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Abstract

A distributed XML document is an XML document that spans several machines.
We assume that a distribution design of the document tree is given, consisting of
an XML kernel-document T[f1,...,fn] where some leaves are “docking points” for
external resources providing XML subtrees (f1, . . . , fn, standing, e.g., for Web
services or peers at remote locations). The top-down design problem consists
in, given a type (a schema document that may vary from a DTD to a tree au-
tomaton) for the distributed document, “propagating” locally this type into a
collection of types, that we call typing, while preserving desirable properties.
We also consider the bottom-up design which consists in, given a type for each
external resource, exhibiting a global type that is enforced by the local types,
again with natural desirable properties. In the article, we lay out the funda-
mentals of a theory of distributed XML design, analyze problems concerning
typing issues in this setting, and study their complexity.

Keywords: Semistructured Data, XML Schemas, Distributed Data, Database
Design, Distributed XML

1. Introduction

Context and Motivation. With the Web, information tends to be more and more
distributed. In particular, the distribution of XML data is essential in many
areas such as e-commerce (shared product catalog), collaborating editing (e.g.,
based on WebDAV [21]), or network directories [24]. (See also the W3C XML
Fragment Interchange Working Group [19].) It becomes often cumbersome to
verify the validity, e.g., the type, of such a hierarchical structure spanning several
machines. In this paper, we consider typing issues raised by the distribution of
XML documents. We introduce “nice” properties that the distribution should
obey to facilitate type verification based on locality conditions. We propose an
automata-based study of the problem. Our theoretical investigation provides a
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starting point for the distributed validation of tree documents (verification) and
for selecting a distribution for Web data (design). In general, it provides new
insights in the typing of XML documents.

A distributed XML document T[t1..tn] is given by an XML kernel-document
T[f1,...,fn], that is stored locally at some site, some of which leaves (the docking
points) refer to external resources, here denoted by f1, . . . , fn, that provide the
additional XML data t1..tn to be attached, respectively, to T . For simplicity,
each node playing the role of docking point is called a function-node and it is
labeled with the resource that it refers.

The extension extT (t1..tn) of T is the whole XML document obtainable from
the distributed document T[t1..tn] by replacing the node referring resource fi with
the forest of XML trees (in left-to-right order) directly connected to the root of
ti, for each i in [1..n].

Figure 1: A distributed XML document for the National Consumer Price Index where both
its kernel and some of its remote XML (sub)documents have been hightailed.

Figure 1 shows a (drastically simplified) possible distributed XML document
for the National Consumer Price Index (NCPI) 1 maintained by the Eurostat 2.
This example is detailed further in this section.

Typically, a global designer first chooses a specific language for constraining
the documents of interest. The focus in this paper is on “structural constraints”.
Clearly, one could also consider other constraints such as key and referential
constraints. So, say the designer has to specify documents using DTDs. Then
he specifies a kernel document T[f1,...,fn] together with either:

bottom-up design: types τi for each fi;

top-down design: a global type τ .

1See http://epp.eurostat.ec.europa.eu
2See http://ec.europa.eu/eurostat
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In the bottom-up case, we are interested by the global type that results
from each local source enforcing its local type. Can such typing be described by
specific type languages?

In the top-down case, we would like the extension of T to satisfy τ . The issue
is “Is it possible to enforce it using only local control?” In particular, we would
like to break down τ into local types τi that could be enforced locally. More
precisely, we would like to provide each fi with a typing τi guaranteeing that (i)
if each fi verifies its type, then the global type is verified (soundness), and (ii)
the typing τ1..τn is not more restrictive than the global type (completeness).
We call such a typing local typing. We both study (maximal) local typings and
an even more desirable notion, namely “perfect typings” (to be defined).

To conclude this introduction, we next detail the Eurosat example. We then
present a formal overview of the paper (which may be skipped in a first reading.)
Finally, we survey related works.

Working Example. Before mentioning some related works and concluding this
section, we further illustrate these concepts by detailing our Eurostat example.

The NCPI is a document containing consumer price data for each EC coun-
try. We assume that the national data are maintained in local XML repositories
by each country’s national statistics bureau (INSEE for France, Statistik for
Austria, Istat for Italy, UK Statistics Authority, and so on). Each national data
set is under the strict control of its respective statistics bureau. The kernel doc-
ument T0 is maintained by Eurostat in Luxembourg and has a docking point
for each resource fi located in a particular country. In addition, T0 contains
average data for the entire EU zone. Figure 2 shows a possible extension of T0,
where the actual data values are omitted.

Figure 2: The extension of a possible distributed document having kernel T0, and complying
with the whole structure showed in Figure 1.

We first assume that Eurostat specifies the global type τ for the distributed
NCPI document, where τ is given by the DTD document shown in Figure 3. (In
the following, we adopt a more succinct notation for types where the content
model of an element name is either left undefined if it is solely “#PCDATA”, or
defined by a rule of the form “index → value, year”, otherwise.) Briefly, DTD
τ requires that each possible extension extT0

(t1..tn) consists of a subtree con-
taining average data for Goods (such as food, energy, education, and so on).
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Each Good item is evaluated in different years by means of an index. Moreover,
extT0

(t1..tn) may contain a forest of nationalIndex, namely indexes associated
to goods in precise countries.

