
Model checking time-constrained scenario-based
specifications∗

S. Akshay1,2, Paul Gastin1, Madhavan Mukund2, and K. Narayan
Kumar2

1 LSV, ENS Cachan, INRIA, CNRS, France
{akshay,Paul.Gastin}@lsv.ens-cachan.fr

2 Chennai Mathematical Institute, Chennai, India
{madhavan,kumar}@cmi.ac.in

Abstract
We consider the problem of model checking message-passing systems with real-time require-

ments. As behavioural specifications, we use message sequence charts (MSCs) annotated with
timing constraints. Our system model is a network of communicating finite state machines with
local clocks, whose global behaviour can be regarded as a timed automaton. Our goal is to verify
that all timed behaviours exhibited by the system conform to the timing constraints imposed by
the specification. In general, this corresponds to checking inclusion for timed languages, which
is an undecidable problem even for timed regular languages. However, we show that we can
translate regular collections of time-constrained MSCs into a special class of event-clock auto-
mata that can be determinized and complemented, thus permitting an algorithmic solution to
the model checking problem.

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

In a distributed system, several agents interact to generate a global behaviour. This interaction
is usually specified in terms of scenarios, using message sequence charts (MSCs) [8]. Protocol
specifications typically include timing requirements for messages and descriptions of how to
recover from timeouts, so a natural and useful extension to MSCs is to add timing constraints
between pairs of events, yielding time-constrained MSCs (TCMSCs).

Infinite collections of MSCs are typically described using message sequence graphs (MSGs).
An MSG, a finite directed graph with nodes labelled by MSCs, is the most basic form of a
High-level Message Sequence Chart (HMSC) [9]. We generalise MSGs to time-constrained
MSGs (TCMSGs), where nodes are labelled by TCMSCs and edges may have additional
time constraints between nodes.

A natural system model in this setting is a timed message-passing automaton (timed
MPA), a set of communicating finite-state machines equipped with clocks that are used to
guard transitions, as in timed automata [4]. Just as the runs of timed automata are described
in terms of timed words, the interactions exhibited by timed MPAs can be described using
timed MSCs—MSCs in which each event is assigned an explicit timestamp. The global state
space of a timed MPA defines a timed automaton and in this paper we focus on this simplified
global view of timed message-passing systems, though our results go through smoothly for
the distributed system model as well.

∗ Supported by anr-06-seti-003 dots, arcus Île de France-Inde, cmi-tcs Academic Alliance.

© Akshay, Gastin, Mukund, Narayan Kumar;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Editor, Editors; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Model checking timed scenarios

Our aim is to check if all timed MSCs accepted by a timed MPA conform to the time
constraints given by a TCMSG specification. To make the problem tractable, we focus on
locally synchronized TCMSGs—those for which the underlying behaviour is guaranteed to
be regular [7]. In general, our model checking problem corresponds to checking inclusion
for timed languages, which is known to be undecidable even for timed regular languages [2].
Fortunately, it turns out that timing constraints in a TCMSG correspond to a very restricted
use of clocks. This allows us to associate with each TCMSG an (extended) event clock
automaton that accepts all timed MSCs that are consistent with the timing constraints of
the TCMSG. These event clock automata can be determinized and complemented, yielding
an algorithmic solution to our model checking problem.

The paper is organized as follows. We begin with some preliminaries where we introduce
(timed) MSCs and MSGs and state the model-checking problem. In Section 3 we introduce
MSC event clock automata and show that they can be determinized and complemented. The
next section has the main technical result: translating locally synchronized TCMSGs to finite
state MSC event clock automata, which yields a solution to the model-checking problem in
Section 5.

2 Preliminaries

2.1 Message sequence charts

A message sequence chart (MSC) describes the messages exchanged between a set Proc of
processes in a distributed system. The first diagram in Figure 1 is an MSC involving two
users and a server. Each process evolves vertically along a lifeline. Messages are shown by
arrows between the lifelines of the sender and receiver.

Each message consists of two events, send and receive, and is labelled using a finite set
of message labels. For instance, the events u1 and a1 are the send and receive events of a
message labelled req from process p (User1) to process q (Server). Each pair of processes p
and q is connected by a dedicated fifo channel (p, q)—for example, the messages sent at s1
and s2 are on channel (r, q) and the second message cannot be received before the first one.

Since processes are locally sequential, the set of events Ep along a process p is linearly
ordered by a relation denoted ≤pp. In addition, for each message sent along a channel (p, q),
the send and receive events of the message are related by an ordering relation ≤pq. Thus, for
example, a1 ≤qq a5 and a3 ≤qp u2. Together, the local linear orders ≤pp and the message
orders ≤pq generate a partial order ≤ over the set of events—for instance, u3 ≤ s3.

Finally, we label each event using a finite alphabet Act of communication actions. We
write p!q(m) to denote the action where p sends message m to q and p?q(m) to denote the
action where p receives message m from q. We abbreviate by p!q and p?q the set of all actions
of the form p!q(m) and p?q(m), respectively, over all possible choices of m.

