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Abstract. Communicating multi-pushdown systems model networks of
multi-threaded recursive programs communicating via reliable FIFO chan-
nels. We extend the notion of split-width [8] to this setting, improv-
ing and simplifying the earlier definition. Split-width, while having the
same power of clique-/tree-width, gives a divide-and-conquer technique
to prove the bound of a class, thanks to the two basic operations, shuffle
and merge, of the split-width algebra. We illustrate this technique on ex-
amples. We also obtain simple, uniform and optimal decision procedures
for various verification problems parametrised by split-width.

1 Introduction

This paper is about the formal verification of multi-threaded recursive programs
communicating via reliable FIFO channels. This is an important but highly
challenging problem. Recent researches have developed several approximation
techniques for the verification of multi-threaded recursive programs (abstracted
as multi-pushdown systems) and communicating machines. We continue this line
of research. We propose a generic under-approximation class, and give uniform
decision procedures for a variety of verification problems including reachability
and model-checking against logical specifications.

We model the system as a collection of finite state machines, equipped with
unbounded stack and queue data-structures. Thus, we get a faithful modelling
of programs using such data-structures. They can also be used to model im-
plicit features in a distributed setting, e.g., stack models recursion and queues
model communication channels. Such systems are called stack-queue distributed
system (SQDS) in this paper. The behaviour of an SQDS, called a stack-queue
MSC (SQMSC), is a tuple of sequences of events (one per program/process). In
addition a binary matching relation links corresponding writes (push/send) and
reads (pop/receive). These were called stack-queue graphs in [20], run graphs
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in [15] and they jointly generalise nested words [1], multiply nested words [17]
and Message Sequence Charts (MSC) [16]. An example is given is Fig. 1.

These systems are Turing powerful, and hence their verification is undecid-
able. Several under-approximations [11,13,10,21,17,19,2,5] have been studied in
the literature. SQMSCs form a class of graphs, and hence bounds on clique-/tree-
width can also be used as an under-approximation, as they give decidability for
model-checking against powerful MSO logic. Since SQMSCs have bounded de-
gree, it follows from Courcelle’s result that a bound on tree-width is necessary
for obtaining decidability against MSO model-checking. In fact, a bound on tree-
width is established in [20] for many of the known decidable classes. Thus [20]
gives the first unified proof of decidability of reachability of these classes. In
[15], a bound on the tree-width of the run graphs of restricted communicating
pushdown systems is shown via hyper-edge replacement grammars.

We propose another measure called split-width, which is specific to SQMSCs
(as opposed to generic graphs) and hence simpler. It is based on a divide-and-
conquer decomposition mechanism4 (or dually an algebra5) for SQMSCs, and
provide a natural tree-embedding of SQMSCs. This way, every verification prob-
lem can be stated equivalently over trees, and hence can be solved efficiently.

Furthermore, split-width is as powerful as tree-width (see [7]), and the re-
spective bounds lie in a linear factor of each other. Thus bounding split-width
can also be seen as a way to bound tree-width, which is often a difficult task.
A bound on split-width has been established for many known decidable classes
in [8,7]. The systematic way of bounding the split-width helped in generalising
these classes and in discovering new decidable classes.

As said before, split-width is a measure based on decomposing an SQMSC
into atomic pieces. The atomic pieces are single events and edges linking writes
and reads. The idea is to decompose an SQMSC by the repeated application
of two operations: split and divide. Split chops the edge between neighbouring
events and divide separates such split-SQMSCs into independent parts. We may
need several splits before it can be divided, and the maximum number of such
splits on a decomposition is its width. The split-width is the width of an optimal
decomposition – one that minimises the maximum number of splits.

The above decomposition procedure can be abstracted as a term in an al-
gebra. This gives a natural embedding of SQMSCs into trees, similar to how
parse trees give a tree-representation for a word in a context-free language. The
valid tree-embeddings of SQMSC with split-width at most k form a regular tree-
language. Thus we can translate every problem (see below) on SQDS/SQMSC
to an equivalent one on tree-domains.

We consider several verification problems starting from reachability. We use
Monadic Second Order logic (MSO), Propositional Dynamic Logic with and

4 k-decompositions are a divide and conquer technique for bounding tree-width. The
role played by edges in split-width is played by vertices there. Further, split-width
decompositions are duplication free allowing us to reason about SQMSCs easily.

5 Split-width algebra is in some sense a restriction of special tree-width algebra [6]
resulting in decomposition trees where the matching edges occur at the lowest level.
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without intersection (IPDL/PDL) and Temporal Logics (TL) as specification
languages. Satisfiability checking, and model-checking of SQDS against specif-
cations given in these formalisms are also addressed.

With split-width as a parameter, we get uniform decision procedures with
optimal complexities for all verification problems on SQDS/SQMSC. The com-
plexities range from non-elementary for MSO to 2Exptime for IPDL to Exp-
time for PDL/TL and reachability. However, the complexity is only polynomial
in the number of states of the SQDS. Thus, if the bound on split-width is fixed
a priori, then reachability is in Ptime.

