
Modeling the Mashup Space

Serge Abiteboul
INRIA Saclay
Paris, France

<fname>.<lname>@inria.fr

Ohad Greenshpan
Tel-Aviv University &
IBM Research Labs

Tel-Aviv, Israel
ohadg@il.ibm.com

Tova Milo
Tel-Aviv University

Tel-Aviv, Israel
milo@tau.ac.il

ABSTRACT
We introduce a formal model for capturing the notion of mashup
in its globality. The basic component in our model is the mash-
let. A mashlet may query data sources, import other mashlets, use
external Web services, and specify complex interaction patterns be-
tween its components. A mashlet state is modeled by a set of re-
lations and its logic specified by datalog-style active rules. We are
primarily concerned with changes in a mashlet state relations and
rules. The interactions with users and other applications, as well as
the consequent effects on the mashlets composition and behavior,
are captured by streams of changes. The model facilitates dynamic
mashlets composition, interaction and reuse, and captures the fun-
damental behavioral aspects of mashups.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design—Data models;
H.1.0 [Models and Principles]: General

General Terms
Design, Languages

Keywords
Web, Mashups, Data, Model, Information, Integration

1. INTRODUCTION
A (music) mashup is a composition created from the combina-

tion of music from different songs. Web mashups, in a similar
spirit, stem from the reuse of existing data sources or Web appli-
cations, the emphasis being on GUI and programmingless speci-
fication. As described in [22], the concept of mashups originated
from the understanding that the number of applications available on
the Web and the needs to combine them to meet user requirements,
are growing very rapidly. However, these applications are often
complex, provide access to large and heterogeneous data, varied
functionalities and built-in GUIs, so that it becomes in many cases
an impossible task for IT departments to build them in-house as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WIDM’08, October 30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-60558-260-3/08/10 ...$5.00.

rapidly as they are requested to. The role of mashups is to facilitate
this rapid, on-demand, software development task. Furthermore, by
enabling dense (Web 2.0-style) interactions between components,
the mashup concept goes even further, illustrating the Gestalt prin-
ciple that the whole is different than the sum of its parts.

From a scientific viewpoint, previous works have typically fo-
cused on specific aspects of mashups. Among those one can list
in particular works that studied (semantic) data integration [10, 9,
7], works dealing with service composition [36, 33, 40], and works
considering interaction between mashup components and interac-
tion with users [15]. Each such aspect is clearly interesting in itself.
However, we believe that it is also essential to understand the notion
of mashup in its globality, and in particular the interaction between
the various facets previously mentioned. For that there is a need for
a formal model for mashups. Such a model is still missing, and is
the topic of the present paper.

Figure 1: The MedickIT application

Before presenting our model, let us consider a simple example
that highlights some of the main requirement from such a model.
An example of a mashup is shown in Figure 1. It is from the
MedickIT system, developed for the healthcare domain at IBM
Research Labs in Haifa. It served both as a motivation for the
present work and as a test bed for some of the ideas presented here.
The mashup is composed of several components that we call mash-
lets. A mashlet can be GUI-based (e.g., a widget) or not (e.g., Web
Service). To allow for modular application development, a mash-
let can itself serve as a component in some other (more complex)
mashlet. The screen shot here contains six mashlets. An Electronic
Health Record (EHR) mashlet (at the top left corner), a map, a cal-
endar, a medical search engine, an SMS mashlet, and a medical



data analyzer. Various interactions between the mashlets are possi-
ble. For instance, addresses of doctor appointments can be pulled
from the calendar and then be fed into the map for display; The
appointments time can be retrieved from the calendar and sent as
SMS reminders to phone numbers taken from the patient EHR. This
may be done automatically by the application (e.g. in response to
some events), or on user demand (e.g. by drag and dropping a cal-
endar entry on the SMS mashlet). In general, the set of mashlets
presented to the user, as well as the interactions between them, may
dynamically change in response to user actions or system events.
For instance, in response to a user query on a particular illness,
some dedicated patient forums that discuss it can be dynamically
identified (by querying UDDI directories) and be plugged into the
screen, as mashlets, replacing there some other (e.g. least recently
used) components.

As previously mentioned, in our model, the basic component of
a mashup is the mashlet. The model facilitates (dynamic) modu-
lar mashlets composition, interaction with users and other mash-
lets, and reuse, and captures the fundamental behavioral aspects
of mashups. For simplicity, the state of a mashlet consists of a
set of relations. Indeed, all data (including the data exchanged
with users and other applications, as well as the data describing
the mashup structure, state and components) is described by rela-
tions. The logic of a mashlet is specified using datalog-style active
rules. The use of datalog enables taking advantage of advanced ex-
isting technology, notably query optimization [14] and is used to
support other aspects such as monitoring [3]. The model is hierar-
chical in the sense that a mashlet can embed other mashlets, which
can themselves embed other mashlets, and so on, recursively.

