
Web information management with access control∗

Serge Abiteboul
INRIA Saclay

& LSV-ENS Cachan
serge.abiteboul@inria.fr

Alban Galland
INRIA Saclay

& LSV-ENS Cachan
alban.galland@inria.fr

Neoklis Polyzotis
University of California

Santa Cruz
alkis@cs.ucsc.edu

ABSTRACT
We investigate the problem of sharing private information
on the Web, where the information is hosted on different ma-
chines that may use different access control and distribution
schemes. We introduce a distributed knowledge-base model,
termed WebdamExchange, that comprises logical state-
ments for specifying data, access control, distribution and
knowledge about other peers. The statements can be com-
municated, replicated, queried, and updated, while keeping
track of time and provenance. This unified base allows appli-
cations to reason declaratively about what data is accessible,
where it resides, and how to retrieve it securely.

1. INTRODUCTION
With the Web, notably social networks and Web 2.0 ap-

plications, the sharing of information is generalizing. Users
bring data to the network and are willing to share with oth-
ers, but also wish to control what portions of the data can
be viewed or updated by others. Users would also like to
access and update information if desired and entitled to.
This is the setting of the present paper, namely the speci-
fication and sharing of information with access control in a
distributed environment. We wish to do so with a similar
level of security as in centralized systems, but we also want
to leverage and accommodate the wide variety of systems
already available on the Web.

Several studies have investigated the problem of distributed
information management with access control [8, 9, 10, 11].
Similar to some of the previous studies, our approach, which
we term WebdamExchange, employs a distributed knowl-
edge base as its foundation. However, the originality of
WebdamExchange is that the knowledge base unifies all
information relevant to data management with access rights.
Specifically, the knowledge base contains logical statements
and rules to encode:

1. data (as in databases),

2. access rights, and credentials (e.g., cryptographic keys

∗This work has been partially funded by the European Research Coun-
cil under the European Community’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant Webdam, agreement 226513. http://
webdam.inria.fr/
Fourteenth International Workshop on the Web and Databases (WebDB
2011) June 12, 2011 - Athens, Greece
Copyright is held by the author/owner.

pair or login/password),

3. localization information (where to find some particular
data) as well as knowledge about other peers (e.g.,
replication of their data or trust in it),

4. rules describing the policy of each peer,

5. the provenance of the information using time and trace
of communication, and

6. possibly other kinds of information that we will not
consider here such as ontologies, ontology mappings,
beliefs, trust, etc.

The approach allows reasoning holistically about pieces of
data, from where they can be retrieved and who has some
particular access right on them. Moreover, the“logic”of par-
ticipants may be described declaratively using rules, which
facilitates the development of distributed Web applications.

We illustrate these ideas with an example. Suppose that
user Alice is organizing a rock-climbing outing in Fontaine-
bleau, and wishes to put together an application for the
event that she will share with the members of her rock-
climbing group, Roc14. Part of the data she needs is the
list of the group members, which is stored on Facebook. To
promote the event, she also wants to use pictures from previ-
ous outings, which the group members store on public sites,
such as Picasa or Flickr, private Web sites and in an un-
trusted DHT that group member Bob set up. Finally, some
information she will need comes from public Web services,
e.g., she might use Google maps to obtain location informa-
tion for bouldering areas in Fontainebleau. Using existing
technology, Alice will have to use several different tools and
APIs in order to check what data is available and from which
Web services, whether she has access to it and finally deter-
mine how to retrieve it. In contrast, the same task can be
performed in WebdamExchange by issuing a declarative
query that requests the needed data. WebdamExchange
will process the query over the unified knowledge base, thus
dealing under the covers with the thorny issues of distribu-
tion and access rights. Specifically, the knowledge base pro-
vides all information about obtaining (from Facebook) the
list of group members, finding where each of them stores out-
ing pictures and getting the data using proper credentials.
Note that WebdamExchange has to perform this reason-
ing in an extremely heterogeneous setting, where systems,
access controls and ontologies (data organization) may vary
across members of the group.

Overall, our thesis is that with all this information man-
aged in a distributed knowledge base, and with reasoning,

we can automate the retrieval of information with access
rights.