Split-width was originally introduced in [8] as a technique to prove decid-
ability of MSO model checking of multi-pushdown systems. In this paper, we
generalise this notion to more complex behaviours involving multiple processes
with several local stacks and queues and multiple channels between the pro-
cesses for communication. In another dimension, we address more verification
problems, for example model checking an SQDS against PDL. Finally, we de-
scribe a uniform approach to address these variety of problems simplifying the
original proofs and constructions in [8].

2 Preliminaries: Systems and Behaviours

In this section we describe our formal model called Stack-Queue Distributed Sys-
tems (SQDS). Such a system consists of a finite collection of processes each of
which having finitely many control locations. Further the collection has access
to a set of stacks and queues. Each data-structure (stack/queue) is written to
by a unique process (called its writer) and read from by a unique process (called
its reader). For stacks we additionally require that the reader and writer are the
same process. Such a system is a formal model of distributed multi-threaded pro-
grams communicating via reliable FIFO channels. The call-stack of one thread is
modelled with a stack, while the reliable FIFO channels connecting the processes
are modelled with queues. In addition, processes may use stacks and queues as
local data structures, e.g. in task schedulers, in resource request managers etc.
They can also arise when a process represents the global behaviour of a collection
of distributed processes along with the channels interconnecting them.

An architecture A is a tuple (Procs,Stacks,Queues,Writer,Reader) consist-
ing of a fintie set Procs of processes, a finite set of Stacks, a finite set of Queues
and functions Writer and Reader which assign to each stack/queue the process
that will write (push/send) into it and the process that will read (pop/receive)
from it respectively. We write DS for Stacks ]Queues.

A stack d must be local to its process, so Writer(d) = Reader(d). On the
other hand, a queue d may be local to a process p if Writer(d) = p = Reader(d),
otherwise it provides a FIFO channel from Writer(d) to Reader(d).

A Stack-Queue Distributed System (SQDS) over an architecture A and
an alphabet Σ is a tuple S = (Locs,Val, (Transp)p∈Procs, `in,Fin) where Locs is
a finite set of locations, Val is a finite set of values that can be stored in the
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data-structures, `in ∈ Locs is the initial location, Fin ⊆ LocsProcs is the set of
global final locations, and Transp is the set of transitions of process p. Transp
may have write (resp. read) transitions on data-structure d only if Writer(d) = p
(resp. Reader(p) = d). For `, `′ ∈ Locs, a ∈ Σ, d ∈ DS and v ∈ Val, Transp has

– internal transitions of the form `
a−→ `′,

– write transitions of the form `
a,d!v−−−→ `′ with Writer(d) = p, and

– read transitions of the form `
a,d?v−−−→ `′ with Reader(d) = p.

For an SQDS S, by sizeof(S) we denote its number of states (|Locs|).
Intuitively, an SQDS consists of a collection of finite state automata equipped

with a collection of stacks and queues. In each step, a process uses an internal
transition to simply change its state, or uses a write transition to append a value
to the tail of a particular queue or stack, or uses a read transition to remove a
value from the head (or tail) of a queue (resp. of a stack). The transition relation
makes explicit the identity of the data-structure being accessed and the type of
the operation. As observed in [1,17,8,20] it is often convenient to describe the
semantics of such systems as a labeling of words decorated with a matching
relation per data-structure instead of using configurations and moves.

This is also consistent with the usual semantics of distributed systems given
as labelings of appropriate partial orders [23,13,11]. We now describe formally
the structures that represent behaviours of such SQDS.

A stack-queue MSC (SQMSC) over architecture A and alphabet Σ is a
tuple M = ((Ep)p∈Procs,→, λ, (Bd)d∈DS) where Ep is the finite set of events
on process p, → relates only events within a process, i.e., → = ] →p where
→p = →∩ (Ep × Ep), →p is the covering relation of a linear order on Ep, Bd is
the relation matching write events on data-structure d with their corresponding
read events and λ(e) ∈ Σ is the letter labeling event e. We set pid(e) = p if
e ∈ Ep, and E = ]pEp. We also let B =

⋃
d∈DS Bd be the set of all matching

edges. We require the relation < = (→∪B)+ to be a strict partial order on the set
of events. Finally, the matching relations should comply with the architecture:
Bd ⊆ EWriter(d) × EReader(d).
– data-structure accesses are disjoint: if e1Bde2 and e3Bd

′
e4 are distinct edges

(d 6= d′ or (e1, e2) 6= (e3, e4)) then they are disjoint (|{e1, e2, e3, e4}| = 4),
– ∀d ∈ Stacks, Bd conforms to LIFO: if e1 Bd f1 and e2 Bd f2 are different

edges then we do not have e1 < e2 < f1 < f2.
– ∀d ∈ Queues, Bd conforms to FIFO: if e1 Bd f1 and e2 Bd f2 are different

edges then we do not have e1 < e2 and f2 < f1.

We denote by SQMSC(A, Σ) the set of SQMSCs over A and Σ. An SQMSC over
an architecture with one process and one stack is a nested word [1]. An SQMSC
over an architecture with no stacks and at most one queue between every pair of
processes is a Message Sequence Chart [16]. An SQMSC is depicted in Figure 1.

