
MatchUp: Autocompletion for Mashups
Serge Abiteboul 1 Ohad Greenshpan 2,3 Tova Milo 2 Neoklis Polyzotis 4

1INRIA Futurs & University of Paris XI
2 Tel-Aviv University
3 IBM Research Labs

4 University of California, Santa Cruz

Abstract— A mashup is a Web application that integrates data,
computation and GUI provided by several systems into a unique
tool. The concept originated from the understanding that the
number of applications available on the Web and the need for
combining them to meet user requirements, are growing very
rapidly. This demo presents MatchUp, a system that supports
rapid, on-demand, intuitive development of mashups, based on a
novel autocompletion mechanism. The key observation guiding
the development of MatchUp is that mashups developed by
different users typically share common characteristics; they use
similar classes of mashup components and glue them together in
a similar manner. MatchUp exploits these similarities to predict,
given a user’s partial mashup specification, what are the most
likely potential completions (missing components and connection
between them) for the specification. Using a novel ranking
algorithm, users are then offered top-k completions from which
they choose and refine according to their needs.

I. INTRODUCTION

A (music) mashup is a composition created from the com-

bination of music from different songs. Web mashups, in a

similar spirit, stem from the reuse of existing data sources or

Web applications, with an emphasis on GUI and programming-

less specification. As described in [1], the concept of mashups

originated from the understanding that the number of appli-

cations available on the Web is growing very rapidly, and

so is the need to combine them to meet user requirements.

Such applications are typically complex, access large and

heterogeneous data, and have varied functionalities and built-

in GUIs. As a result, it often becomes an impossible task for

IT departments to build them in-house as rapidly as they are

requested to. The role of mashups is to facilitate this rapid,

on-demand, software development task.

A mashup consists of several smaller components, namely

mashlets, implementing specific functionalities. For instance,

a mashlet may model a data source, e.g., a news RSS feed. It

may implement some visual functionality, e.g., draw a map,

or it may realize a specific operator, e.g., extract location

information from an RSS feed input. It may also contain logic

that “glues” together other mashlets, in which case we refer

to it as a glue pattern (GP for short). As an example, a GP

may combine the aforementioned three mashlets in order to

present a map with the locations of recent news feeds.

Following the previous model, a user builds a mashup by

selecting specific mashlets and specifying the GPs that link

them. Given the large number of available mashlets, however,

selecting the right components and the appropriate connections

between them can be a daunting (and error-prone) task for

inexperienced users. To address this issue, we draw inspiration

from integrated development tools and propose the use of

autocompletion. The idea is simple and intuitive: The user

selects some initial mashlets that are indicative of the mashup

that he/she aims to build, and the system proposes possible

completions with GPs and perhaps other mashlets. The user

can then select one or more of the possible completions,

perform some refinements, and continue building the mashup

in this iterative fashion.

Our goal is to demonstrate a system that implements

the aforementioned autocompletion functionality. The system

generates possible completions from a large database of real

mashlets and GPs available on the Web. The important point

is that it employs an intelligent recommendation engine that

takes into account the incomplete specification of the user,

the interactions among mashlets in the database, and also the

“collective wisdom” of previous users that have successfully

built mashups. Thus, even if there is no GP that links directly

the mashlets selected by the user, the system will identify

GPs that seem relevant to the incomplete specification, and

are also favored by the user community in the creation of

other mashups.

The demonstration will illustrate the proposed approach

through the interactive design of an Extended Patient Health

Record (xPHR) mashup. A screenshot of the (completed)

mashup is shown in Figure 3. The mashup itself is a rich

application that involves several mashlets and GPs. Among

other things, the mashlets access various clinical data of a

patient, compare them against survey data, allow the user to

search the Web for doctor services and related information.

The demonstration will illustrate both the user interaction with

the system, showing how autocompletion greatly simplifies

the mashup development task, as well as the system internals,

showing the operation of the algorithms that support this useful

autocompletion paradigm.

Autocompletion is a classical problem found in various

domains, e.g., phrase prediction [2], email fields [3], file

locations [3]. However, we are not aware of any work on

autocompletion for mashups. Some related work in the context

of Web services has studied how to substitute a Web service

for another or how to fulfill a particular goal by composing

Web services [4]. Our contribution is different: it recommends

the best possible GPs or other mashlets to gradually improve

a current mashup. Finally, we note that there exist several

tools for the creation of mashups, e.g., MashMaker [5] and

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.47

1479

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.47

1479

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 17, 2009 at 17:33 from IEEE Xplore. Restrictions apply.

DAMIA [6]. However, none of the developed tools supports

the autocompletion mechanism that we propose in this paper.

