
Theoretical Computer Science 594 (2015) 24–43
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Checking conformance for time-constrained scenario-based 

specifications ✩

S. Akshay a,∗, Paul Gastin b, Madhavan Mukund c, K. Narayan Kumar c

a Indian Institute of Technology Bombay, India
b LSV, ENS Cachan, INRIA, CNRS, France
c Chennai Mathematical Institute, Chennai, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 March 2014
Received in revised form 1 February 2015
Accepted 18 March 2015
Available online 24 March 2015
Communicated by P. Aziz Abdulla

Keywords:
MSC graphs
Timed automata
Model checking

We consider the problem of model checking message-passing systems with real-time 
requirements. As behavioral specifications, we use message sequence charts (MSCs) 
annotated with timing constraints. Our system model is a network of communicating 
finite state machines with local clocks, whose global behavior can be regarded as a 
timed automaton. Our goal is to verify that all timed behaviors exhibited by the system 
conform to the timing constraints imposed by the specification. In general, this corresponds 
to checking inclusion for timed languages, which is an undecidable problem even for 
timed regular languages. However, we show that we can translate regular collections 
of time-constrained MSCs into a special class of event-clock automata that can be 
determinized and complemented, thus permitting an algorithmic solution to the model 
checking/conformance problem.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In a distributed system, several agents interact to generate a global behavior. This interaction is usually specified in terms 
of scenarios, using message sequence charts (MSCs) [23]. Protocol specifications typically include timing requirements for 
messages and descriptions of how to recover from timeouts, so a natural and useful extension to MSCs is to add timing 
constraints between pairs of events, yielding time-constrained MSCs (TCMSCs) [8,1].

Infinite collections of MSCs are typically described using message sequence graphs (MSGs) [23,9]. An MSG, a finite 
directed graph with nodes labeled by MSCs, is the most basic form of a High-level Message Sequence Chart (HMSC) [26]. 
Any path through the graph generates a new MSC by concatenating the MSCs seen along the path. Thus, the set of all paths 
through an MSG generates a possibly infinite collection of MSCs. In this article, we generalize MSGs to time-constrained 
MSGs (TCMSGs), where nodes are labeled by TCMSCs and edges may have additional time constraints between nodes. Thus, 
TCMSGs generate infinite collections of time-constrained scenarios, i.e., TCMSCs. This forms our basic model of specification.

A natural system model in this setting is a timed message-passing automaton (timed MPA), a set of communicating 
finite-state machines equipped with clocks that are used to guard transitions, as in timed automata [11]. Just as timed 
words are used to describe the runs of timed automata, the interactions exhibited by timed MPAs can be described using 

✩ Supported by CNRS, LIA InForMel and DST-INSPIRE faculty award [IFA12-MA-17].

* Correspondence to: Dept. of Computer Science and Engineering, IIT Bombay, Powai, Mumbai, 400076, India. Tel.: +91 2225767711.
E-mail addresses: akshayss@cse.iitb.ac.in (S. Akshay), Paul.Gastin@lsv.ens-cachan.fr (P. Gastin), madhavan@cmi.ac.in (M. Mukund), kumar@cmi.ac.in

(K. Narayan Kumar).
http://dx.doi.org/10.1016/j.tcs.2015.03.030
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.03.030
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:akshayss@cse.iitb.ac.in
mailto:Paul.Gastin@lsv.ens-cachan.fr
mailto:madhavan@cmi.ac.in
mailto:kumar@cmi.ac.in
http://dx.doi.org/10.1016/j.tcs.2015.03.030
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.03.030&domain=pdf


S. Akshay et al. / Theoretical Computer Science 594 (2015) 24–43 25
timed MSCs—MSCs in which each event is assigned an explicit timestamp. However, the global state space of a timed MPA 
in fact defines a timed automaton over a distributed alphabet and in this paper we focus on this simplified global view of 
timed message-passing systems, though our results go through smoothly for the distributed system model as well. Thus, 
our main interest in this paper lies in considering a distributed specification (formalized using TCMSGs) and comparing it 
against a global timed implementation.

Our aim is to check if all timed MSCs accepted by a timed MPA conform to the time constraints given by a TCMSG 
specification. This problem can naturally be seen as comprising of two parts. The first asks if for a given timed MPA A and 
TCMSG G , every timed execution exhibited by A is in the specification. Indeed, this is the standard model-checking question 
for timed MPAs. The second part, the coverage problem, asks if every TCMSC generated by a given TCMSG can be witnessed 
by some timed execution of the TMPA. To make the problem tractable, we focus on locally synchronized TCMSGs—those for 
which the underlying behavior is guaranteed to be regular [22].

In general, the model checking problem above corresponds to checking inclusion for timed languages, which is known to 
be undecidable even for timed regular languages [6]. Fortunately, it turns out that timing constraints in a TCMSG correspond 
to a very restricted use of clocks. This allows us to associate with each TCMSG an extended event clock automaton that 
accepts all timed executions that are consistent with the timing constraints of the TCMSG. We prove that these extended 
event clock automata can be determinized and complemented (as in the case of ordinary event clock automata [7]), yielding 
an algorithmic solution to our model checking problem.

Turning to the coverage problem, we observe this cannot be directly reduced to a timed inclusion problem. The timed 
inclusion problem in this direction would ask if there is a witnessing execution of the timed MPA for every timed lineariza-
tion of a TCMSC generated by the TCMSG. But an implementation (timed MPA) having strictly better time bounds than the 
specification might have a witnessing execution for every TCMSC generated by the TCMSG, even if it does not satisfy every 
timed linearization of the TCMSC. Such an implementation should be considered as a valid one and this is precisely what 
our definition of the coverage problem achieves. For solving this problem, we need an additional assumption on the speci-
fication. We assume that the locally synchronized TCMSG has a special form that every process on the TCMSC labeling any 
node has some event. Now, we use the same extended event clock automaton as above accepting all timed executions that 
are consistent with the TCMSG. Then, using a product construction, we can recover the set of paths of the TCMSG which 
have some valid execution in the timed MPA, thus solving the coverage problem.

Related work. We have used TCMSGs as the basic model for specifying high level distributed and timed systems. However, 
there are other formalisms which also tackle time and concurrency issues in systems. In Petri nets [30] tokens are positioned 
in places and a transition fires by consuming tokens and creates new ones, in general in other places. Thus, transitions that 
consume different tokens, can fire independently. Many timed extensions of Petri nets have been considered, for instance, 
time Petri nets [12], timed Petri nets [29]. Unfoldings of Petri nets provide a way to model the partial order behavior of 
these systems and by lifting these unfoldings to the timed extensions, they provide a timed partial order semantics [17]. For 
more discussion on this refer to [16]. However, these unfoldings are seldom graphically representable in a compact manner 
unlike MSCs (and their timed extensions). Further, unfoldings in Petri nets correspond to “branching time” whereas MSCs 
express “linear time” behavior.

Other models dealing with time and concurrency include networks of timed automata [6] and products of timed au-
tomata [20]. Again in [13], unfolding techniques were applied to study such networks of timed automata. However, these 
models do not allow communication via explicit message passing which is one of the main features of the timed MPA and 
TCMSGs that we have introduced.

The formal semantics and analysis of timing in MSCs has been addressed earlier in [8,10,15,24]. In [8] and [10], only 
single timed MSCs or high-level timed MSCs were considered, while in [24] one of the first models of timed MPAs was 
introduced. However, the latter do not consider MSCs as a semantics of their automata but rather look at restricted channel 
architectures (e.g., one-channel systems) to transfer decidability of reachability problems from the untimed to the timed 
setting. The automaton model in [15] links the two approaches by considering a similar automaton model with semantics 
in terms of timed MSCs. But they tackle only a specific matching problem for which they propose a practical solution using 
the tool Uppaal. More recently, in [4] the authors have considered TCMSGs under restrictions that are weaker than being 
locally-synchronized. Though this allows modeling more general non-regular languages of TCMSCs, they only tackle the 
emptiness problem and do not address more complicated issues of consistency or conformance as we do.

In [19], the authors develop a specification theory that combines notions of specifications and implementations and 
provides constructs for checking consistency etc., in the setting of sequential real-timed systems. However, they define the 
implementation as another specification and relate the two using a notion of refinement defined as an alternating (timed) 
simulation relation. In our setting, the implementation and specification are different objects to begin with and we relate 
them at the level of behaviors rather than systems. Thus, checking consistency corresponds to checking inclusion of timed 
behaviors which is often a harder problem than defining a simulation. In addition, we consider timed and distributed 
systems, where concurrency plays a major role and gives rise to several additional challenges.

Preliminary versions of some of the results were presented as extended abstracts in [3,5]. Here, we establish a generic 
framework that combines those results as well as completes and generalizes the proofs and techniques.

Structure of the paper. The paper is organized as follows. We begin with some preliminaries where we introduce (timed) 
MSCs, MSGs and the timed automata formalisms. In the subsequent section, we discuss the conformance problem in detail. 
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Fig. 1. Different views of a system with two users and a server.

In Section 4 we introduce MSC event clock automata and show that they can be determinized and complemented. The 
next section has the first main technical result: translating locally synchronized TCMSGs to finite state MSC event clock 
automata, which yields a solution to the model-checking problem in Section 6. In Section 7, we provide a partial solution 
to the reverse problem of checking coverage and finally conclude in Section 8 with a short discussion.

2. Preliminaries

Message sequence charts. A message sequence chart (MSC) describes the messages exchanged between a set Proc of processes in 
a distributed system. The first diagram in Fig. 1 is an MSC involving two users and a server. Each process evolves vertically 
along a lifeline. Messages are shown by arrows between the lifelines of the sender and receiver.

Each message consists of two events, send and receive, and is labeled using a finite set of message labels M. For 
instance, the events u1 and a1 are the send and receive events of a message labeled req from process p (User1) to process 
q (Server). Each (ordered) pair of processes p and q is connected by a dedicated fifo channel (p, q)—for example, in Fig. 1, 
the messages sent at s1 and s2 are on channel (r, q) and the second message cannot be received before the first one. Note 
that the channels (p, q) and (q, p) are distinct under this definition.

Since processes are locally sequential, the set of events E p along a process p is linearly ordered by a relation de-
noted ≤pp . In addition, for each message sent along a channel (p, q), the send and receive events of the message are related 
by an ordering relation ≤pq . Thus, for example, a1≤qqa5 and a3≤qpu2. Together, the local linear orders ≤pp and the message 
orders ≤pq generate a partial order ≤ over the set of events—for instance, u3≤s3.

Finally, we label each event using a finite alphabet Act of communication actions. We write p!q(m) to denote the action 
where p sends message m to q and p?q(m) to denote the action where p receives message m from q. We abbreviate by p!q
and p?q the set of all actions of the form p!q(m) and p?q(m), respectively, over all possible choices of m.

Overall, an MSC can then be captured as a labeled partial order M = (E, ≤, λ) where λ : E → Act associates each event 
with its corresponding action. A cut is a subset of events that is downward closed: c ⊆ E is a cut if ↓c = c, where ↓c = {e ∈
E | ∃e′ ∈ c. e≤e′}.

Like any partial order, an MSC can be reconstructed up to isomorphism from its linearizations, i.e., words over Act that 
extend ≤. In fact, the fifo condition on channels ensures that a single linearization suffices to reconstruct an MSC. In this 
way, an MSC M corresponds to a set lin(M) of words over Act and a set of MSCs L defines the word language 

⋃
M∈L lin(M). 

We say that a set L of MSCs is regular if its associated word language is regular.

Time-constrained message sequence charts. A time-constrained MSC (TCMSC) is an MSC annotated with time intervals between 
pairs of events. We restrict timing constraints to pairs of distinct events on the same process and to the matching send and 
receive events across messages. Intervals have rational endpoints and may be open or closed at either end.

For example, in the second diagram in Fig. 1, the constraint [0, 3] between a3 and a4 bounds the time that the Server
waits for a User to confirm a grant. On the other hand, the constraint [0, 1] between a3 and u2 bounds the time taken to 
deliver this particular message.

A TCMSC over Act is a pair M = (M, τ ), where M = (E, ≤, λ) is an MSC over Act and τ is a partial map from E × E to 
the set of intervals such that (e, e′) ∈ dom(τ ) implies that e 
= e′ and either e≤ppe′ or e≤pqe′ for some processes p and q.

Timed message sequence charts. A timed MSC (TMSC) describes a concrete timed behavior in the MSC setting. In a TMSC, we 
assign events timestamps that are consistent with the underlying partial order. Thus, a TMSC over Act is a pair T = (M, t)
where M = (E, ≤, λ) is an MSC over Act and t : E →R≥0 is a function such that if e≤e′ then t(e) ≤ t(e′) for all e, e′ ∈ E .

For instance, consider the TMSC in the third diagram of Fig. 1. The message sent at a3 is received instantaneously while 
the message sent at s2 is received 3 time units later.