Since mashups are very dynamic by nature, we will be inter-
ested in changes (∆s) of the relations and the rules defining them.
The interactions with users and other applications, are captured by
streams of ∆s. A mashlet may query data sources, import other
mashlets, use external Web Services, and impose certain interaction
patterns on its components. It can also be used by other mashlets
and export some Web Services. All this can be specified statically
(before the mashlet is activated) or dynamically (e.g., by incorpo-
rating a just-discovered mashlet in an active mashlet). So the pro-
gram (set of rules) of a mashlet also evolves in time.

The use of a declarative language for specifying mashups pro-
vides a wide range of advantages. First, intuitive user interfaces,
supporting the declarative language and not requiring to write com-
plex code, can be used to specify mashups. Then, the seman-
tics is precise and not implementation dependent, which protects
against unexpected behavior. Also, it becomes possible to optimize
mashups, in much the same way that relational system applications
are optimized. Furthermore, the use of formal declarative spec-
ifications facilitates verifying properties of mashups, e.g., check-
ing whether plugging a particular mashup in another one has any
chance to succeed or whether it violates security requirements. Fi-
nally, such an approach facilitates mashup reuse and in particular
searching for mashups, since we have clear ways of stating what
specific mashups do.

The concept of mashup borrows many aspects from standard data
integration technologies, such as databases, warehouses or portals,
but poses requirements that are raising a number of new challenges.
We present a brief review of the state of art in Section 2, highlight-
ing central aspects and requirements that will be addressed by our
contribution. Section 3 defines the mashlets, that are the basic com-
ponents of our model. Section 4 illustrates, via a real-life example,
how aspects discussed in Section 2 are addressed by our model.
Future research directions are considered in Section 5.

2. RELATED WORK
To understand the importance of the problem, it suffices to browse

the numerous Web sites dedicated to listing Web applications and
those discussing their reuse. For instance, Programmableweb.com
[30] is a Web site which lists thousands of mashups, organized in
dozens of mashup classes. Statistics provided by the site show a
constant increase of approximatively 100 mashups per month since
September 2005. There is also a constant increase in the number of
mashup classes (maps, music, etc.) offered on the Web site. Note
that the mashups here undergo a filtering process by the site owners,
so the real increase in the mashups number is clearly even higher.

Mashups integrate heterogeneous data provided by various sources
and in that differ from classical databases and are more of a data
warehouse [20] spirit. In contrast with data warehouses, they are
typically specified and deployed very rapidly. They stress reactivity
to changes in data sources, as in data warehouse maintenance [31].
Generally speaking, the technology developed for data integration
is relevant for mashups, see, e.g., [24]. The management of infor-
mation distributed between a large number of autonomous sources
is also relevant. This has been recently the starting point of a num-
ber of works, e.g., dataspaces [17] and data ring [6]. Systems based
on these principles can serve as underlying infrastructures for the
management of data in mashups.

As an integration concept, the notion of mashup reminds in many
aspects of a portal. The notion of portal has been discussed thor-
oughly and is being widely used (see e.g. Apache Jetspeed or IBM
WebSphere Portal) but there is still no well-agreed definition in the
literature. In [34], a portal is defined as “an infrastructure pro-
viding secure, customizable, integrated access to dynamic content
from a variety of sources, in a variety of source formats.” Although
all this fits very well the definition of mashups, there are essential
differences. The development of portlets, the portal components,
typically requires programming expertise. Then, in most portals,
the general layout and functionality of a portal are typically frozen
once it has been developed. In others that enable dynamic selection
of portlets and layout are limited to a pre-defined set of states and
cannot be simply extended. Finally, there is usually limited interop-
erability between portlets in a portal, and the interactions between
them have to be specified in advance. In contrast, the developer of
a mashup, often also an end user, is typically not a programmer.
The mashup designer is provided the means to define her own lay-
out, with the relevant sets of components, and even define the level
and way of interactions between them (in a Web 2.0 style). An-
other significant difference is that the components used in mashups
present much more heterogeneity than in portals. In portals, even
though the data may be stored elsewhere, the portlets are hosted in
the same platform, share the same look-and-fill and support simi-
lar interfaces. In the mashup world, one can connect components
running on different servers, with different user interfaces and dis-
plays.

The data used in mashups is by definition heterogeneous (i.e.,
comes with various formats and types). We expect that main stan-
dards for data streams, such as RSS and Atom, will be dominant.
Previous work have dealt with data integration issues in mashups.
Damia [7], being based on the abovementioned feeds, shows how
to create such an integrator, and Mashmaker [15] presents how this
integration can be queried and shared with other users. Enterprise
information mashup fabric [22] was presented as a new class of in-
tegration technologies that will address such complex information
composition tasks.

Mashups do not only integrate data, but also use Web Services
provided by other components. Therefore, a mashup uses services
provided by others and possibly provides services to be used by



other applications, notably mashups. It has been claimed [36] that
most popular frameworks for Web Service composition, such as
BPEL [26], do not meet the needs of mashups, in particular, from a
data integration perspective. The recent proposal of mashup feeds
[36] seems to be better adapted in that it deals both with data and
control flows, so provides at least a partial solution. Models that
are explicitly based on data, such as business artifacts [27] or Ac-
tive XML [2], also seem better adapted to a mashup context than
workflow approaches.