<!ELEMENT eurostat (averages, nationalIndex∗)>

<!ELEMENT averages (Good, index+)+>

<!ELEMENT nationalIndex (country, Good, (index | value, year))>

<!ELEMENT index (value, year)>

<!ELEMENT country (#PCDATA)>

<!ELEMENT Good (#PCDATA)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT year (#PCDATA)>

Figure 3: W3C DTD τ

To comply with different national databases, two different formats are al-
lowed: (country, Good, index) or (country, Good, value, year). It is easy to see
that the pair 〈τ, T0〉 allows a local typing (see Figure 4) that is even perfect (so,
can be obtained by the algorithm shown in Section 6), as we will clarify in the
next section.

rooti → nationalIndex∗

nationalIndex → country, Good, (index | value, year)

index → value, year

Figure 4: Type τi (1 ≤ i ≤ n) in the perfect typing for the top-down design 〈τ, T0〉

Suppose now that a designer defined instead the DTD τ ′ shown in Figure 5
as global type. The pair 〈τ ′, T0〉 would be a bad design since τ ′ imposes to all
countries to adopt the same format for their indexes (natIndA or natIndB). But
this represents a constraint that cannot be controlled locally. Indeed, this new
design does not admit any local typing. The nice locality properties of designs
are obvious in such simplistic examples. However, when dealing with a large
number of peers with very different desires and complex documents, the problem
rapidly starts defeating human expertise. Consider, for instance, the type τ ′′

eurostat → averages, (natIndA∗ | natIndB∗)

averages → (Good, index+)+

natIndA → country, Good, index

natIndB → country, Good, value, year

index → value, year

Figure 5: Type τ ′

defined in Figure 6 and the kernel T1 = eurostat(f1, nationalIndex(f2), f3)
containing only three function calls. Even if this design is as small as 〈τ, T0〉, it
already starts to become hard to manage with no automatic technique. Here,
natIndA and natIndB are different specializations of nationalIndex elements
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(note that, as detailed in Section 2.2, this feature requires schema languages
more expressive than DTDs), while all other elements have no specialization.

eurostat → averages, (natIndA, natIndB)+

averages → (Good, index+)+

natIndA → country, Good, index

natIndB → country, Good, value, year

index → value, year

Figure 6: Type τ ′′

In this case, it is not as easy as before to state that the new design has no
perfect typing and exactly the two maximal local typings shown below (only the
content models of the roots are specified). This is mainly because the functions
in T1 have different depth, but also due to specializations.

τ ′′1.1: root1 → averages, (natIndA, natIndB)∗

τ ′′2.1: root2 → country, Good, index

τ ′′3.1: root3 → country, Good, value, year, (natIndA, natIndB)∗

τ ′′1.2: root1 → averages, (natIndA, natIndB)∗, natIndA

τ ′′2.2: root2 → country, Good, value, year

τ ′′3.2: root3 → (natIndA, natIndB)∗

The techniques developed in this paper are meant to support experts in
designing such distributed document schemas.

Overview of Results. We next precise the formal setting of the paper and its
results. From a formal viewpoint, we use Active XML terminology and notation
for describing distributed documents [1].

Not surprisingly, our results depend heavily of the nature of the typing that
is considered. For types, we consider abstract versions of the conventional typing
languages [6, 29, 33, 35], namely R-DTDs (for W3C DTDs), R-SDTDs (for W3C
XSD), and R-EDTDs (for regular tree grammars such as Relax-NG) where R
(varying among nFAs, dFAs, nREs, and dREs, namely automata and regular
expressions both nondeterministic and deterministic) denotes the formalism for
specifying content models.

As a main contribution, we initiate a theory of local typing. We introduce
and study three main notions of locality: local typing, maximal local typing,
and perfect typing. For a given XML schema language S, we study the following
verification problems:

� Given an S-typing for a top-down S-design, determine whether the former
is local, maximal local, or perfect. We call these problems loc[S], ml[S] and
perf[S], respectively;

� Given a top-down S-design, establish whether a local, maximal local, or per-
fect S-typing does exist (and, of course, find them). We call these problems
∃-loc[S], ∃-ml[S], and ∃-perf[S], respectively;
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� Given a bottom-up S-design, establish whether it defines an S-type. The
problem is called cons[S].

The analysis carried out in this paper provides tight complexity bounds for
some of these problems. In particular, for bottom-up designs, we prove that
cons[S] is:

� decidable in constant time for R-EDTDs, for each R;
� PSPACE-complete both for R-DTDs and R-SDTDs, in general;
� PSPACE-hard with an EXPTIME upper bound for dRE-DTDs and dRE-SDTDs.

For top-down designs, after showing that the problems for trees can be reduced
to problems on words, we specialize the analysis to the case of R = nFA. In
particular:

� loc[S], ml[S], perf[S], and ∃-perf[S] are PSPACE-complete when S stands
for nFA-DTD or nFA-SDTD, and loc[S] is EXPTIME-complete for nFA-EDTDs;

� ∃-loc[S] and ∃-ml[S] are PSPACE-hard with an EXPSPACE upper bound
when S stands for nFA-DTD or nFA-SDTD;

� the remaining problems are EXPTIME-hard with either coNEXPTIME or 2-
EXPSPACE upper bounds.