From a formal viewpoint, the system consists of a set of
peers, each with its own database and its own logic. The
database contains logical facts capturing information such
as documents, access control, credentials, localization, but
also replicas of other peers’ information. The peer logic is ex-
pressed in datalog-style rules. We build on the webdamlog
language [3] that supports the exchange of facts and rules
between peers. We extend the language in a number of
ways, notably by introducing the notion of principal (e.g.,
the group Roc14) which is common in security.

The holistic approach advanced by WebdamExchange
brings several distinct advantages:

Large spectrum Because the model is general, it can cap-
ture very different scenarios ranging from centralized
systems (such as central servers) to massively distributed
systems, with peers ranging from fully trusted to to-
tally untrusted, providing encrypted or clear informa-
tion. Furthermore, it can capture scenarios combin-
ing the previous cases, which are the reality of today’s
Web, in arbitrarily rich ways.

Formal model Because the model is formally defined, we
can prove (or disprove) desirable properties for a sys-
tem described with our model, such as soundness (data
is only acquired legitimately) and completeness (all le-
gitimate data may be acquired). This is in the spirit
of [1] that uses logic to describe access control proto-
cols. Also, peers may perform automatic reasoning us-
ing the knowledge base to obtain information on data,
localization and access control.

Quality control Because our model addresses provenance
and time, we can better control the quality of data.
This is in-line with recent works on data provenance,
e.g., [5]. We view time and provenance not as gadgets
but as essential components of a solution for properly
supporting access control in a distributed setting. In
particular, this will enable us to detect who is respon-
sible for misuses of the system.

Given the limited space, our focus in this paper is on dis-
tribution and access control, two essential aspects of the
scenarios targeted by WebdamExchange. We show how
these aspects can be specified in the model, and briefly dis-
cuss how the model captures existing methods for managing
distribution and access control. Of course, there are several
other interesting questions, e.g., related to data integration
or the use of ontologies, which we plan to investigate in our
future work.

The paper is organized as follows. In Section 2, we briefly
present the general WebdamExchange model. Section 3
deals with access control, and Section 4 with distribution.
In Section 5, we highlight the main features of the system
we are implementing. We conclude in Section 6 with per-
spectives on future work.

2. THE MODEL
We consider autonomous peers exchanging data using mes-

sages. For this, we use a formally defined datalog-style lan-
guage recently introduced for distributed data management,
namely webdamlog [3]. The language is very influenced by
Active XML [2] and Dedalus [6].

The main novel feature of webdamlog is delegation, that
is, the possibility of installing a rule at another peer. Specif-
ically, webdamlog has two main concepts: facts, which
capture both local tuples and messages between peers, and
rules, which are datalog-like rules. As in deductive databases,
the model distinguishes between extensional relations that
are defined by a finite set of ground facts and intentional
relations that are defined by rules. Moreover, the relation
names are explicitly localized on a peer. For example, r@p
means the relation r of peer p. One can use variables for
both relation names and peers, and they can appear as data
in relations.

The semantics of the global system is defined based on
local semantics and the exchange of messages and rules. In-
tuitively, a given peer chooses how to move to another state
based on its local state (a set of local facts and messages re-
ceived from other peers) and its program. A move consists
in (1) consuming the local facts, (2) deriving new local facts,
which defines the next state, (3) deriving nonlocal facts, i.e.,
messages sent to other peers, and (4) modifying their pro-
grams via delegations, i.e., the action of installing a rule at
some other peer.

We illustrate the main notions of the model using an ex-
ample. Consider the following two facts in webdamlog:

calendar@Alice-iPhone(rockclimbing, 06/12/2011, Fontaine-
bleau, Alice-iPhone).

roc14members@Alice-iPhone(Bob, Bob-laptop).

The first one is a calendar entry that Alice entered from her
iPhone. The second one captures the information that Bob
is a member of the group and that he keeps his calendar in
his laptop. The following rule is used to include rockclimb-
ing entries from Alice’s agenda into the agendas of other
members of the group, and in particular into Bob’s agenda:

calendar@$peer(rockclimbing, $date, $place, Alice-iPhone) :-
calendar@Alice-iPhone(rockclimbing, $date, $place,

Alice-iPhone),
roc14members@Alice-iPhone($name, $peer)

A name such as Alice-iPhone or Bob-laptop has to be
understood as a physical address in the network, e.g., a URL.
It identifies a peer with storage and processing resources.
Observe that variable $peer is valuated to a peer when the
program is activated, and the new fact or rule is sent to
the corresponding peer. In this particular case, this notably
results in pushing to Bob’s laptop the following new fact:

calendar@Bob-laptop(rockclimbing, 06/12/2011, Fontaine-
bleau, Alice-iPhone).