Overall, an MSC can then be captured as a labelled partial order M = (E,≤, λ) where
λ : E → Act associates each event with its corresponding action. A cut is a subset of events
that is downward closed: c ⊆ E is a cut if ↓c = c, where ↓c = {e ∈ E | ∃e′ ∈ c. e ≤ e′}.

Like any partial order, an MSC can be reconstructed upto isomorphism from its linearisa-
tions, i.e., words over Act that extend ≤. In fact, the fifo condition on channels ensures that
a single linearisation suffices to reconstruct an MSC. In this way, an MSC M corresponds to
a set lin(M) of words over Act and a set L of MSCs defines the word language

⋃
M∈L lin(M).

We say that a set of MSCs L is regular if its associated word language is regular.

Akshay, Gastin, Mukund, Narayan Kumar 3

User1 Server User2
p q r

u1

u2

u3

a1

a2

a3

a4

a5

a6

s1

s2

s3

req
req

grant

confirm

deny

req

User1 Server User2
p q r

u1

u2

u3

a1

a2

a3

a4

a5

a6

s1

s2

s3

req
req

grant

confirm

deny

req

[0,1] [0,3]

[3,6]

[0,20]

User1 Server User2
p q r

1, u1

3.5, u2

6, u3

a1, 1

2, a2

a3, 3.5

a4, 6

7, a5

8, a6

s1, 1

s2, 5

s3, 7

req
req

grant

confirm

deny

req

Figure 1 Different views of a system with two users with a server

2.2 Time-constrained message sequence charts

A time-constrained MSC (TCMSC) is an MSC annotated with time intervals between pairs
of events. We restrict timing constraints to pairs of distinct events on the same process and
to the matching send and receive events across messages. Intervals have rational endpoints
and may be open or closed at either end.

For example, in the second diagram in Figure 1, the constraint [0, 3] between a3 and a4
bounds the time that the Server waits for a User to confirm a grant. On the other hand, the
constraint [0, 1] between a3 and u2 bounds the time taken to deliver this particular message.

A TCMSC over Act is a pair M = (M, τ), where M = (E,≤, λ) is an MSC over Act and
τ is a partial map from E × E to the set of intervals such that (e, e′) ∈ dom(τ) implies that
e 6= e′ and either e ≤pp e′ or e ≤pq e′ for some processes p and q.

2.3 Timed message sequence charts

A timed MSC (TMSC) describes a concrete timed behaviour in the MSC setting. In a
TMSC, we assign events timestamps that are consistent with the underlying partial order.
Thus, a TMSC over Act is a pair T = (M, t) where M = (E,≤, λ) is an MSC over Act and
t : E → R≥0 is a function such that if e ≤ e′ then t(e) ≤ t(e′) for all e, e′ ∈ E.

For instance, consider the TMSC in the third diagram of Figure 1. The message sent at
a3 is received instantaneously while the message sent at s2 is received 3 time units later.

A timed word over Act is a sequence (a1, t1)(a2, t2) · · · (an, tn) where a1a2 · · · an is a word
over Act and t1 ≤ t2 ≤ · · · ≤ tn is a nondecreasing sequence over R≥0. The set of timed
words over Act is denoted TWAct . A timed linearisation of a TMSC is thus a timed word in
TWAct . We let t-lin(T) denote the set of timed linearisations of TMSC T . A single TMSC
may admit more than one timed linearisation if concurrent events on different processes have
the same timestamp. As for untimed MSCs, under the fifo assumption for channels, a timed
MSC can be reconstructed from any one of its timed linearisations.

With this definition, TCMSCs can be considered as abstractions of TMSCs and timed
words. For instance, we will say that the TMSC in Figure 1 realises the TCMSC in the
same figure since each interval constraint between events in the TCMSC is satisfied by the
time-stamps of the corresponding events in the TMSC. In this way, a TCMSC M defines a
family of TMSCS—the set of all TMSCs that realise M, which we denote Ltime(M). We
also consider the set Ltw(M) =

⋃
T∈Ltime(M) t-lin(T) of timed words that realise M.

4 Model checking timed scenarios

q1

⇒

r s
m1

[0, 3]

q2

r sm2

m3

q3

r sm2

([0, 2],[1, 1]) ((2, 3],[1, 1])

M
r s

m1

[0, 3]
m2

m1

[0, 3]
m2

m3

(2, 3]

[0, 2]

[1, 1]

[1, 1]

T
r s

0.5

2.6

2.9

4.5

4.8

1.5

2.5

3.0

4.0

5.0

m1

m2

m1

m2

m3

Figure 2 A TCMSG, with a TCMSC and a TMSC that it generates

2.4 Message sequence graphs
A message sequence graph (MSG) is a directed graph in which nodes are labelled by MSCs.
We begin with a graph G = (V,→, vin, VF) with nodes V , initial node vin ∈ V , final
nodes VF ⊆ V and edge relation →. An MSG is a structure G = (G,LM ,Φ) where LM
is a set of basic MSCs and Φ : V → LM associates a basic MSC with each node. An
accepting path in G is a sequence of nodes v0v1 · · · vn that starts in vin and ends in some
node of VF where each adjacent pair of states is related by →. This path defines an MSC
Φ(v0v1 · · · vn) = Φ(v0) ◦ Φ(v1) ◦ · · · ◦ Φ(vn), where ◦ denotes MSC concatenation. When we
concatenate two MSCs M1 = (E1,≤1, λ1) and M2 = (E2,≤2, λ2) we attach the lifelines in
M2 below those of M1 to obtain an MSC M1 ◦M2 = (E1 ∪E2,≤, λ) where λ combines λ1
and λ2 and ≤ is generated by ≤1 ∪ ≤2 ∪ {(e1, e2) | ∃p. e1 ∈ E1

p , e2 ∈ E2
p}.