A timed word over Act is a sequence (a1, t1)(a2, t2) · · · (an, tn) where a1a2 · · ·an is a word over Act and t1 ≤ t2 ≤ · · · ≤ tn

is a nondecreasing sequence over R≥0. The set of timed words over Act is denoted TWAct . A timed linearization of a TMSC 
is thus a timed word in TWAct . We let t-lin(T ) denote the set of timed linearizations of TMSC T . A single TMSC may admit 
more than one timed linearization if concurrent events on different processes have the same timestamp. As for untimed 
MSCs, under the fifo assumption for channels, a timed MSC can be reconstructed from any one of its timed linearizations.
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Fig. 2. A TCMSG, with a TCMSC and a TMSC that it generates.

With this definition, TCMSCs can be considered as abstractions of TMSCs and timed words. For instance, we will say that 
the TMSC in Fig. 1 realizes the TCMSC in the same figure since each interval constraint between events in the TCMSC is 
satisfied by the time-stamps of the corresponding events in the TMSC. In this way, a TCMSC M defines a family of TMSCs—
the set of all TMSCs that realize M, which we denote Ltime(M). We also consider the set Ltw(M) = ⋃

T ∈Ltime(M) t-lin(T ) of 
timed words that realize M.

Message sequence graphs. A message sequence graph (MSG) is a directed graph in which nodes are labeled by MSCs. We begin 
with a graph G = (V ,→, vin, V F ) with nodes V , initial node vin ∈ V , final nodes V F ⊆ V and edge relation →. An MSG is 
a structure G = (G,LM ,�) where LM is a set of MSCs and � : V → LM associates an MSC with each node. A path in G is 
a sequence of nodes v0 v1 · · · vn where each adjacent pair of states is related by →. An accepting path is one that starts in 
vin and ends in some node of V F .

A path π = v0 v1 · · · vn in G defines an MSC �(v0 v1 · · · vn) = �(v0) ◦ �(v1) ◦ · · · ◦ �(vn), where ◦ denotes MSC 
concatenation. When we concatenate two MSCs M1 = (E1, ≤1, λ1) and M2 = (E2, ≤2, λ2) we attach the lifelines in M2
below those of M1 to obtain an MSC M1 ◦ M2 = (E1 ∪ E2, ≤, λ) where λ combines λ1 and λ2 and ≤ is generated by 
≤1 ∪ ≤2 ∪ {(e1, e2) | ∃p. e1 ∈ E1

p, e2 ∈ E2
p}.

More formally, for a path π = v0 v1 · · · vn we define the MSC �(π) as follows. First, we use � to denote the prefix 
relation and write ρ � π to denote that path ρ is a prefix of path π . Now, for each vertex v , let �(v) be the MSC 
Mv = (E v , ≤v , λv). We assume that the events are disjoint across the MSCs Mv . We then define �(π) = Mπ = (Eπ , ≤π , λπ ), 
where,

• Eπ = ⋃
ρv�π E v × {ρv}

• For each ρv � π , λπ ((e, ρv)) = λv(e).
• ≤π is defined as the reflexive transitive closure of 

⋃
p,q∈Proc <π

pq , where

– (e, ρv) <π
pp (e′, ρ ′v ′) for some p ∈ Proc if e ∈ E v

p , e′ ∈ E v ′
p and either ρv � ρ ′v ′ or (ρv = ρ ′v ′ and e <v

pp e′).
– (e, ρv) <π

pq (e′, ρ ′v ′) for some processes p 
= q, if ρv = ρ ′v ′ and e <v
pq e′ .

We associate with an MSG G a language of MSCs L(G) = {�(π) | π is an accepting path in G}. In general, it is undecid-
able to determine whether L(G) is regular [22]. This is because processes move asynchronously along the MSC traced out 
by accepting paths and there is no bound, in general on this asynchrony. However, there is a sufficient structural condition 
to guarantee regularity [9,27].

Given an MSC M , we construct its communication graph CG(M) as follows: the vertices are the processes and we have a 
directed edge (p, q) if M contains a message from p to q. An MSC M is said to be connected if the non-isolated vertices in 
CG(M) form a single strongly connected component. An MSG G is said to be locally synchronized if for every loop π in G, 
the MSC �(π) is connected. Intuitively, this means that every message sent in a loop is implicitly acknowledged, because 
if p sends a message, there is a path in the communication graph back to p. This ensures that all channels are universally 
bounded—there is a uniform bound B such that across all linearizations, no channel ever has more than B pending messages. 
Thus, if G is locally synchronized, L(G) is a regular set of MSCs.

Time-constrained message sequence graphs. We generalize MSGs to the timed setting in a natural way. In a time-constrained 
MSG (TCMSG), states are labeled by TCMSCs rather than MSCs. In addition, we also permit process-wise timing constraints 
along the edges of the graph. A constraint for process p along an edge v → v ′ specifies a constraint between the final 
p-event of �(v) and the initial p-event of �(v ′), provided p actively participates in both these nodes. If p does not par-
ticipate in either of these nodes, the constraint is ignored. Formally, a TCMSG is a tuple G = (G,LTC,�,EdgeC) where 
G = (V ,→, vin, V F ) is a graph as before, � : V → LTC labels each node with a TCMSC from a set LTC and EdgeC asso-
ciates a tuple of constraints with each edge—for convenience, we assume that any edge constraint not explicitly specified 
corresponds to the trivial constraint (−∞, ∞).
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Each accepting path in a TCMSG defines a TCMSC. Given a path v0v1 · · · vn , we concatenate the TCMSCs �(v0), �(v1), . . . ,
�(vn) and insert the additional constraints specified by EdgeC. We define LTC(G) to be the set of all TCMSCs over Act gener-
ated by accepting paths in G . We also let Ltime(G) = ⋃

M∈LTC(G) Ltime(M) and Ltw(G) = ⋃
M∈LTC(G) Ltw(M). Fig. 2 shows 

a TCMSG, a TCMSC that it generates and a realizing TMSC.
Just as for MSGs, a TCMSG G is said to be locally synchronized if for every loop π in G, the MSC �(π) is connected.

Timed automata. We can formulate many types of machine models for timed MSCs. One natural choice is a message-passing 
automaton (MPA) equipped with (local) clocks. In a timed MPA, we have one component for each process p, which is a 
finite state automaton over actions of the form p!q(m) and p?q(m). Each component also has local clocks that can be used 
to guard transitions. The global state space defines a timed automaton over Act.

A timed automaton over an alphabet � is a tuple A = (Q , �, qin, F , Z) where Q is a finite set of states, qin ∈ Q is the 
initial state, F ⊆ Q are the final states and Z is a set of clocks that take values over R≥0. Each transition in � is of the 
form q ϕ,a,X−−−−→ q′ where q, q′ ∈ Q , a ∈ �, X ⊆ Z and ϕ is a boolean combination of clock constraints of the form x op c
where x ∈ Z , c ∈ Q≥0 and op ∈ {≤, <, >, ≥}. This transition is enabled if the current values of all clocks satisfy the guard ϕ . 
On taking this transition, the clocks in X are reset to 0. As is standard, time elapses between transitions, transitions occur 
instantaneously and such an automaton accepts timed words from TW� . More details can be found in [6,11].

For our purposes, we only need the following results about timed automata.

• Given timed automata A1 and A2, we can construct a timed automaton A12 such that L(A12) = L(A1) ∩ L(A2).
• Checking if the language of a timed automaton is empty is decidable.

A timed MPA is defined as a timed automata over Act whose languages can be interpreted as (timed) linearizations of 
timed MSCs. A timed word in TWAct corresponds to a linearization of a timed MSC provided the timed word is well-formed 
and complete. A word w over Act is well-formed if for each channel (p, q), in every prefix v of w , the sequence of messages 
received by q from p in v is a prefix of the messages sent from p to q in v . A well-formed word w is complete if #p!q(w) =
#q?p(w) for each matching pair of send–receive actions, where #X (u) counts the number of occurrences in u of X ⊆ Act. 
Finally, a well-formed word w is B-bounded if, in every prefix v of w , #p!q(v) − #q?p(v) ≤ B for each channel (p, q). 
Correspondingly, a timed word is said to be well-formed (complete, B-bounded) if its projection onto Act is well-formed 
(complete, B-bounded). Well-formedness captures the intuition that any receive action has an earlier matching sending 
action. Completeness guarantees that all pending messages have been received. B-boundedness promises that no channel 
ever has more than B messages.

Note that we could have alternatively defined timed MPA over a distributed state space and their semantics directly over 
timed MSCs, as done in [2,1] (and originally in [25] in the untimed setting), instead of defining it via timed linearizations. 
However, to preserve notational clarity and for ease of presentation, we prefer to adopt the global state space approach in 
this paper.

3. The problem statement

In this paper, we are interested in comparing the distributed timed behavior of a TCMSG with the global timed behavior 
of a timed MPA. As detailed in the previous section, the behavior of a timed MPA can be described as a timed automaton 
over the global alphabet of actions Act. Thus, given a TCMSG G and a timed automaton A over Act, we address the question 
of checking whether the implementation A conforms to the specification G. This breaks up as two natural problems.

The model checking problem. Given a timed automaton A over Act and a TCMSG specification G, the model checking problem 
is to check that every timed word accepted by A realizes some TCMSC in LTC(G). Since A may accept timed words that 
are not well-formed or not complete, this implicitly includes checking that A accepts only well-formed and complete timed 
words in TWAct .

From this, it is clear that the model checking problem corresponds to checking whether L(A) ⊆ Ltw(G). To make the 
problem tractable, we restrict our attention to locally synchronized TCMSGs, so that Ltw(G) is a timed regular language. 
However, checking inclusion is undecidable even for timed regular languages [6], so this restriction is not sufficient to solve 
the model-checking problem.

The coverage problem. In the reverse direction, given a TCMSG G and a timed automaton A over Act, we ask if every 
M ∈LTC(G) is witnessed by the implementation A. Note that this is not the same as checking if Ltw(G) ⊆Ltw(A). Indeed, 
the timed inclusion problem would correspond to asking if every timed linearization of every M ∈LTC(G) is witnessed by the 
implementation A. This is rather strong, as the implementation is required to witness every possible way in which every 
TCMSC specification (generated by the TCMSG) can be implemented. Indeed, the implementation can have strictly better 
time bounds than the specification and therefore be a valid implementation without witnessing all timed linearizations of 
the MSG. When we interpret TCMSGs as incomplete positive specifications, a natural verification problem is to ask if the 
implementation witnesses every TCMSC generated by the TCMSG (rather than every possible run of every TCMSC). This is 
the second problem that we address in this paper.
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Let G be a TCMSG and a timed automaton A over Act. The coverage problem for G and A is to determine whether for 
each TCMSC M ∈LTC(G), there is a w ∈Ltw(M) such that w ∈Ltw(A).

In the untimed case, the corresponding problem of scenario matching considered in [28,21], asks whether LMSC(G) ⊆
LMSC(A) where G is an MSG and A is an MPA. In the timed case, as mentioned above we cannot reduce coverage to 
language inclusion of timed MSCs. A TCMSC M represents an infinite family of TMSCs, each of which realizes M. However, 
the implementation need not, in general, permit all these realizations. In other words, checking inclusion would correspond 
to checking if for each M ∈ LTC(G), and each w ∈ Ltw(M), it is the case that w ∈ Ltw(A). Indeed, this does not directly 
provide an answer to the coverage problem we have defined above.

Another plausible approach is to treat this as a timed game between Spoiler, who picks a path in the TCMSG G, and 
Duplicator, who picks w ∈ Ltw(A) ∩ Ltw(M). At each step, Spoiler adds a node to the path in G. Duplicator has to match 
this move by extending the current timed word so that it stays in Ltw(A) and also realizes the TCMSC described by the 
extended path. However, a winning strategy in this game would have the following property: if two paths π1 and π2 have 
a common prefix π , then w generated by Duplicator for the prefix π must be the same for the plays in which Spoiler 
generates π1 and π2. This is not what we want since it may happen that π1 and π2 are realized by different plays that 
do not match on π and this solution will not be obtained by any winning strategy. In other words, the game-theoretic 
formulation introduces too strict a correlation between the timed words realizing different paths through the TCMSG.

These observations suggest that traditional approaches for scenario matching in the untimed case do not generalize to 
the coverage problem in the timed case.

Our strategy. Our approach to tackle both the above problems follows from the following basic observation. We observe that 
in locally synchronized TCMSGs, clocks are in used in a very particular way and do not in fact require the power of timed 
automata. We exploit this observation by showing that TCMSGs correspond to a strictly more restrictive model of timed 
automata which are closed under complementation.

In the next section, we introduce our restricted machine model for timed MSCs called MSC event clock automata. It 
turns out that Ltw(G) can be recognized by MSC event clock automata as demonstrated in Section 5. This yields a solution 
to our model checking problem in Section 6. Finally in Section 7, we use the theorem of Section 5 to obtain a solution for 
the coverage problem with an additional restriction on the specification.