Even more interestingly, the following rule on Bob’s laptop:

confirm@$peer(rockclimbing, $date, $place,Bob) :-
calendar@Bob-laptop(rockclimbing, $date, $place, $peer),
checkAvailability@Bob-iPhone($date);

delegates to Bob’s iPhone the rule:

confirm@$peer(rockclimbing,06/12/2011, Fontainebleau,Bob)
:- checkAvailability@Bob-iPhone(06/12/2011);

So, Bob’s iPhone can directly send a confirmation message
to Alice if Bob is available that day.

The complete details of webdamlog can be found in [3].
Here, we introduce two extensions that are essential for
WebdamExchange, namely virtual principals and semistruc-
tured data.

Virtual principal. The webdamlog language is tailored
to physical peers such as Alice’s iPhone or Bob’s laptop,
capturing data exchange between them. In WebdamEx-
change, we call principal an entity that owns data and
has access right delegations on the data of other principals.
A peer is such a physical principal. WebdamExchange
also supports virtual principals, e.g., a user such as Alice,
or a group such as Roc14. Contrary to a peer, a virtual
principal has no storage or processing resources, relying on
peers for that. The notion of virtual principal is primarily
used to specify and manage access rights. Essential issues
are who stores the data of a virtual principal, and who has
read/write access to them. Typically, physical principals
will store and process data for virtual principals. They may
also temporarily create avatars of virtual principals. For
instance, an avatar of Alice is created on her iPhone when
she wants to access and update data from this device. A
virtual principal may delegate its access rights to a physical
principal who will manage its data.

Formally, the extension is as follows. Besides facts of
the form r@p(u1, ..., un) where p is a peer, we have facts
r@q(u1, ..., un) where q is a virtual principal. Such a fact is
stored on a physical peer p as an external fact, i.e.,

external@p(r, q, u1, ..., un).

where external is a reserved relation name. When a relation
about a virtual principal is used in a rule, the peer “resolves”
it (using rules) to replace it by the external relations.

Note that the basic webdamlog model is strongly typed.
On the other hand, an external relation needs to store tuples
of arbitrary arity. We next turn the model into a semistruc-
tured data model, which fixes this typing issue.

Semistructured data model. Another problem we have to
face on the Web is that the data is naturally semistructured.
For instance, a climbing area may be recorded in Roc14 as
follows, using the standard syntax of JSON:

climbingSite@Roc14:{“id”:“&cuvier”,
“Name”:“Cuvier”, “ClimbingSiteType”:“Bouldering area”,
“Circuit”: [{“idref”:“circuit@Roc14&cuvier-orange”},

{“idref”:“circuit@Roc14&cuvier-blue”},
{“idref”:“circuit@Roc14&cuvier-red”}]

“GoogleMapsURL”:“...” }

This fact is representing the Cuvier bouldering area that
includes 3 circuits, orange, blue and red. The number of cir-
cuits may depend on the size of the bouldering area. Brack-
ets denote collections and ampersands denote references.
Note that &cuvier-orange identifies a document within the
domain of the circuit relation of Roc14.

To simplify data management, we extend webdamlog
with the notions of a document and a collection. A docu-
ment is a coherent, self-contained piece of data, modeled by
an XML tree (We use the equivalent JSON syntax in the ex-
amples). For example, we may have the following document
picture1@Bob containing a jpeg picture:

picture1@Bob = {“Name”:“picture1”, “Type”:“jpg”,
“byteStream”:“...”}

A document corresponds to a relation that contains the dif-
ferent versions of the document at different points in time.
A document update therefore corresponds to adding a new
fact to the relation.

A collection consists of a set of independent references.
Collections are also used for access control and localiza-
tion (specifically, we employ collections of access control and
where statements respectively, which we will define later).
Collections are updated by adding or removing references.
For example,

pictures@Roc14 += picture1@Bob

adds a reference to the previous document to the collection
of pictures of Roc14.

