨ Ψ(M,s).

Validity checking of such vectorised modal μ-calculus formulae is in EXPTIME. One

way to see this is by translating the problem into alternating tree automata. It is well

known that a formula Ψ(M,s) can be efficiently translated (Wilke 2001) into an alternating

tree automaton A(M,s) (with the parity acceptance condition) that accepts exactly those

pointed labelled transition systems that satisfy Ψ(M,s). Since non-emptiness, intersection

and complementation of languages is in EXPTIME for alternating tree automata, we get

our EXPTIME upper bounds if these automata have size polynomial in |M |.
Since the size of Ψ(M,s) may be exponential in |M |, we require a direct translation from

(M, s) into a version of A(M,s). The formulae Ψ(M,s) can be written as a system of recursive

equations (Larsen 1989) Xs = bodys for each state s of M. We can therefore construct all

A(M,s) in a compositional manner: whenever Xs refers in its bodys to some Xt, we ensure

A(M,s) has a transition to the initial state of A(M,t) at that point. This A(M,s) generates

the same language as the one constructed from Ψ(M,s), by appeal to the existence of

memoryless winning strategies in parity games (Zielonka 1998). The system of equations

is polynomial in |M |, so the compositional version of A(M,s) is polynomial in the size of

that system of equations.

For full details, see Wilke (2001) and Larsen (1989).

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

Modal and mixed specifications: key decision problems and their complexities 81

Remark 2. Throughout this paper we work with Karp reductions, that is, many–one

reductions computable by deterministic Turing machines in polynomial time. This choice

is justified since we reduce problems that are EXPTIME-complete or PSPACE-hard.

3. Related work

In this section we briefly discuss some research directly relevant to this paper.

The workshop paper Antonik et al. (2008c) contains a sketch of the reduction of ATMLB,

that is, the acceptance of input for a linearly bounded alternating Turing machine, to CI

for modal specifications. This reduction was discovered, independently, by Antonik and

Nyman in their Ph.D. work (Antonik 2008; Nyman 2008). This reduction constitutes an

improvement over the reduction to CI for modal specifications from the PSPACE-complete

problem of Generalised Geography, which appeared in Antonik et al. (2008b).

The conference paper Antonik et al. (2008b) also contains the reductions of C for mixed

to CI for modal specifications, and of TR for mixed to C for mixed specifications – but

the stronger reduction to alternating Turing machines makes these reductions stronger by

transitivity.

Antonik et al. (2008b) also shows that TR for modal specifications is PSPACE-hard.

This result is completely orthogonal to the techniques and results reported in the current

paper.

We refer the interested reader to the invited concurrency column Antonik et al. (2008a),

which provides more motivation and potential applications of the decision problems

studied in the current paper.

The prime numbers construction in the example of Section 4 was originally proposed by

Antonik, and published in Antonik (2008). Only after the fact did we learn that the same

technique had also been used by Berwanger and colleagues in two other papers that were

published around the same time (Berwanger et al. 2008; Berwanger and Doyen 2008). In

these papers, the technique of multiplication of small prime numbers was used to:

(i) show that imperfect information games require exponential strategies; and

(ii) reduce imperfect information parity games to imperfect information safety games.

4. Common implementation

We begin by developing an intuition as to why the CI problem is hard before going on

to give a formal proof. We will do this by constructing a set of specifications whose size

is exponentially smaller than its smallest common implementation. The succinctness of

specifications as a representation does not in itself prove the hardness of the problem,

but, we think, it does make it quite evident that the problem is hard.

Example 2. The construction used below originated in Antonik (2008). Let I be a finite

set of natural indices and, for i ∈ I , let Mi be modal specifications consisting of:

— states sji , j = 1 . . . i, such that (sji , π, s
j+1
i) ∈ R�, R� for 1 � j � i−1 and (sii, π, s

1
i) ∈ R�;

— an extra deadlock state d such that (sji , al , d) ∈ R� if l ∈ I−{i}, while (sii, ai, d) ∈ R�, R�.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

A. Antonik, M. Huth, K. Larsen, U. Nyman and A. Wąsowski 82

Fig. 3. Pointed specifications (M2, s
1
2), (M3, s

1
3) and (M5, s

1
5) whose common implementation has at

least 2 · 3 · 5 = 30 states.

Figure 3 shows an example of the specifications M2, M3 and M5 for I = {2, 3, 5}.
Observe that each Mi is a counter that counts i− 1 transitions labelled by π, allowing the

implementation to stop after i − 1 π-steps (or any multiple thereof). In any state, Mi is

allowed to make an aj transition to a deadlocking state, but only in its topmost state (see

Figure 3) is it both allowed and required to be able to make an ai transition to this state.

It is not hard to see that if we take a collection of Mi models for i = p1, . . . , pn, ranging

over the first n primes, then any implementation has at least
∏n

i=1 pi >
∏n

i=1 2 = 2n states.

Thus the size of any common implementation of the family of models for the first n primes

is exponential in n. However, we still need to show that the total size of the specifications

themselves remains polynomial in n.

By a theorem of Chebyshev (Chebyshev, 1852), there exists a constant θ > 0 such that

the number of primes less than a given k is at least θk/ log k. Since for sufficiently large

k we have log k < k1/2, the number of primes is greater than θk1/2. In order to ensure

at least n primes in the range [0, x], it suffices to take x larger than (n
θ
)2. The total size

of Mi specifications corresponding to these numbers is O(n(n
θ
)2) = O(n3). Thus the set of

specifications has size polynomial in n, while its common implementations are at least

exponential in n. Note that it is easy to adapt this construction so that it only uses a

binary alphabet.

In the remaining part of this section, we present a formal reduction demonstrating the

EXPTIME-hardness of CI. We begin with a definition of the decision problem used in

the lower bound proof for common implementation.

An Alternating Turing Machine (Chandra et al. 1981), or an ATM, is a tuple T =

(Q,Γ, δ, q0,mode), where Q is a non-empty finite set of control states, Γ is an alphabet of

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

Modal and mixed specifications: key decision problems and their complexities 83

Fig. 4. The transition relation of an ATM as a labelled graph and as a function.

tape symbols, null 	∈ Γ is a special symbol denoting empty cell contents,

δ : Q × (Γ ∪ {null}) → P(Q × Γ × {l, r})

is a transition relation, q0 ∈ Q is the initial control state and mode : Q → {Univ,Exst} is a

labelling of control states as universal or existential, respectively. Universal and existential

states with no successors are called accepting and rejecting states (respectively). Each

ATM T has an infinite tape of cells with a leftmost cell. Each cell can store one symbol

from Γ. A head points to one cell at a time, which can then be read or written to. The

head can then move to the left or right: (q′, a′, r) ∈ δ(q, a), for example, says ‘if the head

cell (say c) reads a at control state q, then a successor state can be q′, in which case cell c

now contains a′ and the head is moved to the cell on the right of c’. The state of the tape

is an infinite word over Γ ∪ {null}.
We will now introduce a simple example, which we will use for illustrative purposes as

a running example throughout this paper.

Example 3. Figure 4 presents an example of an ATM T over a binary alphabet Γ = {0, 1}
where arrows q (a,a′,d)−−−→ q′ denote (q′, a′, d) ∈ δ(q, a). The initial control state e is an existential

one, and both of the ui control states are universal.

Definition 5.

1 Configurations of an ATM T are triples 〈q, i, τ〉 where q ∈ Q is the current control

state, the head is on the ith cell from the left and τ ∈ (Γ ∪ null)ω is the current tape

state.