Mashups interact with both their components and users. Not
surprisingly, with such deep interactions, mashup systems share a
number of concerns with active databases [39] or event-driven ar-
chitectures such as [16]. Interactions are captured in our model by
streams of changes. This is in the spirit of Active XML [2, 25].

As already mentioned, our mashup model is strongly influenced
by active databases and our language uses datalog-style rules. The
particular variant that we employ here is specifically tailored to
model the dynamic nature of mashups. In particular, we take a
high-order dynamic approach where the active (datalog) rules them-
selves evolve over time. Since we embed mashlets into mashlets,
we obtain a hierarchical data structure (with corresponding hier-
archial rules). This is reminiscent of nested relations and complex
objects. (References to works on these topics may be found in stan-
dard database textbooks, e.g. [37, 5]). Here again, for simplicity,
we take from these models only the concepts essential for our con-
text.

As mentioned in the introduction, our goal is to provide a design
of a model that will allow to capture the many aspects of mashups,
described above, in one uniform setting. In the next section, we
introduce our model for mashups. The following one will detail an
example.

3. THE MASHUP MODEL
As we will see, a mashup is a dynamic network of interacting

mashlets, the basic components in our model. We introduce in
this section, a formal model for mashlets. A particular mashlet
may provide a graphical user interface (e.g., a widget) or not. The
goal of the paper is to capture the essence of data management in
mashups. We mostly ignore aspects related to visual interfaces or
to the specifics of particular mashup systems.

For mathematical simplicity and elegance, the model we use is
based on relations as in relational database systems. The state of a
mashlet is maintained and represented by a set of relations. Some
of them are internal relations, used to store internal data. Some are
input/output relations, used for the interaction with users and other
mashlets. Finally service relations (with binding patterns) are used
for capturing Web Services that the mashlet imports or exports.
There is a strong connection between the mashup model we in-
troduce and the relational model, with mashlets as the analog of re-
lational databases and mashlet components (internal, input/output
and service relations) as the analogs of classical relations. A dis-
tinction however is that in the relational model, the component of
a relation is a tuple of atomic values (first normal form). We re-
lax this restriction here and, as we will see, our language will not
be strictly first-order. In particular, mashlet relations may contain
other relations and even entire mashlets.

Mashlets borrow from object databases [12], as well as active
databases [39]. A mashlet can be seen as an object defined using a
set of active rules such as:

Rout(y, z, w) :- Rin(x), Rlocal(x, y),WSbff (y, z, w)

Suppose that Rin is a relation that represents an editable window.
The user enters values in it, say some illness name. The local rela-

tion Rlocal(x, y) provides the names of doctors specializing in such
illness. Then a Web Service WSbff (where the first parameter is
bound and the last ones are free) provides, given the doctor names,
their address and phone number. The relation Rout, displayed in
another window, describes the results.

Clearly, an essential aspect is defining when rules are invoked.
The default is that a rule is invoked when some relation in its con-
text (a relation occurring in the body) has changed. Our system
also supports changeAll (all context relations have changed) or
onInit (on mashlet initialization). Then the effect of a rule firing
depends on the kind of assignment it uses. With “:-”, the rule de-
fines the value of the head relation. With “+:-”, it adds new facts
to the head relation, and with “−:-”, it deletes some. Issues such
as the execution order of simultaneously triggered rule, confluence
and termination, are handled as in standard active databases [39].

To complete the picture, we consider in turn three essential as-
pects for mashlets, the first relating to the various ways mashlets
may be used, the second about the dynamic nature of the mashlets
interaction, and the third regarding the dynamic nature of the data
that they manage.

Using mashlets. Given a mashlet specificationM, one can cre-
ate a mashlet M that is an instance ofM. Once activated, the mash-
let is by definition a Web component and as such it is associated
with a URL. (The choice of this URL is beyond the scope of the
present paper). This URL is available from inside the mashlet in
a particular relation, mashletURL(url). The mashlet runs for
a session. Each of its relations may be defined transient, in which
case its content is lost when the session ends; or persistent, in which
case it is saved and reinstalled for the next session.

There are two ways of using such a mashlet instance. The first
is in the spirit of Web Services technology. Each mashlet exports a
Web-API, i.e., a list of methods (Web Services) that are exposed to
be used by other software (possibly other mashlets). Each method
comes with a signature that specifies how to use it. For instance,
as in the previous example, one could export a service that, given
some illness, provides the name, phone and address of doctors, e.g.,
DocDirbfff . Typically, a call to such a service causes a chain of
rule invocations inside the particular mashlet, for computing and
returning the result.

The second way to use a mashlet M is the essence of the mashups
spirit. A mashlet exports a mashlet-API, namely the list of its in-
put and output relations and their signatures. When a mashlet M
is used alone, it interacts directly with the user via a GUI and the
input/output relations. When M is used as a component of another
mashlet, say bM, it may get its input from (and deliver its output to)
other mashlet components of bM. This is achieved by including in
the definition of bM, rules that direct the output of one mashlet com-
ponent to the input of another one.