The paper is organized as follows. Section II describes the

data model we use for the specification of mashlets (including

GPs) and introduces the notion of mashlet inheritance, an

important ingredient of our approach. Section III introduces

the problem of mashup autocompletion and describes our

solution. Section IV describes the demo scenario, and the high-

level system architecture of MatchUp.

II. MODEL INGREDIENTS

We first scatch our formal model of mashups and their

composition (for full description of the model, see [7]). We

then discuss an important aspect of the model, inheritance.

Due to space limitations, the presentation will be very brief.

A. Mashlets and Glue Patterns

The formal model has been designed to facilitate (dynamic)

modular mashlets composition, interaction, inheritance and

reuse. The basic components of the model are atomic mashlets.

An atomic mashlet is a module that implements a specific

functionality, and supports an interface of variables and meth-

ods that are visible to other mashlets. More concretely, an

atomic mashlet has the following components:

1) Input and Output Variables: they define the input and

output fields respectively of a mashlet. This constitutes

the external interface of the mashlet that is manipulated

by other mashlets or users in the system.

2) Mashlet data: they define local data of the mashlet. They

can be specified as visible or not outside the mashlet.

3) Rules: they specify the logic implemented by a mashlet.

This logic describes how the output variables are set

based on the values of the input variables and the

local data. One possibility is to encode this logic using

datalog-style active rules, which enables taking advan-

tage of advanced existing technology, notably query

optimization. It is also possible to implement the logic

using a high-level programming language such as Java

or C++. In that case, the mashlet behaves like a “black

box”. We do not discuss further this aspect of our model,

as it is not relevant to the proposed demonstration.

4) Inheritance relationship: We elaborate on this in the next

section.

The left column of Figure 1 shows two example atomic

mashlets named “Map” and “Yahoo! Map”. The “Map” mash-

let may contain input coordinate variables, such as “longitude”,

“latitude”, and “zoom”, that control the location displayed on

the map. The “Yahoo! Map” mashlet may in addition contain

a “view” input variable that controls whether the map displays

a satellite view or a normal view.

A compound mashlet is typically composed of other (atomic

or not) mashlets. Thus, in addition to the above mentioned

components, a mashlet may include imported mashlets, as well

as rules to specify how its imported mashlets interact with

each other (e.g. how the output of one mashlet is transformed

into the input of another). Since the main contribution of

Fig. 1. Inheritance of Mashlets and Glue Patterns

such mashlets reside in the “glue” they provide between the

mashlets they use, we call them Glue Patterns (GPs for short).

Figure 1 shows three GP examples. For instance, GP1
combines the basic “Map” mashlet with a “Simple Marker”

mashlet to display a list of locations on a map using simpler

markers. GP2 performs the same task except that it uses the

“Video Marker” mashlet for the markers. In both cases, the

GP passes information from one mashlet to the other using

the corresponding external interfaces.

B. Inheritance of Mashlets and their Glue Patterns

Similar to software components, mashlets may share prop-

erties with other mashlets and comply with the inheritance

paradigm. As an example, observe that the “Map” and “Yahoo!

Map” mashlets implement very similar functionality, and it

may be actually possible to use a “Yahoo! Map” in any GP

that uses a “Map” as one of its components. Based on this

intuition, we analyzed in detail Programmableweb.com [8],

currently the most extensive collection of mashups on the

Web. This lead us to the understanding that a large number of

mashups are similar to each other, in their components and in

the logic they offer to users. For example, at the time of our

study, 1669 mashups (39% of all mashups) included maps

provided by various vendors (Google, Yahoo!, etc.). Since

their characteristics are often standard, it is easy to reuse the

composition logic defined for one, for another one. Even if

some of the functionalities may not be enabled, the core logic

should be reusable.

Motivated by the previous observation, we introduce in

our model an inheritance relationship among mashlets. More

specifically, mashlet m2 inherits from mashlet m1 if the

interface of m2 (input/output variables) is a superset of the

interface of m1. This definition of inheritance implies that

mashlet m2 can be used in any composition that employs

an instance of mashlet m1. We note that inheritance can be

achieved using explicit language means, e.g., by importing the

code of a mashlet and refining it in subclasses. It can also be

realized by simply “cloning” the interface of a mashlet.

Similarly, our model supports inheritance among GPs. In

this case, the inheritance relationship is defined based on the

mashlets linked by a GP. Informally, GP g2 inherits from GP

14801480

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 17, 2009 at 17:33 from IEEE Xplore. Restrictions apply.

g1 if it connects mashlets that inherit from those of g1 plus

possibly some additional new mashlets. As an example, GP2
in Figure 1 inherits from GP1, in the sense that GP2 can also

link a “Map” to a “Simple Marker”, and thus it can be used

in any composition that uses GP1.
We henceforth represent a set of mashlets and GPs as a

directed graph. Mashlets and GPs are represented as nodes,

and GPs are connected to the mashlets that they glue together.