An event e is a read event (on data-strucutre d) if there is an f such that
f Bd e. We define write events similarly and an event is internal if it is neither a
read nor a write. To define the run of an SQDS over an SQMSCM, we introduce
two notations. For p ∈ Procs and e ∈ Ep, we denote by e− the unique event such
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Fig. 1: An SQMSC over 2 processes, 3 queues and 2 stacks. Two queues form
channels from Proc. 2 to Proc. 1, while the 3rd queue is a self-queue on Proc. 1.

that e− → e if it exists, and we let e− = ⊥p /∈ E otherwise. We let maxp(M) be
the maximal event of Ep if it exists and maxp(M) = ⊥p otherwise.

A run of an SQDS S over an SQMSCM is a mapping ρ : E → Locs satisfying
the following consistency conditions (with ρ(⊥p) = `in):

– if e is an internal event then ρ(e−)
λ(e)−−−→ ρ(e) ∈ Transpid(e),

– if eBd f for some data-structure d ∈ DS then for some v ∈ Val we have both

ρ(e−)
λ(e),d!v−−−−−→ ρ(e) ∈ Transpid(e) and ρ(f−)

λ(f),d?v−−−−−→ ρ(f) ∈ Transpid(f).

The run is accepting if (ρ(maxp(M)))p∈Procs ∈ Fin. The language L (S) ac-
cepted by an SQDS S is the set of SQMSCs on which it has an accepting run.

The reachability problem asks, given an SQDS S, whether some global final
locations from Fin is reachable in S? This is equivalent to the language emptiness
problem for SQDS and is undecidable. We get decidability (cf. Theorem 9) for
the bounded split-width reachability problem: given a parameter k, does L (S)
contain at least one SQMSC with split-width at most k? The complexity of
our decision procedure is only polynomial in sizeof(S) though exponential in k
and |A|. We also obtain optimal decision procedures (cf. Theorem 16) for the
bounded split-width model-checking problems wrt. MSO (non-elementary) and
PDL (polynomial in sizeof(S), and exponential in k, |A| and the formula).

3 The Split-Width Algebra for SQMSCs

The idea is to decompose each SQMSC into atomic pieces. We begin by removing
some of the → edges to create holes which we call elastic edges. This operation
is called split. We call an SQMSC with elastic edges a split-SQMSC.

After removing some → edges it is possible that the entire split-SQMSC
consists of two disjoint parts with only elastic edges connecting them. At this
point we may break-up this split-SQMSC into these two parts and then continue
decomposing them separately. This operation is called divide. Our aim is to use
split and divide repeatedly until we are left with the atomic parts, which are
either internal events or an edge of the form e Bd f . Figure 2a describes this
decomposition on an SQMSC where the elastic edges are dashed ( ).

For any such complete break up of an SQMSC, its width is the maximum
number of elastic edges of all the split-SQMSCs produced. The break-up de-
scribed in Figure 2a has width 2. There may be several ways of starting with
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(a) – of width 2. (b) – of width 5.

Fig. 2: Two decompositions of an SQMSC (consecutive splits are contracted)

an SQMSC and breaking it down into its atomic components. A different and
somewhat more trivial decomposition with width 5 is described in Figure 2b.

The split-width of an SQMSC is the minimum width among all possible ways
of breaking it up into its atomic parts using split and divide. A class C of
SQMSCs has split-width k if each of its members has split-width at most k.

We begin by formalizing the idea of SQMSCs with holes. As explained above,
it is done by identifying a subset of the → edges as elastic edges standing for
holes which may be filled later (or dually for a part that has been removed).
Then we describe the split-width algebra.

A split-SQMSC is an SQMSC in which → edges are partitioned into rigid
edges (denoted r−→) and elastic edges (denoted e−→). It is a pair M = (M, e−→)
where M = ((Ep)p∈Procs,→, λ, (Bd)d∈DS) is an SQMSC and e−→ ⊆ →. We let
r−→ =→\ e−→ be the rigid edges of M.

The elasticity of a split-SQMSC is the number of elastic edges it
has. A emphcomponent is a maximal connected component of the
graph when restricted to only rigid edges ( r−→). For instance, the
split-SQMSC on right has elasticity one, and three components.

The split-width Algebra over A and Σ is given by the following syntax:

s ::= (a, p) | (a,Writer(d)) Bd (a′,Reader(d)) | merge(s) | s� s

where a, a′ ∈ Σ, p ∈ Procs and d ∈ DS. We use split-terms to refer to the
terms of this algebra. Note that, the binary operators Bd may only be applied
to atomic terms. The operator merge denotes the dual of the split operation
while � represents the dual of the divide operation. The terms of this algebra
represent sets of split-SQMSCs (rather than SQMSCs) as there are many ways
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of shuffling together two split-SQMSCs (and also many choices for converting
some elastic edge into a rigid one).

– J(a, p)K is the SQMSC consisting of a single event labeled a on process p.
– J(a, p)Bd (a′, p′)K is the split-SQMSC consisting of two events, e labeled a on

process p, and e′ labeled a′ on process p′. These events are connected by a
matching edge: eBd e′. Moreover, if p = p′, these two events are also linked
by an elastic edge: e e−→ e′.

The merge operator when applied to a split-SQMSC M returns the set of split-
SQMSCs obtained by replacing one elastic edge by a rigid edge and is extended
naturally to sets of split-SQMSCs. The� operator applied to two split-SQMSCs
M1 and M2 returns the set of split-SQMSCs that can be divided into M1 and
M2 and is once again extended naturally to an operation on sets.