Consider again the previous example. We can import in the
mashlet bM, a MAP mashlet. Then the following rule can be used
to feed the doctor addresses, (retrieved when the user types in an
illness name), as input to a MAP mashlet that displays them graphi-
cally:

MAP.Mrkin(x, y, name) :- M.Rout(name, phone, addr),
AddrToXYbff (addr, x, y)

The address is converted to x, y coordinates (using a Web ser-
vice). Observe the naming convention: A relation R in a mashlet M
is denoted M.R.

This inclusion of mashlets in other mashlets and the interconnec-
tion of mashlets may be viewed as a modularity mechanism. We do



not impose that the interacting mashlets be on the same machine.
If we keep creating mashlets inside other mashlets, we reach the
hierarchical organization that one typically sees in mashup system
interfaces. However, we do not limit ourself to this hierarchical ar-
chitecture. We allow interactions with external mashlets. One can
use an output of M1 in a rule of M2 and conversely, in a recursive
manner. This leads to a flexible framework for combining mashlets
in mashlet networks. Such a network of mashlets is what we call a
mashup.

Dynamic mashlets. The components of a given mashlet, as
well as the interactions between them, may be specified statically,
in the mashlet definition. More interestingly, they can also be added,
changed or removed dynamically at run time, without interrupting
the operation of the mashlet. For instance, depending on the type of
illness specified by the user, one may want to find (e.g. by query-
ing some UDDI-like directory) specific patient forums and dynami-
cally include them in the mashup. Corresponding rules that connect
the inputs/outputs of the new mashlets may also be dynamically
added (e.g. to feed the illness name as input query to the various
forums, and display the obtained results.)

This is achieved by the higher-order features of our model. In
particular, each mashlet includes five relations called Inputs,
Outputs, Mashlets, MashletAPIs and Rules, contain-
ing respectively, the names and signature of the mashlet input and
output relations, the names of the component mashlets and mashlet-
APIs, and the rules gluing their inputs and outputs. When a mashlet
instance is created, they are initialized based on its specification.
Then, at run time, they can be queried and updated, like any other
relation, consequently changing the mashlet composition and be-
havior.

Dynamic Data. We distinguish between mashlet APIs (Web
Services) that return a value (we call them static) and those that
return an update stream (we call them active). The updates we con-
sider are insertions of tuples in the result relation, and deletions of
tuples satisfying a certain condition, e.g. of tuples with certain IDs.
Similarly, the input/output relations of a mashlet may be specified
as static or active. For instance, an input relation is static if once a
value has been assigned to it (either by the user or by supplying it
the output of another mashlet), it does not change. Otherwise it is
active and may be changed (by the user or by using active output
of another mashlet). To denote the fact that a service or a rela-
tion is active, we use an exclamation mark, e.g., getLocation
might return our instantaneous location whereas !getLocation
might monitor our moves until interrupted. In general, active ser-
vices may provide data in a pull mode (as, e.g., in RSS feeds) or in
push mode (as, e.g. in publish-subscribe systems). For simplicity
we ignore the distinction here and consider the obtained stream of
data items uniformly.

We call mashup such a (possibly dynamic) network of interact-
ing mashlets. These are interacting Web components in the purest
Web 2.0 style.

Remark We conclude this section with two remarks, one regarding
the user interface and the second regarding data aggregation.

• A mashlet definition includes a specification of the layout of
its components. This enables Internet browsers to present
its content and support user interactions with the mashlet.
Common properties which are included for the various com-
ponents are coordinates on the screen and dimensions. We
mostly ignore this important aspect here and focus on the
management of data.

• Mashups that integrate (streams of) data items from several
sources may wish to aggregate them along various dimen-
sions [36]. This can be achieved by enriching our datalog-
style language with aggregation functions, or alternatively,
to keep the simplicity of the model, by abstracting the aggre-
gates computation in a “black box” mashlet-API (Web Ser-
vice).

4. MASHLETS AT WORK
We illustrate the above concepts with the example of a mashlet

in Figure 2. This is a portion of the specification of the MedickIT
application, providing a personal health information system for a
patient. A screen shot of this mashlet (composed of other mashlets)
was shown in Figure 1.

Recall first that each mashlet includes five built-in high-order re-
lations, Inputs, Outputs, Mashlets, MashletAPIs and
Rules, specifying respectively, the names and signatures of the in-
put/output relations, the names of its mashlet components and their
mashlet-APIs, and the rules gluing their inputs and outputs.

Some mashlet components are defined to be visible in which case
they are displayed on the screen; others are invisible and are only
used for computation purposes (to be detailed further). The input
fields are the visible input relations of its visible mashlet compo-
nents. The specification consists of four parts, as detailed in turn
next.