The standard request to a document or a collection is to
ask for its “current” version, i.e., the last version of the doc-
ument or the consolidated list of references of the collection.
These notions raise the issue of consistency that is partic-
ularly critical for collections of access rights. For instance,
it is important to decide whether a peer requested an up-
date to a document “before” or “after” it obtains the right to
perform such an update. Distribution greatly complicates
the issue, and the distributed systems literature provides a
host of techniques for different consistency models. Clearly,
these techniques can be considered in our setting.

Statements, instructions and external knowledge. In web-
damlog, there is no difference between a fact and a message.
More precisely, if a peer p derives a fact r@p(u1, ..., un), this
is a fact to store; if p derives r@q(u1, ..., un), for q 6= p, this
is a message to send to q. The message is automatically ac-
cepted by q as a new fact. However, in our current setting,
we want to allow the peer to process the fact based on its
own logic. In this fashion, q will see the message as a request
to insert the fact, but it may decide to not actually insert it
in its local knowledge base.

We next detail this important distinction between an in-
sertion request and the (actual logical) statement that may
result from it. The following statement may for instance be
installed by Alice-iPhone:

Alice-iPhone states climbingSite@Roc14={“id”:“&cuvier”,
...} requester Alice;

In other words, Alice-iPhone created a fact of the relation
climbingSite@Roc14 (and typically stored it in its database).
It is important to understand who the participants in such
a fact are: Alice-iPhone performed the statement; Roc14
owns this piece of data; Alice requested this update. This
last information is used to trace the provenance of the fact.
Such a complicated fact model is necessary because it is very
typical on the Web to have a principal (Alice) who has the
right to state a fact of another principal (Roc14) but has to
rely on another principal (Alice’s iPhone) to perform this
task.

How did we get there? Typically, Alice made the following
request:

Alice requests climbingSite@Roc14 = {“id”:“&cuvier”, ...}
to Alice-iPhone;

to her iPhone. Another example of a request is

Bob-laptop requests get climbingSite@Roc14&cuvier
to Alice-iPhone;

which is a request of Bob to Alice’s iPhone for some data.
If Alice’s iPhone can prove that Bob is entitled to have this
data, it can send it to him. So, a peer may want to exchange

statements and messages previously exchanged with other
peers.

It is important to clarify that statements are local data,
stored by the principal who performs the statements. Sim-
ilarly, the instructions are stored by the principal who re-
ceives them. To be able to exchange data and trace any
related communication, we introduce another class of mes-
sages that can contain statements or instructions, and that
are used in general to transfer knowledge. For example,
Alice-iPhone may answer Bob’s request using:

Alice-iPhone says Alice-iPhone states
climbingSite@Roc14= {“id”:“&cuvier”, ...} requester Alice
to Bob-laptop;

We also say that Alice-iPhone performed the communication
and that Bob received it. This fact is stored by Bob-laptop.
One may also want to exchange rules. For example:

Alice-iPhone says Alice-iPhone states
climbingSite@Roc14:{...} :- climbingSite@Alice:{...}
requester Alice to Bob-latop;

means that Alice-iPhone installed in the latop of Bob a view
machinery to copy Alice’s data to Roc14.

The model allows capturing provenance information. In
short, we can follow the transmission of pieces of information
since each message records who sends it and who receives it.
We will see in the following section that this information is
authenticated, so one can check the full trace of provenance.
When we want to trace the communication, the peers must
accept only instructions and well-formed chains of external
knowledge from outside. Formally, the performer of an ex-
ternal knowledge has to be the performer of the contained
statement or the receiver of the contained external knowl-
edge or instruction.

We should also mention that timestamps are also attached
to messages. It is shown in [3] that timestamps have an
important impact on the expressive power of webdamlog.
We timestamp knowledge as follows:

Alice-iPhone states climbingSite@Roc14={“id”:“&cuvier”,
...} requester Alice at 06/12/2011 14:00:00

In WebdamExchange, the timestamps are local to the per-
former, here Alice-iPhone. There is no global clock.

To support the claim that the WebdamExchange ap-
proach allows handling a wide variety of situations encoun-
tered on the Web, we consider in more detail access control
and distribution. In both cases, we introduce generic state-
ments and briefly discuss how they may be supported in
different Web contexts.