4. An extended event clock automaton—the MSC-ECA

We now define MSC event clock automata or MSC-ECA. These will be used to capture exactly the guards that occur in the 
TCMSGs that we have defined. We denote an MSC-ECA over Act by C = (Q , Act, δ, q0, F ), with states Q , initial state q0 ∈ Q
and final states F ⊆ Q . A transition in δ is of the form (q, ϕ, a, q′), which we also write as q ϕ,a−−→ q′ , where q, q′ ∈ Q , a ∈ Act
and ϕ is a conjunction of event clock guards. There are two types of event clock guards. First, we may check that the time 
elapsed between the kth-previous p-event and the current p-event is in some interval I . This guard is denoted Yk

p ∈ I (where 
I is an interval, as used in TCMSC timing constraints). In particular, we may check the time elapsed between the previous 
and the current p-events with Y1

p ∈ I . Second, we may check at a receive event the time elapsed since the matching write 
event. This guard is denoted Msg−1 ∈ I . We interpret these guards over timed words. Let σ = (a1, t1) · · · (an, tn) ∈ TWAct . We 
define below when σ satisfies a guard ϕ at some position 1 ≤ j ≤ n, denoted σ , j |� ϕ .

(D1) σ , j |� Yk
p ∈ I if a j ∈ Actp and there exists 1 ≤ i < j such that ai ∈ Actp , |{� | i ≤ � < j ∧ a� ∈ Actp}| = k and t j − ti ∈ I . 

That is, the time elapsed between the kth-previous p-action ai in σ and this action a j is in the interval I .
(D2) σ , j |� Msg−1 ∈ I if a j is a receive action and the time elapsed since the occurrence of its matching send action ai

is in the interval I . Formally, if there exists p, q ∈ Proc, 1 ≤ i < j such that ai ∈ p!q, a j ∈ q?p, |{ak | 1 ≤ k ≤ i, ak ∈
p!q}| = |{ak | 1 ≤ k ≤ j, ak ∈ q?p}| and t j − ti ∈ I (recall that we write ak ∈ p!q and ak ∈ q?p to mean ak = p!q(m) and 
ak = q?p(m) for some m ∈M, respectively).

In both these definitions, note that action ai is uniquely defined, i.e., there is at most one position i that matches a given 
position j with respect to a given event clock guard.

Now, we define runs of the MSC-ECA C over timed words. For a timed word σ = (a1, t1) · · · (an, tn), we say there is a run 
of C from q to q′ on σ , denoted q σ−→ q′ in C , if there exists a sequence of transitions q = q0

ϕ1,a1−−−−→ · · · ϕn,an−−−−→ qn such that 
for all j, 1 ≤ j ≤ n, σ , j |� ϕ j . The timed word σ is said to be accepted if it has a run from the initial state to some final 
state in F . We denote by Ltw(C) the set of timed words accepted by the MSC-ECA C . Notice that, time words in Ltw(C)

need not be well-formed. An MSC-ECA is said to be finite if it has finitely many states.

4.1. Determinization and complementation of MSC-ECA

We now prove that MSC-ECA can be determinized and complemented, which is crucial for solving the model checking 
problem. We obtain this by constructing a deterministic and complete version of any given MSC-ECA. Intuitively, this works 
as for classical ECA’s [7] and the main reason is that there are no explicit clocks. Since the reset of an event clock only 
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depends on the timed word being read and not on the path followed in the automaton, we can use the subset construction. 
However, instead of trying to encode the extended guards arising from the MSC structure in an MSC-ECA into a classical 
ECA, which seems rather difficult, we directly prove in this section that MSC-ECA can be determinized and complemented. 
Note that this is unlike the case of finite timed automata, which allow arbitrary clock resets and in general are not closed 
under complementation [6].

More precisely, let C = (Q , Act, δ, q0, F ) be a finite MSC-ECA. The set of states of the universal automaton Cuniv is 2Q . 
For a set X ⊆ Q and an action a, we let T (X, a) denote the set of transitions in δ having action a and a source state in X . 
Then, for some T ′ ⊆ T (X, a) = T , we denote by target(T ′) the set of target states of transitions in T ′ and we define

ϕ(T ′, T ) =
∧

t=(q,ϕt ,a,q′)∈T ′
ϕt ∧

∧
t=(q,ϕt ,a,q′)∈T \T ′

¬ϕt .

We denote the set of transitions of Cuniv by �, where we say that X
ϕ,a−−→ X ′ ∈ � if there exists T ′ ⊆ T = T (X, a) such that 

ϕ = ϕ(T ′, T ) and X ′ = target(T ′).
Note that, once we have fixed X , a and the set T ′ , the transition is uniquely defined. Also for X = ∅, we have T (X, a) = ∅

and the only possible transition is ∅ true,a−−−−→ ∅. As before, a run on a timed word σ = (a1, t1) · · · (an, tn) is defined as a 
sequence of transitions X0

ϕ1,a1−−−−→ X1 · · · ϕn,an−−−−→ Xn such that σ , j |� ϕ j for all j. The crucial property of Cuniv is that it is 
deterministic and complete (and finite, if C is).

Lemma 1. Given any timed word σ = (a1, t1) · · · (an, tn) ∈ TWAct , there exists a unique run X0
ϕ1,a1−−−→ X1

ϕ2,a2−−−→ · · · Xn−1
ϕn,an−−−→ Xn of 

Cuniv on σ starting from X0 = {q0}. Moreover, Xn = {q ∈ Q | q0
σ−→ q in C}.

Proof. Given σ = (a1, t1) · · · (an, tn) and X0 = {q0}, for j ∈ {1, . . . , n}, we define inductively T j = T (X j−1, a j), T ′
j =

{(q, ϕ, a j, q′) ∈ T j | σ , j |� ϕ} and X j = target(T ′
j). Observe that X j−1

ϕ(T ′
j ,T j),a j−−−−−−−→ X j is a transition of Cuniv . Also by defi-

nition of T ′
j , for all T ′ ⊆ T j , we have

σ , j |� ϕ(T ′, T j) if and only if T ′ = T ′
j (1)

Using the “if” part above, we obtain that X0
ϕ(T ′

1,T1),a1−−−−−−−→ X1 · · · ϕ(T ′
n,Tn),an−−−−−−−→ Xn is a run of Cuniv on σ . Conversely, we show 

by induction that this is the unique run of Cuniv on σ starting from X0 = {q0}. Let X0
ϕ1,a1−−−−→ X ′

1
ϕ2,a2−−−−→ · · · X ′

n be any such 
run. Suppose X ′

j−1 = X j−1. Then we show that ϕ j = ϕ(T ′
j, T j) and X ′

j = X j . By definition of a run, we have X j−1
ϕ j ,a j−−−→

X ′
j and σ , j |� ϕ j . But by the definition of a transition, there exists T ′ ⊆ T (X j−1, a j) = T j such that ϕ j = ϕ(T ′, T j) and 

X ′
j = target(T ′). Thus, σ , j |� ϕ(T ′, T j) which by Eq. (1) implies that T ′ = T ′

j . Thus, we conclude ϕ j = ϕ(T ′
j, T j) and X ′

j =
target(T ′) = target(T ′

j) = X j .

For the second statement, we prove both inclusions. First, if q0
σ−→ q in C , let q0

ϕ1,a1−−−−→ · · · ϕn,an−−−−→ qn = q with σ , j |� ϕ j
for 1 ≤ j ≤ n. Using the notations above we show that for all j ∈ {0, . . . , n}, q j ∈ X j . Clearly q0 ∈ X0. Assume q j−1 ∈ X j−1. 
Then we have (q j−1, ϕ j, a j, q j) ∈ T ′

j . Hence we conclude that q j ∈ X j = target(T ′
j).

Conversely, for all j and for all q j ∈ X j we show that q0
(a1,t1)···(a j ,t j)−−−−−−−−−→ q j is a run of C . The proof is by induction on j. 

j = 0 is obvious. Assume j > 0 and let q j ∈ X j . Then there exists (q j−1, ϕ j, a j, q j) ∈ T ′
j , i.e., q j−1 ∈ X j−1 and σ , j |� ϕ j . By 

the induction hypothesis we have q0
(a1,t1)···(a j−1,t j−1)−−−−−−−−−−−−→ q j−1. This implies that q0

(a1,t1)···(a j−1,t j−1)−−−−−−−−−−−−→ q j−1
a j ,t j−−−→ q j is a run 

of C . �
By suitably choosing the final states, Cuniv will accept either the same language as C or its complement. Let F1 = {X ∈

2Q | F ∩ X 
= ∅} and F2 = 2Q \ F1. Define Cuniv
i = (2Q , Act, �, {q0}, Fi) for i = {1, 2}. From Lemma 1 we obtain:

Corollary 2. We have Ltw(Cuniv
1 ) =Ltw(C) and Ltw(Cuniv

2 ) = TWAct \Ltw(C).

4.2. From MSC-ECA to TA

Not every MSC-ECA can be translated into an equivalent (classical) timed automaton. The problem comes from the event 
guards Msg−1 ∈ I , which may require infinitely many clocks if channels are unbounded. Fortunately, thanks to the locally 
synchronized assumption on TCMSGs, we are only interested in bounded channels. Let B > 0. We show below how to 
construct a timed automaton BB

C from an MSC-ECA C = (Q , Act, δ, q0, F ) such that BB
C and C are equivalent, in the sense 

formalized below, when restricted to B-bounded channels.
Let K = max{k | Yk

p ∈ I occurs in some guard in δ}. A state of BB
C is either a dead state denoted ⊥ or a tuple s =

(s,b,n,α,β) where s ∈ Q , b = (bp)p∈Proc ∈ {0, 1}Proc (bp = 1 if we have already seen at least K p-events), n = (np)p∈Proc ∈
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{0, . . . , K − 1}Proc (np is the number of p-events already seen modulo K ), α = (αp,q)p,q∈Proc ∈ {0, . . . , B}Proc2
(αp,q is the 

number of q?p events modulo B + 1), β = (βp,q)p,q∈Proc ∈ {0, . . . B}Proc2
(βp,q is the number of p!q events modulo B + 1). 

The set of all states is denoted Q ′ and the initial state is s0 = (s0, (0), (0), (0), (0)). The set of clocks is Y ∪ Z where 
Y = {yi

p | p ∈ Proc, 0 ≤ i < K } and Z = {zi
p,q | p, q ∈ Proc, 0 ≤ i ≤ B}. We will reset clock yi

p when executing the ith p-event 
mod K . Also, zi

p,q will be reset when executing the ith p!q event mod B + 1.
We say that channel (p, q) is empty if αp,q = βp,q and full if βp,q = αp,q + B mod (B + 1). The set of transitions δBB

C
is 

defined as follows: Assume s ϕ,a−−→ s′ in C with a ∈ Actp . Then, we have three types of transitions in BB
C .

(Tr1) (s,b,n,α,β) true,a,∅−−−−−→ ⊥ is in BB
C if either a ∈ p!q and channel (p, q) is full (the bound was exceeded), or a ∈ p?q and 

channel (p, q) is empty.

(Tr2) (s,b,n,α,β) ϕ′,a,R−−−−→ (s′,b′,n′,α′, β ′) is in BB
C if we are not in the above case and the following conditions hold:

1. b′
r = br for r 
= p and b′

p =
{

1 if np = K − 1
bp otherwise.

2. n′
r = nr for r 
= p and n′

p = (np + 1) mod K .

3. if a ∈ p!q, then β ′
p,q = (βp,q + 1) mod (B + 1) and β ′

p′,q′ = βp′,q′ for (p′, q′) 
= (p, q). Also α′ = α, R = {y
n′

p
p , z

β ′
p,q

p,q } and 
ϕ′ is ϕ where Yk

p ∈ I is replaced with{
false if bp = 0 and k > np

y
(K+n′

p−k) mod K
p ∈ I otherwise

4. if a ∈ p?q, then α′
q,p = αq,p + 1 mod (B + 1) and α′

q′,p′ = αq′,p′ for (q′, p′) 
= (q, p). Also β ′ = β , R = {y
n′

p
p } and ϕ′ is 

ϕ where Yk
p ∈ I is replaced as above and Msg−1 ∈ I is replaced with z

α′
q,p

q,p ∈ I .

(Tr3) ⊥ true,a,∅−−−−−→ ⊥ is in BB
C for all a ∈ Act.

In the following, we call a timed word w weakly well-formed (wwf) if for each channel (p, q), in every prefix v of w , we 
have #q?p(w) ≤ #p!q(w). This weak form does not require the sequence of received messages to be a prefix of the sequence 
of the sent messages—it only demands that at any point, the number of messages received does not exceed the number of 
messages sent. Let TWB,wwf

Act denote the set of timed words σ ∈ TWAct which are both wwf and B-bounded.