Since each accepting path in an MSG defines an MSC, we can associate with an MSG
G a language L(G) of MSCs. In general, it is undecidable to determine whether L(G) is
regular [7]. This is because processes move asynchronously along the MSC traced out by
accepting paths and there is no bound, in general on this asynchrony. However, there is a
sufficient structural condition to guarantee regularity [3, 10].

Given an MSC M , we construct its communication graph CG(M) as follows: the vertices
are the processes and we have a directed edge (p, q) if M contains a message from p to q. An
MSC M is said to be connected if the non-isolated vertices in CG(M) form a single strongly
connected component. An MSG G is said to be locally synchronized if for every loop π in
G, the MSC Φ(π) is connected. Intuitively, this means that every message sent in a loop is
implicitly acknowledged, because if p sends a message, there is a path in the communication
graph back to p. This ensures that all channels are universally bounded—there is a uniform
bound B such that across all linearisations, no channel ever has more than B pending
messages. Thus, if G is locally synchronized, L(G) is a regular set of MSCs.

2.5 Time-constrained message sequence graphs
We generalise MSGs to the timed setting in a natural way. In a time-constrained MSG
(TCMSG), states are labelled by TCMSCs rather than basic MSCs. In addition, we also
permit process-wise timing constraints along the edges of the graph. A constraint for process
p along an edge v −→ v′ specifies a constraint between the final p-event of Φ(v) and the
initial p-event of Φ(v′), provided p actively participates in both these nodes. If p does not
participate in either of these nodes, the constraint is ignored. Formally, a TCMSG is a
tuple G = (G,LTC ,Φ,EdgeC) where G = (V,→, vin, VF) is a graph as before, Φ : V → LTC

Akshay, Gastin, Mukund, Narayan Kumar 5

labels each node with a TCMSC from a set LTC and EdgeC associates a tuple of constraints
with each edge—for convenience, we assume that any edge constraint not explicitly specified
corresponds to the trivial constraint (−∞,∞).

Each accepting path in a TCMSG defines a TCMSC. Given a path v0v1 · · · vn, we
concatenate the TCMSCs Φ(v0),Φ(v1), . . . ,Φ(vn) and insert the additional constraints
specified by EdgeC . We define LTC (G) to be the set of all TCMSCs over Act generated
by accepting paths in G. We also let Ltime(G) =

⋃
M∈LTC (G) Ltime(M) and Ltw(G) =⋃

M∈LTC (G) Ltw(M). Figure 2 shows a TCMSG, a TCMSC that it generates and a realizing
TMSC.

2.6 Timed automata
We can formulate many types of machine models for timed MSCs. One natural choice is
a message-passing automaton (MPA) equipped with (local) clocks. In a timed MPA, we
have one component for each process p, which is a finite state automaton over actions of the
form p!q(m) and p?q(m). Each component also has local clocks that can be used to guard
transitions. The global state space defines a timed automaton over Act.

A timed automaton over an alphabet Σ is a tuple A = (Q,∆, qin, F, Z) where Q is a finite
set of states, qin ∈ Q is the initial state, F ⊆ Q are the final states and Z is a set of clocks
that take values over R≥0. Each transition in ∆ is of the form q

ϕ,a,X−−−−→ q′ where q, q′ ∈ Q,
a ∈ Σ, X ⊆ Z and ϕ is a boolean combination of clock constraints of the form x op c where
x ∈ Z, c ∈ Q≥0 and op ∈ {≤, <,>,≥}. This transition is enabled if the current values of all
clocks satisfy the guard ϕ. On taking this transition, the clocks in X are reset to 0. As is
standard, time elapses between transitions, transitions occur instantaneously and such an
automaton accepts timed words from TWΣ. More details can be found in [2, 4].

For our purposes, we only need the following two results about timed automata.

Given timed automata A1 and A2, we can construct a timed automaton A12 such that
L(A12) = L(A1) ∩ L(A2).
Checking whether the language of a timed automaton is empty is decidable.

2.7 The model checking problem
We are interested in timed automata over Act whose languages can be interpreted as timed
MSCs. A timed word in TWAct corresponds to a linearisation of a timed MSC provided
the timed word is well-formed and complete. A word w over Act is well-formed if for each
channel (p, q), in every prefix v of w, the sequence of messages received by q from p in
v is a prefix of the messages sent from p to q in v. A well-formed word w is complete if
#p!q(w) = #q?p(w) for each matching pair of send-receive actions, where #X(u) counts the
number of occurrences in u of X ⊆ Act. Finally, a well-formed word w is B-bounded if,
in every prefix v of w, #p!q(v) −#q?p(v) ≤ B for each channel (p, q). Correspondingly, a
timed word is said to be well-formed (complete, B-bounded) if its projection onto Act is
well-formed (complete, B-bounded). Well-formedness captures the intuition that any receive
action has an earlier matching sending action. Completeness guarantees that all pending
messages have been received. B-boundedness promises that no channel ever has more than
B messages.