2 For input w ∈ Γ∗, the initial configuration is 〈q0, 1, wnullω〉.
3 The recursive and parallel execution of all applicable† transitions δ from initial

configuration 〈q0, 1, wnullω〉 yields a computation tree T〈T ,w〉. We say that ATM T

accepts input w if and only if the tree T〈T ,w〉 accepts, where the latter is defined

recursively:

— Subtree T〈T ,w〉 with root 〈q, i, τ〉 and mode(q) = Exst accepts if and only if there is

a successor 〈q′, i′, τ′〉 of 〈q, i, τ〉 in T〈T ,w〉 such that the sub-tree with root 〈q′, i′, τ′〉
accepts.

† Transitions (, , , , l) are not applicable in configurations 〈 , 1, 〉 as the head cannot move over the left

boundary of the tape, where we use as a wildcard.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

A. Antonik, M. Huth, K. Larsen, U. Nyman and A. Wąsowski 84

Fig. 5. An accepting computation tree T〈T ,0101nullω〉 for the ATM T of Example 4.

— Subtree T〈T ,w〉 with root 〈q, i, τ〉 and mode(q) = Univ accepts if and only if for all

successors 〈q′, i′, τ′〉 of 〈q, i, τ〉 in T〈T ,w〉, the sub-tree with root 〈q′, i′, τ′〉 accepts (in

particular, this is the case if there are no such successors).

Example 4. The ATM of Figure 4 accepts the regular language (0 + 1)∗10∗1(0 + 1)∗.

Observe that u2 is the only accepting state. Intuitively, the part of T rooted in e accepts

the prefix (0 + 1)∗1: the semantics of existential states is locally that of states in non-

deterministic Turing machines. The part of T rooted in u1 consumes a series of 0 symbols

until 1 is reached, which leads to acceptance. The suffix of the input word after the

final 1 is ignored. Note that the computation forks in u1 whenever a 0 is encountered.

However, the top branch would reach the earlier 1 eventually and accept. Figure 5 shows

one possible accepting tree for this ATM and the word 0101nullω .

An ATM T is linearly bounded if and only if for all words w ∈ Γ∗ accepted by T , the

accepting part of the computation tree T〈T ,w〉 only contains configurations 〈q, i, vnullω〉,
where the length of v ∈ Γ∗ is no greater than the length of w. That is to say, by choosing

exactly one accepting successor for each existential configuration in T〈T ,w〉, and removing

all the remaining successors and configurations unreachable from the root, one can create

a smaller tree that only contains configurations with 〈q, i, vnullω〉 where |v| � |w|. We refer

to such pruned computation trees simply as ‘computations’.

Our notion of ‘linear boundedness’ follows Landweber (1963) and Laroussinie and

Sproston (2007) in limiting the tape size to the size of the input. This limitation does not

change the hardness of the acceptance problem (see below). In addition, we assume that

linearly bounded ATMs have no infinite computations since any linearly bounded ATM

can be transformed into another linearly bounded ATM, which accepts the same language,

but also counts the number of computation steps used, rejecting any computation whose

number of steps exceeds the number of possible configurations. This is possible because

ASPACE = EXPTIME (Sipser 1996, Theorem 10.18).

Fact 1. Consider the formal language

ATMLB = {〈T ,w〉 | w ∈ Γ∗ is accepted by linearly bounded ATM T }.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

Modal and mixed specifications: key decision problems and their complexities 85

The problem of deciding whether for an arbitrary linearly bounded ATM T and an input

w, the pair 〈T ,w〉 is in ATMLB is EXPTIME-complete (Chandra et al. 1981).

We are now in a position to prove our first EXPTIME-hardness result, which is for the

decision problem of common implementations of modal specifications.

Theorem 6. Let {(Ml, sl)}l∈{1...k} be a finite family of modal specifications over the same

action alphabet Σ. Deciding whether there exists an implementation (I, i) such that

(Ml, sl)≺(I, i) for all l = 1 . . . k is EXPTIME-hard.

We prove Theorem 6 by demonstrating a PTIME reduction from ATMLB. Given an

ATM T and an input word w of length n, we synthesise a collection of (pointed) modal

specifications

MT
w = {Mi | 1 � i � n} ∪ {Mhead,Mctrl,Mexist}, (1)

whose sum of sizes is polynomial in n and in the size of T , such that T accepts w if and

only if there exists a (pointed) implementation I refining all members of MT
w .

The specifications Mi, Mhead, Mctrl and Mexist model the tape cell i, the current head

position, the finite control of T and acceptance, respectively. Common implementations of

these specifications model action synchronisation to agree on the symbol being read from

the tape, the head position, the symbol written to the tape, the direction the head moves

in, the transitions taken by the finite control and whether a computation is accepting.

The result is that any common implementations of these specifications correspond to an

accepting computation of T on input w. More precisely, any common implementation will

correspond to different unfoldings of the structure of the finite control into a computation

tree based on the content of the tape cells and the tape head position.

We now describe the specifications in MT
w both formally and through our running

example in Figure 4. All specifications in MT
w have the same alphabet. Actions are of the

form (a1, i, a2, d) and denote the fact that the machine’s head is over the ith cell of the

tape, which contains the a1 symbol, and that it shall be moved one cell in the direction d

after writing a2 in the current cell. In addition, two special actions, ∃ and π, are used to

encode logical constraints like disjunction and conjunction. The alphabet for our running

example is

{π, ∃} ∪ ({0, 1} × {1..n} × {0, 1} × {l, r})
Note that a stricter and more complex reduction to CI of modal specifications over a

binary alphabet is possible by encoding actions in binary form.

Encoding tape cells. For each tape cell i, the specification Mi represents the possible

contents of cell i. It has |Γ| states {p〈i,a〉}a∈Γ and initial state p〈i,wi〉, representing the initial

contents of the ith cell. There are no must-transitions:

R� = �.

The may-transition relation connects any two states:

for all symbols a1, a2 in Γ we have (p〈i,a1〉, (a1, i, a2,), p〈i,a2〉) ∈ R�.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

A. Antonik, M. Huth, K. Larsen, U. Nyman and A. Wąsowski 86

Fig. 6. The specification M1 of the first tape cell in our running example, assuming w1 = 0. In this

and later figures we represent multiple transitions having the same source and target as single

arrows labelled with sets of actions. Several labels placed alongside the same arrow denote a union

of sets. Wildcards (the ‘ ’ symbol) are used to generate sets of actions that match the pattern in

the usual sense.

Fig. 7. Example of the head specification Mhead assuming |w| = 4.

Changes in cells other than i are also consistent with Mi:

for all a ∈ Γ if i 	=j with 1�j� n, then (p〈i,a〉, (, j, ,), p〈i,a〉) ∈ R�.

Finally, the π and ∃ actions may be used freely as they do not affect the contents of the

cell:

(p〈i,a〉, π, p〈i,a〉) ∈ R� and (p〈i,a〉, ∃, p〈i,a〉) ∈ R� for any a∈Γ.

There are no other may-transitions in Mi.

Figure 6 presents a specification M1 for the leftmost cell of an ATM over a binary

alphabet.

Encoding the head. The specification Mhead, which tracks the current head position, has

n states labelled p1 to pn, one for each possible position. Initially, the head occupies the

leftmost cell, so p1 is the initial state of Mhead. There are no must-transitions:

R� = �.

The may-transitions are consistent with any position changes based on the direction

encoded in observed actions. More precisely,

for every position 1� i<n we have (pi, (, i, , r), pi+1) ∈ R�

for every position 1<i�n we have (pi, (, i, , l), pi−1) ∈ R�.