We can immediately observe some invariant properties that are maintained by the above transitions. Let s0
ϕ1,a1,R1−−−−−−→

· · · ϕm,am,Rm−−−−−−→ sm for m ≥ 0 be a path in BB
C from the initial state s0 to some state sm 
= ⊥. Then, for sm = (sm,b,n,α,β),

1. bp = 1 if |{� | 1 ≤ � ≤ m ∧ a� ∈ Actp}| ≥ K and bp = 0 otherwise.
2. np = |{� | 1 ≤ � ≤ m ∧ a� ∈ Actp}| mod K
3. αp,q = |{� | 1 ≤ � ≤ m ∧ a� ∈ q?p}| mod (B + 1)

4. βp,q = |{� | 1 ≤ � ≤ m ∧ a� ∈ p!q}| mod (B + 1)

On the other hand, suppose s0
ϕ1,a1,R1−−−−−−→ · · · ϕm,am,Rm−−−−−−→ sm for m ≥ 0 is a path in BB

C from the initial state s0 to sm = ⊥. 
Then, either σ is not wwf or it exceeds the bound B for some channel.

We can define different notions of acceptance (i.e., final states) on BB
C constructed from C to derive the results below.

Proposition 3. Let C = (Q , Act, δ, q0, F ) and BB
C = (Q ′, Act, δBB

C
, s0, F ′, (Y ∪ Z)) be as above, with some set F ′ of final states.

1. With final states F ′ = {(s,b,n,α,β) | s ∈ F } the timed automaton BB
C accepts the language Ltw(C) ∩ TWB,wwf

Act .
2. If C is complete (i.e., it has a run on every timed word over Act) then with final states F ′ = {⊥} the timed automaton BB

C accepts 
the complement of TWB,wwf

Act in TWAct .

Further if C is finite so is BB
C .

Proof. 1. Let σ = (a1, t1) · · · (am, tm) be a wwf and B-bounded timed word. Consider a path π = s0
ϕ1,a1−−−−→ s1

ϕ2,a2−−−−→
· · · ϕm,am−−−−→ sm of C . We can build inductively a path π ′ = s0

ϕ′
1,a1,R1−−−−−−→ s1

ϕ′
2,a2,R2−−−−−−→ · · · ϕ′

m,am,Rm−−−−−−→ sm of BB
C starting from 

its initial state s0 and using (Tr2) only. Then, Ltw(C) ∩ TWB,wwf
Act ⊆Ltw(BB

C) follows immediately from the following claim.

Claim 1. If σ has a run through π in C (i.e., σ , i |� ϕi for all i ∈ {1, . . . , m}) then σ has a run through π ′ in BB .
C



32 S. Akshay et al. / Theoretical Computer Science 594 (2015) 24–43
We define inductively the valuation sequence for the run through π ′: ν0 is the valuation mapping all clocks to 0, and 
νi = (νi−1 + ti − ti−1)[Ri → 0] for 1 ≤ i ≤ m. To establish Claim 1 we show for all i ∈ {1, . . . , m} that (νi−1 + ti − ti−1) |� ϕ′

i .
There are three cases:

1. ϕ′
i contains zk

p,q ∈ I where k = α′
p,q = |{a� | 1 ≤ � ≤ i ∧ a� ∈ q?p}| mod (B + 1). From the definition of the transition, 

ϕi must contain Msg−1 ∈ I . Since, σ , i |� ϕi we have ti − t j ∈ I , where j is the index of the matching send: a j =
p!q(m), ai = q?p(m), 1 ≤ j ≤ i and |{a� | 1 ≤ � ≤ j ∧ a� ∈ p!q}| = |{a� | 1 ≤ � ≤ i ∧ a� ∈ q?p}|. Thus, k = |{a� | 1 ≤ � ≤
j ∧ a� ∈ p!q}| mod (B + 1). Using the invariant at state s j , we get zk

p,q ∈ R j . Using the invariant at si , we can replace 
Msg−1 ∈ I by zk

p,q ∈ I in ϕ′
i . Moreover, zk

p,q /∈ R� for j < � ≤ i—otherwise, the number of events labeled p!q between 
j and � would be B more than the number of events labeled q?p between j and i (and therefore �). This implies 
that the channel was full and so, at �, transition (Tr1) is enabled which means that transition (Tr2) cannot be fired, 
which contradicts the transition at i. Now, zk

p,q ∈ R j implies ν j(zk
p,q) = 0, and zk

p,q /∈ R� for j < � ≤ i implies that 
(νi−1 + ti − ti−1)(zk

p,q) = ν j(zk
p,q) + ti − t j = ti − t j . So, we have (νi−1 + ti − ti−1) |� (zk

p,q ∈ I).

2. We will show that ϕ′ cannot contain false. If ϕ′ contains false, then bp = 0 and there exists Yk
p ∈ I in ϕ such that 

k > np . But bp = 0 implies that K events have not been seen and so we are trying to relate two events that are k apart 
when we have not seen k events on p. This contradicts the fact that σ , i |� Yk

p ∈ I , so this cannot happen.

3. ϕ′
i contains y�

p ∈ I , Then � = (K + n′
p − k) mod K and Yk

p ∈ I is in ϕi . Consider the event j such that the number of 
p-events between j and i is k. Such an event exists since either n′

p > k or bp = 1 (which means that K > k many 
p-events have been seen). But if k < n′

p , then � = n′
p −k and so the value of np -component at j is �. If k > n′

p , then at j, 
we have � = K +n′

p −k < K . Thus in both cases, y�
p was reset at j and not reset again between j and i. Again, σ , i |� ϕi

implies that ti − t j ∈ I and so (νi−1 + ti − ti−1)(y�
p) = ν j(y�

p) + ti − t j = ti − t j ∈ I . Thus, (νi−1 + ti − ti−1) |� y�
p ∈ I .

For the converse inclusion, we start with a path of BB
C starting from its initial state s0 and which does not reach ⊥: 

π ′ = s0
ϕ′

1,a1,R1−−−−−−→ s1
ϕ′

2,a2,R2−−−−−−→ · · · ϕ′
m,am,Rm−−−−−−→ sm . Since we did not reach ⊥, the timed word σ = (a1, t1) · · · (am, tm) must 

be wwf and B-bounded. Moreover, transitions in π ′ comes from (Tr2) only and we can recover a corresponding path 
π = s0

ϕ1,a1−−−−→ s1
ϕ2,a2−−−−→ · · · ϕm,am−−−−→ sm in C . Again, we can prove that if σ has a run through π ′ in BB

C then σ has a run 
through π in C . This follows by considering each case for the guards and observing that if νi−1 +ti −ti−1 |� ϕ′

i then σ , i |� ϕi
in each case.

2. We have already noted that if a timed word σ has a run through a path of BB
C reaching the dead state ⊥ then σ is 

either not wwf or not B-bounded. Conversely, assume that σ is either not wwf or not B-bounded and let σ ′ be the greatest 
prefix of σ which is both wwf and B-bounded. Since C is complete, the timed word σ ′ has a run through a path π of C . 
As above we deduce that σ ′ has a run through a corresponding path π ′ of BB

C . The next letter of σ will violate either the 
B-bound or the wwf condition. Hence the run reaches ⊥ with this next letter and loops on ⊥ until the end of σ . �
5. From a locally synchronized TCMSG to a finite MSC-ECA

The main result of this section is that locally synchronized TCMSGs define timed regular languages.

Theorem 4. If G = (G,LTC,�,EdgeC) is a locally synchronized TCMSG, then there exists a finite MSC-ECA C , such that Ltw(C) =
Ltw(G).

In the untimed case, the corresponding result has been stated and proved in different ways [9,18,27,14]. We describe a 
different proof that is more suitable for the timed version. It is split in three main steps that are described in the following 
sections.

5.1. TCMSG to an infinite MSC-ECA

In this section, from a TCMSG, we construct an MSC-ECA (with infinitely many states) which accepts exactly the same 
set of timed linearizations. We start with a definition and a remark. For an MSC M = (E, ≤, λ) over Act, recall that a cut
c of M over Act to be a subset of the events E which is closed under the partial order ≤. That is, e ∈ c, e′≤e implies that 
e′ ∈ c. In what follows, we will use this definition in the setting of MSCs generated by a path π , namely Mπ . We also recall 
that any event of Eπ is of the form (e, ρu) where ρu � π and e ∈ Eu . Indeed, keeping the prefix of the path along with the 
event uniquely identifies the event’s occurrence in the path.

For a fixed TCMSG G = (G,LTC,�,EdgeC), where G = (V ,→, vin, V F ), we define the infinite MSC-ECA denoted CG , 
which we sometimes call the global system of G. A state of CG is a pair s = (π, C) where

• π is a path in G .
• C ⊆ Eπ is a cut of Mπ
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Now, an event (e, ρ) is said to have been executed in s if (e, ρ) ∈ C . The event is said to be enabled in s if it has not been 
executed, i.e., (e, ρ) /∈ C , and all the events below it (in the partial order) have been executed, i.e., for all (e′, ρ ′) ∈ Eπ with 
(e′, ρ ′)<π (e, ρ), we have (e′, ρ ′) ∈ C .

A state s = (π, C) is initial if π is any path in G from an initial state to a final state and C is empty. It is final if C = Eπ . 
We denote the set of all states of this global system by QG .

Next, let I denote the set of all intervals appearing as constraints in the TCMSG. For any node u in the TCMSG, we note 
that �(u) = Mu = (Eu, ≤u, λu, τ u) is a TCMSC from LT C . This definition lifts as before to paths π of CG as well.

Now, the transitions can be defined by saying that at any state we execute an enabled event. We have s = (π, C) ϕ,a−−→
s′ = (π, C ′) if there exists an event (e, ρu) enabled in s such that λu(e) = a and

• C ′ = C � {(e, ρu)} (where � stands for disjoint union)
• the guard ϕ checks all local and edge constraints that are matched here,

ϕ =
( ∧

e′∈Eu ,I∈I|τ u(e′,e)=I

ϕ(u, e′, e, I)

)
∧ ϕedge where, (2)

ϕ(u, e′, e, I) =
{

Msg−1 ∈ I if ∃p,q, p 
= q s.t. e′ <u
qp e

Yk
p ∈ I if e, e′ ∈ Eu

p, |{e′′ ∈ Eu
p | e′≤u

ppe′′ <u
pp e}| = k

(3)

and ϕedge =
⎧⎨⎩Y1

p ∈ I if ρ = ρ ′u′, and for some p ∈ Proc, we have
EdgeC((u′, u), p) = I and e = min(Eu

p)

true otherwise

(4)

Note that, in the transition above, the event (e, ρu) which is enabled in s becomes an executed event of s′ . Thus we can 
say that the transition s ϕ,a−−→ s′ executes the event (e, ρu).

As before, a run of CG on a timed word σ = (a1, t1) · · · (an, tn) is a sequence of transitions s0
ϕ1,a1−−−−→ · · · ϕn,an−−−−→ sn such 

that for each j ∈ {1, . . . , n}, σ , j |� ϕ j . Again a run is accepting if it starts at an initial state and ends in a final state. We say 
a timed word σ belongs to Ltw(CG), if there is an accepting run on σ .

In what follows, we often refer to runs of the global system, i.e., the MSC-ECA CG as global runs. Also since we have 
fixed a TCMSG G = (G,LTC,�,EdgeC) throughout this section, we often just write the global system, when referring to CG .

Lemma 5. We have the following relation between the timed languages of CG and G: Ltw(CG) = Ltw(G) = {σ | σ is a timed
linearization of some TMSC T over Act, such that T realizes some M ∈LTC(G)}.

Proof. (⊆) Let σ = (a1, t1) · · · (an, tn) ∈Ltw(CG). Then there exists an accepting run

s0
ϕ1,a1−−−→ · · · ϕn,an−−−→ sn

where for each i ∈ {1, . . . , n}, σ , i |� ϕi and si−1 = (πi−1, Ci−1) 
ϕi ,ai−−−→ (πi, Ci) = si executes some enabled event (ei, ρi).

First, π0 = · · · = πn = π (say). Then, as s0 = (π, C0) is an initial state of the global system, π is a path from the initial 
vertex vin to some final one in G . Therefore Mπ = (Mπ , τπ ) ∈ LTC(G). Now, for each i ∈ {1, . . . , n}, Ci = Ci−1 � {(ei, ρi)}
is a cut of Mπ . Moreover, Cn = Eπ since sn is final. From this we get that (e1, ρ1) · · · (en, ρn) is a linearization of Mπ

and λπ (ei, ρi) = ai for all i ∈ {1, . . . , n}. Now consider the TMSC T = (Mπ , t) where we define t by t((ei, ρi)) = ti . Thus, 
(a1, t1) · · · (an, tn) is a timed linearization of T since i < j implies t(ei, ρi) = ti ≤ t j = t(e j, ρ j).

We are done if we show that T realizes Mπ . That is, for all ((ei, ρi), (e j, ρ j)) ∈ dom(τπ ), we want to show that 
|t(e j, ρ j) − t(ei, ρi)| = t j − ti ∈ τπ ((ei, ρi), (e j, ρ j)). We have two cases to handle:

• If ρi = ρ j = ρv (say) then τπ ((ei, ρv), (e j, ρv)) = τ v(ei, e j) = I . Then, first ϕ(v, ei, e j, I) is in ϕ j . Indeed, if 
τ v(ei, e j) = I then one of the two following cases hold:
– Either ei, e j ∈ E v

p for some p ∈ Proc. Then, |{e� ∈ E v
p | ei≤v

ppe� <v
pp e j}| = k for some k ∈ N>0. Thus ϕ(v, ei, e j, I) =

Yk
p ∈ I . At state j, σ , j |� ϕ j implies σ , j |� ϕ(v, ei, e j, I) which implies that σ , j |� Yk

p ∈ I . Now, e� ∈ E v
p such that 

ei≤v
ppe� <v

pp e j if and only if i ≤ � < j such that a� ∈ Actp . Thus, by Definition (D1), we conclude that t j − ti ∈ I .