Given a timed automaton A over Act and a TCMSG specification G, the model checking
problem is to check that every timed word accepted by A realises some TCMSC in LTC (G).
Since A may accept timed words that are not well-formed or not complete, this implicitly
includes checking that A accepts only well-formed and complete timed words in TWAct .

6 Model checking timed scenarios

From this, it is clear that the model checking problem corresponds to checking whether
L(A) ⊆ Ltw(G). To make the problem tractable, we restrict our attention to locally
synchronized TCMSGs, so that Ltw(G) is a timed regular language. Unfortunately, checking
inclusion is undecidable even for timed regular languages [2]. To get around this, we introduce
a more restricted machine model for timed MSCs called MSC event clock automata, which
are closed under complementation. It turns out that Ltw(G) can be recognized by MSC
event clock automata, yielding a solution to our model checking problem.

3 An extended event clock automaton – the MSC-ECA

We now define MSC event clock automata or MSC-ECA. These will be used to capture
exactly the guards that occur in the TCMSGs that we have defined. We denote an MSC-ECA
over Act by C = (Q,Act, δ, q0, F), with states Q, initial state q0 ∈ Q and final states F ⊆ Q.
A transition in δ is of the form (q, ϕ, a, q′) where q, q′ ∈ Q, a ∈ Act and ϕ is a conjunction
of event clock guards, which are of two types: either Yk

p ∈ I or Msg−1 ∈ I, where I is an
interval, as used in TCMSC timing constraints. We interpret these guards over timed words.
Let σ = (a1, t1) · · · (an, tn) ∈ TWAct . Then at a position 1 ≤ j ≤ n, we define

(D1) σ, j |= Yk
p ∈ I if the time elapsed between the kth-previous p-action ai in σ and this

action aj is in the interval I.
(D2) σ, j |= Msg−1 ∈ I if aj is a receive action and the time elapsed since the occurence of

its matching send action ai is in the interval I.

In both these definitions, note that action ai is uniquely defined, i.e., there is at most one
position i that matches a given position j with respect to a given event clock guard.

Now, we define runs of C over timed words. For a timed word σ = (a1, t1) · · · (an, tn), we
say there is a run of C from q to q′ on σ, denoted q σ−→ q′ in C, if there exists a sequence of
transitions q = q0

ϕ1,a1−−−→ · · · ϕn,an−−−−→ qn such that for all j, 1 ≤ j ≤ n, σ, j |= ϕj . The timed
word σ is said to be accepted if it has a run from the initial to some final state in F . We
denote by Ltw(C) the set of timed words accepted by the MSC-ECA C.

3.1 Determinization and complementation of MSC-ECA
We now prove that MSC-ECA can be determinized and complemented, which is crucial for
solving the model checking problem. We obtain this by constructing a deterministic and
complete version of any given MSC-ECA. Intuitively, this works as for classical ECA’s and
the main reason is that there are no explicit clocks. Since the reset of an event clock only
depends on the timed word being read and not on the path followed in the automaton, we
can use the subset construction.

More precisely, let C = (Q,Act, δ, q0, F) be a finite MSC-ECA. The set of states of
the universal automaton Cuniv is 2Q. For a set X ⊆ Q and an action a, we let T (X, a)
denote the set of transitions in δ having action a and a source state in X. Then, for some
T ′ ⊆ T (X, a) = T , we denote by target(T ′) the set of target states of transitions in T ′ and
we define

ϕ(T ′, T) =
∧

t=(q,ϕt,a,q′)∈T ′

ϕt ∧
∧

t=(q,ϕt,a,q′)∈T\T ′

¬ϕt .

Then, we denote the set of transitions of Cuniv by ∆, where we say that X ϕ,a−−→ X ′ ∈ ∆ if
there exists T ′ ⊆ T = T (X, a) such that ϕ = ϕ(T ′, T) and X ′ = target(T ′).

Akshay, Gastin, Mukund, Narayan Kumar 7

Note that, once we have fixed X, a and the set T ′, the transition is uniquely defined.
Also for X = ∅, we have T (X, a) = ∅ and the only possible transition is ∅ true,a−−−−→ ∅. The
crucial property of Cuniv is that it is deterministic and complete (and finite, if C is).

I Lemma 1. Given any timed word σ = (a1, t1) · · · (an, tn) ∈ TWAct, there exists a unique
run X0

ϕ1,a1−−−→ X1
ϕ2,a2−−−→ · · ·Xn−1

ϕn,an−−−−→ Xn of Cuniv on σ starting from X0 = {q0}.
Moreover, Xn = {q ∈ Q | q0

σ−→ q in C}.