Moreover, the graph contains inheritance edges among mash-

lets and GPs.

III. THE MASHUP AUTOCOMPLETION PROBLEM

At an abstract level, the mashup autocompletion problem

can be defined as follows: Given a database of mashlets and

glue patterns, and a set of mashlets selected by the user,

identify and rank Glue Patterns that link a subset of the

selected mashlets. Clearly, the generation of autocompletions

involves two interrelated tasks:

Identification of GPs that match the selected mashlets:
Intuitively, a good GP would glue all the mashlets selected

by the user without introducing additional mashlets in the

mashup. Such a GP, however, may not exist in the database,

in which case the system should try to generate relaxations of

this ideal solution. For instance, a GP may link a proper subset

of the selected mashlets, or introduce additional mashlets.

Another option is to use a GP that does not link the mashlets

directly, but instead links mashlets they inherit from. As an

example, assume that the user selects “Yahoo! Map” and

“Video Marker” as the starting mashlets. As shown in Figure 1,

there exists no GP that links the two mashlets directly, but it

is possible to use GP2 since “Yahoo! Map” inherits from

“Map”. The downside, of course, is that GP2 does not take

full advantage of the map’s capabilities.

Ranking of Candidate GPs: By ranking candidate GPs, the

system can propose to the user a meaningful short list of

completions. The rank of a candidate GP intuitively depends

on its “tightness”, i.e., its coverage of the selected mashlets.

Hence, the omission of mashlets or the introduction of addi-

tional mashlets penalize the quality of a candidate. At the same

time, it is important to take into account the generality of the

GP with respect to inheritance relationships. Going back to our

previous example, GP2 should be ranked higher than GP1,

since the latter links generalizations of both “Yahoo! Maps”

and “Video Marker”, whereas GP2 can take advantage of the

capabilities of the video markers. Finally, it is important to take

into account the “collective wisdom” of the user community

when presenting choices to the user. For instance, GP1 might

be more frequently used and rated as more stable by users

compared to GP2, in which case it might have to be ranked

higher even if it is a little less specific. We refer to this concept

as the static importance of a mashlet.
The following sections describe our solution to the autocom-

pletion problem. We first describe an algorithm to compute

the top-k candidates, assuming that we are given a function

Imp that reflects the static importance of a mashlet. Next, we

discuss possible choices for computing Imp.

A. Identifying and Ranking Completions Efficiently

As a first step, we define a rank metric that quantifies the

quality of a candidate GP relative to a set of user-selected

mashlets. Our approach is to map each GP in the database to a

point in a multi-dimensional space that captures the inheritance

relationships in the database relative to the selected mashlets.

The “ideal” GP that links just the selected mashlets is also

mapped to a point in this space. The distance between this

point and a GP point is used as the rank value for the GP.

Our approach is best illustrated with an example. For

simplicity, we assume that all importance values are in the

range [0, 1]. Suppose again that the user selects mashlets m2
and m4 (“Yahoo! Maps” and “Video Marker” respectively).

We consider the three-dimensional unit cube, where the di-

mensions correspond to (1) m2, (2) m4, and (3) the glue

pattern that would link the two mashlets. The ideal candidate

is represented as the point (1, 1, 1), meaning that it links pre-

cisely the two mashlets. The candidate GP2 is mapped to the

point (1−1/Imp(m1), 1, Imp(GP2)), which is interpreted as

follows. GP2 links m1 that is a generalization of m2, but the

penalty of generalization, as measured by the deviation from

the ideal coordinate value 1, depends on the importance of

m1. Hence, the penalty is low if m1 is an important mashlet,

as judged by the community. The second coordinate is 1 since

GP2 takes full advantage of m4. Finally, the third coordinate

is equal to the importance of GP2. The distance between

(1, 1, 1) and (1− 1/Imp(m1), 1, Imp(GP2)), e.g., measured

by cosine similarity or simple Euclidean distance, provides the

rank of GP2. Hence, a candidate gets a good rank if it covers

precisely all the selected patterns and the corresponding GP

has a high static importance.

We can extend the previous example to GPs that omit

selected mashlets by setting the respective coordinates to 0.

Also, it is possible to model the introduction of mashlets,

by adding a distinct dimension for each added mashlet and

setting the coordinate of the ideal candidate to 0. (This

transformation preserves the computation of distances to other

candidates.) Longer inheritance paths can also be handled

directly, by increasing the penalty of generalization with each

super mashlet. Finally, it is possible to scale the dimensions

so that they reflect the relative importance of mashlets, e.g., so

that the omission of an important mashlet increases the penalty

of the candidate. We do not discuss these technical details

further, because of space limitations. Overall, the proposed

metric is intuitive and has the nice property that it takes into

account both the interactions of mashlets through inheritance,

and also the static importance of mashlets.