Formally, Jmerge((M, e−→))K contains any split-SQMSC (M, e−→′) such that
e−→′ ⊆ e−→ and | e−→′| = | e−→| − 1. The number of components and the elasticity

decrease by 1 as the result of a merge. Further, |merge(M)| = elasticity(M).
LetMi = (Mi,

e−→i) withMi = ((E ip)p∈Procs,→i, λi, (Bdi )d∈DS) for i ∈ {1, 2}
be two split-SQMSCs with disjoint sets of events. Then, M1�M2 is the set of
split-SQMSCs M = (M, e−→) with M = ((Ep)p∈Procs,→, λ, (B)d∈DS) such that
– apart from the elastic edges, M is the disjoint union of M1 and M2, i.e.,
Ep = E1p ]E2p , λ = λ1]λ2, pid = pid1]pid2, Bd = Bd1]Bd2 and r−→ = r−→1] r−→2,

– for each i, the order of the components of Mi, as prescribed by the elastic
edges e−→i, is preserved in M: e−→1 ∪ e−→2 ⊆ →∗.

Note that, the number of components of any split-SQMSC M∈ (M1�M2) is
the sum of the number of components in M1 and M2.

Example 1. The tree on right depicts the split-term

s = merge(((a, 1)Bs (b, 1))� (((b, 2)Bq (a, 1))� (a, 2))).

JsK has 18 split-SQMSCs , of which two are shown below:

M1 =
1

2

a

ba

b a

M2 =
1

2
b

a b

a

a

merge

�

Bs

(a, 1) (b, 1)

�

Bq

(b, 2) (a, 1)

(a, 2)

We can easily check that all the split-SQMSC in the semantics JsK of any split-
term s have the same set of non-empty processes, denoted Procs(s), the same
number of components, hence also the same elasticity, donoted elasticity(s).

The width of a split-term s, denoted swd(s), is the maximum elasticity of all
its sub-terms. For instance, the elasticity of the split-term s of Ex. 1 is two and
its width is three. The split-width of a split-SQMSCM, denoted swd(M), is the
minimum width of all split-terms s such that M ∈ JsK. For instance, M1 and
M2 of Ex. 1 have split-width two since they are respectively in the semantics of

s1 = (merge(((a, 1) Bs (b, 1))� ((b, 2) Bq (a, 1))))� (a, 2)

s2 = ((a, 1) Bs (b, 1))�merge(((b, 2) Bq (a, 1))� (a, 2)).

Remark 2. The split-width algebra over A can generate any SQMSC M =
((Ep)p∈Procs,→, λ, (B)d∈DS) over A. In fact a sequence of shuffles of basic split-
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terms will generate a split-SQMSC M1 = (M, e−→1 = →). This will then be
followed by a sequence of merges to get the split-SQMSC M2 = (M, e−→2 = ∅).

Some classes of bounded split-width are given below. (See [8,7] for more
involved classes).

Nested words have split-width bounded by 2. This follows easily since a nested

word is either the concatenation of two nested words, or of the form a w1 b

where w1 is a nested word, or a basic nested word of the form a or a b.

Message sequence graphs are graphs in which the edges are labelled by MSCs
from a finite set Γ . A path in an MSG generates an MSC M ∈ Γ ∗ by conca-
tentation of the edge labels along the path. It is easy to see that all MSCs in
Γ ∗ have split-width bounded by |Procs| + m where m the maximum size of
an MSC from Γ . Indeed, let M = M1 · M2 · . . . · Mn = M′ · Mn ∈ Γ+. We
decompose this MSC recursively as follows: IfM′ is nonempty, then remove the
→ edges added at the last concatenation by splits, and then divide intoM′ and
Mn; recursively decompose each of them. IfM∈ Γ , then it can be decomposed
naively, with split-width bounded by its size.

Proposition 3. Let G be an MSG over Γ and let m = max{|M | : M ∈ Γ}.
Then the split-width of any MSC generated by G is bounded by |Procs|+m.

In fact, MSCs generated from a finite set Γ are existentially bounded. This
larger class also has bounded split-width as demonstrated below.

Existentially k-bounded MSCs are those in which the events can be linearly
ordered (extending the partial order ≤) such that the number of unmatched
writes at any point is bounded by k. Let this linear order be denoted �. We
decompose an existentially k bounded MSC as follows. We split the → edge
originating from the first k + 1 events in the � order. Let us call these events
detached events. Among the detached events, we divide 1) all read events along
with their partners (since the partner write event precedes the read, it is also
detached), and 2) all internal events, as atomic pieces from the rest of the split-
MSC. At this point, all detached events are writes. Since there cannot be more
than k unmatched writes at any point, the number of detached events is strictly
less than k + 1. Hence, we proceed by splitting more → edges in the � order
until there are k + 1 detached events. Then we follow with the divide operation
as before, and repeat until the whole MSC is decomposed. Thus,

Proposition 4. Existentially k-bounded MSCs have split-width at most k + 1.