– Or ei <v
qp e j for some p, q ∈ Proc, p 
= q. Then, ϕ(v, ei, e j, I) = Msg−1 ∈ I . Again, we have σ , j |� Msg−1 ∈ I . Now, 

ei <v
qp e j implies that λπ (e j, ρ j) = a j = p?q(m) for some m ∈ M and λπ (ei, ρi) = ai = q!p(m) is its matching send. 

Thus, |{a� | 1 ≤ � ≤ i, a� ∈ q!p}| = |{a� | 1 ≤ � ≤ j, a� ∈ p?q}|. Now, by Definition (D2) we conclude that t j − ti ∈ I .
• Otherwise, ρ j = ρi v, ρi = ρv ′ for some ρ , ei = max(E v ′

p ) and e j = min(E v
p) for some p ∈ Proc, then τπ ((ei, ρi),

(e j, ρ j)) = EdgeC((v ′, v), p) = I . Then at stage j, we have ϕedge
j = (Y1

p ∈ I). Indeed, ai = λv ′
(ei) is the last p-action 

before a j = λv(e j) in σ . Thus, by Definition (D1), t j − ti ∈ I and so we are done.
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(⊇) Suppose M ∈ LTC(G), then there exists a path π = v1 · · · vm in G such that v1 is an initial vertex and vm is a 
final vertex and M = Mπ = (Mπ , τπ ). Now, suppose σ = (a1, t1) · · · (an, tn) is a timed linearization of T = (Mπ , t) and T
realizes M. Then first we observe that a1 · · ·an ∈ lin(Mπ ) and so there is (e1, ρ1) · · · (en, ρn) a linearization of the events of 
Mπ where for each i ρi � π , λπ (ei, ρi) = ai .

Then we can construct the run of the global system on this timed word. First, we define Ci = {(e1, ρ1) · · · (ei, ρi)} and 
si = (π, Ci) for all i ∈ {0, . . . , n}, where C0 = ∅. Then observe that (ei, ρi) is enabled in si−1. Thus there exists a transition 
si−1

ϕi ,ai−−−→ si that executes event (ei, ρi). We show that σ , i |� ϕi where ϕi is defined by the transition. Again there are two 
cases:

• Either ϕi contains an edge constraint, i.e., ϕedge = (Y1
p ∈ I) for some p ∈ Proc. In this case, by Condition 4, ρi = ρ ′v ′v , ei

is the first p-event in M v and for some j < i, we have ρ j = ρ ′v ′ , e j is the last p-event on M v ′
and EdgeC((v ′, v), p) = I . 

First, this implies that ai is the next p-action with respect to a j in σ . Also, τπ ((e j, ρ j), (ei, ρi)) = I and since T realizes
M, we have t(ei, ρi) − t(e j, ρ j) ∈ I which implies that ti − t j ∈ I . By Definition (D1), we conclude that σ , i |� ϕedge .

• Or there is a local constraint of a node of the form ϕ(u, e j, ei, I), where ρi = ρu = ρ j for some j < i and τ u(e j, ei) = I . 
Again since T realizes M, t(ei, ρu) − t(e j, ρu) = ti − t j ∈ I . By Condition 3, if the constraint is of the form Msg−1 ∈ I , 
then e j <u

qp ei and otherwise the constraint is of the form Yk
p ∈ I where the number of p-events between e j and ei is k. 

Using Definition (D2) in the former case and Definition (D1) in the latter case, we conclude that σ , i |� ϕ(u, e j, ei, I).

Thus, we have shown that σ , i |� ϕi for all i ∈ {1, . . . , n} and therefore s0
ϕ1,a1−−−−→ · · · ϕn,an−−−−→ sn is a run of the global system 

on σ . Finally, the run ends in a final state of the global system, since σ is a full linearization of Mπ . Thus, our proof is 
complete. �
5.2. Removing unexecuted nodes

We want to simulate the global run of a TCMSG in a finite way. So, instead of maintaining the whole path along the run, 
we want to maintain only the relevant portions, i.e., the nodes in which there is at least an event that has occurred.

For segments of nodes in the path that have not seen any event yet, we replace them by a special gap symbol #. Thus, 
having a # symbol between two nodes denotes that some (nonempty) sequence of nodes must be inserted here later.

In fact, the insertion must satisfy two conditions: (1) when we insert a node it must not conflict with the events that 
have already occurred in later nodes and (2) finally, after all insertions, we do obtain a path in the graph. The latter is done 
by checking that when we fill a gap the corresponding bordering nodes have an edge in the graph.

This construction is formalized next. However, note that this construction is still infinite since we might still have un-
boundedly many completed nodes, i.e., nodes in which all events have been seen. In the next section, we describe how to 
perform a sequence of reductions to throw away such completed nodes from the current path. However, we have to be 
careful that the two conditions, in the infinite case above, are still maintained.

We start by observing that the cut C that we keep in a state in the simulation in the previous section is global. Thus, 
if we want to remove some nodes we would need to maintain the cut C locally within each node. To do this we break up 
each state (u1 · · · un, C) into (u1, c1) · · · (un, cn). Formally, we define the map � which we call stratification as follows:

�((u1 · · · un, C)) = (u1, c1) · · · (un, cn)

where each ci ⊆ Eui is defined by ci = {e ∈ Eui | (e, u1 · · · ui) ∈ C}. Notice that each ci is a cut of Eui . � is in fact a bijection 
since we also have the inverse map given by C = {(e, u1 · · · ui) ∈ Eu1···un | e ∈ ci}.

We define an extended node to be a pair (u, c) where u ∈ V and c ⊆ Eu is a cut of Eu . As before, c contains the events 
that have been executed in node u. For simplicity, we extend the set of vertices V with two dummy vertices �, � and add 
edges from � to the initial vertex vin and from every final vertex v ∈ V F to �. We also set E� = ∅ = E� so that for u ∈ {�, �}, 
the only extended node is (u, ∅). We will also maintain that for any extended node (u, c), if u /∈ {�, �}, then c 
= ∅. The set 
of all extended nodes is denoted ExtNodes and we let � = ExtNodes � {#}.

Now, we construct our new automaton C#
G

. A state α of C#
G

is an element of �∗ . The initial state is α0 = (�, ∅)#(�, ∅). 
Now, we lift the notion of events to extended events of a state in this new automaton. An extended event of α ∈ �∗ is a pair 
(e, α1(u, c)) where e ∈ Eu and α1(u, c) � α. We say that the extended event (e, α1(u, c)) is

• executed in α if e ∈ c and
• enabled in α if the following hold:

(E1) it has not been executed, i.e., e /∈ c,
(E2) all events within the node which are below it (in the partial order) have been executed, i.e., for all e′ ∈ Eu with 

e′<ue, we have e′ ∈ c
(E3) and if e belongs to process p, then all p-events on any node occurring before this node in α have been executed, 

i.e., if e ∈ Eu
p then for all α′

1(u′, c′) � α1, we have Eu′
p ⊆ c′ .
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An extended node (u, c) is said to be completed if c = Eu . Note that (�, ∅) and (�, ∅) are completed by default. A state α
is final if it is a sequence of completed nodes.

We will need some notations to describe the set of processes that participate in node, path or a state. First, for a node 
u ∈ V , OProc(u) = {p ∈ Proc | Eu

p 
= ∅} denotes the set of processes that participate (occur) in u. This is extended to V ∗ as a 
morphism. Also, with OProc(u, c) = OProc(u) and OProc(#) = ∅ it extends to �∗ . In addition, for β ∈ �∗ , EProc(β) denoting 
the set of executed events in β , is given by the morphism defined by EProc((u, c)) = {p ∈ Proc | Eu

p ∩ c 
= ∅}, EProc(#) = ∅.
Now, the transitions can be defined by saying that at any state we can choose to execute an enabled event or add a new 

(extended) node to the state and then we must execute an enabled event on the new node. In fact, we always add a node 
by inserting it in a #.

Let us now define the node insertion operation which tells us how a node is inserted in a gap. Formally, this is defined 
as a macro α1#α2

u−→ α′
1(u, ∅)α′

2 which is said to hold if

(I1) for every process that participates in u, there is no executed event in the segment α2 on that process, i.e., OProc(u) ∩
EProc(α2) = ∅.

(I2) α′
1 ∈ {α1, α1#} and if α′

1 = α1 then α1 = α′′
1 (v, c) and v → u in G .

(I3) α′
2 ∈ {α2, #α2} and if α′

2 = α2 then α2 = (v, c)α′′
2 and u → v in G .

Now, using this macro we can define the transition relation as follows. Formally, α ϕ,a−−→ α′ is a transition in C#
G

if there 
exists β = β1(u, c)β2 and an extended event (e, β1(u, c)) enabled in β such that

• one of the two following conditions hold:
(i) either β = β1(u, c)β2 = α, i.e., the enabled event is already present in the current state,

(ii) or α = α1#α2
u−→ β1(u, ∅)β2 = β . Hence, c = ∅, β1 ∈ {α1, α1#} and β2 ∈ {α2, #α2}

• and all the below conditions hold:
(T1) a = λu(e)
(T2) the guard ϕ must check all local and edge constraints, i.e.,

ϕ =
( ∧

e′∈Eu ,I∈I|τ u(e′,e)=I

ϕ(u, e′, e, I)

)
∧ ϕedge where, (5)

ϕ(u, e′, e, I) =
{

Msg−1 ∈ I if ∃p,q, p 
= q s.t. e′ <u
qp e

Yk
p ∈ I if e, e′ ∈ Eu

p, |{e′′ ∈ Eu
p | e′≤u

ppe′′ <u
pp e}| = k

(6)

and ϕedge =
⎧⎨⎩Y1

p ∈ I if β1 = β ′
1(u′, c′′) and for some p ∈ Proc, we have

EdgeC((u′, u), p) = I and e = min(Eu
p)

true otherwise

(7)

(T3) α′ = β1(u, c′)β2, where c′ = c � {e}.

Observe as in the case of the automaton CG , once the state and the enabled event which is to be executed are fixed, the 
transition that is taken and indeed the state reached after the transition are uniquely determined.

We can also observe that reachable states of this system satisfy some nice properties. To capture this we define the 
notion of a valid state of C#

G
.

A state α of C#
G

is said to be valid if

(V1) Every # symbol in α is surrounded by nodes from ExtNodes, i.e., there are no successive #’s in α. Also α starts with 
(�, ∅) and ends with (�, ∅).

(V2) For any two consecutive extended nodes in α, there exists an edge between the nodes in G , i.e., for all α1(u, c)(u′, c′) �
α, we have u → u′ in G .

(V3) Executed events in α are downward closed. By this we mean that the following two conditions are satisfied:
(a) For all α1(u, c) � α, if e ∈ c and e′≤ue then e′ ∈ c.
(b) For all α1(u, c)α2(u′, c′) � α, if e ∈ Eu

p, e′ ∈ Eu′
p for some p ∈ Proc, then e′ ∈ c′ �⇒ e ∈ c.

Proposition 6. Every state of C#
G

reachable from the initial state is valid.

Proof. First note that the initial state is valid. Now, suppose α is valid and α ϕ,a−−→ α′ we want to show that α′ is valid as 
well. The first two properties follow from the node-insertion definition. The third follows from the definition of an enabled 
event. �

We may note however that the converse is not true in general, i.e., a valid state need not always be reachable.
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Lemma 7. Ltw(C#
G

) =Ltw(CG)

Proof. We consider a morphism � : ExtNodes∗ → �∗ defined by (u, ∅) �→ # and (u, c) �→ (u, c) if c 
= ∅. We also define a 
reduction operation which acts on �∗ and reduces consecutive multiple occurrences of # into a single #. Formally, it is a 
rewrite operation where the rule is α1##α2

redn#−−−−→ α1#α2. Then, for a state α ∈ �∗ , we denote by Red#(α) the state that we 
reach by a maximal sequence of repeated applications of this rule. We denote by ϒ , the function that, given a state s ∈ QG

of the global system CG , assigns the state of C#
G

obtained as β = (�, ∅)Red#(�(�(s)))(�, ∅) where � is the stratification 
function defined earlier.

Now using the above definitions, we can relate accepting paths of the global semantics (i.e., of CG) and accepting paths 
of the automaton C#

G
. The equality of the languages Ltw(C#

G
) =Ltw(CG) follows immediately.