Relations. MedickIT has two input relations. !Loginin where
the user inputs her name and password, and !Illnessin where she
inputs names of illness for which she wishes to obtain relevant in-
formation. Both relations are active as noted by the exclamation
mark: The user can modify this information (e.g., in case of login
error). The two output relations provide, respectively, the patient’s
scheduled doctor appointments (!DocApout) and the information
gathered about the specified illness (!IllnessInfoout). The out-
put relations are also active and change in accordance to changes in
the inputs. The application uses two internal relations: UDDI, a di-
rectory for mashlets dynamically included in the application (to be
described further), and Layout for the details on the screen layout.
Layout is defined as persistent, so layout adjustments performed
by a user are reflected in the next session.

Mashlets and Mashlet-APIs. MedickIT includes, among
others, four visible mashlet components. An EHR mashlet (for
Electronic Health Record), storing patient health data, a CAL mash-
let (for calendar), including, among others, the patient doctors list
and their corresponding appointment dates, a MAP mashlet, and an
SMS mashlet for sending SMS messages. As we will see further,
some additional mashlets will be added dynamically at run time. In
particular, depending on the illness input by the user, patient forums
that discuss the illness will be plugged in into the system.
MedickIT also uses three external Web Services (some of them

possibly supported by other mashlets not visible on the screem).
AddrToXY is given a textual address and converts it to x, y coor-
dinates (to be used for placing items on the map). !MedicForums
returns a list of known medical forums (mashlets) and continuously
updates this list with new information. (Its active nature is again
denoted by the exclamation mark). Finally, ForumsClassifier
(resp. RelClassifier) is given a forum id (relation name) and a
topic and determines whether the forum discussions (relation con-
tent) are relevant to particular topics.



Relations

%Inputs
input !Loginin(usr, pwd)
input !Illnessin(term)
...
%Outputs
output !DocApout(date, info)
output !IllnessInfoout(forum, info)
...
%Internal
internal UDDI(uddi)
internal persistent Layout(component, x, y)
...

Some mashlets and mashlet APIs
%Mashlets
import mashlet visible EHR
import mashlet visible CAL
import mashlet visible MAP
import mashlet visible SMS
...
%MashletAPIs
import web-service AddrToXYbff (add, x, y)
import web-service !MedicForumsf (F )
import web-service ForumsClassifierbb(F, topic)
import web-service RelClassifierbb(R, topic)
...

API
!GetDocApbbbf (usr, pwd, name, date) :- !Loginin(usr, pwd),

!DocApout(date, name)
...

Rules
(1) onInit UDDI(F ) :- MedicForums(F )
(2) EHR.!Loginin(usr, pwd) :- !Loginin(usr, pwd)
(2’) M.!Iin(usr, pwd) :- !Loginin(usr, pwd),

Mashlets(M, ...),
M.Inputs(Iin),
RelClassifier(Iin, “login”)

(3) !DocApout(date, name) :- EHR.!MyDocsout(name, addr),
:- CAL.!Entriesout(name, date),

(4) MAP.!Markersin(x, y, name) :- EHR.!MyDocsout(name, addr),
AddrToXY(addr, x, y)

(5) SMS.!Sendin(num, e) :- CAL.!Entriesout(e, ∗today),
EHR.CellNumberout(num)

(6) Mashlets(F, “visible”, term) +:- !Illnessin(term),
UDDI(F),
ForumsClassifier(F, term)

(7) M.!Iin(term) :- !Illnessin(term),
Mashlets(M, “visible”, term),
M.Inputs(Iin),
RelClassifier(Iin, “query”)

(8) Rules(rule) +:- Mashlets(M, ...),
GlueRules(∗this, M, rule)

...

Figure 2: Part of the MedickIT mashlet specification

Rules. Datalog-style rules describe the logic of the mashlet and
the interaction between its various components. We can see, in
Rule 1, that when the session starts, the UDDI relation is initial-
ized. It is set to contain a list of known medical forums retrieved
by !MedicForums (and is continually updated by this service).

The first example of interaction between mashlets is given in
Rule 2, where the user name and password typed by the MedickIT
patient are automatically fed into the EHR mashlet, making her
Electronic Health Record accessible with the relevant details. This
rule reminds the single sign-on approach being used for access con-
trol. A more generic variant of this rule, that exploits the high-
order nature of our model and allows to propagate the login in-
formation to all the relevant mashlet components, is depicted in
Rule 2’. Rather than writing an individual rule for each mashlet
component (as done for the EHR mashlet), we retrieve the mashlet
names M from Mashlets relation of MedickIT. The names of the
input relations of these mashlets are retrieved from the correspond-
ing M.Inputs relations. The RelClassifier service (mashlet-
API) is then used to determine to which input relations the login
data should be fed into. (Further sophisticated variants, e.g. for
scenarios where the same person uses distinct names/passwords for
different applications, can be similarly defined.)