The π and ∃ transitions may again be taken freely, but in this case without moving the

machine’s head:

(pi, π, pi) ∈ R� and (pi, ∃, pi) ∈ R� for each position 1 � i � n.

There are no other may-transitions in Mhead. Note that the head of T is only allowed to

move between the first and nth cell in any computation. Figure 7 shows the specification

Mhead for our running example.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

Modal and mixed specifications: key decision problems and their complexities 87

Fig. 8. The specification Mexist, which enforces a π-transition after each ∃-transition.

Encoding the finite control. The specifications Mctrl and Mexist model the finite control of

the ATM T . The specification Mexist is independent of the ATM T , and is defined in

Figure 8. It ensures that a π-transition is taken after every ∃-transition. The specification

Mctrl mimics the finite control of T almost directly. Each control state qs ∈ Q is identified

with a state in Mctrl of the same name. Additional internal states of Mctrl encode existential

and universal branching:

for each qs a state qs∃ with two ∃-transitions (qs, ∃, qs∃) ∈ R� ∩ R� is added.

Depending on mode(qs), additional states and transitions are created:

— If mode(qs)=Exst, then for each 1� i�n, aold ∈Γ, and for each transition (qt, anew, d)∈
δ(qs, aold), we add a may π-transition from qs∃ to a new intermediate state uniquely

named 〈qsaoldianewdqt〉. We then add a must-transition labelled (aold, i, anew, d) from

that intermediate state to qt. Formally,

(qs∃, π, 〈qsaoldianewdqt〉) ∈ R�

(〈qsaoldianewdqt〉, (aold, i, anew, d), qt) ∈ R�∩ R�.

Figure 9 shows this encoding for the state e of our running example.

— If mode(qs)=Univ, then for each 1� i�n, aold ∈Γ, and for each transition (qt, anew, d)∈
δ(qs, aold), we add a may π-transition from qs∃ to an intermediate state named 〈qsaoldi〉.
We then add a must-transition labelled (aold, i, anew, d) from the intermediate state

〈qsaoldi〉 to qt. Formally,

(qs∃, π, 〈qsaoldi〉) ∈ R�

(〈qsaoldi〉, (aold, i, anew, d), qt) ∈ R�∩ R�.

The initial state of Mctrl is its state named q0, where q0 is the initial state of T . Figure 10

demonstrates the encoding of the state u1 of the ATM in Figure 4. The complete Mctrl

specification for our running example is shown in Figure 11.

Notice how the two specifications Mctrl and Mexist cooperate to enforce the nature of

alternation. For example, for an existential state, Mctrl forces every implementation to

have an ∃-transition, which may be followed by a π-transition. Simultaneously, Mexist

allows an ∃-transition but subsequently requires a π-transition. Effectively, at least one of

the π branches from Mctrl must be implemented (which is an encoding of a disjunction).

This concludes the description of all specifications from set MT
w in (1). All these

specifications are modal by construction. Since the sum of their sizes is bounded by a

polynomial in n and in the size of T , the remainder of the proof for Theorem 6 follows

from the following lemma.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

A. Antonik, M. Huth, K. Larsen, U. Nyman and A. Wąsowski 88

Fig. 9. Encoding for the existential state of the running example, assuming |w| = 4.

Fig. 10. Encoding for the universal state u1 of the running example, assuming |w| = 4.

Lemma 7. For each linearly bounded ATM T and an input w, T accepts w if and only

if the set of modal specifications MT
w has a common implementation.

The proof of this lemma can be found in Appendix A. We will just mention here

some points of interest. From an accepting computation tree T〈T ,w〉, one can construct

a specification N by structural induction on T〈T ,w〉. This N effectively adds to T〈T ,w〉
some new states and labelled transitions so that the computation encoded in T〈T ,w〉 then

interlocks with the action synchronisation of specifications in MT
w . Since N is of the form

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

Modal and mixed specifications: key decision problems and their complexities 89

Fig. 11. The entire Mctrl specification for the example of Figure 4, assuming |w| = 4.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

A. Antonik, M. Huth, K. Larsen, U. Nyman and A. Wąsowski 90

Fig. 12. Conjunction of k mixed specifications into one mixed specification

(S, R, R), it suffices to show that N is a common refinement of all members in MT
w . This

is a lengthy but routine argument.

For the converse, a common implementation of MT
w is cycle-free by our assumption

that T never repeats a configuration. So the pointed common implementation is a DAG

and we can use structural induction on that DAG to synthesise an accepting computation

tree of T for input w. This makes use of the fact that the head of T never reaches a cell

that was not initialised by input w.

We can now deduce EXPTIME-completeness for the decision problem CI for both

modal and mixed specifications.

Corollary 8. The decision problem CI is EXPTIME-complete in the sum of their sizes for

both modal and mixed specifications.

Proof. Theorem 6 states EXPTIME-hardness of CI for modal specifications. Since

modal specifications are also mixed specifications, this also gives the EXPTIME-hardness

of CI for mixed specifications. From Lemma 4, we know that both instances of CI are in

EXPTIME.

5. Consistency for mixed specifications

The decision problem C is of course trivial for modal specifications since all such

specifications have implementations by construction. Given a pointed, modal specification

((S, R�, R�), s0), one such implementation is (S, R�, R�, s0). In contrast, we will now show

that deciding the consistency of a single mixed specification is EXPTIME-hard in its size.

We achieve this using Theorem 6 and by reducing CI for several modal specifications to

the decision problem C for a single mixed specification.

Theorem 9. Consistency of a mixed specification is EXPTIME-hard in its size.

Proof. By Theorem 6, it suffices to show how k > 1 mixed specifications (Mi, si) can

be conjoined into one mixed specification (M, ck) with |M | being polynomial in
∑

i |Mi |
such that (M, ck) has an implementation if and only if all (Mi, si) have a common

implementation.

Figure 12 illustrates the construction, which originated in Larsen et al. (2007b), by

showing a conjunction of states s1, s2, s3 up to sk . In order to conjoin two states s1 and

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

Modal and mixed specifications: key decision problems and their complexities 91

Fig. 13. Reduction of C for mixed specification (M, s) to TR for mixed specifications (N, t) and

(M ′, s′): mixed specification (M, s) is consistent if and only if not (N, t)≺th(M
′, s′).

s2, two new π-transitions are added from a fresh state c2 to each of s1 and s2. One of the

π-transitions is an R� \ R� π-transition and the other is an R� π-transition. Only two

states can be conjoined directly in this way, but the process can be iterated as many times

as needed, as shown in Figure 12, by adding a corresponding number of π-transitions to

the newly conjoined systems. Observe that the resulting specification is properly mixed

(not modal) since it contains π-transitions that are in R� \R�. Its size is linear in
∑

i |Mi |
and quadratic in k, which itself is O(

∑
i |Mi |).

If the specifications that are being conjoined have a common implementation, the new

specification will also have an implementation, which is the same implementation prefixed

with a sequence of k − 1 π-transitions. Conversely, if the new mixed specification has an

implementation, this implementation will contain at least a sequence of k−1 π-transitions,

followed by an implementation that must individually satisfy all the systems that have

been conjoined.

6. Thorough refinement for mixed specifications

We show EXPTIME-hardness of the decision problem TR for mixed specifications using

Theorem 9 and a reduction of consistency checks to thorough refinement checks.

Theorem 10. Thorough refinement of mixed specifications is EXPTIME-hard in the size

of these specifications.