(⇐�) Consider any global path of G, i.e.,

s0
ϕ1,a1−−−→ s1 · · · sn−1

ϕn,an−−−→ sn

where each si = (π, Ci). For all i ∈ {0, . . . , n}, let βi = ϒ(si). We will show that

β0
ϕ1,a1−−−→ β1 · · ·βn−1

ϕn,an−−−→ βn

is a path of C#
G

.
Since s0 = (π, C0) is initial, we have C0 = ∅ which implies that β0 = (�, ∅)#(�, ∅) which is the initial state of C#

G
. Fix 

1 ≤ i ≤ n and let �(si−1) = (u1, c1) . . . (um, cm) where π = u1 · · · um . Now, the transition si−1
ϕi ,ai−−−→ si executes some event 

(e, u1 · · · u j) which is enabled in si−1. Then, si = (π, Ci) with Ci = Ci−1 � {(e, u1 · · · u j)}. There are two cases to consider:

• Either c j 
= ∅. In this case, we observe that βi−1 = ϒ(si−1) = α1(u j, c j)α2 where we can write

α1 = (�,∅)Red#(�((u1, c1) · · · (u j−1, c j−1)))

α2 = Red#(�((u j+1, c j+1) · · · (um, cm)))(�,∅).

Then, we observe that (e, u1 · · · u j) is enabled in si−1 implies that (e, α1(u j, c j)) is enabled in βi−1. Thus, there exists a 

transition of C#
G

which executes this event, namely βi−1
ϕ′

i ,ai−−−→ α1(u j, c′
j)α2 where c′

j = c j �{e}. From Conditions (2)–(4)
and (5)–(7), we deduce that ϕ′ = ϕ . Then, �(si) = (u1, c1) · · · (u j, c′

j) · · · (um, cm) by definition of Ci and so ϒ(si) =
α1(u j, c′

j)α2 = βi .
• Or c j = ∅. That is, the event being executed is on a node that is not present in βi−1. Then, there was a gap in βi−1

instead and we can write βi−1 = α1#α2 where α1# = (�, ∅)Red#(�((u1, c1) · · · (u j, c j))). Now if c j−1 = ∅, then we let 
β ′ = α1# and else β ′ = α1. Similarly if c j+1 = ∅, then we let β ′′ = #α2 and β ′′ = α2 otherwise. Then we can observe that 
(e, β ′(u j, ∅)) is enabled in β ′(u j, ∅)β ′′ . Also, we have α1#α2

u j−−→ β ′(u j, ∅)β ′′ since Conditions (I1), (I2) and (I3) hold. 
Indeed the latter two conditions follow from above, and if β ′ = α1 or β ′′ = α2, the presence of the edge in (I2), (I3) 
follows from the fact that the corresponding nodes are consecutive in π which is a path through G . Also if Condition (I1) 
is violated this would contradict the downward-closed property of the cut Ci .

Thus there exists a transition in C#
G

, βi−1
ϕ′

i ,ai−−−→ βi = β ′(u j, c′
j)β

′′ where c′
j = {e}. As above, we can conclude that ϕ′ = ϕ . 

Now, �(si) = (u1, c1) · · · (u j, c′
j) · · · (um, cm) where c′

j 
= ∅ and so ϒ(si) = β ′(u j, c′
j)β

′′ = βi .

Finally, since sn is a final state of CG , βn = ϒ(sn) is a final state as well as it is a sequence of completed nodes. This 
completes the proof in one direction.

(�⇒) For the converse consider an accepting path in C#
G

,

α0
ϕ1,a1−−−→ α1 · · ·αn−1

ϕn,an−−−→ αn

where each αi ∈ �∗ .
Then, αn is final if it is a sequence of completed nodes, which we write as (�, ∅)(u1, c1) · · · (um, cm)(�, ∅). Then we 

claim that π = u1 · · · um is a path in G from an initial state to a final state. This follows since this state is reachable 
and therefore valid and so Property (V2) holds (and from the definition of �, �). Then, we will construct the global run 
inductively maintaining the invariant ϒ(si) = αi for all i ∈ {0, . . . , n}.

At i = 0, s0 = (π, C0) = (π, ∅) and ϒ(s0) = (�, ∅)#(�, ∅) = α0. Suppose we have defined till si−1 = (π, Ci−1) such that 
ϒ(si−1) = αi−1, with �(si−1) = (u1, c1) . . . (um, cm). Consider αi−1

ϕi ,ai−−−→ αi . Then again we have two cases:

• either the transition executes the event (e, β ′
1(u j, c j)) which is enabled in αi−1 = β ′

1(u j, c j)β
′
2 = β ′ where we let β ′

1 =
(�, ∅)Red#(�((u1, c1) · · · (u j−1, c j−1))) and β ′

2 = Red#(�((u j+1, c j+1) · · · (um, cm)))(�, ∅).
• Or the transition inserts a node and then executes an enabled event, i.e., αi−1 = β1#β2 and β1#β2

u−→ β ′
1(u, ∅)β ′

2 = β ′
and (e, β ′

1(u, ∅)) is enabled in β ′ . Then β ′
1 ∈ {β1, β1#} and β ′

2 ∈ {β2, #β2}. In π consider the first occurrence of u, say u j , 
which has no executed event in si−1, i.e., Ci−1 ∩ (Eu1···u j \ Eu1···u j−1) = ∅. Thus, in this case, c j = ∅.
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Now, in both of the above cases, we claim that (e, u1 · · · u j) is enabled in si−1. Suppose not, choose a maximal event 
(e′, u1 · · · u j′ ) which was not executed in si−1, such that (e′, u1 · · · u j′ )<π (e, u1 · · · u j). This implies j′ ≤ j and in fact, we 
have j′ < j since otherwise e′<u j e which contradicts enabledness of (e, β ′

1(u j, c j)) in β ′ . Thus, e′ belongs to the same 
process as e. But then, there can’t be any executed event in node u j′ , since if there was, the node would occur in αi−1 and 
so would contradict the fact that (e, β ′

1(u j, c j)) is enabled in β ′ by violating Condition (E3). Now, if there was no executed 
event it would have been replaced by # in αi−1. But then since we are simulating an accepting run of C#

G
, at some later 

transition, node u j′ will be inserted in this #. At that stage, we would violate Condition (I1) for node insertion since the 
process has seen an event, namely e to the right. Thus, we have a contradiction.

Once again, the existence of the enabled event immediately implies that there exists a transition that executes it in CG , 
namely si−1

ϕi ,ai−−−→ si such that Ci = Ci−1 � {(e, u1 · · · u j)}. Then we can also observe that �(si) = (u1, c1) · · · (u j, c′
j) · · ·

(um, cm) and c′
j = c j � {e}. Thus, we conclude that ϒ(si) = αi . �

In fact, we can strengthen the above lemma slightly without much change in the proof. If we restrict the above 
automaton to states that are both reachable and co-reachable even then the result holds. It turns out that this property of co-
reachability is easy to capture in the automaton. Formally, we call a state α completable if whenever α = α1(u, c)#(v, c′)α2, 
there is β ∈ V + such that uβv is a path in G and OProc(β) ∩ EProc((v, c′)α2) = ∅.

Corollary 8. Consider the timed automaton obtained from C#
G

by restricting to valid and completable states. Then, the timed language 
of this automaton is Ltw(C#

G
).

5.3. Removing completed nodes

As we mentioned earlier, from a state α we would like to obtain a finite abstraction of α, such that

1. the set of events left to be executed are the same,
2. if α = α1#α2 where α2 ∈ �∗ , then we want to preserve the information about the processes in EProc(α2) so that if 

some nodes in α2 are deleted we still know which processes must not be inserted in this gap.
We accomplish this by enlarging the alphabet of nodes and # symbol with subsets of processes P ⊆ Proc. The idea is 
that this set P keeps track of the processes that are not allowed to participate in a node inserted on the left.

3. we preserve (do not throw away) the nodes around a # occurrence in α and also nodes that start an edge constraint 
which needs to be verified later.

Formally, the set of states of our new automaton Cfin
G

will be a finite subset of �∗ where � = � ∪ 2Proc . Then, in our 
definition of the morphisms earlier we need to add OProc(P ) = P , EProc(P ) = P . Now, we define the reduction as a rewrite 
operation α redn−−−→ α′ . There are two rewrite rules:

(R1) The first says that if two process sets are together they can be merged, i.e., α1 P P ′α2
redn−−−→ α1(P ∪ P ′)α2.

(R2) Now, we define the rule that removes a completed extended-node (v, c) and replaces it by the set of processes partic-
ipating in v , i.e., we have α1(v, c)α2

redn−−−→ α1OProc(v)α2 if the following hold:
(C2.1) v ∈ V , ε 
= α1 /∈ �∗#, ε 
= α2 /∈ #�∗ i.e., the node v is not next to a gap or at the beginning or the end.
(C2.2) c = E v , i.e., all events in the node have been completed,
(C2.3) and one of the two following cases hold:

(i) either α2 ∈ (v ′, c′)�∗ and then for each p ∈ Proc we must have either E v
p = ∅ or E v ′

p = ∅ or (c′ ∩ E v ′
p ) 
= ∅. In 

other words, if the first symbol of α2 is an extended node (v ′, c′) and there is an event in both E v
p and E v ′

p , 
then some event in E v ′

p has occurred and so, the edge constraint has indeed been checked,

(ii) or α2 ∈ 2Proc�∗ in which case there is no unchecked edge constraint.

Remark 1. We can observe that, in some sense, the negation of Rule (R2) is an invariant of the reduction operation. 
More precisely, let α = α1(u, c)α2 be such that we cannot apply Rule (R2) to remove node (u, c) (given by its occurrence
α1(u, c) � α) and suppose α redn−−−→ α′ . This, of course, implies that (u, c) (or rather, this occurrence of (u, c)) is present in 
α′ as well. Then, we can easily check that we cannot apply Rule (R2) to remove this node in α′ either.

Lemma 9. The rewrite system defined by the operation redn−−→ is confluent.

Proof. Indeed it is easy to see that if the reduction rules apply on non-adjacent segments in a path, then they can 
be executed in any order. For instance, for β 
= ε, if we have α(u, c)β P P ′γ redn−−−→ αP ′′β P P ′γ where P ′′ = OProc(u)

and α(u, c)β P P ′γ redn−−−→ α(u, c)β(P ∪ P ′)γ , then of course αP ′′β P P ′ redn−−−→ αP ′′β(P ∪ P ′)γ and α(u, c)β(P ∪ P ′) redn−−−→
αP ′′β(P ∪ P ′)γ . The interesting case is when two reduction rules apply on adjacent segments. Again, we may consider 
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several subcases. If one of the reductions is by applying Rule (R1), then it is easy to handle since, in some sense, this rule 
does not depend on the context (i.e., the surrounding nodes/symbols). We now explicitly illustrate the subcase when we 
have two applications of Rule (R2) on adjacent nodes, i.e., let

• α(u, c)(u′, c′)β redn−−−→ α(u, c)P ′β where P ′ = OProc(u′) and
• α(u, c)(u′, c′)β redn−−−→ αP (u′, c′)β where P = OProc(u).

Then, from the first reduction we get c′ = Eu′
, ε 
= β /∈ #�∗ and Condition (C2.3) holds with α2 = β . Using these and 

observing that αP /∈ �∗#, we can conclude that the first reduction is applicable after the second, i.e., αP (u′, c′)β redn−−−→
αP P ′β . From the second reduction we have c = Eu and ε 
= α /∈ �∗#. Now from these and the fact that Condition (C2.3)(ii) 
holds, we can conclude that the second reduction is applicable after the first, i.e., α(u, c)P ′β redn−−−→ αP P ′β . �

Using the above lemma we can conclude that, from any state α after any maximal sequence of reductions, we reach 
the same state which we denote by Red(α). Note that if α redn−−−→ α′ , then EProc(α) = EProc(α′) and therefore, EProc(α) =
EProc(Red(α)). In fact, from confluence, we derive some useful properties of the reduction operation,

(P1) Red(α1#α2) = Red(α1)#Red(α2).
(P2) Red(α1α2) = Red(Red(α1)α2) = Red(α1Red(α2)) = Red(Red(α1)Red(α2))

(P3) Let α = α1(u, c)α2 be such that this (u, c) (given by its occurrence α1(u, c)) cannot be reduced in α, i.e., Rule (R2) 
cannot be applied. Then Red(α) = γ1(u, c)γ2 where γ1(u, c) = Red(α1(u, c)) and (u, c)γ2 = Red((u, c)α2).

Proof. The first two properties are self-evident. For the third, using Remark 1 we deduce that (u, c) is not deleted during the 
reductions. Now, let γ1(u, c) = Red(α1(u, c)) and (u, c)γ2 = Red((u, c)α2). Then applying Property (P2) twice on α, we obtain 
Red(α1(u, c)α2) = Red(Red(α1(u, c))α2) = Red(γ1(u, c)α2) = Red(γ1Red((u, c)α2)) = Red(γ1(u, c)γ2). Now since γ1(u, c) and 
(u, c)γ2 are already in reduced form and (u, c) cannot be deleted in Red(α), we obtain Red(γ1(u, c)γ2) = γ1(u, c)γ2. �

The set of final states of Cfin
G

are all states of the form (�, ∅)P (�, ∅) where P ⊆ Proc.