By suitably choosing the final states, Cuniv will accept either the same language as
C or its complement. Let F1 = {X ∈ 2Q | F ∩ X 6= ∅} and F2 = 2Q \ F1. Define
Cunivi = (2Q,Act,∆, {q0}, Fi) for i = {1, 2}. From Lemma 1 we obtain:

I Corollary 2. We have Ltw(Cuniv1) = Ltw(C) and Ltw(Cuniv2) = TWAct \ Ltw(C).

3.2 From MSC-ECA to TA
Not every MSC-ECA can be translated into an equivalent (classical) timed automaton. The
problem comes from the event guards Msg−1 ∈ I, which may require infinitely many clocks
if channels are unbounded. Fortunately, thanks to the locally synchronized assumption on
TCMSGs, we are only interested in bounded channels. Let B > 0. We show below how to
construct a timed automaton BBC from an MSC-ECA C = (Q,Act, δ, q0, F) such that BBC and
C are equivalent when restricted to B-bounded channels.

Let K = max{k | Yk
p ∈ I occurs in some guard in δ}. A state of BBC is either a dead state

denoted ⊥ or a tuple s = (s, b, n, α, β) where s ∈ Q, b = (bp)p∈Proc ∈ {0, 1}Proc (bp = 1 if
we have already seen at least K p-events), n = (np)p∈Proc ∈ {0, . . . ,K − 1}Proc (np is the
number of p-events already seen modulo K), α = (αp,q)p,q∈Proc ∈ {0, . . . , B}Proc2 (αp,q is
the number of q?p events modulo B + 1), β = (βp,q)p,q∈Proc ∈ {0, . . . B}Proc2 (βp,q is the
number of p!q events modulo B + 1). The set of all states is denoted Q′ and the initial state
is s0 = (s0, (0), (0), (0), (0)). The set of clocks is Y ∪Z where Y = {yip | p ∈ Proc, 0 ≤ i < K}
and Z = {zip,q | p, q ∈ Proc, 0 ≤ i ≤ B}. We will reset clock yip when executing the ith
p-event mod K. Also, zip,q will be reset when executing the ith p!q event mod B + 1.

We say that channel (p, q) is empty if αp,q = βp,q and full if βp,q = αp,q +B mod (B + 1).
The set of transitions δBB

C
is defined as follows: Assume s ϕ,a−−→ s′ in C with a ∈ Actp. Then,

we have three types of transitions in BBC . (Recall that p!q and p?q abbreviate all actions of
the form p!q(m) and p?q(m), respectively.)

(Tr1) (s, b, n, α, β) true,a,∅−−−−−→ ⊥ is in BBC if either a ∈ p!q and channel (p, q) is full (the bound
was exceeded), or a ∈ p?q and channel (p, q) is empty.

(Tr2) (s, b, n, α, β) ϕ′,a,R−−−−→ (s′, b′, n′, α′, β′) is in BBC if we are not in the above case and the
following conditions hold:

1. b′p = 1 if np = K − 1 and b′p = bp otherwise. Also, b′r = br for r 6= p.
2. n′p = (np + 1) mod K and n′r = nr for r 6= p.
3. if a ∈ p!q, then β′p,q = (βp,q + 1) mod (B + 1) and β′p′,q′ = βp′,q′ for (p′, q′) 6= (p, q).

Also α′ = α, R = {yn
′
p

p , z
β′

p,q
p,q } and ϕ′ is ϕ where Yk

p ∈ I is replaced with{
false if bp = 0 and k > np

y
(K+n′

p−k) mod K
p ∈ I otherwise

8 Model checking timed scenarios

4. if a ∈ p?q, then α′q,p = αq,p + 1 mod (B + 1) and α′q′,p′ = αq′,p′ for (q′, p′) 6= (q, p).

Also β
′ = β, R = {yn

′
p

p } and ϕ′ is ϕ where Yk
p ∈ I is replaced as above and

Msg−1 ∈ I is replaced with zα
′
q,p

q,p ∈ I.

(Tr3) ⊥ true,a,∅−−−−−→ ⊥ is in BBC for all a ∈ Act.

In the following, we call a timed word w weakly well-formed (wwf) if for each channel
(p, q), in every prefix v of w, we have #q?p(w) ≤ #p!q(w). This weak form does not require
the send message sequence to be the same as the received one. Let TWB,wf

Act denote the set
of timed words σ ∈ TWAct which are both wwf and B-bounded. We can define different
notions of acceptance (i.e., final states) on BBC constructed from C to derive the results below.

I Proposition 3. Let C = (Q,Act, δ, q0, F) and BBC = (Q′,Act, (Y ∪ Z), δBB
C

) be as above.

1. With final states F ′ = {(s, b, n, α, β) | s ∈ F} the timed automaton BBC accepts the
language Ltw(C) ∩ TWB,wf

Act .
2. If C is complete (i.e., it has a run on every timed word over Act) then with final states

F ′′ = {⊥} the timed automaton BBC accepts the complement of TWB,wf
Act .