Proof. By Theorem 9, deciding C for a mixed specification is EXPTIME-hard. Therefore

it suffices to reduce C for mixed specifications to TR for mixed specifications. Let (M, s)

be a pointed, mixed specification over Σ. Consider a pointed, modal specification (N, t)

over Σ ∪ {π} with N = ({t}, {}, {}), which has only one state and no transitions. From

(M, s), we construct the mixed specification (M ′, s′) over Σ ∪ {π} by prefixing s with a new

state s′ and a single transition (s′, π, s) ∈ R�
M ′\R�

M ′ . This construction is shown in Figure 13.

We show that (M, s) is consistent if and only if not (N, t)≺th(M
′, s′). (It is easy to see,

but irrelevant to this proof, that the converse (M ′, s′)≺th(N, t) always holds.)

1 If (M, s) is consistent, it has an implementation (L, l), from which we get an imple-

mentation (L′, l′) of (M ′, s′) by creating a new state l′ with a transition (l′, π, l). But

(M ′, s′) then has an implementation that is not allowed by (N, t), so I(M ′, s′) 	⊆ I(N, t).

2 Conversely, if I(M ′, s′) 	⊆ I(N, t) there exists an implementation (L, l′) of (M ′, s′), which

is not an implementation of (N, t), so (L, l′) has a transition (l′, π, l). Moreover, (L, l)

refines (M, s) since (L, l′) refines (M ′, s′) and s is the unique successor of s′ in M ′. Thus

(M, s) is consistent.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

A. Antonik, M. Huth, K. Larsen, U. Nyman and A. Wąsowski 92

Table 1. Tabular summary of the results provided in this paper.

Modal specifications Mixed specifications

Common impl. EXPTIME-complete EXPTIME-complete

Consistency trivial EXPTIME-complete

Thorough ref. EXPTIME EXPTIME-complete

Remark 3. Observe that part 1 of this proof works for refinement as well as thorough

refinement. However, we would not be able to get the second implication for refinement

in part 2 of the proof since thorough refinement does not generally imply refinement.

Also note that not only have we just shown EXPTIME-completeness for deciding

whether a mixed specification thoroughly refines another mixed specification, but also for

deciding whether a mixed specification thoroughly refines a modal specification.

7. Discussion

We begin by summarising the complexity results obtained in this paper:

Corollary 11. The worst-case computational complexities shown in Table 1 are correct.

There is one complexity gap in Table 1, that for TR for modal specifications. We have

studied this fairly extensively without being able to settle the exact complexity of this

decision problem. However, we learned recently that this problem has been determined to

be EXPTIME-complete also (Beneš et al. 2009). It would be interesting to see whether

the proof of this result can shed any light on the complexity of the validity problem for

formulae given in the vectorised form of Larsen (1989), since the latter is one way in

which one can re-express TR for both modal and mixed specifications.

Interestingly, we can reduce thorough refinement to a universal version of generalised

model checking (Bruns and Godefroid 2000). In their paper, Bruns and Godefroid consider

judgments GMC(M, s, ϕ) that are true if and only if there exists an implementation of (M, s)

satisfying ϕ. They observe that this generalises both model checking (when (M, s) is an

implementation) and satisfiability checking (when (M, s) is such that all labelled transition

systems refine it). This existential judgment has a universal dual (see, for example,

Antonik and Huth (2009)), VAL(M, s, ϕ), which is true if and only if all implementations

of (M, s) satisfy ϕ, thus generalising both model checking and validity checking. The

former judgment is useful for finding counter-examples; the latter for verification. For

example, both of these uses can be seen in the CEGAR technique for program verification

of Godefroid and Huth (2005). Since (M, s)≺th(N, t) reduces directly to VAL(N, t,Ψ(M,s)),

it would be interesting to understand the exact complexity of VAL(N, t, ϕ) for modal

specifications (N, t) when ϕ ranges over characteristic formulae Ψ(M,s) in vectorised form.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

Modal and mixed specifications: key decision problems and their complexities 93

8. Conclusion

In this paper we have revisited modal and mixed specifications. Such specifications consist

of state spaces with two transition relations that can serve, respectively, as over- and under-

approximations of transition relations in labelled transition systems. We then discussed

three fundamental decision problems for modal and mixed specifications:

— Common implementation: do finitely many specifications have a common implement-

ation?

— Consistency: does a specification have an implementation?

— Thorough refinement: are all implementations of one specification also implementa-

tions of another specification?

We investigated the worst-case computational complexity for these three decision

problems for both modal and mixed specifications. In the case of mixed specifications,

we showed that all three decision problems are EXPTIME-complete in the sizes of these

systems. In the case of modal specifications, we proved that the decision problem of

common implementation is also EXPTIME-complete in the size of these systems. (The

decision problem of consistency for modal specifications is known to be trivial.) However,

for the decision problem of modal specifications for thorough refinement, we could not

give any new results as our reductions for TR only work for mixed specifications.

In securing these results, our use of a new reduction of input acceptance for linearly

bounded alternating Turing machines to the existence of a common implementation for

modal specifications was crucial.

Appendix A. Proof of Lemma 7

We need to show that if the linearly bounded ATM T has an accepting computation

on input w, then the set MT
w of constructed modal specifications will have a common

implementation; and, conversely, that if this set MT
w of modal specifications has a common

implementation, this common implementation witnesses an accepting computation for the

linearly bounded ATM T on input w. We will prove the two directions separately.

A.1. Acceptance implies existence of common implementation

Let the ATM T accept input w. We will show that MT
w has a common implementation.

Since we have assumed that T does not repeat configurations on any computation path,

we know that there exists a computation tree T〈T ,w〉 demonstrating that T accepts w in

an exponentially bounded number of steps.

We will use T〈T ,w〉 to construct a modal specification

N = (Nstates, RN, RN)

over Σ, where Nstates is a set of states, RN is a transition relation and Σ is the alphabet of

specifications in MT
w . The proof that N is indeed an implementation of all specifications

in MT
w will follow shortly after the construction.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

A. Antonik, M. Huth, K. Larsen, U. Nyman and A. Wąsowski 94

Since N has identical must- and may-transition relations, we will just refer to transitions

for N without mentioning their type. States of N are labelled by configurations of the

computation tree T〈T ,w〉. More precisely, we distinguish three kinds of states:

— Type 1 states, indexed by a configuration of T〈T ,w〉 only, for example state n〈q0 ,1,w〉.

— Type 2 states, indexed by a configuration and an extra subscript ∃, as in n〈q,i,τ〉∃.

— Type 3 states, indexed by a configuration and an extra subscript π, as in n〈q,i,τ〉π .

We construct N recursively, starting from the root of the accepting computation tree. We

start by creating the initial state of N labelled n〈q0 ,1,w〉, where 〈q0, 1, w〉 is the configuration

of the root node in T〈T ,w〉. We shall be adding new successor states and transitions in

a top-down fashion as we progress. Our recursive procedure accepts two parameters

(〈q, i, τ〉, n〈q,i,τ〉): a node from T〈T ,w〉 and a state from Nstates. For any pair of parameters

(〈q, i, τ〉, n〈q,i,τ〉) proceed as follows:

— If mode(q) = Univ, create two new states n〈q,i,τ〉∃ and n〈q,i,τ〉π and an ∃-transition

from n〈q,i,τ〉 to n〈q,i,τ〉∃, and a π-transition from n〈q,i,τ〉∃ to n〈q,i,τ〉π . Then, for each of the

successors 〈q′, i′, τ′〉 of 〈q, i, τ〉, create a new state n〈q′ ,i′ ,τ′〉 and a transition from n〈q,i,τ〉π
to n〈q′ ,i′ ,τ′〉 labelled by (τi, i, τ

′
i, d) where d = r if i′ = i + 1 and d = l otherwise†. Then

continue recursively for every successor 〈q′, i′, τ′〉 of 〈q, i, τ〉, and its corresponding state

n〈q′ ,i′ ,τ′〉. See Figure 14(a).