In the definition of a transition of Cfin
G

we replace the final condition (T3) with the following condition:

(T3′) α′ = Red(β1(u, c′)β2) where c′ = c � {e}.

Observe indeed that the node deleted by the above transition, need not necessarily be the one that had an event executed 
(but instead be one of its neighboring nodes). Now, if we maintain the rest of the definition of a transition of Cfin

G
to be 

the same as a transition of C#
G

, we can prove that Cfin
G

is a finite MSC-ECA which accepts the same timed language as C#
G

. 
We can also observe that in all reachable states of Cfin

G
, Properties (V1), (V2) and (V3) continue to hold with the enlarged 

alphabet �. In other words, for any state β of Cfin
G

, it is still the case that (1) no two #’s can occur consecutively in β as they 
would be either separated by an extended node or a set of processes (if a node was removed by application of Rule (R2)); 
(2) for any two consecutive extended nodes in β , there is an edge between the respective nodes in G and (3) executed 
events in β are downward closed (as defined in (V3)). Indeed the latter two properties hold as they are not affected by 
removal of nodes.

Lemma 10. If G is locally synchronized, then Cfin
G

as defined above is a finite MSC-ECA.

Proof. We show that if G is locally synchronized, then the number of states of Cfin
G

is finite. For this, it is enough to show 
that the length of each reachable, completable state of Cfin

G
is bounded. Note that by definition in every state in every 

extended node there is at least one executed event. We begin with some properties about a loop in a state which follow 
from the locally synchronized assumption.

Claim 2. Let α(u, c)β(u, c′)γ be a valid completable state of Cfin
G

. If (u, c)β is not completely executed or if # occurs in β , then we 
have EProc((u, c′)γ ) � EProc((u, c)β(u, c′)γ ).

Proof. First, since α(u, c)β(u, c′)γ is completable, for each occurrence of # in β , there exists u1 · · · un ∈ V ∗ in G such that 
if we replace the # by (u1, ∅) · · · (un, ∅), then we obtain a path β ′ such that α(u, c)β ′(u, c′)γ is a valid state.

Now, we can write (u, c)β ′ = β1(v, c′′)β2 with c′′ � E v . This follows, since either there is a # in β , and so for any node 
(v, c′′) on the path inserted we have c′′ = ∅, or else β ′ = β and by assumption (u, c)β is not completely executed; so there 
exists some node v such that c′′ � E v .
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Now, let e′ ∈ (E v \ c′′) such that e ∈ E v
p′ for some p′ and also, let e ∈ c such that e ∈ Eu

p for some p ∈ Proc. Consider the 
path β̂ ′ in G , obtained by restricting β ′ to its first component. Now, as G is locally synchronized, in the communication 
graph of Muβ̂ ′

there exists a path from p′ to p. Then let this path be p′ = p0 → p1 → ·· · → pn = p for some n ≥ 1. 
We call a process q good if there is an executed event and an unexecuted event on q in (u, c)β ′ . If q is good, then q ∈
(EProc((u, c)β ′) \ EProc((u, c′)γ )). We will now show that there is some good process q ∈ {p0, . . . , pn}.

Suppose, pn = p has an unexecuted event in (u, c)β ′ then it is good and we are done. Otherwise, p must have completed 
its events in (u, c)β ′ and so it must have received a message from pn−1. Therefore, pn−1 has also taken part in (u, c)β ′ since 
it must have sent the message that was received by pn . Now if pn−1 has another event in (u, c)β ′ which is unexecuted, 
then it is good and again we are done. Otherwise, we repeat this argument till we reach an executed event in p0 = p′ . But 
this implies that p′ is good and so we are done. �
Claim 3. If α(u, c)β(u, c′)γ is a valid state such that (u, c)β(u, c′) is completely executed and β has no #, then α = α′#.

Proof. Since (u, c)β(u, c′) is completely executed, the first occurrence of node u, i.e., (u, c) would have been deleted unless 
α = α′# or β = #β ′ . But since β does not contain # the latter case is not possible and so we are done. �

From the above claim we can conclude that after every two occurrences of node u in a path, there must exist a # or the 
segment is not completely executed. Then, along with Claim 2 this implies that we can bound the number of occurrences
of a node u in a path by 2|Proc|. From which we can conclude that we have a bound of (2|Proc|)|V | on the number of 
extended nodes in a path. But we know that each # or P ⊆ Proc must have a node u ∈ V next to it on the left, so we can 
conclude that the length of the path is O(|Proc||V |). Thus Cfin

G
is finite. �

Now, we will show that the timed language accepted by Cfin
G

is the same as the timed language accepted by C#
G

. We will 
accomplish this by defining a bisimulation relation � between the states of the abstract automata C#

G
and Cfin

G
, i.e., a binary 

relation � between states of C#
G

and Cfin
G

such that:

• if α ϕ,a−−→ α′ is a transition of C#
G

and α � β for some β a state of Cfin
G

, then there exists a state β ′ of Cfin
G

and a 
transition β ϕ,a−−→ β ′ of Cfin

G
such that α′ � β ′ .

• conversely, if β ϕ,a−−→ β ′ is a transition of Cfin
G

and α � β , then there exists a state α′ of C#
G

and a transition α ϕ,a−−→ α′
of C#

G
such that α′ � β ′ .

From this, we will be able to conclude that their accepting paths (and therefore their timed languages) coincide. We 
define the relation � between states of C#

G
and Cfin

G
:

α � β if β = Red(α) (8)

Now, we have the lemma,

Lemma 11. � is a bisimulation on abstract automata C#
G

and Cfin
G

.

Proof. Let α be a state of C#
G

and β a state of Cfin
G

such that α � β , i.e., β = Red(α).

(�⇒) In one direction we start from a move α ϕ,a−−→ α′ in C#
G

and show that there is a move β ϕ,a−−→ β ′ in Cfin
G

, where 
β ′ = Red(α′). There are two broad cases to consider depending on whether the transition in C#

G
extends the path or not.

• Suppose the path is extended. Then, we have α = α1#α2
u−→ α′

1(u, ∅)α′
2 = α′′ where α′

1 ∈ {α1, α1#} and α′
2 ∈ {α2, #α2}. 

Also, there exists an extended event (e, α′
1(u, ∅)) enabled in α′′ such that α′ = α′

1(u, c′)α′
2 where c′ = {e}. Then, we 

observe that
1. we can write β = β1#β2 where β1 = Red(α1) and β2 = Red(α2). This follows by Property (P1).
2. we have β1#β2

u−→ β ′
1(u, ∅)β ′

2 = β ′′ where β ′
1 ∈ {β1, β1#} and β ′

2 ∈ {β2, #β2}. Further β ′
1 = β1 if and only if α′

1 = α1
and β ′

2 = β2 if and only if α′
2 = α2. The existence of this node insertion move follows from the node insertion in 

C#
G

above since we have OProc(u) ∩ EProc(α2) = ∅, which implies that OProc(u) ∩ EProc(β2) = ∅ (since β2 = Red(α2)). 
Notice that we also have for i ∈ {1, 2}, β ′

i = Red(α′
i) since βi = Red(αi).

3. (e, β ′
1(u, ∅)) is enabled in β ′′ . Indeed, Conditions (E1), (E2) hold since they hold for (e, α′

1(u, ∅)). And if there exists 
(ê, β̂(û, ̂c)) such that e, ̂e are on the same process, β̂(û, ̂c) � β ′

1 = Red(α′
1) and ê /∈ ĉ, then β̂ ′(û, ̂c) � α′

1 for some β̂ ′ . 
This contradicts the fact that (e, α′

1(u, ∅)) is enabled in α′′ . Therefore Condition (E3) holds as well.

Then by definition of a transition, we have β ϕ′,a−−−→ β ′ = Red(β ′ (u, {e})β ′ ) which executes this enabled event in Cfin .
1 2 G
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Now, we show that the same guard is used, i.e., ϕ′ = ϕ . For this, observe that ϕ = ϕedge and ϕ′ = ϕ′edge since there 
are no local-constraints. Now ϕedge = (Y1

p ∈ I) for some p ∈ Proc if and only if e = min(Eu
p), α′

1 = α1 = α′′
1 (u′, c′′), 

EdgeC((u′, u), p) = I . But now, the node u′ cannot be removed during the reduction of α since it is next to a #, so we 
have β ′

1 = β1 = β ′′
1 (u′, c′′) which implies that we have the constraint ϕ′edge = (Y1

p ∈ I).
Finally, we will be done with this case if we show that Red(α′) = β ′ . We have β ′ = Red(β ′

1(u, c′)β ′
2) = Red(Red(α′

1)(u, c′)
Red(α′

2)). But by Property (P2) this is equal to Red(α′
1(u, c′)α′

2) = Red(α′) and so we are done.
• Else, it was not extended then there exists an enabled event (e, α1(u, c)) in α which is executed in the transition 

α
ϕ,a−−→ α′ , where α = α1(u, c)α2, α′ = α1(u, c′)α2 with c′ = c � {e} and ϕ is defined by Eq. (T2). Then (u, c) is not 

completely executed and so it cannot be reduced in α. Thus by Property (P3), β = Red(α) = γ1(u, c)γ2, where γ1(u, c) =
Red(α1(u, c)) and (u, c)γ2 = Red((u, c)α2). Now, (e, γ1(u, c)) is enabled in β , since (e, α1(u, c)) was enabled in α, and 
Conditions (E1), (E2) and Condition (E3) follow as in the previous case. That is, if there exists (ê, β̂(û, ̂c)) such that 
β̂(û, ̂c) � γ1, then β̂ ′(û, ̂c) � α1 for some β̂ ′ .
Thus, there exists a transition β ϕ′,a−−−→ β ′ that executes (e, γ1(u, c)) in Cfin

G
. Again we check that ϕ′ = ϕ . This follows as 

in the previous case except that we also need to check local constraints in ϕ′ . But as the guards are local to the node 
(u, c) which is not deleted in β , this follows directly from the definition.
It remains to show that Red(α′) = β ′ . Since α′ = α1(u, c′)α2 is such that c � c′ ⊆ Eu , we have Red(α′) =
Red(α1(u, c′)α2) = Red(γ1(u, c′)γ2) = β ′ . This follows because, firstly, every reduction that can be performed on α
can be performed on α′ (since α = α1(u, c)α2 and α′ = α1(u, c′)α2 and c′ ⊇ c). Then, by Property (P2) we can perform 
reductions in any order, so we can choose to compute Red(α′), by first performing the same sequence of reductions 
as was used to compute Red(α). Now, since Red(α) = (γ1(u, c)γ2), by applying the same sequence on α′ we obtain 
(γ1(u, c′)γ2). But indeed, this may not be a maximal sequence of reductions since in (γ1(u, c′)γ2) it may be possible to 
remove further nodes by reduction (due to events in (c′ \ c)). Thus, we conclude that Red(α′) = Red(γ1(u, c′)γ2), which 
by the definition of a transition (Condition (T3′)) is equal to β ′ .

(⇐�) For the other direction, the result follows by observing that the enabled event that gets executed in the infinite 
system C#

G
is obtained from the corresponding event in the finite system Cfin

G
. More formally, we assume that β ϕ,a−−→ β ′ is 

a transition in Cfin
G

and show that there is a transition α ϕ,a−−→ α′ in C#
G

.

Let the transition in Cfin
G

execute the event (e, β1(u, c)) enabled in β = β1(u, c)β2. Indeed there is another case where 
the executed event is not in β and so we need to perform a node insertion before we obtain the enabled event. But as this 
case follows by the same arguments (and indeed, is simpler due to presence of #), we only consider the first case.

Let α1(u, c′′) be the least prefix of α such that e /∈ c′′ . Then (u, c′′) is not removed by the reduction operation. Since 
β = Red(α) and (e, β1(u, c)) is enabled in β , we deduce from (E3) that c′′ = c and Red(α1(u, c)) = β1(u, c). Now we claim 
that (e, α1(u, c)) is enabled in α. Conditions (E1), (E2) hold since they hold for (e, β1(u, c)). Suppose Condition (E3) did not 
hold, then for p ∈ Proc such that e ∈ Eu

p , there exists an event (e′, α̂1(v, c′)) with e′ ∈ (E v
p \ c′) and α̂1(v, c′) � α1. Again, 

Red(α̂1(v, c′)) = β̂1(v, c′) ≺ β1 (since (v, c′) cannot be removed by reductions). But then e′ ∈ (E v
p \ c′) is a contradiction of 

Condition (E3) on (e, β1(u, c)). Thus all the conditions hold and (e, α1(u, c)) is enabled in α.

Thus, we can conclude that there is a transition that executes (e, α1(u, c)) in C#
G

, i.e., α ϕ′,a−−−→ α′ . The fact that ϕ′ = ϕ
and β ′ = Red(α′) follows exactly as in the previous direction so we are done. �
Corollary 12. Ltw(Cfin

G
) =Ltw(C#

G
)

Proof. From the above bisimulation at the symbolic level of paths, we deduce easily that the timed language of C#
G

is equal 
to the timed language of Cfin

G
. �

Proof of Theorem 4. Given a locally synchronized TCMSG G, consider the finite MSC-ECA Cfin
G

. Then, by using the above 
corollary, Lemma 7 and Lemma 5, we conclude that Ltw(Cfin

G
) =Ltw(G). �

6. Solving the model checking problem

Now, we are in a position to solve the model checking problem.