4 Split-SQMSC to Trees

One key interest in defining the split-width algebra is that the class of k split-
width SQMSCs can be seen as a regular tree language and that model-checking
problems of this class can be reduced to problems on tree automata. As a first
step we show how to encode SQMSC of bounded split-width as binary trees.
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As it stands, each split-term s defines a set of split-SQMSCs JsK. In order to
reason about each split-SQMSC we decorate split-terms with additional labels
so that each such labeled term denotes a unique split-SQMSC. The reason JsK is
a set is that the operations merge and � are ambiguous. For instance, the merge
operation replaces one elastic edge by a rigid edge, but does not specify which.
By decorating each merge operation with the identity of this edge we resolve
this ambiguity. The shuffle operation permits the interleaving of the compo-
nents coming from its two operands in multiple ways and we disambiguate it by
decorating each shuffle operation with the precise ordering of these components.

The key observation is that we only need a finite set
of labels to disambiguate every split-term of width
at most k. Our labels consist of a word per process,
containing one letter per component indicating the
origin of that component. At merge nodes we use
letters m to denote that it is the result of a merge
and i to indicate that it is inherited as it is from
the operand. At a shuffle node we use letters ` to
indicate it comes from the left operand and r to
indicate it comes from the right. For instance, the
figure on the right dismabiguates the split-term s of
Ex. 1 to represent M1.

merge
(mi, ii)

�

(`r`, rr)

Bs

(`r, ε)

(a, 1)
(`, ε)

(b, 1)
(`, ε)

�

(`, `r)

Bq

(r, `)

(b, 2)
(ε, `)

(a, 1)
(`, ε)

(a, 2)
(ε, `)

Fig. 3: A 3-DST

Consider the set of labels Lk = ({i,m}≤k+1)Procs ∪ ({`, r}≤k+1)Procs . A
k-disambiguated split-tree or k-DST is a split-term s of width at most k, treated
as a binary tree, labeled by Lk, and satisfying some validity conditions. Hence,
each node n of t corresponds to a subterm sn of s, and we denote its labeling by
(Wp(n))p∈Procs. We define simultaneously, the validity condition for the labeling
at each node n, and the split-SQMSC Mn identified by this labeling.

1. If n is a leaf with associated split-term sn = (a, p), then Mn is the unique
split-SQMSC in JsnK. We set Wp(n) = ` as a convention and Wp′(n) = ε for
all p′ 6= p.

2. If n is a Bd node, then its children must be leaves n′ and n′′ and sn =
sn′ Bd sn′′ . Again,Mn is the unique split-SQMSC in JsnK. Let p′ and p′′ be
the processes of the children. We let Wp(n) = ε for all p /∈ {p′, p′′}. If p′ = p′′

then we let Wp′(n) = `r, and otherwise we let Wp′(n) = ` and Wp′′(n) = r.
3. If n is a merge node, then it has a single child n′ and sn = merge(sn′). In

this case, there must be exactly one process p such that Wp(n) ∈ i∗mi∗ and
|Wp(n)| = |Wp(n

′)| − 1 and for all other p′ 6= p, we have Wp′(n) ∈ i∗ and
|Wp′(n)| = |Wp′(n

′)|. Further, Mn is the split-SQMSC obtained from Mn′

by merging on process p the component indicated by m in Wp(n) with the
next component. Clearly Mn ∈ JsnK.

4. If n is a shuffle node, it has two children n′ and n′′ and sn = sn′�sn′′ . Then,
for each process p ∈ Procs, we have Wp(n) ∈ {`, r}≤k+1 and #`(Wp(n)) =
|Wp(n

′)| and #r(Wp(n)) = |Wp(n
′′)|. Moreover, Mn is the unique split-

SQMSC (if it exists) obtained by shuffling the components ofMn′ andMn′′

as indicated by (Wp(n))p∈Procs and once again Mn ∈ JsnK.
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Clearly, the validity conditions above for k-DSTs can be checked with a deter-
ministic bottom-up tree automaton. However, the above validity conditions are
not sufficient, as the LIFO/FIFO policies on the data-structure may be violated
at a shuffle, and hence its semantics could be empty. But we can modify this
bottom-up automaton to check whether the shuffles respect the LIFO/FIFO poli-
cies. To this end, the automaton keeps a subset of DS× {1, . . . , k} × {1, . . . , k}
in its state. If a tuple (d, i, j) is in the state labelling a node n, then it means
that there is some Bd edge from the ith component of Writer(d) to the jth com-
ponent of Reader(d) in JsnK. This information can be consistently updated at
every transition, and used to forbid invalid shuffles. Thus,

Proposition 5. The set of k-DSTs is a regular tree language recognized by a
tree automaton with 2O(k|A|) many states.

We write Mt for the split-SQMSC described by the root of some DST t.
When a split-term s has width k, it is not difficult to see that, any split-SQMSC
M∈ JsK can be obtained as Mt for some k-DST t with associated split-term s.

We can recover Mt from t and hence reason about Mt using t. Clearly the
events inMt are in bijective correspondence with the leaves of t and we identify
the two. If n and n′ are leaves of t then nBd n′ in Mt iff there is a Bd node in
t whose left child is n and right child is n′.

When is n r−→ n′ in Mt? The r−→ edge connecting them is to be found in
some merge common ancestor of n and n′. We walk up the tree starting at leaf
n tracking the identity of the component whose last event is n (this component
may grow in size as previous components are merged with it), till a merge node
x merging this component with the next is encountered. We also walk up the
tree starting at the leaf n′ tracking the identity of its component till a merge
node x′ merging this component with the previous one is encountered. These
routes from n and n′ are marked in red and blue in Fig. 3.