— If mode(q) = Exst, create two new states n〈q,i,τ〉∃ and n〈q,i,τ〉π and an ∃-transition from

n〈q,i,τ〉 to n〈q,i,τ〉∃ and a π-transition from n〈q,i,τ〉∃ to n〈q,i,τ〉π . Then, because T〈T ,w〉 is

accepting, we know that there exists at least one successor configuration 〈q′, i′, τ′〉 that

is accepted by the subtree with this configuration as root. Select this configuration and

create a new state n〈q′ ,i′ ,τ′〉 and a transition from n〈q,i,τ〉π to n〈q′ ,i′ ,τ′〉 labelled by (τi, i, τ
′
i, d)

where d = r if i′ = i + 1 and d = l otherwise. Then continue recursively with 〈q′, i′, τ′〉
and n〈q′ ,i′ ,τ′〉. See Figure 14(b).

Observe that the above recursive computation terminates in universal states with no

successors due to an iteration over an empty set. This is because T〈T ,w〉 is an accepting

computation tree, so we are guaranteed that the existential branch can always continue,

and, because T only allows execution of a bounded number of steps, every branch of the

above recursive procedure will eventually terminate.

We shall now show that specification (N, n〈q0 ,1,w〉) refines each of the modal specifications

in MT
w .

1. (Mexist, x1)≺(N, n〈q0 ,1,w〉):

Recall that the specification Mexist has exactly three states named x1, x2 and x3 (see

Figure 8). Consider the following binary relation on states of Mexist and states of N:

Q1 = {(x1, n〈qs,i,τ〉) | n〈qs,i,τ〉 ∈ Nstates} ∪
{(x2, n〈qs,i,τ〉∃) | n〈qs,i,τ〉∃ ∈ Nstates} ∪

{(x3, n〈qs,i,τ〉π)) | n〈qs,i,τ〉π ∈ Nstates}.

† We write τi to mean the ith symbol of the tape state τ.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

Modal and mixed specifications: key decision problems and their complexities 95

Fig. 14. Construction of a common implementation N from fragments of the accepting

computation tree T〈T ,w〉.

We will show that Q1 witnesses a refinement of (Mexist, x1) by (N, n〈q0 ,1,w〉). First, observe

that the pair of initial states (x1, n〈q0 ,1,w〉) of Mexist and N are related in Q1. Then we

check that Q1 fulfils the conditions of Definition 2:

(1) We need to show for all pairs (x, n) ∈ Q1 that for all states x′ of Mexist, if

(x, a, x′) ∈ R�
Mexist

, there exists a state n′ ∈ Nstates with (n, a, n′) ∈ R�
N and (x′, n′) ∈ Q1.

A must-transition occurs in R�
Mexist

only if x = x2. In this case there is exactly one

must π-transition going to x3. We see from Q1 that x2 is paired only with states

of form n = n〈qs,i,τ〉∃. By construction of N, the latter state always has a must

π-transition to some state n′ = n〈qs,i,τ〉π which gives us that (x′, n′) ∈ Q1 by the

construction of Q1.

(2) We need to show for all pairs (x, n) ∈ Q1 that for all states n′ ∈ Nstates, if

(n, a, n′) ∈ R�
N , there exists a state x′ of Mexist such that (x, a, x′) ∈ R�

Mexist
with

(x′, n′) ∈ Q1. We consider three sub-cases:

— n is of type 1, so n = n〈qs,i,τ〉:

By Q1’s construction, we have x = x1. By the construction of N, any may-

transition leaving n will be labelled by ∃ and target a type 2 state n′ = n〈qs,i,τ〉∃.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

A. Antonik, M. Huth, K. Larsen, U. Nyman and A. Wąsowski 96

This can be matched by (x1, ∃, x2) ∈ R�
Mexist

and, for x′ = x2, we get (x′, n′) ∈ Q1

by construction of Q1.

— n is of type 2, so n = n〈qs,i,τ〉∃:

By Q1’s construction, we have x = x2. By the construction of N, there is

exactly one may π-transition leaving n. It targets a state n′ of type 3, so

n′ = n〈qs,i,τ〉π . This can be matched by (x2, π, x3) ∈ R�
Mexist

, so taking x′ = x3, we

get (x′, n′) ∈ Q1 by the construction of Q1.

— n is of type 3, so n = n〈qs,i,τ〉π:

By Q1’s construction, we have x = x3. By the construction of N, all possible

may-transitions leaving n target type 1 states of the form n′ = n〈qs,i,τ〉. All these

transitions have labels in (, , ,). These can all be matched by (Mexist, x3),

as that specification contains all transitions of type (, , ,) going from x3

to x1. Since x1 is paired with all states of type 1 in Q1 this again gives us that

(x′, n′) ∈ Q1 for x′ = x1.

2. (Mi, p〈i,wi〉)≺(N, n〈q0 ,1,w〉) for each tape cell 1 � i � n:

For any selection of i above, consider the following relation Qi
2 over the states of Mi

and the states of N:

Qi
2 = {(p〈i,τi〉, n) | n = n〈qs,j,τ〉 or n = n〈qs,j,τ〉π or n = n〈qs,j,τ〉∃, for 1 � j � n}

First note that the initial states of the two specifications are related in Qi
2. This is

clearly the case since the initial state of each Mi is p〈i,wi〉, so by the definition of Qi
2

it is related to n〈q0 ,1,w〉. We still need to show, given (p, n) ∈ Qi
2, that the refinement

conditions are preserved:

(1) This condition is vacuously true since Mi’s have no must transitions.

(2) We need to show for all pairs (p, n) ∈ Qi
2 that for all states n′ ∈ Nstates if

(n, a, n′) ∈ R�
N , there exists a state p′ of Mi such that (p, a, p′) ∈ R�

Mi
with (p′, n′) ∈ Qi

2.

With only one exception, whenever N takes a may-transition, Mi will be able to

match it. The exception is if the label contains as its old tape symbol a symbol

different from the one that Mi has in its current state and where i is the current

position of the head in n, so i = j. Since the transitions of N are created from a

legal computation tree for the ATM T , we can conclude that N will never change

the content of the tape without writing to it, so N will never try to read something

from a tape cell that is not in that given tape cell. It will also always update the

new content of the tape cell correctly, so we are assured that (p′, n′) ∈ Qi
2.

3. (Mhead, p1)≺(N, n〈q0 ,1,w〉):

The relation Q3 witnessing this refinement is defined as follows:

Q3 = { (pi, n) | n = n〈qs,i,τ〉 or n = n〈qs,i,τ〉π or n = n〈qs,i,τ〉∃ }.

We first have to ensure that the initial states of the two specifications are in Q3. This

is the case since the initial state of N has i = 1, which is Q3-related to p1, the initial

state of Mhead. We now need to show that for any given (p, n) ∈ Q3, the two refinement

conditions of Definition 2 are preserved:

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

Modal and mixed specifications: key decision problems and their complexities 97

(1) This condition is vacuously satisfied Mhead has no must-transitions.