3. ACCESS CONTROL
In WebdamExchange, the access control granularity is

at the level of the principal. A principal may get some
particular access right to all the data of another principal.
For example, Alice may be in the write access control list
of the Roc14 group. She may then delegate this right to
Alice-iPhone and Alice-laptop. In general, the access control
policies will not be able to prevent malicious principals to
misbehave. But if enough information is recorded (notably
provenance), the system will be able to identify malicious
peers.

In a standard way, access control in WebdamExchange
is based on access control lists and credentials. We consider
first the different access rights. The own right is used for au-
thentication of performers and for granting/revoking access
rights. The own right also transmits the access rights of a
principal: if p is owner of q and q has a right r on q’, then p
has also the right r on q’. The write right grants the right to
edit basic documents and collections. The append and re-

move rights grant the right to append and remove elements
of a basic collection respectively. The read right grants the
right to read basic documents and collections. The readAcc

right grants the right to read the list of access control. The
readWhere and writeWhere rights will be introduced in the
section on distribution.

The first way to grant rights is to use an access control list.
For example, the following statement specifies that Alice-
iPhone grants the write right to Bob on Roc14:

Alice-iPhone states writer@Roc14+=Bob requester Alice

We also use the notion of credentials, which consist of two
abstract dual notions, namely hint and secret. Concretely,
hints and secrets will depend on the particular means of
enforcing access control. Based on these abstract notions,
the model will be general enough to match a wide range of
scenarios found on the Web.

To illustrate these notions, we consider next a standard
use of RSA-based cryptographic protocols. But it is impor-
tant to keep in mind that the model is designed to support
other situations as well. Indeed, we will mention some fur-
ther. For this protocol, the credentials are a pair of asym-
metric RSA cryptographic keys. Alice-iPhone may specify
the creation of a pair of hint and secret for write right of
Roc14 as follows:

Alice-iPhone states writeHint@Roc14{} requester Alice
Alice-iPhone states writeSecret@Roc14{} requester Alice

where writeHint and writeSecret are keywords of the lan-
guage. This results in creating a public key to be used as
the hint and a private one, the secret. The system uses such
keys to control actions on data. The keys are used to au-
thenticate and protect data. For authentication, the data is
signed using the private key. Everyone can verify the signa-
ture with the public key. More precisely, a statement will
carry the proof that the principal who performed the corre-
sponding update was indeed entitled to do so. For instance,
a statement about a document of Roc14 is signed with the
write private key of Roc14, and carries as well provenance
information that specifies who performed and requested the
update. Symmetrically, one can use the credentials to pro-
tect the data and enforce read access control. For example,

climbingSite@Roc14{...} protected for reader@Roc14

means that the content of the fact has been encrypted using
the read public key of Roc14. Continuing with the RSA
cryptographic protocol, in this case, the content is encrypted
with a fresh DES symmetric key, that is in turn encrypted
with the read RSA public key of Roc14. So only someone
with the private key will be able to decrypt the data.

A principal who can create statements to enforce access
policies (access control and credentials) essentially has del-
egation power. We choose to authorize this action with the
strongest access right of our model, the own right. So, for
instance, a statement giving Bob write access to Roc14 has

to be authenticated with the own credential of the updated
principal.

Authentication is also used to verify provenance for in-
struction and external knowledge. These messages are au-
thenticated with the own secret of their performer. The re-
ceiver can check the identity of the performer and later prove
that it indeed received the message. For example, let us re-
call the previous instruction and external knowledge:

Bob requests get climbingSite@Roc14&cuvier to Alice-iPhone;
Alice-iPhone says Alice-iPhone states climbingSite@Roc14=

{“id”=“&cuvier”, ...} requester Alice to Bob;

The instruction is signed with Bob’s own secret while the
external knowledge is signed with the own secret of Alice-
iPhone. The internal statement is signed with the write key
of Roc14. Before answering, Alice-iPhone has to check that
Bob has indeed the right to access the relations of Roc14, by
looking for the corresponding read access control statement.
Alice-iPhone also stores the instruction, so that it can later
prove Bob indeed requested the data.