Clearly, n r−→ n′ iff x = x′. It is easy to build a bottom-up tree automaton to
carry out this tracking and to check if x = x′. This gives us the first part of the
following Proposition. The second part follows from the observation that having
found x one may walk down from there to the leaf n′.

Proposition 6. – There is a deterministic bottom-up tree automaton with at
most 3k|Procs|+ 2 states which accepts the set of k-DSTs t having exactly
two marked leaves n and n′ such that n r−→ n′ in the split-SQMSC Mt.

– There is a deterministic tree-walking automaton with at most 2k|Procs|
states which has an accepting run on a k-DST t from leaf n to leaf n′ iff
n r−→ n′ in the split-SQMSC Mt.

Remark 7. It is also possible to restrict Prop. 5 and Prop. 6 to k-DSTs that
identify SQMSCs (as opposed to split-SQMSCs). An analogue of Prop. 6 can

also be established for the relation r−→−1 as well as e−→ and e−→−1.

Reachability and other problems on SQDS We now use the above results
to show decidability of reachability of SQDS parametrized by a bound on split-
width. Our decision procedure is only polynomial in the number of states of
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the SQDS, while it is exponential in the number of processes, number of data-
structures and split-width.

Proposition 8. Given an SQDS S over (A, Σ) and any integer k > 0, one can
effectively construct a tree automaton AkS with |Locs|O(k|A|) many states such
that L(AkS) = {t | t is a k-DST, Mt ∈ L (S)} .

Recall, from Sec. 2, that a run of an SQDS is just a labeling ρ of the events by
locations. Our aim is to construct a bottom-up tree automaton that simulates
such runs on any k-DST.

Let t be a k-DST. The events of Mt are the leaves of t. The bottom-up tree
automaton guesses a possible labeling of the events (the leaves) and verifies that
it defines a run as it walks up the DST. Actually, at each leaf e, the automaton
guesses the location labels assigned to e as well as to e−. Due to this double
labeling, if e is an internal event then consistency can be checked immediately.
Similarly, if eBdf then, by nondeterministically guessing the value that is placed
and removed from the data-structure by transitions at these two events, the
automaton checks for consistency. This is done as it visits the parent of these
two nodes (labeled Bd). It remains to verify the correctness of the guess about
the labeling of e− at each e.

The correctness of the guess at leaf e is verified at the unique merge node
me in the tree that adds the r−→ (or equivalently →) edge connecting e− and e.
Thus, the guessed location labels of e− and e need to be carried in the state
of the automaton till this node is reached. The key observation is that at every
node in the path from e to me, e is the left-most event in its component and
similarly, e− is the right-most event in its component along the path from e− to
me. In other words, as the automaton walks up the tree, it only needs to keep
the guesses for the first and last events in each component (in each process). The
number of such events is bounded by |Procs|(k+ 1), explaining the complexity
stated in Prop. 8.

It is easy to maintain this information. At a merge node, apart from checking
the correctness as explained above, the unnecessary labels (e/e− if they are not
the first or last events of the merged component) are dropped and other labels are
inherited. At a shuffle node, the labels for each component are simply inherited.
Finally, when the automaton reaches the root, there is only one component per
process. The entire run accepts if in each process the location labeling e− of the
first event is `in and the tuple of locations labeling the last events of each process
is a final state in Fin. In all this we have assumed that the automaton reads a
k-DST, but that can be arranged using Prop. 5, completing the proof. As an
immediate application we have the following theorem.

Theorem 9. The bounded split-width reachability problem for SQDS over (A, Σ)
is Exptime-complete. The complexity is, however, only polynomial in the size
of the SQDS.

Reachability problem for S reduces to the emptiness problem for AkS . Notice
that an SQMSC M of split-width at most k is accepted by S iff all k-DSTs
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representingM are accepted by AkS . Hence, the universality problem reduces to
checking whether AkS accepts all k-DSTs representing SQMSCs, which is just the
equivalence problem of tree automata. Finally, the containment problem reduces
to the containment problem for associated tree automata.

Corollary 10. The universality problem for SQDS and inclusion problem for
SQDSs wrt. k-split-width SQMSCs are decidable in 2-Exptime.

5 Further results

We now describe logical formalisms for specifying properties of SQMSCs and
we give optimal decision procedures for the satisfiability problem of these logics
as well as for model-checking SQDSs against specifications in these logics, when
the problems are parametrised by split-width.

Monadic Second Order Logic over SQMSC(A, Σ) is denoted MSO(A, Σ). Its
syntax is given below, where p ∈ Procs, d ∈ DS and a ∈ Σ.

ϕ ::= a(x) | p(x) | x ≤ y | x ∈ X | x→ y | xBd y | ϕ ∨ ϕ | ¬ϕ | ∃xϕ | ∃X ϕ

Every sentence in MSO defines a language of SQMSCs consisting of all those
that satisfy that sentence. Note that, for an SQDS S over A and Σ, L (S)
can be described in MSO(A, Σ). While the satisfiability and model-checking are
undecidable for MSO, it becomes decidable when parametrised by split-width.