Proof. (Sketch) Let σ = (a1, t1) · · · (am, tm) be a wwf and B-bounded timed word. Consider
a path π = s0

ϕ1,a1−−−→ s1
ϕ2,a2−−−→ · · · ϕm,am−−−−→ sm of C. We can build inductively a path

π′ = s0
ϕ′

1,a1,R1−−−−−−→ s1
ϕ′

2,a2,R2−−−−−−→ · · · ϕ
′
m,am,Rm−−−−−−−→ sm of BBC starting from its initial state s0 and

using (Tr2) only. Then, we can prove that if σ has a run through π in C (i.e., σ, i |= ϕi for
all i ∈ {1, . . . ,m}) then σ has a run through π′ in BBC . Hence we obtain one inclusion of (1).

For the converse inclusion, we start with a path of BBC starting from its initial state

s0 and which does not reach ⊥: π′ = s0
ϕ′

1,a1,R1−−−−−−→ s1
ϕ′

2,a2,R2−−−−−−→ · · · ϕ′
m,am,Rm−−−−−−−→ sm. Since

we did not reach ⊥, the timed word σ = (a1, t1) · · · (am, tm) must be wwf and B-bounded.
Moreover, transitions in π′ comes from (Tr2) only and we can recover a corresponding path
π = s0

ϕ1,a1−−−→ s1
ϕ2,a2−−−→ · · · ϕm,am−−−−→ sm in C. Again, we can prove that if σ has a run through

π′ in BBC then σ has a run through π in C.
Statement (2) can be proved easily. J

4 From a locally synchronized TCMSG to a finite MSC-ECA

The main result is that locally synchronized TCMSGs define timed regular languages.

I Theorem 4. If G = (G,LTC ,Φ,EdgeC) is a locally synchronized TCMSG, then there
exists a finite MSC-ECA C, such that Ltw(C) = Ltw(G).

In the untimed case, the corresponding result has been stated and proved in different
ways [3, 5, 6, 10]. We describe a different proof that is more suitable for the timed version.

We want to simulate the global run of a TCMSG by keeping a finite amount of information
in the states of the MSC-ECA. Intuitively, we keep the sequence of nodes along the TCMSG
path that have been started but not completed (at least one executed event but not all).
Since the TCMSG is locally synchronized, the number of such nodes is always bounded.

We replace segments of nodes in the TCMSG path that have not been started yet by
a special gap symbol #. Nodes will be inserted at gaps whenever necessary, making sure
that the sequential run of the MSC-ECA is compatible with the TCMSG path. In fact, the
insertion must satisfy two conditions: (1) when we insert a node it must not conflict with
the events that have already occurred in later nodes and (2) finally, after all insertions, we

Akshay, Gastin, Mukund, Narayan Kumar 9

do obtain a path in the MSG. The latter is done by checking that when we fill a gap the
corresponding bordering nodes have an edge in the graph.

We also replace segments of fully executed nodes of a TCMSG path by the set of processes
that have been active in these nodes, so that we ensure condition (1) above.

For a node u, let Eu be the set of events in the MSC labelling u. We define an extended
node to be a pair (u, c) where u ∈ V and c ⊆ Eu is a cut of Eu that contains the events
that have been executed in node u. For simplicity, we extend the set of vertices V with
two dummy vertices ., / and add edges from . to the initial vertex vin and from every final
vertex v ∈ VF to /. We also set E. = ∅ = E/ so that for u ∈ {., /}, the only extended node
is (u, ∅). The set of all extended nodes is denoted ExtNodes. An extended node (u, c) is said
to be completed if c = Eu. Note that (., ∅) and (/, ∅) are completed by default.

A state α of our new automaton C is a sequence of extended nodes, gaps and subsets of
processes: α ∈ Π∗ where Π = ExtNodes] {#}] 2Proc. The initial state is α0 = (., ∅)#(/, ∅).
Final states are of the form (., ∅)P (/, ∅) where P ⊆ Proc.

An extended event of α ∈ Π∗ is a pair (e, α1(u, c)) where e ∈ Eu and α1(u, c) � α—i.e.,
α1(u, c) is a prefix of α. We say that the extended event (e, α1(u, c)) is executed in α if e ∈ c
and enabled in α if the following hold:

(E1) It has not been executed, i.e., e 6∈ c.
(E2) All events within the node which are below it (in the partial order) have been executed,

i.e., for all e′ ∈ Eu with e′ <u e, we have e′ ∈ c.
(E3) If e belongs to process p, then all p-events on any node occurring before this node in

α have been executed, i.e., if e ∈ Eup then for all α′1(u′, c′) � α1, we have Eu′

p ⊆ c′.

We introduce notation to describe the set of processes that participate in nodes, paths
or states. For a node u ∈ V , OProc(u) = {p ∈ Proc | Eup 6= ∅} denotes the set of
processes that participate (occur) in u. This is extended to V ∗ as a morphism. Also, with
OProc((u, c)) = OProc(u), OProc(#) = ∅ and OProc(P) = P , it extends to Π∗. In addition,
for β ∈ Π∗, EProc(β) denoting the set of processes having executed events in β, is given
by the morphism defined by EProc((u, c)) = {p ∈ Proc | Eup ∩ c 6= ∅}, EProc(#) = ∅ and
EProc(P) = P .

Now, the transitions can be defined by saying that at any state α we can choose to
execute an enabled (extended) event or add a new (extended) node in a gap of the state, in
which case we must execute an enabled event on the new node.