We now discuss how to use credentials with totally dif-
ferent means of enforcing access control. More precisely, we
consider the access control provided by standard Web sites.
In WebdamExchange, an existing Web site is viewed as a
peer identified by its URL. Some wrapping software is used
to have the Web site behave as a WebdamExchange peer
with typically degraded functionalities. For instance, the
provenance information may not be recorded on the Web
site. From an access control viewpoint, the authentication
of an HTTP Web site may simply be based on trusting the
DNS. (Recent hacks of DNS servers have shown limitations.)
Access may be public, i.e., the hint is the URL and there is
no secret. Access may be limited to principals who know of
the URL, i.e., there is no hint and the secret is the URL.
One may also consider more secure Web sites. For instance,
the hint may correspond to the URL of the Web site to-
gether with a Web certificate, to provide more guarantees
for authentication. To protect read/write access, the secret
may also be based on an ssh private key or login/password,
possibly relying on htaccess files.

Clearly, an interesting direction for future work is to inves-
tigate more complex access control schemes such as tripar-
tite authentication of OpenID or Facebook (based on user,
application and server) or majority voting for updates in
P2P setting. But the main point is that the model already
supports commonly found means of supporting access con-
trol.

4. DISTRIBUTION
In this section, we consider distribution. As we did for

access control, we illustrate that a wide range of standard
situations found on the Web, from very simple to very so-
phisticated, can be handled with the model.

Distribution is captured by a particular collection, namely
where. Facts in this relation specify on which peers some
particular data may be found. For example, to specify that
the list of members of the group Roc14 may be found in the
Facebook group of Roc14, one can use the fact:

where@Roc14:{“docRef”:“member”} +=
http://facebook.com/Roc14

(The URI http://facebook.com/Roc14 is understood by the
“wrapper” of Facebook as a denotation for that Facebook

group.) Localization collections are updated as other col-
lections by appending or removing hosts. The language in-
troduces new rights for controlling who can decide where
such data may be kept and found, namely, readwhere and
writewhere rights.

The primary use of localization statements is to enable
the localization of data to a principal. For instance, Bob
typically has some basic information about Alice that states
where to look for information about her, perhaps a Web page
where she put some basic information. Starting from that,
Bob is then able to learn that she keeps her list of friends
on Facebook, her pictures on Picasa with a backup on her
laptop, her music on her TV box at home with a copy on
Bob’s laptop, etc. So, just with an entry point (i.e., a kind
of extended vCard electronic business card) Bob can find all
the information he needs from her (and he has access to).

Again, the main advantage of our approach is that the sys-
tem can handle the heterogeneity of the Web. In the same
manner that hint/secret enabled using data protected by
different access control protocols, the logical form of local-
ization information abstracts away various communication
protocols.

To conclude this section, we consider another extremely
interesting aspect of the use of localization, i.e., the possi-
bility to use complex and dynamic localization schemes such
as gossiping or DHT. Consider first gossiping. This is a case
where search cannot be separated from the actual manage-
ment of data. To answer a particular query using gossiping,
it is important to choose properly who to ask: who is more
likely to have the information, to be the specialist, to be
trustworthy, etc. By making localization a component of
reasoning for answering queries, we simplify the task.

Now consider the use of a DHT. It has been shown recently
that a DHT can be modeled using distributed datalog [7].
webdamlog could also be used. However, even if a standard
DHT such as Pastry is used, one can naturally define the
where predicate using standard DHT functions as in:

(where@Roc14:{“docRef”:$r} += $p) :- relation@Roc14:{$r},
hash@DHT($r@Roc14, $p)

The rule specifies that $p is added to the list of hosts of
the relation $r of Roc14 if hash@DHT($r@Roc14, $p) holds.
The evaluation of the hash@DHT predicate is supported us-
ing a standard Web service of the DHT, i.e., the classical
localization service of the DHT that takes a keyword as in-
put and returns the address of a peer that has the desired
information.

This illustrates the versatility of WebdamExchange to
describe very different kinds of systems. So, a unique setting
allows expressing very different security policies, very differ-
ent distribution policies, as well as other essential aspects for
distributed data management ignored in this paper, such as
translating from the ontology of one peer to that of another.

5. SYSTEM
We are currently implementing the WebdamExchange

system. A prototype that supported a large portion of the
described functionality was demonstrated at ICDE [4]. The
implementation is progressing towards the full support of all
the WebdamExchange features described in this paper. In
this section, we briefly mention aspects of the implementa-
tion.