Related Work. Distributed data design has been studied quite in depth, in par-
ticular for relational databases [13, 34]. Some previous works have considered
the design of Web applications [12]. They lead to the design of Web sites. The
design there is guided by an underlying process. It leads to a more dynamic
notion of typing, where part of the content evolves in time, e.g., creating a
cart for a customer. For obvious reasons, distributed XML has raised a lot of
attention recently. Most works focused on query optimization, e.g., [4]. The
few that consider design typically assume no ordering or only limited one [9].
This last work would usefully complement the techniques presented here. Also,
works on relational database and LDAP 3 design focus on unordered collections.
Even the W3C goes in this direction with a working group on XML Fragment
Interchange [19]. The goal is to be able to process (e.g., edit) document frag-
ments independently. Quoting the W3C Candidate Recommendation: “It may
be desirable to view or edit one or more [fragments] while having no interest,
need, or ability to view or edit the entire document.” This is clearly related
to the problem we study here. Finally, the concept of distributed documents,
as defined in this paper, is already implemented in Active XML, a declarative
framework that harnesses web services for data integration, and is put to work
in a peer-to-peer architecture [1, 2]. Moreover, XML documents, XML schemas,
and formal languages have been extensively studied and, although all the prob-
lems treated in this paper are essentially novel,4 the theoretical analysis has got

3Lightweight Directory Access Protocol (LDAP) is a set of open protocols used to access
centrally stored information over a network.

4Consider that, as highlighted in [31], an interesting problem in Formal Language Theory
open for more than ten years, named Language Primality, is essentially a special case of our
problem ∃-loc[dFA]. The complexity of Primality has been also settled in [31].
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benefit from a number of existing works. Classical results about formal (string
and regular) languages come from [20, 23, 25, 26, 32, 36, 37, 42] and in partic-
ular, those about state complexity of these languages can be found in [22, 43],
those about one-unambiguous regular languages in [7, 11], and those about al-
ternating finite state machines in [17, 42]. Finally, regarding XML documents
and schemas, our abstract presentation builds on ten years of research in this
field. In particular, it has been strongly influenced by document typings studied
in [6, 8, 10, 14, 15, 27–30, 33, 33, 35, 38] and results on them presented there.

Structure of the Paper. This concludes the introduction. The remaining of the
paper is organized as follows. Section 2 fixes some preliminary notation, formally
introduces our notions of type, distributed XML document, and defines the
decision problems studied. It also provides an overview of the results. Section 3
considers the bottom-up design. Section 4 presents basic results regarding the
top-down design. Sections 5 and 6 present the main results for the word case.
Section 7 completes the complexity analysis. Section 8 concludes and mentions
possible areas for further research.

2. General setting

In this paper, we use a widespread abstraction of XML documents and XML
Schemas focusing on document structure [6, 29, 33, 35], and Active XML termi-
nology and notation for describing distributed documents [1, 2]. In particular,
for XML Schemas we will consider families of tree grammars (called R-DTDs,
R-SDTDs, and R-EDTDs) each of which allows different formalisms for specify-
ing content models (R may vary among nFAs, dFAs, nREs, and dREs, respec-
tively, nondeterministic automata, deterministic automata, regular expressions,
and deterministic regular expressions). This, could be surprising at first sight
because the W3C standards impose stricter limitations. However, as we will
informally motivate later, (and has been formally proved in [31]), some of the
problems we define and analyze here, have the same complexity independently
of whether we use deterministic or nondeterministic string-automata, or even
deterministic regular expressions. Informally, it can be observed that the docu-
ment distribution often erases the benefits of determinism. For this reason, and
because this paper intends to be a first fundamental study of XML distribution,
we include in our analysis different possibilities for schema languages, even if for
some problem we only analyze the most general case (R is set to nFAs) in order
to delimit its complexity. Moreover, the typing problems we study hint at the
possibility that there could be interesting real world applications (all distributed
applications that involve the management of distributed data, such as data in-
tegration from databases and other data resources exported as Web services, or
managing active views on top of data sources) where W3C recommendations
are too strict and thus unsuitable in the context of distributed XML documents.
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2.1. Preliminaries

In this paper, we use also the following notation. We always denote, by Σ,
a (finite) alphabet ; by ε, the empty string; by ∅, the empty language; by ·, the
binary relation of concatenation on Σ∗ and by ◦, its extension on 2Σ

∗

; by A, an
automaton for defining a string-language or tree-language over Σ; by r a regular
expression over Σ; by R, a formalism for defining string languages; by S, a
formalism for defining tree languages; by τ , an R-type or an S-type (a concrete
formal structure defining, respectively, a string languages or a tree languages,
such as a regular expression or an XML schema document) over Σ; by [τ ], the
language defined by τ .

2.1.1. XML Documents

An XML document can be viewed, from a structural point of view, as a finite
ordered, unranked tree (hereafter just a tree) t with nodes labeled over a given
alphabet Σ. The topmost node in t is denoted by root(t), while for any node x
of t, we denote by

� parentt(x) the (unique) parent node of x (if node x is not the root);

� childrent(x) is the sequence of children (possibly empty) of x in left-to-right
order;

� treet(x) the subtree of t rooted at x;

� labt(x) ∈ Σ the label of x;

� anc-strt(x) ∈ Σ+ is the sequence of labels of the path from the root of t to
x;

� child-strt(x) ∈ Σ∗ the labels of the children of x in left-to-right order.

In particular, if child-strt(x) = ε, then x is called a leaf node. The size of t,
denoted by ‖t‖, is the number of its nodes. Also in these predicates we may
omit the subscript t when it is clear from the context.