Theorem 11. From any MSO(A, Σ) sentence ψ one can effectively construct a
tree automaton Akψ such that L(Akψ) = {t | t is a k-DST, Mt |= ψ} .

By Prop. 5 and Remark 7 we may assume that the input is a k-DST repre-
senting an SQMSC. The argument is quite standard: construct the automaton
inductively, using closure under union, intersection, complement and projection
to handle the boolean operators and quantifiers. This leaves the atomic formulas.
The formula a(x) is translated to a tree automaton that verifies that x is a leaf
and that it is labeled a and similarly for p(x). The formula x ∈ X is translated
to a tree automaton that verifies that x is a leaf and belongs to the set of leaves
labeled by X. x Bd y just requires us to verify that the leaves labeled x and y
have a parent labeled Bd. Finally, x→ y is handled using Prop. 6.

As always, the combination of projection and complementation means that
the size of the constructed automaton grows as a non-elementary function wrt.
the size of the formula. Now, we examine other logics having decision procedures
with reasonable complexity.

Propositional Dynamic Logic (PDL) is a well-studied logical formalism for
describing properties of programs. As in a modal logic, formulas in PDL assert
properties of nodes in a graph, in our case events in an SQMSC. Unlike a modal
logic where modal operators only refer to neighbours of the current node, PDL
uses path modalities to assert properties on nodes reachable via paths conforming
to some regular expressions. Traditionally, PDL is used to express branching-time
properties of transition systems (or Kripke structures). However, in the study of
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concurrent systems where each behaviour has a graph-like structure, PDL may
be used to express properties of behaviours (i.e., linear-time properties of the
system under consideration) as illustrated in [14,3,4]. PDL and its extensions
with converse and intersection are studied in this sense here. The syntax of
state formulas (σ) and path formulas (π) of ICPDL(A, Σ) are given by

σ ::= > | p | a | σ ∨ σ | ¬σ | 〈π〉σ
π ::= σ | → | Bd | →−1 | (Bd)−1 | π + π | π ∩ π | π · π | π∗

where p ∈ Procs, d ∈ DS and a ∈ Σ. If backward edges →−1 and (Bd)−1 are
not allowed the fragment is called PDL with intersection (IPDL). If intersection
π∩π is not allowed, the fragment is PDL with converse (CPDL). In simple PDL
neither backwards edges nor intersection are allowed.

The formula p asserts that current event belongs to process p, and a asserts
that it is labeled by a. The formula 〈π〉σ at e asserts the existence of an e′

satisfying σ and a path e = e1, e2, . . . , ek = e′ that conforms to π. The only
paths that conform to σ are the trivial paths from e to e for any e that satisfies
σ. Similarly → and Bd identify pairs related by the corresponding edge relation
in the SQMSC. Finally ·, + and ∗ correspond to composition, union and iteration
of paths as in regular expressions.

The formula 〈→∗〉α asserts that α holds at a future event on the same process
while the formula 〈(β · →−1)∗〉α asserts that, β has been true at all the events
in the current process since the last event (on this process) that satisfied α.

The formula 〈π1 ∩ π2〉α at an event e asserts the existence of an e′ satisfying
α, a path from e to e′ conforming to π1 and a path from e to e′ conforming to
π2. For instance, the formula 〈Bd ∩ (→∗ · b ·→∗)〉> holds at event e only if there
is an e′ with eBd e′ and b holds somewhere between e and e′, all 3 events being
on the same process.

Observe that PDL formulas have implicit free variables. To define languages
of SQMSC with PDL we introduce sentences with the following syntax: φ = > |
Eσ | φ ∨ φ | ¬φ where σ is an ICPDL(A, Σ) state formula. The sentence Eσ is
true on SQMSC M if M, e |= σ for some event e of M.

Decidability for MSO implies decidability for all the variants of PDL. How-
ever, we get more efficient decision procedures by working directly on it.

Theorem 12. From any CPDL sentence φ one can effectively construct a tree
automaton Akφ whose size is 2O(|A|2.k2.|φ|2) such that

L(Akφ) = {t | t is a k-DST, Mt |= φ}.

The idea here is to use alternating 2-way tree automata (A2A). For a PDL
sentence Eσ the A2A walks down to a leaf and starts a single copy of the
A2A that will verify the formula σ. For each σ we construct an automaton Aσ
such that Aσ has an accepting run from a leaf n if and only if the event n in
the associated SQMSC satisfies σ. The automata for the atomic formulas >,
p and a are self-evident. For ∨ and ¬ we use the constructions for union and
complementation for A2A. The case where σ = 〈π〉σ′ needs a little bit of work.
Suppose π does not use any state formulas then we construct a finite automaton
Bπ equivalent to the regular expression π (over the alphabet D = {→,→−1
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,Bd, (Bd)−1 | d ∈ DS}). We non-deterministically guess an accepting run of Bπ,
simulating each move labeling this run using the tree-walking automata given
by Prop. 6 and Remark 7. Notice that each such simulation of a move from D
begins and ends at a leaf. Finally, when reaching a final state of Bπ, we start a
copy of the automaton Aσ′ . Checking state formulas in π adds no complication
due to the power of alternation. To verify the formula α we simply propagate a
copy of the automaton Aα at the current node (leaf). All this can be formalized
to get an A2A Aσ of size O(k · |Procs| · |σ|). We then use Vardi’s result [22] to

convert this into an ordinary tree automaton of size 2O(k2·|Procs|2·|σ|2).
The intersection operator in IPDL adds an additional level of complexity,

since the path expression π1 ∩ π2 requires that the tree walking automata prop-
agated to handle π1 and π2 have to end up at the same leaf. However, the
technique of [12] to decide IPDL over trees can be adapted to our setting as
well. As in [12] this results in an additional exponential increase in size. The
details of this construction is provided in a preliminary version of this paper [9].