(2) We need to show that whenever (n, a, n′) ∈ R�
N , there exists p′, a state of Mhead,

such that (p, a, p′) ∈ R�
Mhead

with (p′, n′) ∈ Q3. We will just discuss the case when n is

of type 3 here, so n = n〈qs,i,τ〉π , since for the other two types the transitions leaving

n do not move the head and the preservation of refinement can be concluded

directly.

By construction of N, whenever n〈qs,i,τ〉π takes a may-transition, this transition is

labelled (, i, , d) targeting a type 1 state n〈q′ ,i′ ,τ′〉, where i′ = i + 1 if d = r and

i′ = i − 1 otherwise. Now, by the construction of Mhead, the state pi can match

such a transition, moving to pi′ accordingly. The only case where Mhead would not

be able to match is if N tried to move the head off either end of the tape, but this

will never happen since N is constructed from a legal accepting computation tree.

Thus we conclude that the refinement condition is preserved.

4. (Mctrl, q0)≺(N, n〈q0 ,1,w〉):

Consider the following binary relation Q4 on states of Mctrl and N:

Q4 = {(qs, n) | n = n〈qs,i,τ〉} ∪
{(qs∃, n) | n = n〈qs,i,τ〉∃} ∪

{(〈qsτii〉, n〈qs,i,τ〉π) | mode(qs) = Univ} ∪
{(〈qsτiia2dqt〉, n〈qs,i,τ〉π) | mode(qs) = Exst and

(n〈qs,i,τ〉π, (τi, i, a2, d), n〈qt,i′ ,τ′〉) ∈ R�
N } .

First observe that the initial states of the two specifications are in Q4 since q0 is the

initial state of Mctrl and n〈q0 ,1,w〉 is the initial state of N (see the first summand in

the definition of Q4). Now we need to show that, given a pair (q, n) ∈ Q4, the two

refinement conditions of Definition 2 are preserved:

(1) We need to show that whenever (q, a, q′) ∈ R�
Mctrl

, there exists a state n′ ∈ Nstates

such that (n, a, n′) ∈ R�
N with (q′, n′) ∈ Q4.

We need to consider four cases:

— q = qs for some qs ∈ Q (a state of the ATM T):

There is exactly one must ∃-transition leaving it, which targets qs∃. This

transition can be matched by an ∃-transition leaving n〈qs,i,τ〉 and targeting

n〈qs,i,τ〉∃. These new target states remain in relation Q4, as in the above definition.

— q = qs∃ for some qs ∈ Q (a state of the ATM T):

The condition is satisfied vacuously simply because there is no must-transition

leaving q.

— q has the form 〈qsτii〉, where qs is a universal state of the ATM T :

n has the form n〈qs,i,τ〉π , but since n〈qs,i,τ〉π was constructed by our recursive

procedure from a universal configuration of an accepting computation tree,

we know that for all must-transitions leaving 〈qsτii〉 to some state qt, there

will be a matching must-transition in N leaving n〈qs,i,τ〉π and targeting n〈qt,i′ ,τ′〉,

which is in relation with qt as in the first summand in the definition of Q4.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

A. Antonik, M. Huth, K. Larsen, U. Nyman and A. Wąsowski 98

— q has the form 〈qsτiia2dqt〉, where qs is an existential state of the ATM T :

n has the form n〈qs,i,τ〉π and the state 〈qsτiia2dqt〉 has exactly one must-transition

labelled (τi, i, a2, d) and targeting state qt. Since qs is an existential state, we

know that n〈qs,i,τ〉π was constructed from an existential configuration and,

consequently, there is a single must-transition leaving it. This transition is

labelled (τi, i, a2, d) as in the construction of the Q4 relation (see the last

summand). Finally, this transition targets n′ = n〈qt,i′ ,τ′〉, so we again have

(q′, n′) ∈ Q4.

(2) We need to show that if (n, a, n′) ∈ R�
N , there exists a state q′ of Mctrl such that

(q, a, q′) ∈ R�
Mctrl

with (q′, n′) ∈ Q4.

We consider three cases according to the type of state n:

— n is of type 1, so n = n〈qs,i,τ〉:

By the construction of N, there is a may ∃-transition leaving n targeting n〈qs,i,τ〉∃.

This is followed by (qs, ∃, qs∃) ∈ R�
Mctrl

and again gives us that (q′, n′) ∈ Q4.

— n is of type 2, so n = n〈qs,i,τ〉∃:

By the construction of Q4 (see the second summand), q is of the form qs∃. By

the construction procedure for N, there is a single may π-transition leaving

n〈qs,i,τ〉∃ and targeting n′ = n〈qs,i,τ〉π .

– If mode(qs) = Univ, there is exactly one transition (qs∃, π, 〈qsτii〉) ∈ R�
Mctrl

,

and its target state is related to n〈qs,i,τ〉π in Q4.

– If mode(qs) = Exst, there can be many may π-transitions leaving qs∃. We

will choose which one to match with, based on the label of the single

transition leaving n〈qs,i,τ〉π . We are, so to speak, looking one step ahead.

Since n〈qs,i,τ〉π says that the head is in position i over a tape containing τ,

we choose to match our transition with the transition of Mctrl targeting the

state whose name matches the prefix ‘〈qsτii’. Such a state always exists by

construction of Mctrl, and it is exactly the state that is related to n〈qs,i,τ〉π in

Q4 (see the last summand).

— n is of type 3, so n = n〈qs,i,τ〉π:

We consider two cases according to the mode of qs in the ATM T :

– mode(qs) = Univ:

There may be several may-transitions leaving n〈qs,i,τ〉π . Since N has been

created from a legal computation tree, we know that any may-transition

leaving n〈qs,i,τ〉π and targeting n′ = n〈qt,i′ ,τ′〉 follows the transition relation δ of

T . Moreover, by the construction of Mctrl, its state 〈qsτii〉 will consequently

be able to match this transition arriving in the state qt related to n′ in Q4.

– mode(qs) = Exst:

There is exactly one may-transition leaving n〈qs,i,τ〉π and exactly one may-

transition leaving 〈qsτiia2dqt〉. These transitions have the same label and

have target states n〈qt,i′ ,τ′〉 and qt, respectively, which are related in Q4.

This concludes the argument that each specification in MT
w is refined by N.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

Modal and mixed specifications: key decision problems and their complexities 99

A.2. The existence of a common implementation implies acceptance

Let MT
w have a common implementation. We need to show that the ATM T accepts

input w. Given a modal specification

Unew = (Ustates, RU, RU)

that is a common implementation of MT
w , we will construct a computation tree T〈M,w〉

demonstrating that T accepts w.

Since Unew is a common implementation of MT
w , we have 3 + n refinement relations,

Qctrl, Qhead, Qexist, Q1, . . ., Qn,

each demonstrating for one of the corresponding specifications S ∈ MT
w that S≺Unew.

The construction of T〈M,w〉 is inductive. Along with the construction, we argue that the

nodes of the tree preserve the following property (IH):

(1) For every configuration 〈q, i, τ〉 of T〈M,w〉 there exists a state ux ∈ Ustates such that:

(IH1) (ux, x1) ∈ Qexist;

(IH2) (ux, q) ∈ Qctrl;

(IH3) (ux, pi) ∈ Qhead;

(IH4) (ux, p〈k,τk〉) ∈ Qk for each k = 1..n.

(We follow the conventions of Section 4 here. So q is a name of T ’s state, which

also uniquely identifies a state of Mctrl. Specifically, we mean that q represents a label

without any special suffixes. Label pi refers to a particular state of Mhead, the one

representing position i. Similarly, p〈k,τk〉 denotes the state of Mk that represents the fact

that the kth symbol of τ is stored in the kth cell of the tape.)