Now that the patient’s EHR data is accessible, we use it, com-
bined with the other mashlets to (i) extract the list of patient’s doc-
tor appointments, (ii) display the doctors office location on the map,
and (iii) send SMS reminder messages to the patient. This is done
by Rules 3, 4 and 5 respectively. Rule 3 retrieves the names of the
patient doctors from the EHR output relation MyDocs and matches
the names to the patient’s Calendar entries to obtain the appoint-
ment dates. Rule 4 retrieves the addresses of the patient doctors
from the MyDocs relation, converts them to x, y coordinates (us-

ing the AddrToXY service), and feeds them as markers to the MAP
mashlet, which will display each doctor name at the correspond-
ing location. Finally, Rule 5 obtains the patient cell phone number
from her EHR, retrieves today’s entries from her calendar, and feeds
them into the SMS mashlet.

The rules so far use a given predefined set of mashlets. The
dynamic nature of our model is illustrated by the following rules
where new mashlets are dynamically included in the application.
In Rule 6, we see that, whenever the user types in a new illness,
the forum mashlets in the UDDI repository are checked, and those
determined to be relevant are included in MedickIT (inserted to
its Mashlets relation). Rule 7 then feeds (in a manner similar to
Rule 2’ above) the illness name as input (query) to these forums.
The forum mashlets (including their response to the query) are vis-
ible (see the head of Rule 6) and thus are displayed to the user as
part of MedickIT.

Note the use of +:- in Rule 6. It indicates that the new mashlets
are added to the already existing ones. (This is in contrast to the use
of :- in Rules 1-5, where a new content is assigned to the relation
at the head of the rule, each time that the rules are triggered). A
corresponding rule that removes from the mashup irrelevant mash-
lets (e.g. of forums relevant only to previously queried illnesses) is
defined in an analogous manner. We omit this here.

The example so far captures the modular nature of mashup ap-
plications, where several mashlets are (dynamically) glued together
to provide richer functionalities. Interestingly, the high-order na-
ture of our model allows for another level of modularity, where
the glue rules themselves can be defined in a modular manner and,
depending on the context, be dynamically added to the applica-
tion. To see an example, consider a Web Service (mashlet-API)
GlueRulesbbf (M1, M2, rule) that given a mashlet M1 and one of



its component mashlets M2, analyzes the semantic relationship be-
tween their input and output relations and returns a corresponding
set of glue rules. Rule 8 shows how such a service is used to enrich
the predefined set of rules of MedickIT.

API. Finally, MedickIT exports a Web-API, i.e., a list of meth-
ods (Web Services) that are exposed to be used by other software
(possibly other mashlets). One such method, for retrieving doctor
appointment dates, is depicted at the bottom of Figure 2. Given a
user id, password, and a doctor name, !GetDocAp feeds the user id
and password into the input relation of MedickIT, and retrieves,
from the computed corresponding output relation !DocAp, the dates
of the appointments with the given doctor. Note that the compu-
tation of the result involves a combination of capabilities from the
component mashlets, as previously described.

Inheritance. We conclude this section with section by consider-
ing mashup reuse based on inheritance.

An analysis that we conducted on the extensive collection of
mashups found in the Programmableweb.com [30] website, lead
us to the understanding that a large number of mashups are similar
to each other, in their components and in the functionality they of-
fer to users. For example, at the time of our study, 1669 mashups
(39% of all mashups) included maps provided by various vendors
(Google, Yahoo!, etc.). Since their characteristics are often stan-
dard, it is possible to reuse the composition logic defined for one,
for another one. Even if some of the functionalities may not be
enabled, the core logic should be reusable.

Motivated by the previous observation, we introduce in our model
an inheritance relationship among mashlets. More specifically, mash-
let m′ inherits from mashlet m if the interface of m′ (input/output
relations and their respective attributes) is a superset of the interface
of m, (and similarly for the Web-API relations). This definition of
inheritance implies that mashlet m can be used in any composition
that employs an instance of mashlet m′. We note that inheritance
can be achieved using explicit language means, e.g., by importing
the code of a mashlet and refining it in subclasses. It can also be
realized by simply “cloning” the interface of a mashlet.

To be consistent with the example given in Figure 2, Figure 3
shows the inheritance relationship (dotted lines) of the mashlets
being placed on the mashup. In this example, the finer rule extracts
the entries from the calendar (CAL) and the cell phone number
from the Electronic Health Record (EHR) of the patient, and feeds
it to the SMS mashlet in order to send them as an SMS reminder to
the patient. A coarser rule depicted in Figure 3 takes current image
presented in the UI mashlet (CAL’s ancestor) and a number from
the Data Mashlet (EHR’s ancestor) and feeds them into the SMS
mashlet. The coarser rule does not exploit all the potential of the
more refined mashlet. It may still be sufficient to answer the user
needs. This notion will be used to help a user improve her mashup
[4], as further explained in the following section.

5. CONCLUSION
We introduced a data model accompanied by a declarative lan-

guage for mashup specification. Our approach facilitates and sim-
plifies many issues related to mashups. Currently, there is no work-
ing group in W3C [38] promoting the mashup standards. How-
ever, some efforts leading development of standards for mashups
have begun to arise. OpenSAM [29] is a comprehensive and so-
phisticated set of standards and documented practices for creating
mashups. OpenAjax [28] is an organization of leading vendors,
open source projects, and companies using Ajax that are dedicated

Figure 3: Mashlets Inheritance

to the successful adoption of open and interoperable Ajax-based
Web technologies. IWidget is standard for mashup creation which
is developed by IBM. DataPortability [13] is a set of open standards
that enable interoperabilty and portability of data. We see our effort
contributing in the future to the development of mashup standards
being lead by such organizations.