Theorem 13. From any ICPDL sentence φ one can effectively construct a tree
automaton Akφ of doubly exponential size such that

L(Akφ) = {t | t is a k-DST, Mt |= φ}.
Theorem 14. The satisfiability problem for CPDL(A, Σ) over k-split-width SQM-
SCs is Exptime-complete. The satisfiability problem for ICPDL(A, Σ) over k-
split-width SQMSCs is 2-Exptime-complete.

Temporal Logics Another reason to study PDL over SQMSCs is that it nat-
urally subsumes an entire family of temporal logics. The classical linear time
temporal logic (LTL) is interpreted over discrete linear orders and comes with
two basic temporal operators: the next state (Xϕ) which asserts the truth of ϕ
at the next position and the until (ϕ1 Uϕ2) which asserts the existence of some
future position where ϕ2 holds such that ϕ1 holds everywhere in between. In
the setting of SQMSCs, following [14], it is profitable to extend this to a whole
family of temporal operators by parametrizing the steps used by next and until
with path expressions.

The syntax of local temporal logics TL(A, Σ) is as follows, where a ∈ Σ,
p ∈ Procs and π is a path expression:

ϕ = a | p | ¬ϕ | ϕ ∨ ϕ | Xπϕ | ϕ Uπ ϕ

For example, ϕ Uπ ψ asks for the existence of a sequence of events related by
π-steps and such that ψ holds at the last event of the sequence and ϕ holds at
intervening events in the sequence. The translation in PDL gives 〈(Φ · π)∗〉Ψ ,
where Φ and Ψ are the PDL translations of ϕ and ψ respectively. When π is →
it corresponds to the classical until along a process, and when π is → + B it
corresponds to an existential until in the partial order of the SQMSC. We may
also use backward steps such as→−1 or→−1 +B−1 and thus TL(A, Σ) has both
future and past modalities. Hence, from Theorem 12 we obtain

Corollary 15. The satisfiability problem for TL(A, Σ) over k-split-width SQM-
SCs is Exptime-complete.
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Model-checking The k-split-width model-checking problem for a logic L deter-
mines, given an SQDS and a formula ϕ in L, whether some SQMSC of split-width
at most k accepted by the SQDS satisfies ϕ.

Theorem 16. The k-split-width model-checking problem for MSO can be solved
with non-elementary complexity. The k-split-width model-checking problem for
CPDL and Temporal Logics are Exptime-complete. The k-split-width model-
checking problem for ICPDL is 2-Exptime-complete. The complexities of these
three problems are only polynomial in the size of the SQDS.

We use Prop. 8 to construct AkS from S, and Theorems 11, 12 and 13 to
construct from the formula ϕ a tree automaton Akϕ that recognizes all k-DSTs
representing SQMSCs that satisfy ϕ. The model-checking problem then reduces
to the emptiness of the intersection of the tree automata Akϕ and AkS .

6 Discussions

Optimal complexities of the decision procedures The PTime hardness on
the size of the SQDS follows from the PTime hardness of the emptiness checking
of nested-word automata, since nested-words have split-width bounded by 2. The
hardness wrt. size of the (ε,C,IC)PDL formula follows from the corresponding
case of nested words [3] (or equivalently trees [12]). The hardness wrt. the bound
on split-width is a consequence of the following facts. 1. Reachability problem
can be reduced to both satisfiability problem and model-checking problem of
temporal logics. 2. Satisfiability and model-checking problems of temporal logics
reduce to the corresponding problems of PDL and MSO. 3. Split-width of m-
phase bounded multi-pushdown systems is bounded by 2m [8]. 4. Reachability
of bounded phase multi-pushdown systems is 2Etime-hard [18].

Further optimisations A split-term is almost a path if one operand of any
shuffle node is an atomic piece (or a subterm whose size is bounded by an a
priori fixed constant). Such split-terms are said to be word-like. If a class admits
bounded split-width via word-like decompositions, then we can obtain a better
space complexity for our procedures by using finite state word-automata instead
of tree-automata. Thus, the complexity for reachability in this case would be
only NLogSpace in the number of states of the SQDS though PSpace in A
and the bound on split-width. It would be PSpace in the size of the PDL and
temporal logic formula for model-checking, matching the lower bounds for the
case of words. The class of SQMSCs having split-width bounded via word-like
split-terms subsume interesting classes, like existentially k-bounded MSCs since
the decomposition given on page 8 yields word like split-terms.

Bag data-structure We could have added bags as a possible data-structure
and extended our definition of systems and behaviours accordingly. For a discus-
sion of such systems and associated results, the reader is referred to a preliminary
version of this paper [9].
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