2.1.2. Regular String Languages

A nondeterministic finite state machine (nFA) over Σ is a quintuple A =
〈K,Σ,∆, qs, F 〉 where K are the states, qs ∈ K is the initial state, F ⊆ K are
the final states, and ∆ ⊆ K×(Σ∪{ε})×K is the transition relation. Each triple
(q, α, q′) ∈ ∆ is called a transition of A. Sometimes the notation q′ ∈ ∆(q, α),
where ∆ is seen as a function from K × (Σ ∪ {ε}) to 2K , is more convenient.
By ∆∗ ⊆ K ×Σ∗ ×K we denote the extended transition relation defined as the
reflexive-transitive closure of ∆, in such a way that (q, w, q′) ∈ ∆∗ iff there is
a sequence of transitions from q to q′ recognizing string w. The set of strings
[A] = {w ∈ Σ∗ : ∆∗(qs, w) ∈ F} is the language defined by A. Such machines
can be combined in various ways (see [22] for a comprehensive analysis). In
particular, Ā denotes the complement of A, and defines the language Σ∗ − [A].
Given two nFAsA1 and A2, we denote by A1 ·A2, A1∪A2, A1∩A2, and A1−A2

the nFA defining [A1]◦ [A2], [A1]∪ [A2], [A1]∩ [A2], and [A1]− [A2], respectively
(operators · and ◦ are often omitted). Also, for a set A = {A1, . . . ,Am} of nFAs,
we often write ∩A (or ∪A) instead of A1 ∩ . . . ∩Am (or A1 ∪ . . . ∪ Am.)
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A deterministic finite automaton (dFA) over Σ is an nFA where ∆ is a function
from K × Σ to K.

A (possibly nondeterministic) regular expression (nRE or also regex, for short)
r over Σ is generated by the following abstract syntax:

r ::= ε | ∅ | a | (r · r) | (r + r) | r? | r+ | r∗

where a stands generically for the elements of Σ. When it is clear from the
context, we avoid unnecessary brackets or the use of · for concatenation. The
language [r] is defined as usual.

A deterministic regular expression (dRE) r is an nRE with the following re-
striction. Let us consider the regex r̃ built from r by replacing each symbol
a ∈ Σ with ãi where i is the position from left-to-right of a in r. By definition,
r is a dRE if there are no strings wãiu and wãjv in [r̃] such that i 6= j. The
language [r] of a dRE r is called one-unambiguous [11].

A cartesian product of n finite sets is called a “box” [41]. More precisely, fix
a positive number n. Let Σ be an alphabet. A box B over Σ is any language of
the form Σ1 . . .Σn where n is its width, and Σi ⊆ Σ for each i in [1..n]. Clearly,
each box is a regular language as it is a finite one.

2.1.3. Regular Tree Languages

A nondeterministic Unranked Tree Automaton (nUTA) is a quadruple A =
〈K,Σ,∆, F 〉 where Σ is the alphabet, K is a finite set of states ; F ⊆ K is the
set of final states ; ∆ is a function mapping pairs from (K × Σ) to nFAs over
K. A tree t belongs to [A] if and only if there is a mapping µ from the nodes
of t to K such that (i) µ(root(t)) ∈ F , and (ii) for each node x of t, either ε or
µ(children(x)) belongs to [∆(µ(x), lab(x))] according to whether x is a leaf-node
or not, respectively.

A bottom-up-deterministic Unranked Tree Automaton (dUTA) over Σ is an
nUTA where ∆ is a function from (K × Σ) to dFAs over K in such a way that
[∆(q, a)] ∩ [∆(q′, a)] = ∅ for each q 6= q′.

2.1.4. Known decision problems

In this section we recall some well known decision problems.

Definition 1. equiv[S] is the following decision problem. Given two S-types,
do they define the same language?

In particular, whenever we consider two R-types instead of S-types, we still
denote by equiv[R] the equivalence problem defined exactly as above.

Definition 2. one-unamb[R] is the following decision problems. Given a reg-
ular language L specified by an R-type, is L one-unambiguous?
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2.2. Types

As already mentioned, we consider abstractions of the most common XML
Schemas by allowing regular languages, specified by possibly different formalisms
for defining content models. More formally, let R be a mechanism for describing
regular languages (nFAs, dFAs, nREs, dREs, or even others). We want to define
and computationally characterize the problems regarding Distributed XML de-
sign in a comparative analysis among the three main actual formalisms for
specifying XML schema documents: W3C DTDs, W3C XSD and Regular Tree
Grammars (like Relax-NG). For each of these schema languages, we adopt a
class of abstractions that we call R-DTDs, R-SDTDs, and R-EDTDs, respectively,
where R is the particular mechanism for defining content models. We show that
a number of properties do not depend on the choice of R (or even of S) and for
some complexity results we focus our analysis to the case of nFAs. Before that,
we summarize in Table 1 the relevance of the different tree grammars.

Table 1: Comparison between our abstractions of XML Schemas and existing formalisms.

Schema language Previously introduced formalism Our abstraction

W3C DTDs DTDs and ltds dRE-DTDs

W3C XSD dRE-SDTDs
Single-Type Tree Grammars

and single-type EDTDs

Relax NG nRE-EDTDs
unranked regular tree languages

(specialized ltds and EDTDs)

2.2.1. R-DTD types

The following definition generalizes definitions considered in the literature
such as ltds [6, 35] or DTDs [29, 30], and defined for analyzing the properties
of W3C Document Type Definitions. As we marry these views, we define the
following class of abstractions capturing all of them.

Definition 3. An R-DTD is formalized as a triple τ = 〈Σ, π, s〉 where

� Σ is an alphabet (the element names);

� π is a function mapping the symbols of Σ to R-types still over Σ;

� s ∈ Σ is the start symbol.