(2) Moreover:

(IH5) if a configuration 〈q′, i′, τ′〉 is a successor of 〈q, i, τ〉 in T〈M,w〉, then it is also a

successor of 〈q, i, τ〉 in the ATM T ;

and, conversely:

(IH6) the tree T〈M,w〉 has all the successors of 〈q, i, τ〉 that T has for universal states,

and at least one of them for all existential states.

We will address the problem of whether T〈M,w〉 actually is an accepting computation

tree of T , witnessing acceptance of w, after discussing the construction of T〈M,w〉, and

after arguing that it satisfies the above inductive property.

Root (base case):

The root of T〈M,w〉 is selected to be the configuration 〈q0, 1, w〉, where q0 is the initial

control state of T . We need to show that 〈q0, 1, w〉 exhibits property IH. Observe that

Unew has a distinct initial state u0. Take ux to be this u0.

(IH2) Since Mctrl≺Unew, there is a pair (u0, q0) ∈ Qctrl.

(IH3) Since Mhead≺Unew and p1 is the initial state of Mhead, we know that (u0, p1) ∈ Qhead.

(IH4) Since w is the initial content of the tape, and thus p〈k,wk〉 is an initial state of Mk ,

the refinement Mk≺Unew gives us that (u0, p〈k,wk〉) ∈ Qk , so IH4 holds for 〈q0, 1, w〉.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

A. Antonik, M. Huth, K. Larsen, U. Nyman and A. Wąsowski 100

(IH1) Since Mexist≺Unew
, we get that (u0, x1) ∈ Qexist.

We shall argue that IH5 and IH6 hold for the root node when we discuss adding successors

below, so this concludes the base case.

Non-root nodes (inductive step):

Given a configuration 〈q, i, τ〉 for which properties IH1–IH4 hold, we will now construct

the next level of T〈M,w〉 in such a way that IH5–IH6 hold for 〈q, i, τ〉 and IH1–IH4 hold

for all its successors.

Before we consider the two cases based on the modes of the states separately, we

shall describe the part of the proof common to both of them. The induction hypothesis

allows us to assume existence of a specific state ux of Ustates and the respective refinement

relations. Since the state ux is related to a state without a π or ∃ subscript in Mctrl,

that ux must implement an ∃ transition to a new state, which we will call ux∃. Because

(ux, x1) ∈ Qexist, we know that (ux∃, x2) ∈ Qexist, so ux∃ must implement a π transition to a

new state, say uxπ . Since all π and ∃ transitions in Mhead and M1 up to Mn are loops, we

know that uxπ is related to the same states as ux in these specifications.

The remainder of the proof, consists of a case analysis on the mode of q:

— mode(q) = Exst:

We know that (Mctrl, q) has to implement an ∃-transition followed by at least one

π-transition reaching a state of the form 〈qτiia′dq′〉. Also, because ux∃ is related to q∃,

it must be possible to choose uxπ above such that (uxπ, 〈qτiia′dq′〉) ∈ Qctrl, but then we

know that uxπ can take a transition labelled (τi, i, a
′, d) to some state u′

x related to q′

in Qctrl.

So, if we extend T〈M,w〉 at 〈q, i, τ〉 with a new child 〈q′, i′, τ[τi �→ a′]〉, the new execution

step will follow the semantics of the ATM T satisfying conditions IH1–IH6, provided

i′ = i + 1 if d = r, and i′ = i − 1 otherwise.

The argument that IH5–IH6 hold is direct since we have added a successor as required

out of all those available in the semantics of T .

The arguments showing that IH1–IH4 hold are more involved, but standard – for

each of them a unique successor in Mexist, Mctrl, Mhead and Mk ’s can be identified by

following the transition labelled (τi, i, a
′, d), and then shown to witness fullfilment of

the condition for u′
x by the induction hypothesis (from refinement of ux).

— mode(q) = Univ:

Since (Unew, ux) is a refinement of (Mctrl, q) and (Mexist, x1), we get that it is possible

to choose uxπ above so that it refines a state of Mctrl that has a label of the form

(Mctrl, 〈qτii〉).
The refinement relation with Mhead and Mi ensures that this state is the only successor

of q in Mctrl that can be implemented, implying that uxπ must implement all the

transitions corresponding to the transition relation δ of T .

So we can extend T〈M,w〉 with new children 〈q′, i′, τ′[τi �→ a′]〉 for all (q′, i′, τ′) such that

(Mctrl, q
′) can be reached from (Mctrl, 〈qτii〉) in one step with a transition labelled

(τ′, i, a′, d). Also i′ = i + 1 if d = r, and i′ = i − 1 otherwise.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

Modal and mixed specifications: key decision problems and their complexities 101

Again, it is not hard to see that all the newly added successors maintain the induction

hypothesis.

We now have to prove that the induction hypothesis holds for all of these target states. As

they are all reached by a transition in Mctrl, we know that there exists a state uy ∈ Ustates

such that (uy, q
′) ∈ Qctrl. Because of the label on the transition, we also know that

(uy, pl) ∈ Qhead for l = i+ 1 if d = r, and l = i− 1 if d = l. This is also ensured to be done

in such a way that the tape cell specifications M1 to Mn again match the content of the

tape. We also know, because of all the transitions of type (, , ,) going from x3 to x1

in Mexist, that (uy, x1) ∈ Qexist. This completes the proof of the inductive step.

In this way we can construct a pruned computation tree T〈M,w〉 recursively. The

constructed tree is finite because we have argued that it follows the semantics of the

ATM T , and T repeats no configuration along a single computation path. Moreover,

T〈M,w〉 is accepting as it is never stuck in a rejecting (existential) state.

Acknowledgments

We thank Nir Piterman for having pointed out to us that the constructions for prime

numbers in Berwanger et al. (2008) and Berwanger and Doyen (2008) are similar to the

constructions for prime numbers given in Example 2. We also thank Jiřı́ Srba and Jan

Křetı́nský for sharing with us their recent discovery that TR for modal specifications is

EXPTIME-complete.

References

Antonik, A. (2008) Decision problems for partial specifications: empirical and worst-case complexity,

Ph.D. thesis, Imperial College, London.

Antonik, A. and Huth, M. (2009) On the complexity of semantic self-minimization. In: Proc. AVOCS

2007. Electronic Notes in Theoretical Computer Science 250 3–19.

Antonik, A., Huth, M., Larsen, K.G., Nyman, U. and Wąsowski, A. (2008a) 20 years of modal and

mixed specifications. Bulletin of EATCS 95. (Available at http://processalgebra.blogspot.

com/2008/05/concurrency-column-for-beatcs-june-2008.html.)

Antonik, A., Huth, M., Larsen, K.G., Nyman, U. and Wąsowski, A. (2008b) Complexity of decision

problems for mixed and modal specifications. In: FoSSaCS’08. Springer-Verlag Lecture Notes in

Computer Science 4962 112–126.

Antonik, A., Huth, M., Larsen, K.G., Nyman, U. and Wąsowski, A. (2008c) Exptime-complete

decision problems for modal and mixed specifications. In: 15th International Workshop on

Expressiveness in Concurrency. Electronic Notes in Theoretical Computer Science 242 19–33.

Beneš, N., Křetı́nský, J., Larsen, K.G. and Srba, J. (2009) Checking thorough refinement on modal

transition systems is EXPTIME-complete. In: Proceedings of the 6th International Colloquium

on Theoretical Aspects of Computing. Springer-Verlag Lecture Notes in Computer Science 5684

112–126.