Peer Web
service

Communication Module

Wrappers

User
avatar

HTTP Pastry DHTFacebook

Peer Web
Service

User GUI
(iOS or Web)

Regular Web

Security Module RSA keys Web certificates Passwords …

…

Manager Module

XMLDatabase

WebdamLog Engine

Figure 1: WebdamExchange Peer Architecture

A WebdamExchange (full) peer is designed as follows. It
has a communication module, with a Web-service interface,
to communicate with other peers. The messages go through
a security module. It is the responsibility of that module to
verify the origin of incoming data (e.g., by checking the RSA
signatures) and decrypt incoming data. It is also its respon-
sibility to authenticate outgoing data (e.g., by signing them)
and protect them if requested (by encrypting their content).
All the reasoning is performed in the engine that is respon-
sible for localizing data and piloting the security module.
For example, the policy of the system may be to trust ev-
erything that is signed by a particular “very-trusted”’ user,
even in absence of other credentials. More generally, the
policy of the manager determines (among other responsibil-
ities) whether an instruction is accepted or not and whether
an outgoing fact is encrypted or not. The facts are stored
in an XML database.

These modules are implemented in Java. So, in particular,
policies are still “hardwired” and very limited in terms of
reasoning capabilities. We intend to replace the manager by
a webdamlog engine, so that data exchange will be guided
by reasoning in the distributed knowledge base.

As mentioned in the paper, we want also to manage data
that is in other popular Web systems. To enable such in-
teractions, we have incorporated in the communication and
security modules, plug-ins to support for the protocols of
such systems (wrappers in mediator’s terminology). We have
been developing wrappers for standard Web sites, for secure
ones, for Facebook and for the Pastry DHT. Also, the secu-
rity module includes plug-ins for access by login and pass-
word and for authentication based on Web certificates.

Finally, we develop a special communication module for
hosting avatars. It gives a principal the means to create a
virtual peer communicating directly with the peer the prin-
cipal is logged on. This module is used for the communica-
tions of a Web GUI with the rest of the system. We have
also implemented an iOS GUI that can be used to interact
with the system, e.g., from an iPhone.

6. CONCLUSION
We presented a model for Web data management with

access control and distribution that captures a variety of
protocols found on the Web. The main on-going task is
the development of the webdamlog engine. An open is-
sue is whether standard datalog optimization techniques are
adapted to such a setting or whether there is a need for novel
ones. Perhaps more critical, we need to understand how the
rules are specified for a particular participant. A human par-
ticipant is very likely to be reluctant to write rules. So, we
have to define ways of selecting some from existing libraries
and perhaps customizing them.

7. REFERENCES
[1] M. Abadi. Logic in Access Control (Tutorial Notes).

In Foundations of Security Analysis and Design V,
page 165, 2009.

[2] S. Abiteboul, O. Benjelloun, and T. Milo. The active
xml project: an overview. The VLDB Journal,
17:1019–1040, 2008.

[3] S. Abiteboul, M. Bienvenu, A. Galland, and
E. Antoine. A rule-based language for web data
management. In PODS, 2011 (To appear).

[4] E. Antoine, A. Galland, K. Lyngbaek, A. Marian, and
N. Polyzotis. Social networking on top of the
webdamexchange system. In International Conference
on Data Engineering, pages 1300–1303, 2011.

[5] P. Buneman and W.-C. Tan. Provenance in databases.
In SIGMOD, pages 1171–1173, 2007.

[6] J. M. Hellerstein. The declarative imperative:
experiences and conjectures in distributed logic.
SIGMOD, 39(1):5–19, 2010.

[7] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing declarative
overlays. SIGOPS, 39(5):75–90, 2005.

[8] D. Mazieres, M. Kaminsky, M. Kaashoek, and
E. Witchel. Separating key management from file
system security. SIGOPS, 33(5):139, 1999.

[9] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon,
B. Zhao, and J. Kubiatowicz. Pond: the OceanStore
prototype. In 2nd USENIX Conference on File and
Storage Technologies, pages 1–14, 2003.

[10] A. Rowstron and P. Druschel. Storage management
and caching in PAST, a large-scale, persistent
peer-to-peer storage utility. SIGOPS, 35(5):188–201,
2001.

[11] E. Wobber, M. Abadi, M. Burrows, and B. Lampson.
Authentication in the Taos operating system. TOCS,
12(1):3–32, 1994.