A tree t, having labels over Σ belongs to [τ ] if and only if: lab(root(t)) = s and
child-str(x) ∈ [π(lab(x))], for each node x of t. For a given element name a, the
regular language [π(a)], associated to a, is usually called the content model
of a.
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Notice that, due to the above definition, R-DTDs with useless element names,
or even defining the empty language, do exist. This is because the above defini-
tion allows to specify R-DTDs that are, in a sense, “not reduced” (think about
finite automata with unreachable states). Since it is much more convenient to
deal with types that are not effected by these drawbacks, after giving some more
definition, we formalize the notion of reduced types.

We introduce the dFA dual(τ). It is the language consisting of the set of
paths from the root to a leaf in trees in [τ ] and it is in some sense the vertical
language of τ .

Definition 4. Let τ = 〈Σ, π, s〉 be an R-DTD. We build from τ the dual dFA
dual(τ) = 〈K,Σ, δ, q0, F 〉 as follows:

� K = {q0} ∪ {qa : a ∈ Σ};

� δ(q0, s) = qs;

� for each a, b ∈ Σ, δ(qa, b) = qb iff b appears in the alphabet of π(a);

� qa ∈ F iff ε ∈ [π(a)].

Before defining a set of conditions ensuring that all the content models of a
given R-DTD τ are well defined and have no redundancy w.r.t. the language [τ ],
we mark the states of dual(τ) (in a bottom-up style) as follows:

1. Mark each final state of dual(τ) as bound ;

2. For each non-bound state qb, consider the set Σb ⊆ Σ where δ(qb, a) is
bound iff a ∈ Σb. If [π(b)] ∩ Σ+

b 6= ∅, then mark also qb as bound ;

3. Repeat step 2 until no more states can be marked.

Definition 5. Let τ be an R-DTD. We say that τ is reduced iff

� Each state of dual(τ) is in at least a path from q0 to a final state in F ;

� Each state of dual(τ) is bound;

� [dual(τ)] is nonempty.

We consider only reduced R-DTDs where, by the previous definition, it is clear
that [τ ] 6= ∅. Note that for a given R-DTD τ , it is very easy to build dual(τ) and
for each “unprofitable” state qa

� remove the element name a from Σ;

� remove the rule π(a) from π;

� modify the rules containing a in their content models (using standard regular
language manipulation) to produce only words not containing a (see [28], for
more details.)

Finally, we notice that only the last step of the reducing algorithm may depend
on the choice of R. Clearly, an R-DTD and its reduced version describe the same
language.

From a theoretical point of view, R-DTDs do not express more than the local
tree languages [33]. In particular, nFA-DTDs, dFA-DTDs and nRE-DTDs exactly
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capture this class of languages while dRE-DTDs are less expressive [33, 35]. Nev-
ertheless, the last class of types (using deterministic regular expressions [11] and
that does not capture all the local tree languages) is, from a structural point of
view, the closest to W3C DTDs.

In this paper, for a given R-DTD where R stands for dFAs or nFAs (for
shortness, w.l.o.g., and only in examples) we often specify π as a function that
maps Σ-symbols to Σ-nREs (recall that any regular expression of size n can be
transformed into an equivalent ε-free nFA with O(n log2 n) transitions in time
O(n log2 n) [20, 23].)

Finally, an example of dRE-DTD is τ1 = 〈{s1, c}, π1, s1〉 with π1(s1) = c∗ and
π1(c) = ε. In the rest of the paper, we often omit to specify rules such as
π1(c) = ε; i.e., if no rule is given for a label, nodes with this label are assumed
to be (solely) leaves.

2.2.2. R-SDTD types

The following definition generalizes definitions considered in the literature
such as Single-Type Tree Grammars [33] or single-type EDTDs [29], and defined
for analyzing the properties of W3C XML Schema Definitions. Also here, we
define a class of abstractions capturing all of them.

Definition 6. An R-SDTD (standing for single-type extended R-DTD) is a quin-
tuple τ = 〈Σ, Σ̃, π, s̃, µ〉 where

� Σ̃ are the specialized element names;
� 〈Σ̃, π, s̃〉 is an R-DTD on Σ̃ and denoted by dtd(τ);
� µ : Σ̃ → Σ is a mapping from all the specialized element names onto the
set of element names. For each a ∈ Σ, we denote by ã1, . . . , ãn the distinct
elements in Σ̃ that are mapped to a. This set is denoted Σ̃(a);

� Let dual(dtd(τ)) be 〈K, Σ̃, δ̃, q0, F 〉. Build from this dFA the possibly nFA

dual(τ) = 〈K,Σ, δ, q0, F 〉 where for each q, q′ ∈ K and a ∈ Σ, δ(q, a) = q′ iff
there is an element ã ∈ Σ̃ such that δ̃(q, ã) = q′. We require that dual(τ) is
a dFA (this captures the single-type requirement). Also in this case, dual(τ)
defines the vertical language of τ .

A tree t, labeled over Σ, is in [τ ] if and only if there exists a tree t′ ∈ [dtd(τ)]
such that t = µ(t′) (where µ is extended to trees). Informally, we call t′ a
witness for t. Finally, an R-SDTD τ is reduced if and only if dtd(τ) is.

As for R-DTDs, we consider only reduced R-SDTDs.
From a theoretical point of view, R-SDTDs are more expressive than R-DTDs

but do not capture the unranked regular tree languages yet.

2.2.3. R-EDTDs types

The following definition generalizes definitions considered in the literature
such as specialized ltds [6, 35] or EDTDs [29]. Such formalisms (like Relax-NG),
from a structural perspective, express exactly the homogeneous unranked regular
tree languages and are as expressive as unranked tree automata or Regular Tree
Grammars [10].
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Definition 7. An R-EDTD (extended R-DTD) τ is an R-SDTD without the single-
type requirement. More formally, the automaton dual(τ), built as for R-SDTD,
may be here an nFA. The language [τ ] is defined as for R-SDTDs.