We first define the node insertion operation as a macro α1#α2
u−→ α′1(u, ∅)α′2 which is

said to hold if

(I 1) for every process that participates in u, there is no executed event in the segment α2
on that process, i.e., OProc(u) ∩ EProc(α2) = ∅.

(I 2) α′1 ∈ {α1, α1#} and if α′1 = α1 then α1 = α′′1(v, c) and v → u in G.
(I 3) α′2 ∈ {α2,#α2} and if α′2 = α2 then α2 = (v, c)α′′2 and u→ v in G.

Next, we explain how completed nodes are deleted from a state α. To check (I 1) we
need to preserve the set of executed processes, hence a completed node u will be replaced
by OProc(u). We also preserve (do not throw away) the nodes around a gap in α so that
conditions (I 2)–(I 3) can still be checked. Finally, we preserve nodes that start an edge
constraint which needs to be verified later (this is useful for guards defined in the transition
relation below). Formally, we define the reduction as a rewrite operation α redn−−−→ α′. There
are two rewrite rules:

(R1) α1PP
′α2

redn−−−→ α1(P ∪ P ′)α2, i.e., two adjacent process sets can be merged.

10 Model checking timed scenarios

(R2) α1(v,Ev)α2
redn−−−→ α1OProc(v)α2 (a completed node is replaced by the set of processes

participating in it) if the following hold:

(C2.1) v ∈ V , ε 6= α1 6∈ Π∗#, ε 6= α2 6∈ #Π∗ i.e., the node v is not next to a gap or at
the beginning or the end.

(C2.2) (i) either the first symbol of α2 is an extended node (v′, c′) and if both Evp
and Ev′

p are nonempty, then some event in Ev′

p has occured (hence the edge
constraint, if any, has already been checked),

(ii) or α2 ∈ 2ProcΠ∗ in which case there is no unchecked edge constraint.

I Lemma 5. The rewrite system defined by the operation redn−−−→ is confluent.

Using the above lemma we conclude that, from any state α, after any maximal sequence
of reductions, we reach the same state, which we denote by Red(α).

Now, we can define the transition relation: α ϕ,a−−→ α′ is a transition in C if there exists
β = β1(u, c)β2 and an extended event (e, β1(u, c)) enabled in β such that

(i) either β = α, i.e., the enabled event is already present in the current state,
(ii) or α = α1#α2

u−→ β1(u, ∅)β2 = β. Hence, c = ∅, β1 ∈ {α1, α1#} and β2 ∈ {α2,#α2}

and all the following conditions hold:

(T1) a = λu(e).
(T2) The guard ϕ checks all local and edge constraints—i.e.,

ϕ =
(∧
e′∈Eu,I∈I|τu(e′,e)=I

ϕ(u, e′, e, I)
)
∧ ϕedge where, (1)

ϕ(u, e′, e, I) =
{

Msg−1 ∈ I if ∃p, q, p 6= q s.t. e′ <uqp e
Yk
p ∈ I if e, e′ ∈ Eup and |{e′′ ∈ Eup | e′ ≤upp e′′ <upp e}| = k

(2)

and ϕedge =


Y1
p ∈ I if β1 = β′1(u′, c′′) and for some p ∈ Proc, we have

EdgeC ((u′, u), p) = I and e = min(Eup)
true otherwise

(3)

(T3) α′ = Red(β1(u, c′)β2) where c′ = c] {e}.

Observe that, once the state and the enabled event which is to be executed are fixed,
the transition that is taken and indeed the state reached after the transition are uniquely
determined. We can also observe that every reachable state α of C is valid. By this we mean
that it satisfies the following properties:

(V1) Every # symbol in α is surrounded by nodes from ExtNodes. Also α starts with (., ∅)
and ends with (/, ∅).

(V2) For any two consecutive extended nodes in α, there exists an edge between the nodes
in G, i.e., for all α1(u, c)(u′, c′) � α, we have u→ u′ in G.

(V3) Executed events in α are downward closed:

a. For all α1(u, c) � α, if e ∈ c and e′ ≤u e then e′ ∈ c.
b. For all α1(u, c)α2(u′, c′) � α, if e ∈ Eup and e′ ∈ c′ ∩ Eu′

p for some p, then e ∈ c.

Akshay, Gastin, Mukund, Narayan Kumar 11

In order to get finiteness of the automaton C, we need to restrict to states that are
both reachable and completable. Formally, we call a state α completable if whenever
α = α1(u, c)#(v, c′)α2, there is β ∈ V + such that uβv is a path in G and OProc(β) ∩
EProc((v, c′)α2) = ∅. Note that, in order to be co-reachable in C, a state must be com-
pletable.

I Lemma 6. If G is locally synchronized, the set of states of C which are both valid and
completable is finite.

Proof. (Sketch) It is enough to show that the length of each valid, completable state of
α ∈ Π∗ is bounded. By definition, every extended node in α has at least one executed event.
Using the locally synchronized assumption, one can prove the following properties about a
loop in a state.
I Claim 7. Let α(u, c)β(u, c′)γ be a valid completable state of Cfin

G . If (u, c)β is not completely
executed or if # occurs in β, then EProc((u, c′)γ) (EProc((u, c)β(u, c′)γ).