Berwanger, D., Chatterjee, K., Doyen, L., Henzinger, T.A. and Raje, S. (2008) Strategy construction

for parity games with imperfect information. In: Proceedings of the 19th International Conference

on Concurrency Theory (CONCUR’08). Springer-Verlag Lecture Notes in Computer Science 5201

325–339.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

A. Antonik, M. Huth, K. Larsen, U. Nyman and A. Wąsowski 102

Berwanger, D. and Doyen, L. (2008) On the power of imperfect information. In: Proceedings

of the 28th Conference on Foundations of Software Technology and Theoretical Computer

Science (FSTTCS’08), Bangalore, India, December 2008. Available at http://drops.dagstuhl.

de/portals/FSTTCS08/.

Børjesson, A., Larsen, K.G. and Skou, A. (1993) Generality in design and compositional verification

using tav. In: FORTE ’92 Proceedings, North-Holland Publishing Co. 449–464.

Brunet, G., Chechik, M. and Uchitel, S. (2006) Properties of behavioural model merging. In: Misra,

J., Nipkow, T. and Sekerinski, E. (eds.) FM. Springer-Verlag Lecture Notes in Computer Science

4085 98–114.

Bruns, G. (1997) An industrial application of modal process logic. Sci. Comput. Program. 29 (1-2)

3–22.

Bruns, G. and Godefroid, P. (2000) Generalized model checking: Reasoning about partial state

spaces. In: Palamidessi, C. (ed.) CONCUR. Springer-Verlag Lecture Notes in Computer Science

1877 168–182.

Chandra, A.K., Kozen, D. and Stockmeyer, L. J. (1981) Alternation. J. ACM 28 (1) 114–133.

Chebyshev, P. (1852) La totalité des nombres premiers inférieurs a une limite donnée. Journal de

Mathematiques Pures et Appliques 17 341–365.

Clarke, E.M., Grumberg, O. and Long, D. E. (1994) Model checking and abstraction. ACM Trans.

Program. Lang. Syst. 16 (5) 1512–1542.

Dams, D. (1996) Abstract Interpretation and Partition Refinement for Model Checking, Ph.D. thesis,

Eindhoven University of Technology.

Fischbein, D., Uchitel, S. and Braberman, V. (2006) A foundation for behavioural conformance in

software product line architectures. In: ROSATEA ’06 Proceedings, ACM Press 39–48.

Godefroid, P. and Huth, M. (2005) Model checking vs. generalized model checking: Semantic

minimizations for temporal logics. In: Proceedings of the Twentieth Annual IEEE Symp. on Logic

in Computer Science, LICS 2005, IEEE Computer Society Press 158–167.

Godefroid, P., Huth, M. and Jagadeesan, R. (2001) Abstraction-based model checking using modal

transition systems. In: Larsen, K.G. and Nielsen, M. (eds.) CONCUR 2001 – concurrency theory:

12th international conference, Aalborg, Denmark. Springer-Verlag Lecture Notes in Computer

Science 2154 426–440.

Gurfinkel, A., Wei, O. and Chechik, M. (2006) Yasm: A software model-checker for verification and

refutation. In: Ball, T. and Jones, R. B. (eds.) CAV. Springer-Verlag Lecture Notes in Computer

Science 4144 170–174.

Huth, M. (2005a) Labelled transition systems as a Stone space. Logical Methods in Computer Science

1 (1) 1–28.

Huth, M. (2005b) Refinement is complete for implementations. Formal Asp. Comput. 17 (2) 113–137.

Huth, M., Jagadeesan, R. and Schmidt, D. (2001) Modal transition systems: A foundation for

three-valued program analysis. Springer-Verlag Lecture Notes in Computer Science 2028.

Hüttel, H. (1988) Operational and denotational properties of modal process logic. Master’s thesis,

Computer Science Department, Aalborg University.

Kozen, D. (1988) A finite model theorem for the propositional μ-calculus. Studia Logica 47 (3)

233–241.

Landweber, P. S. (1963) Three theorems on phrase structure grammars of type 1. Information and

Control 6 (2) 131 – 136.

Laroussinie, F. and Sproston, J. (2007) State explosion in almost-sure probabilistic reachability. Inf.

Process. Lett. 102 (6) 236–241.

Larsen, K.G. (1989) Modal specifications. In Sifakis, J. (ed.) Automatic Verification Methods for

Finite State Systems. Springer-Verlag Lecture Notes in Computer Science 407 232–246.

http://www.journals.cambridge.org

http://journals.cambridge.org Downloaded: 05 Oct 2010 IP address: 138.231.176.8

Modal and mixed specifications: key decision problems and their complexities 103

Larsen, K.G., Nyman, U. and Wąsowski, A. (2007a) Modal I/O automata for interface and product

line theories. In: Nicola, R.D. (ed.) ESOP. Springer-Verlag Lecture Notes in Computer Science

4421 64–79.

Larsen, K.G., Nyman, U. and Wąsowski, A. (2007b) On modal refinement and consistency. In:

Caires, L. and Vasconcelos, V. T. (eds.) CONCUR 2007. Springer-Verlag Lecture Notes in Computer

Science 4703 105–119.

Larsen, K.G., Steffen, B. and Weise, C. (1995) A constraint oriented proof methodology based on

modal transition systems. In: Proceedings of the First International Workshop on Tools and

Algorithms for Construction and Analysis of Systems. Springer-Verlag Lecture Notes in Computer

Science 1019 17–40.

Larsen, K.G. and Thomsen, B. (1988) A modal process logic. In: Third Annual IEEE Symposium

on Logic in Computer Science (LICS), IEEE Computer Society 203–210.

Larsen, K.G. and Xinxin, L. (1990) Equation solving using modal transition systems. In: Fifth

Annual IEEE Symposium on Logics in Computer Science (LICS), IEEE Computer Society 108–

117.

Nyman, U. (2008) Modal Transition Systems as the Basis for Interface Theories and Product Lines,

Ph.D. thesis, Department of Computer Science, Aalborg University.

Park, D. (1981) Concurrency and automata on infinite sequences. In: Proceedings of the 5th GI-

Conference on Theoretical Computer Science. Springer-Verlag Lecture Notes in Computer Science

104 167–183.

Raclet, J.-B. (2008) Residual for component specifications. Electronic Notes in Theoretical Computer

Science 215 93–110.

Schmidt, D. (2001) From trace sets to modal-transition systems by stepwise abstract interpretation.

Schmidt, H. and Fecher, H. (2007) Comparing disjunctive modal transition systems with a one-

selecting variant. (Submitted for publication.)

Sipser, M. (1996) Introduction to the Theory of Computation, PWS Publishing Company.

Uchitel, S. and Chechik, M. (2004) Merging partial behavioural models. In: Taylor, R.N. and

Dwyer, M. B. (eds.) SIGSOFT Software Engineering Notes 29 (6) 43–52.

Wilke, Th. (2001) Alternating tree automata, parity games, and modal μ-calculus. Bull. Soc. Math.

Belg. 8 (2).

Xinxin, L. (1992) Specification and Decomposition in Concurrency, Ph.D. thesis, Department of

Mathematics and Comnputer Science, Aalborg University.

Zielonka, W. (1998) Infinite games on finitely coloured graphs with applications to automata on

infinite trees. Theor. Comput. Sci. 200 (1-2) 135–183.

http://www.journals.cambridge.org