2.3. Distributed Documents

In the context of distributed architectures (e.g., P2P architectures), dis-
tributed documents (or distributed trees), such as AXML documents, are XML
documents that may contain embedded function calls. In particular, a dis-
tributed XML document T[t1..tn] can be viewed as a collection of (classical)
XML documents t1..tn brought together by a unique (special) XML document
T[f1,...,fn], the kernel, some of whose leaf-nodes, called function-nodes, play the
role of “docking points” for the external resources f1, . . . , fn. The “activation”
of a node of T having a function as label, say fi, consists in a call to resource
(or function) fi the result of which is still an XML document, say ti. When fi
is invoked, its result is used to extend the kernel T[f1,...,fn]. Thus, each docking
point connects the peer that holds the kernel and invokes the resource fi, and
the peer that provides the corresponding XML document ti. For simplicity of
notation, for labeling a function-node we use exactly the name of the resource
it refers. For instance, the tree T0 = s(a f1 b(f2)) is a kernel having s as root,
and containing two function-nodes referring the external resource f1 and f2.

The extension extT (t1..tn) of T is the whole XML document (without any
function at all) obtained from the distributed document T[t1..tn] by replacing
each node referring resource fi with the forest of XML trees (in left-to-right
order) directly connected to the root of ti. This process is called materialization.
For instance, the extension of kernel T0 would be s(a c(dd) b(d(ef))) in case of
resources f1 and f2 provided trees s1(c(dd)) and s2(d(ef)), respectively.

An interesting task is to associate a type τi (e.g., a W3C XSD document)
to each resource fi in such a way that the XML document ti returned as answer
is valid w.r.t. this type and any materialization process always produces a doc-
ument extT (t1..tn) valid w.r.t. a given global type τ (still specified by the W3C
XSD syntax). A global type and a kernel document represent the (top-down)
design of a given distributed architecture. A collection of types associated to
the function calls in such a design is called a typing. Given a distributed design,
we would like to know whether either a precise typing has some properties or a
typing with some properties does exist. But also, we could directly start from
a kernel T and a typing (bottom-up design) and analyze the properties of the
tree language consisting in each possible extension extT (t1..tn).

More formally, let Σ and Σf be two alphabets, respectively, of element names
(such as s, a, b, c, etc.) and function symbols (such as f , g, etc.). A kernel
document or kernel tree T[f1,...,fn] (or also T (fn), with (fn) denoting a sequence5

of length n) is a tree over (Σ ∪ Σf ) where:

(i) the root is an element node (say s0);

5We denote a finite sequence of objects (x1, . . . , xn) over an index set I = {1, . . . , n} by
(xn) and we often omit the specification of the index set I.
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(ii) the function nodes f1, . . . , fn are leaf nodes;

(iii) no function symbol occurs more than once.

In particular, for each non-leaf node of T , say x, the kernel string child-str(x),
with k ≥ 0 functions, is of the form whfh+1wh+1 . . . fh+kwh+k (for some h
in [1..n]) where wi ∈ Σ∗ for each i ∈ {h, . . . , h + k}, fi ∈ Σf for each i ∈
{h+ 1, . . . , k}, and fi 6= fj for each i 6= j.

We next consider its semantics. It is defined by providing a tree for each
function-node. In particular, an extension ext maps each i in [1..n] to a tree
ti = ext(fi). The extension extT (t1..tn) of a kernel T[f1,...,fn] is obtained by
replacing each fi with the forest of trees (in left-to-right order) directly connected
to the root of ti.

A type τ for a kernel tree T is one of an R-DTD, R-SDTD, orR-EDTD. Given an
extension t1..tn, we say that tree T[t1..tn] satisfies type τ if and only if extT (t1..tn)
does. This motivates requirement (iii) to avoid irregularities: For instance, in
the kernel T1 = s(f f) the children of s in any extension of T1 are of the form
ww for some word w. But since this is not a regular language, the type of
T1 cannot be defined by none of the three adopted formalisms. Although we
disallow the same function to appear twice, several functions may share the
same type. Also, even if for labeling a function-node we use exactly the name
of the resource it refers (for simplicity of notation), this does not prohibit a
resource to provide two XML subtrees to be attached to the kernel. In fact,
different names (function symbols) can be associated to the same resource still
preserving extensions from irregularities.

We introduce typings to constrain the types of the function calls of a kernel
document. A typing for a kernel tree T (fn) is a positional mapping from the
functions in (fn) to a sequence (τn) of types (schema documents). Now, as we
replace each fi (in the extensions of T ) with a forest of XML documents then,
for each type τi associated to fi, we actually use a schema document containing
an “extra” element name, say si, being only the label of the root in all the trees
in [τi].

Definition 8. We denote by extT (τn) the tree language consisting of all possible
extensions extT (t1..tn) where ti |= τi (ti is valid w.r.t τi) for each i.

Definition 9. We denote by T (τn) the nFA-EDTD (or nRE-EDTD) constructed
from T and (τn) in the obvious way such that [T (τn)] = extT (τn).