Now, consider a loop α(u, c)β(u, c′)γ in a valid completable state. If β has no # and
(u, c)β is completely executed, then α = α′#. Indeed, otherwise the completed node (u, c)
would have been deleted. Along with the previous claim this implies that we can bound the
number of occurences of a node u in a path by 2|Proc|. From which we can conclude that we
have a bound of 2|Proc||V | on the number of extended nodes in a path. But we know that
each # or P ⊆ Proc must have an extended node next to it on the left. So we can conclude
that the length of the path is O(|Proc||V |). Thus C is finite. J

The main result is stated in the following proposition.

I Proposition 8. Ltw(C) = Ltw(G).

The proof which is long and technical is omitted for lack of space. It can be found in [1]
where it is split in three main steps. First we construct an MSC-ECA with infinitely many
states: we guess the full path of the TCMSG initially and we keep it in all states along the
run to avoid the complication of node insertions and node deletions. Next, we introduce the
automaton with gaps, dealing with node insertions but not yet with node deletions. This
automaton is still infinite. Finally we introduce node deletions to obtain the automaton C
constructed above. At each step we prove the equality of the timed languages, either directly,
or using bisimulation at the abstract level of paths.

5 Solving the model checking problem

Now, we are in a position to solve the model checking problem.

I Theorem 9. For a locally synchronized TCMSG G and a timed automaton A, the model
checking problem Ltw(A) ⊆ Ltw(G) is decidable, i.e., it is decidable to check if for all timed
words σ generated by A there exists some M specified by G such that σ is a linearisation of
a TMSC T which realises M.

Proof. We have to prove that Ltw(A)∩(TWAct\Ltw(G)) = ∅. By Theorem 4 we can construct
an MSC-ECA C such that Ltw(C) = Ltw(G). Using the complementation construction of
Section 3.1 we can build a deterministic and complete MSC-ECA C′ = Cuniv2 such that by
Corollary 2 we have Ltw(C′) = TWAct \ Ltw(C) = TWAct \ Ltw(G).

Since G is locally synchronized, there is a bound B > 0 such that each timed word
σ ∈ Ltw(G) is wwf and B-bounded: Ltw(G) ⊆ TWB,wf

Act . Consider the timed automaton BBC′

12 Model checking timed scenarios

associated with C′ and the bound B by the construction of Section 3.2. For final states of
BBC′ we choose F ′ ∪ F ′′ as defined in Proposition 3. We get Ltw(BBC′) = (TWAct \TWB,wf

Act) ∪
(Ltw(C′) ∩ TWB,wf

Act) = (TWAct \ TWB,wf
Act) ∪ (TWB,wf

Act \ Ltw(G)). Using Ltw(G) ⊆ TWB,wf
Act

we deduce Ltw(BBC′) = TWAct \ Ltw(G).
Hence, the model checking problem is reduced to checking emptiness of the intersection

of two timed automata, A and BBC′ , which is indeed decidable. J

References
1 S. Akshay, P. Gastin, M. Mukund and K. Narayan Kumar: Model checking time-

constrained scenario-based specifications. Technical Report LSV-10-16, ENS Cachan, 2010.
Available at http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/rapports.

2 R. Alur and D. Dill: A Theory of Timed Automata. Theor. Comput. Sci., 126 (1994)
183–225.

3 R. Alur and M. Yannakakis: Model checking of message sequence charts. Proc. CON-
CUR’99, Springer LNCS 1664 (1999) 114–129

4 J. Bengtsson and Wang Yi: Timed Automata: Semantics, Algorithms and Tools, Lectures
on Concurrency and Petri Nets 2003, Springer LNCS 3098 (2003) 87–124.

5 J. Chakraborty, D. D’Souza, and K. Narayan Kumar. Analysing message sequence graph
specifications. Technical Report IISc-CSA-TR-2009-1, IISc Bangalore, 2009.

6 M. Clerbout and M. Latteux. Semi-commutations. Inf. Comp., 73(1) (1987) 59–74.
7 J.G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni and P.S. Thiagarajan: A

Theory of Regular MSC Languages. Inf. Comp., 202(1) (2005) 1–38.
8 ITU-T Recommendation Z.120: Message Sequence Chart (MSC). ITU, Geneva (1999).
9 S. Mauw and M.A. Reniers: High-level message sequence charts. Proc. SDL’97, Elsevier

(1997) 291–306.
10 A. Muscholl and D. Peled: Message sequence graphs and decision problems on Mazurkiewicz

traces. Proc. MFCS’99, Springer LNCS 1672 (1999) 81–91.

http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/rapports

	Introduction
	Preliminaries
	Message sequence charts
	Time-constrained message sequence charts
	Timed message sequence charts
	Message sequence graphs
	Time-constrained message sequence graphs
	Timed automata
	The model checking problem

	An extended event clock automaton – the MSC-ECA
	Determinization and complementation of MSC-ECA
	From MSC-ECA to TA

	From a locally synchronized TCMSG to a finite MSC-ECA
	Solving the model checking problem