Theorem 13. For a locally synchronized TCMSG G and a timed automaton A, the model checking problem Ltw(A) ⊆ Ltw(G) is 
decidable, i.e., it is decidable to check if for all timed words σ generated by A there exists some M specified by G such that σ is a 
linearization of a TMSC T which realizes M.

Proof. We have to prove that Ltw(A) ∩ (TWAct \ Ltw(G)) = ∅. By Theorem 4 we can construct an MSC-ECA C such that 
Ltw(C) = Ltw(G). Using the complementation construction of Section 4.1 we can build a deterministic and complete 
MSC-ECA C′ = Cuniv such that by Corollary 2 we have Ltw(C′) = TWAct \Ltw(C) = TWAct \Ltw(G).
2
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Since G is locally synchronized, there is a bound B > 0 such that each timed word σ ∈ Ltw(G) is wwf and 
B-bounded: Ltw(G) ⊆ TWB,wwf

Act . Consider the timed automaton BB
C′ associated with C′ and the bound B by the con-

struction of Section 4.2. For final states of BB
C′ we choose F ′ ∪ F ′′ as defined in Proposition 3. We get Ltw(BB

C′ ) =
(TWAct \ TWB,wwf

Act ) ∪ (Ltw(C′) ∩ TWB,wwf
Act ) = (TWAct \ TWB,wwf

Act ) ∪ (TWB,wwf
Act \ Ltw(G)). Using Ltw(G) ⊆ TWB,wwf

Act we deduce 
Ltw(BB

C′ ) = TWAct \Ltw(G).
Hence, the model checking problem is reduced to checking emptiness of the intersection of two timed automata, A

and BB
C′ , which is indeed decidable. �

7. Solving the coverage problem

Let us fix a TCMSG G = (G,LTC,�,EdgeC), where G = (V ,→, vin, V F ) is a graph. Let A be a timed automaton over 
Act. We recall that the coverage problem for G and A is to determine whether for each TCMSC M ∈ LTC(G), there exists 
w ∈Ltw(A) such that w ∈Ltw(M).

Our strategy for the solution is as follows. Note that every TCMSC M ∈ LTC(G) is defined by some path in G . Moreover 
if two paths define the same TCMSC then either both or neither are witnessed by A. We record the set of paths in G that 
can be witnessed by A by synchronizing A with Cfin

G
. Comparing this set to the set of all paths in G , we obtain a solution 

to the coverage problem.
For recording a path, our strategy is to emit the sequence of nodes visited by the path. However, if a process, say p, 

does not participate in a node u but does participate in the next node v in the path, then by this strategy, we may emit 
v before u. Thus, we additionally need to handle the out of order emission of node labels. The problem is that, instead of 
a single node u, we could have a loop (which is still locally synchronized) in which p does not participate. In this case, it 
becomes very hard to recover the actual path traversed from the sequence of nodes emitted.

One way to get around this problem is by introducing a structural restriction on the TCMSG forbidding such behavior. 
We propose a natural restriction that handles this in the following section.

Event-saturated TCMSGs. A locally synchronized TCMSG G is said to be event-saturated if in every node of G there is an event 
present on each process.

Now we see why coverage is easier to establish for event-saturated TCMSGs. Intuitively, every move α ϕ,a−−→ α′ in C#
G

or 
Cfin
G

between reachable and completable states, either executes an event in α or extends the current path by exactly one 
node. Formally,

Proposition 14. Let G be an event-saturated TCMSG and C#
G

and Cfin
G

be the associated MSC-ECA as defined in Sections 5.2 and 5.3, 
respectively. Then, all reachable and completable states of C#

G
and Cfin

G
are of the form (�, ∅)α#(�, ∅) or (�, ∅)α(�, ∅) where α ∈

(ExtNodes)∗ . Further, if α = (u1, c1) . . . (um, cm), then u1 . . . um is a path in G.

Proof. For any node u, we have OProc(u) = Proc. Thus in any node insertion move α1#α2
u−→ α′

1(u, ∅)α′
2, by Condition (I1) 

we infer that EProc(α2) = ∅ which implies that α2 = (�, ∅). In addition, from the fact that the state is completable we obtain 
α′

1 = α1 and α′
2 = #(�, ∅) or α′

2 = (�, ∅). Thus, from this and by Conditions (I2), (I3) it follows that the node insertion 
extends the path with a single node. Thus, any move either executes an event in the current path or it is a node insertion 
which extends the path with a single node. Finally, when a reduction is applied in Cfin

G
, it always removes the leftmost node 

(which is not the endpoint (�, ∅)) in the current path. This follows from the definition of the reduction rules. Hence, we 
conclude that any completable state reached defines a path in G and the proposition follows. �
Remark 2. As observed earlier, each run of C#

G
or Cfin

G
defines a path through G . In this case, as each process occurs in each 

node of G , we can further infer that each process visits all the nodes in the path traced out by the run in the same order.

Coverage for event-saturated TCMSGs. Recall that our proof strategy is to record the paths that A can follow in G by con-
structing a product of G and A. We enlarge the communication actions in Act to include the set of nodes in G. Then, we 
build a product of A and the timed automaton obtained from Cfin

G
thus synchronizing the runs of A with the runs of Cfin

G
. 

The language of the resulting timed automaton would be the set of all runs of A that are consistent with some run of G. 
Now, in this automaton, using our enlarged alphabet, we emit the nodes seen along these runs.

Finally, we use the region construction [6] to obtain an untimed regular language over (Act ∪ V ), where V is the set of 
nodes of G in TCMSG G. This language projected onto the alphabet V precisely describes the set of all paths in G that are 
covered by some run of A.

The product construction. Formally, given an event-saturated TCMSG G, we first apply Theorem 4 to construct a finite MSC-
ECA C = Cfin

G
such that Ltw(C) = Ltw(G). Now, since G is locally synchronized, there is a bound B > 0 such that each 

timed word σ ∈ Ltw(G) is wwf and B-bounded: Ltw(G) ⊆ TWB,wwf. Thus by the construction in Section 4.2, we obtain 
Act
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the (finite) timed automaton BB
C associated with C and bound B such that, by Proposition 3 and the above, we have 

Ltw(G) =Ltw(C) =Ltw(BB
C).

Now, by taking the product of A and BB
C , we obtain the timed automaton Bprod

A,G
accepting the intersection of the timed 

languages Ltw(A) and Ltw(G). Let (r , s) denote a state of this product automaton Bprod
A,G

where r is a state of A and s is a 
state of BB

C . Without loss of generality, we can assume that the set of clocks used by A, denoted ZA , and BB
C , denoted ZG

are disjoint. Then, the set of clocks of Bprod
A,G

is the union of the set of clocks of A and BB
C .

A transition is of the form (r , s) ϕ,a,R−−−−→ (r′, s′) where

• ϕ = ϕ1 ∧ ϕ2 and R = R1 ∪ R2, for some ϕ1 ∈ Form(ZA), ϕ2 ∈ Form(ZG)

• (r, ϕ1, a, R1, r′) is a transition of A
• (s, ϕ2, a, R2, s′) is a transition of BB

C .

From the above it follows that,

Lemma 15. Ltw(Bprod
A,G

) = {σ | σ ∈Ltw(A) and σ ∈Ltw(M) for some M ∈LTC(G)}.

Now, we modify the construction by considering the alphabet � = Act × (V ∪ �) where V is the set of nodes of G
and � is an extra symbol. The set of states and clocks are the same as before. We redefine the transitions as follows: 
(r , s) ϕ,(a,b),R−−−−−−→ (r′, s′) is a transition if (r , s) ϕ,a,R−−−−→ (r′, s′) is a transition of the product automaton and

b =
{

u if (s,ϕ2,a, R2, s
′) and s′ extends s by the node u ∈ V� otherwise

The soundness of the above definition follows from Remark 2, Proposition 14. Let us call this new timed automa-
ton Bcov

A,G
. Then,

Lemma 16. Ltw(Bcov
A,G

) = {σ ∈ TWAct×(V ∪�) | σ = ((a1, b1), t1) . . . ((an, bn), tn) such that (a1, t1) . . . (an, tn) ∈ Ltw(A) is a timed 
linearization of a TMSC T that realizes the TCMSC Mbi1 ...bim

∈LTC(G) where bi1 . . .bim is the projection of b1 . . .bn onto V }.

Proof. We define Ltw
1(Bcov

A,G
) = {(a1, t1) . . . (an, tn) ∈ TWAct | there exists σ = σ1 . . . σn ∈ Ltw(Bcov

A,G
) such that ∀i ∈

{1, . . . , n}, σi = ((ai, bi), ti)}. Then this language coincides with the language of Bprod
A,G

defined above, i.e., we have 

Ltw
1(Bcov

A,G
) = Ltw(Bprod

A,G
). Thus, by Lemma 15, (a1, t1) . . . (an, tn) ∈ Ltw(Bprod

A,G
) if and only if it is a timed linearization 

of some TMSC that realizes a TCMSC M ∈LTC(G).
Now, consider Ltw

2(Bcov
A,G

) = {b1 . . .bn ∈ (V ∪ {�})∗ | there exists σ = (σ1 . . . σn) ∈ Ltw(Bcov
A,G

) such that ∀i ∈ {1, . . . , n}, 
σi = ((ai, bi), ti)}. Then, from Proposition 14 and the translation in Section 4.2, it follows that Ltw

2(Bcov
A,G

) lists out the nodes 

of G in the order in which they are traversed by Bprod
A,G

. Therefore by projecting Ltw
2(Bcov

A,G
) onto V (i.e., by erasing �), 

we obtain the actual path through G that corresponds to the run of Bcov
A,G

. In other words, the path bi1 . . .bim obtained by 
projecting b1 . . .bn to V is exactly the path that generates the TCMSC M ∈LTC(G), which completes the proof. �

We define L2
V (Bcov

A,G
) = {u1 . . . un ∈ V ∗ | there exists w ∈ Untime(Ltw(Bcov

A,G
)) such that w projected on its second com-

ponent and projected onto the alphabet V gives u1 . . . un}.
To check coverage, we just need to verify that the node language of G , LV (G) = {u0u1 . . . un ∈ V ∗ | u0 → u1 → ·· · →

un is a run}, is included in L2
V (Bcov

A,G
). This would imply that for every path π through G, the TCMSC Mπ has some timed 

linearization which is in Ltw(A).

Lemma 17. If LV (G) ⊆L2
V (Bcov

A,G
), then for all M ∈LTC(G), there exists σ ∈Ltw(A) such that σ ∈Ltw(M).

Proof. M ∈ LTC(G) implies that M = Mπ for some path π ∈ LV (G). But then π ∈ L2
V (Bcov

A,G
) which implies by definition 

that there exists σ ∈ Ltw(Bcov
A,G

) such that Untime(σ ) projected onto V is π . But then by Lemma 16, we are done since σ
projected onto the first component gives us the witness. �

The converse of the above lemma may not hold in general, since some paths in G may define TCMSCs that cannot be 
realized, because of self-contradictory timing constraints. However, it is easy to exclude such paths. We start with the trivial 
automaton AU that recognizes Act∗ , which can be regarded as a degenerate timed automaton with no timing constraints. 
To AU , we apply the same construction as we have done for A. The resulting timed automaton Bcov will mark out all 
AU ,G
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paths π through G for which Mπ can be realized by some TMSC. Hence, checking that every realizable path is witnessed 
by A amounts to checking that L2

V (Bcov
AU ,G

) is included in L2
V (Bcov

A,G
).

Lemma 18. L2
V (Bcov

AU ,G
) ⊆L2

V (Bcov
A,G

) if and only if for all M ∈LTC(G) there exists σ ∈Ltw(A) such that σ ∈Ltw(M).

Since both L2
V (Bcov

AU ,G
) and L2

V (Bcov
A,G

) are regular languages, the result now follows. That is,

Theorem 19. For an event-saturated TCMSG G and a timed automaton A over Act, the coverage problem for G and A is decidable, 
i.e., it is decidable to check if for all M ∈LTC(G), there exists σ ∈Ltw(A) such that σ ∈Ltw(M).

8. Conclusion

Given a locally synchronized TCMSG and a timed MPA, we have shown that the model checking problem is decidable. 
That is, we can check if every timed execution of the timed MPA is witnessed by some TCMSC generated by the TCMSG. 
In the reverse direction, if the TCMSG is in addition event-saturated, then we can prove that the coverage problem is also 
decidable. That is, we can check if every TCMSC generated by the TCMSG is witnessed by some timed execution of the timed 
MPA. We have argued why the above restrictions make sense and demonstrated why our proof techniques are likely to fail 
in more general settings. Together, this provides a new framework for defining and solving the problem of conformance for 
time-constrained distributed specifications.
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