In Section 3.1 we will show precisely how to build T (τn) in polynomial time,
prove that the construction is semantically correct, and establish that the size of
T (τn) is purely linear in the size of T and (τn). Let us illustrate for now the issues
with an example. Observe, for instance, that for the tree T = s0(a(b)f1a(c)),
no matter which type τ1 is, there is no R-DTD-typing expressing the language
extT (τ1). Indeed, this is even the case for T = s0(a(b)a(c)) with no function at
all. If we consider the tree T = s0(a(f1)a(f2)), then the typing [τ1] = {s1(b)},
[τ2] = {s2(c)} prohibits that extT (τ1, τ2) is expressible by anR-DTD-type because
[T (τn)] = {s0(a(b)a(c))} entailing that the content model of b is non-regular;
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while the typing [τ1] = {s1(b)}, [τ2] = {s2(b)} allows that, because [T (τn)] =
{s0(a(b)a(b))} entailing that all the content models of s0, a and b are regular
languages, {aa}, {b} and ∅, respectively. Such situations motivated Definition
9.

Before concluding this section, we adapt the previous definitions to strings
in the straightforward way. (We will often use reductions to strings problems in
the paper.) Let w(fn) = w0f1w1 . . . fnwn be a kernel string. For typing strings,
we use R-types where R ∈ {nFA, dFA, nRE, dRE}. A typing for w(fn) is still a
positional mapping from the functions in (fn) to a sequence (τn) of R-types. By
extw(τn) we still denote the string language consisting of all possible extensions
of w, and by w(τn) the nFA (or nRE) constructed from w and (τn) is such a way
that [w(τn)] = extw(τn).

We will use in our proofs a generalization to “Boxes”. A kernel box B(fn) =
B0f1B1 . . . fnBn is, here, a finite regular language over (Σ∪Σf ) where f1, . . . , fn
are as above, and each Bi is a box (of a fixed width) over Σ. With B(τn)
we denote the nFA (or nRE) constructed from B and (τn) is such a way that
[B(τn)] = extB(τn).

2.4. The Typing Problems

In this section, we introduce the notion of distributed XML design, define
the design problems that are central to the present work, and give the overview
of the complexity results. We consider two different approaches, bottom-up and
top-down, according to whether the distributed design, other than a kernel tree,
consists of a typing or a target type, respectively.

Definition 10. Let S be a schema language, and T[f1,...,fn] be a kernel docu-
ment. We call S-design (or just design) one of the following:

� D = 〈(τn), T[f1,...,fn]〉 where (τn) is an S-typing. This is bottom-up design.

� D = 〈τ, T[f1,...,fn]〉 where τ is a (target) S-type. This is top-down design.

Intuitively, given a bottom-up design, one would like to find a global type
that captures the typing of the global document. On the other hand, given a
top-down design, one would like to find types for the local documents that will
guarantee the global type.

With the following definition, we start the bottom-up analysis. Notice that
the concepts used for bottom-up design will be also useful when we consider
top-down design.

Definition 11. Given an S-design D = 〈(τn), T 〉, the S-typing (τn) is S-
consistent with T (simply consistent when S is understood) if there exists
an S-type τ such that [τ ] = extT (τn), in other words, if extT (τn) is definable by
some S-type. This problem (deciding whether an S-typing is S-consistent with
a kernel tree) is called cons[S].
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We will denote by typeT,S(τn), or typeT (τn) when S is understood, the S-
type when it exists such that [typeT (τn)] = extT (τn). Notice that if both S and
T are fixed, then typeT (τn) plays the role of a function from the set of all possible
S-typings of length n to a set of certain S-types. According to every possible
decision-answer of cons[S] (where T is now fixed), such a function might be
always definable, never, or only for some S-typing. Finally, the complexity of
deciding cons[S] or computing typeT (τn) (with an estimation, w.r.t. T (τn), of
its possible size), may vary considerably due to S.

Table 2 summarizes the complexity results of cons[S]. We vary S among
R-DTDs, R-SDTDs and R-EDTDs, for various kinds of R. In all cases but dRE, we
get tight bounds. For DTDs and SDTDs with dRE, we provide nonmatching lower
and upper bounds. The table also shows the size that typeT (τn) may have in
the worst case. Again this is given precisely for all cases but dRE. For DTDs and
SDTDs with dRE, we provide nonmatching bounds.

In the next sections, we systematically analyze the complexity of this prob-
lem by varying S among R-DTDs, R-SDTDs and R-EDTDs, and we will consider
typeT (τn) for each of these schema languages. We next give an example to
illustrate some of the main concepts introduced.

Table 2: Complexity results of cons[S] compared with the worst-case-optimal size of typeT (τn)
with respect to m = ‖T (τn)‖.

-DTDs -SDTDs -EDTDs

PSPACE-complete PSPACE-complete DTIME(O(1))
nFA

Θ(m) Θ(m) Θ(m)

PSPACE-complete PSPACE-complete DTIME(O(1))
nRE

Θ(m) Θ(m) Θ(m)

PSPACE-complete PSPACE-complete DTIME(O(1))
dFA

Θ(2m) Θ(2m) Θ(m2)

PSPACE-hard ! EXPTIME PSPACE-hard ! EXPTIME DTIME(O(1))
dRE

Ω(2m) ! O(22
m

) Ω(2m) ! O(22
m

) Θ(m)

Example 1. Consider the kernel T = s0(a f1 c f2) and the pair τ1 = 〈{s1, b}, π1, s1〉
and τ2 = 〈{s2, d}, π2, s2〉 of dRE-DTD-types, with π1(s1) = b∗ and π2(s2) = d∗.
The activation of both f1 and f2 may return trees s1(bb) and s2(d), respec-
tively. These trees can be plugged into T producing the extension s0(abbcd).
The tree language obtained by considering each possible extension of T is
extT (τ1, τ2) = {s0(abncdm) : n,m ≥ 0}. Now, we have:

typeT (τ1, τ2) = 〈{s0, a, b, c, d}, π, s0〉
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where π(s0) = a b∗c d∗ and all the other element names other that s0 are leaves.
Finally, (τ1, τ2) is dRE-DTD-consistent with T .