We briefly consider some next, focusing in particular on some
we already started investigating.

Semantics. The focus of the paper is on specifying the compo-
sition of mashups syntactically. Clearly, the semantic dimension
with strong links to the semantic Web [9, 19, 18] is a key as-
pect. [41] presents a knowledge representation and interface system
which combines the rule-based and object-oriented paradigms and
designed for various tasks on the Semantic Web. We believe that
a formal approach based on a small number of precise concepts as
the one presented here, facilitates the integration of semantic Web
services in mashups. This claim clearly has to be substantiated.

Security. The import of data and code from possibly unknown
parties introduces major security risks. In many application, one
has to guarantee some level of security. For instance, in the health
care example, one would like to guarantee confidentiality and pri-
vacy for patients. Cross-domain communication mechanisms al-
lowing efficient communication across entities without sacrificing
security are clearly needed [21]. Although our model does not ad-
dress the issue directly, the use of formal and precisely defined
specification provides a clean basis for installing security. Adapta-
tions of the model, similar to those presented in [23] will be needed
in order to provide such capability.

Querying and monitoring. A mashlet may allow Web ap-
plications (with appropriate access rights) to query and monitor
its data, i.e., its relations. This can be supported by Web Ser-



vices (mashlet-APIs) in the style we have seen in the previous sec-
tion. Optimization techniques for distributed, stream-based, data-
log evaluation [1] can be used here to speed up processing.

Finally, we mention a direction we started investigating.

Autocompletion: Search, adaptation and composition.
The mashlet approach is relying on the reuse of existing services or
mashlets to provide new needs. So, given a new problem, we would
like the support of the system to find off-the-shelf solutions for dif-
ferent facets of the problem, adapt and compose them to obtain a
general solution.

For instance, suppose we want to introduce in the health care
mashup, MedickIT, a new functionality consisting in uploading
medical data from home sensors. We would like the system to first
help us search in some UDDI-like repository, for mashlets support-
ing such functionality. In our model, one can look syntactically
for mashlets matching the needs, based on the names and types of
their relations, and their signatures. Semantics should clearly play
an essential role: the searchable profiles of mashlets should include
semantic annotations (e.g., in RDF [11], RDFS or DAML-S [8])
about their content and behavior.

For composition, we can benefit from the works on Web Service
composition, e.g., [32, 35]. Once a mashlet for supporting (some
of) the needs has been discovered, it has to be adapted to the en-
vironment to be composed with others. Some simple example for
this were given in Section 4 (Rules 6-8). The mashlets providing
such adaptation will typically involve data restructuring or trans-
formation (e.g., changing a medication name into a generic one) or
filtering (e.g., filtering out medication based on adverse drug reac-
tion).

We started developing a recommending system [4] offering (au-
tomatic or semiautomatic) support in this task of search-adaptation-
composition. The central idea is autocompletion that we describe
next. Typically, at some stage of the design, a user has already
specified a partial mashlet. The idea is to benefit from the experi-
ence of other users for completing the task. The system searches
for mashlets or services performing some missing functionality and
for some “glue patterns” (other mashlets) adapting or composing
the new components. In these different tasks, the recommendation
engine takes into account the collective wisdom of previous users
that have successfully built mashups to rank possible solutions.

6. REFERENCES
[1] S. Abiteboul, Z. Abrams, S. Haar, and T. Milo. Diagnosis of

asynchronous discrete event systems: datalog to the rescue!
In PODS ’05, pages 358–367, 2005.

[2] S. Abiteboul, O. Benjelloun, and T. Milo. The active xml
project. To appear in VLDB J., 2008.

[3] S. Abiteboul, P. Bourhis, and B. Marinoiu. Axlog and view
maintenance over active documents. submitted.

[4] S. Abiteboul, O. Greenshpan, T. Milo, and N. Polyzotis.
Matchup: Autocompletion for mashups. submitted.

[5] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[6] S. Abiteboul and N. Polyzotis. The data ring: Community
content sharing. In CIDR, pages 154–163, 2007.

[7] M. Altinel, P. Brown, S. Cline, R. Kartha, E. Louie,
V. Markl, L. Mau, Y.-H. Ng, D. Simmen, and A. Singh.
Damia: a data mashup fabric for intranet applications. In
VLDB ’07, pages 1370–1373, 2007.

[8] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. L.
Martin, S. A. McIlraith, S. Narayanan, M. Paolucci,

T. Payne, K. Sycara, and H. Zeng. Daml-s: Semantic markup
for web services. In Proceedings of the International
Semantic Web Workshop, 2001.

[9] A. Ankolekar, M. Krötzsch, T. Tran, and D. Vrandečić. The
two cultures: Mashing up web 2.0 and the semantic web.
Web Semant., 6(1):70–75, 2008.