We have developed an algorithm that computes efficiently

the top candidates given the metric defined above. The efficient

computation of the top completions is important in our setting,

in order to maintain short interaction times with the user. The

algorithm operates on an index of the database that is built

off-line, and it is based on the general idea of threshold-based

top-k algorithms [9]. The interesting aspect of our algorithm

is that it uses a non-monotonic ranking function, yet we are

14811481

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 17, 2009 at 17:33 from IEEE Xplore. Restrictions apply.

able to prove strong theoretical guarantees on its performance.

While we omit details due to space constraints, we note that

part of the demonstration will be focusing on the algorithm.

B. Computing Importance

Up to this point, we have assumed the existence of an

Imp function that measures the static importance of a mashlet

or GP, i.e., its quality as measured by its usage in mashups

created by the user community. One obvious idea is to use

the download count of a mashlet as a value for Imp, based

on the intuition that importance follows the frequency of use.

Another idea is to maintain an explicit rating system, where

users are asked to rate mashlets based on different criteria.

We utilize a different approach that is based on the mashlet

graph. The intuition is that a mashlet is important if it is

referenced by important GPs, and a GP is important if it

is referenced by important mashlets. This is essentially the

PageRank [10] idea applied to the mashlet graph. We thus

assign an initial importance to each mashlet, e.g., using the

download count or an explicit rating, and then use a set of

recursive equations to transfer importance along the edges

of the mashlet graph. Note that the graph is much less

connected than the Web graph, so one has to be a bit careful

in the PageRank computation. We bias it at each stage with

these initial importance values. An interesting point is that

importance may flow through inheritance edges as well, i.e.,

a mashlet that inherits from an important mashlet may get a

boost in its importance. We regulate this type of flow with

a weight in the recursive equations, which allows the metric

to be more or less conservative with respect to inheritance

relationships.

IV. DEMO SCENARIO

Our demo shows the MatchUp system that enables incre-

mental composition of mashups, based on the autocompletion

mechanism presented above.

The system diagram is shown in Figure 2. It is based on

IBM Mashup Center platform and it includes a database of

real mashlets and a recommendation engine that tracks the

users’ actions and proposes GPs as possible completions. The

engine implemented as a Web Service which is deployed on

a server and being queried by the Mashup Center as a data

source.

The demonstration is structured as follows. First, we will

show and analyze a sample of the imported mashlets using

the model presented in Section II. The goal is to show the

applicability of our model to real-world mashlets, and in

particular to demonstrate the characteristics of GPs and atomic

mashlets. Moreover, this analysis will illustrate the validity of

the inheritance model which is central in our approach.

Second, we will demonstrate the development of an Ex-

tended Patient Health Record (xPHR) mashup using our tool.

The development will be done incrementally, meaning that the

user will place some mashlets on the screen, obtain possible

completions, proceed with adding more mashlets, and so on,

until the application is complete. The goal is to demonstrate

the interaction between the system and the user, showing how

autocompletion greatly simplifies mashup development.
The third and final part will demonstrate the workings

of the underlying completion algorithm, including the multi-

dimensional model for mashlet ranking and the top-k algo-

rithm. Essentially, we will perform a fast forward replay of

the previous part, showing at specific points how completions

are computed and ranked. We will also demonstrate the effect

of our model’s parameters on the generation of completions,

by comparing the completions for different settings of the pa-

rameters (e.g., with and without inheritance, or using different

functions for Imp).

Fig. 2. MatchUp System Architecture

Fig. 3. Example of an autocompletion

REFERENCES

[1] A. Jhingran, “Enterprise information mashups: Integrating information,
simply,” in VLDB, 2006.

[2] A. Nandi and H. Jagadish, “Effective phrase prediction,” in VLDB, 2007.
[3] B. Myers, S. E. Hudson, and R. Pausch, “Past, present, and future of

user interface software tools,” ACM Trans. CHI, vol. 7, no. 1, 2000.
[4] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang, “Similarity

search for web services,” in VLDB, 2004.
[5] R. J. Ennals and M. N. Garofalakis, “Mashmaker: mashups for the

masses,” in SIGMOD, 2007.
[6] M. Altinel et al., “Damia - a data mashup fabric for intranet applica-

tions,” in VLDB, 2007.
[7] S. Abiteboul, O. Greenshpan, and T. Milo, “Modeling the mashup

space,” in WIDM, 2008.
[8] “Programmableweb,” http://www.programmable.com/.
[9] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for

middleware,” in PODS, 2001.
[10] S. Brin, R. Motwani, L. Page, and T. Winograd, “What can you do with

a web in your pocket?” Data Eng. Bulletin, vol. 21, no. 2, 1998.

14821482

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 17, 2009 at 17:33 from IEEE Xplore. Restrictions apply.