[10] F. Belleau, M.-A. A. Nolin, N. Tourigny, P. Rigault, and
J. Morissette. Bio2rdf: Towards a mashup to build
bioinformatics knowledge systems. Journal of biomedical
informatics, March 2008.

[11] K. S. Candan, H. Liu, and R. Suvarna. Resource description
framework: metadata and its applications. SIGKDD Explor.
Newsl., 3(1):6–19, 2001.

[12] R. Cattell. The Object Database Standard: ODMG-93.
Morgan Kaufmann Publishers, 1994.

[13] Dataportability. http://dataportability.org/.
[14] O. de Moor, D. Sereni, P. Avgustinov, and M. Verbaere. Type

inference for datalog and its application to query
optimisation. In PODS ’08, pages 291–300, 2008.

[15] R. J. Ennals and M. N. Garofalakis. Mashmaker: mashups
for the masses. In SIGMOD ’07, pages 1116–1118, 2007.

[16] O. Etzion and G. Sharon. Event processing network: Model
and implementation. IBM Systems Journal, pages 51–59,
2008 (in press).

[17] M. Franklin, A. Halevy, and D. Maier. From databases to
dataspaces: a new abstraction for information management.
SIGMOD Rec., 34(4):27–33, 2005.

[18] T. Gruber. Collective knowledge systems: Where the social
web meets the semantic web. Web Semant., 6(1):4–13, 2008.

[19] T. Heath and E. Motta. Ease of interaction plus ease of
integration: Combining web2.0 and the semantic web in a
reviewing site. Web Semant., 6(1):76–83, 2008.

[20] W. Inmon. Building the data warehouse (2nd ed.). John
Wiley & Sons, Inc., New York, NY, USA, 1996.

[21] C. Jackson and H. J. Wang. Subspace: secure cross-domain
communication for web mashups. In WWW ’07: Proceedings
of the 16th international conference on World Wide Web,
pages 611–620, New York, NY, USA, 2007. ACM.

[22] A. Jhingran. Enterprise information mashups: integrating
information, simply. In VLDB ’06, pages 3–4. VLDB
Endowment, 2006.

[23] F. D. Keukelaere, S. Bhola, M. Steiner, S. Chari, and
S. Yoshihama. Smash: secure component model for
cross-domain mashups on unmodified browsers. In WWW
’08, pages 535–544, 2008.

[24] M. Lenzerini. Data integration: a theoretical perspective. In
PODS ’02, pages 233–246, 2002.

[25] B. Marinoiu, S. Abiteboul, and P. Bourhis. Distributed
monitoring of peer-to-peer systems. In ICDE, 2008.

[26] N. Milanovic and M. Malek. Current solutions for web
service composition. IEEE Internet Computing, 8(6):51–59,
2004.

[27] A. Nigam and N. Caswell. Business artifacts: An approach to
operational specification. IBM Syst. J., 42(3):428–445, 2003.

[28] Openajax. http://www.openajax.org/.
[29] Opensam. http://opensam.org/.
[30] Programmableweb. http://www.programmable.com/.
[31] D. Quass and J. Widom. On-line warehouse view

maintenance. In SIGMOD ’97, pages 393–404, 1997.
[32] J. Rao, P. Küngas, and M. Matskin. Logic-based web

services composition: From service description to process



model. In Proceedings of the IEEE International Conference
on Web Services, page 446, 2004.

[33] A. Riabov, E. Bouillet, M. Feblowitz, Z. Liu, and
A. Ranganathan. Wishful search: interactive composition of
data mashups. In J. Huai, R. Chen, H. W. Hon, Y. Liu, W. Y.
Ma, A. Tomkins, X. Zhang, J. Huai, R. Chen, H. W. Hon,
Y. Liu, W. Y. Ma, A. Tomkins, and X. Zhang, editors,
WWW’08, pages 775–784. ACM, 2008.

[34] M. Smith. Portals: toward an application framework for
interoperability. Commun. ACM, 47(10):93–97, 2004.

[35] B. Srivastava and J. Koehler. Web service composition -
current solutions and open problems. In ICAPS, 2003.

[36] J. Tatemura, A. Sawires, O. Po, S. Chen, K. S. Candan,
D. Agrawal, and M. Goveas. Mashup feeds: continuous
queries over web services. In SIGMOD ’07, pages
1128–1130, 2007.

[37] J. Ullman. Principles of Database and Knowledge Base
Systems. Computer Science Press, 1989.

[38] W3c. http://www.w3.org/.
[39] J. Widom and S. Ceri, editors. Active Database Systems:

Triggers and Rules For Advanced Database Processing.
Morgan Kaufmann, 1996.

[40] J. Wong and J. I. Hong. Making mashups with marmite:
towards end-user programming for the web. In CHI ’07:
Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 1435–1444, New York, NY, USA,
2007. ACM Press.

[41] G. Yang, M. Kifer, and C. Zhao. Flora-2: A rule-based
knowledge representation and inference infrastructure for the
semantic web. In CoopIS/DOA/ODBASE, pages 671–688,
2003.