We now define the top-down design problems. But before, we introduce
some straightforward notation. Let τ and τ ′ be two types. We say that:

� τ ≡ τ ′ (equivalent) iff [τ ] = [τ ′]

� τ ≤ τ ′ (smaller or equivalent) iff [τ ] ⊆ [τ ′]

� τ < τ ′ (smaller) iff [τ ] ⊂ [τ ′]

and also that, given two typings (τn) and (τ ′n):

� (τn) ≡ (τ ′n) iff τi ≡ τ ′i for each i

� (τn) ≤ (τ ′n) iff τi ≤ τ ′i for each i

� (τn) < (τ ′n) iff (τn) ≤ (τ ′n) and τi < τ ′i for some i

Definition 12. Given an S-design D = 〈τ, T 〉, we say that a typing (τn) is:

� sound if extT (τn) ⊆ [τ ];

� maximal if it is sound, and there is no other sound typing (τ ′n) s.t. (τn) <
(τ ′n);

� complete if extT (τn) ⊇ [τ ];

� local if extT (τn) = [τ ], namely if it is both sound and complete;

� perfect if it is local, and (τ ′n) ≤ (τn) for each other sound typing (τ ′n);

� D-consistent if it is an S-typing which is S-consistent as well.

Remark 1. It should be clear that for a given S-design D = 〈τ, T 〉 we could
have sound typings that are not D-consistent. But, note that, it is even possible
to have a sound typing where T (τn) does not define a regular tree language.
Consider the design D where T = s0(f1) and τ = s0(a

+b+). Clearly, the typing
[τ1] = {s1(a

nbn) : n > 0} is sound but [T (τ1)] is not regular. Anyway, we
prove in Section 6.1 (for strings, but the results generalizes to trees due to our
reductions) that if an S-design admits a sound typing (τn), then it also admits
a sound nFA-EDTD-typing (τ ′n) such that (τn) ≤ (τ ′n).

Also, by definition of maximality, note that for instance, for a given dRE-DTD-
design D, a dRE-DTD-typing (τn) is not maximal even if there is a sound nFA-DTD-
typing (τ ′n) for D such that (τn) < (τ ′n). One could have some objection to such
a definition. Anyway, Martens et al. [31] proved that whenever the illustrated
situation happens, then there is also a dRE-DTD-typing (τ ′′n ) such that (τn) <
(τ ′′n ).

Clearly, local typings present the advantage of allowing a local verification
of document consistency (soundness and completeness by definition). Also, no
consistent document is ruled out (completeness). Maximal locality guarantees
that in some sense, no unnecessary constraints are imposed to the participants.
Finally, perfect typings are somehow the ultimate one can expect in terms of
not imposing constraints to the participants. Many designs will not accept a
perfect typing. However, there are maximal sound typings which are not local.
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This is not surprising as there are designs that have at least a sound typing but
do not allow any local at all, and clearly, if there is a sound typing, then there
must also exist a maximal sound one. We will see examples that separate these
different classes further. But before, we make an observation on D-consistency
and formally state the problems studied in the paper.

Let S be any schema language among R-DTDs, R-SDTDs, and R-EDTDs,
where R ∈ {nFA, dFA, nRE, dRE}. Whenever we consider a top-down S-design
D = 〈τ, T 〉, we require that a typing (τn) for D has to be D-consistent, namely
both T (τn) is S-consistent (it has an equivalent S-type) and each τi is an S-
type. In order to verify such a condition, we can exploit the techniques that we
have developed for bottom-up design. In particular, it is not hard to see that if
(τn) is not S-consistent, then it can not be local. Thus, our approach aims at
isolating problems concerning locality from those concerning consistency.

Definition 13. loc[S], ml[S], perf[S] are the following decision problems. Given
an S-design D = 〈τ, T 〉 and a D-consistent typing (τn), is (τn) a local, or max-
imal local, or perfect typing for D, respectively?

Definition 14. ∃-loc[S], ∃-ml[S], ∃-perf[S] are the following decision prob-
lems. Given an S-design 〈τ, T 〉, does there exist a local, or maximal local, or
perfect D-consistent typing for this design, respectively?

We similarly define the corresponding word problems (S is simply R). We
have loc[R], ml[R], perf[R], ∃-loc[R], ∃-ml[R] and ∃-perf[R]. Finally, we will
use in proofs box versions of the problems, ∃-locB

[R], ∃-ml
B
[R] and ∃-perfB[R].

Remark 2. In this paper, although we analyze all the three defined schema
languages (R-DTDs, R-SDTDs, and R-EDTDs) for top-down designs, after pro-
viding reductions from trees to strings, we specialize the analysis to the case of
R = nFA. More tractable problems may be obtained by considering determin-
istic content models or restricted classes of regular expressions [18, 27] as made
by Martens et al. [31]. Also, notice that we pay more attention to maximum
locality rather than to maximality proper. In fact, for the latter notion, the ex-
istence problem is trivial. Moreover, the complexity of the verification problem
essentially coincides for both notions. Nevertheless, one could be interested in
a maximal sound typing when, for some reason, the design can not be improved
and does not admit any local typing. There could be even cases where a local
typing does not exist but, there is a unique maximal sound typing comprising
any other possible sound typing, a sort of quasi-perfect typing. For instance,
the design T = s(a f1) and τ = s(ab∗ + d) has such a property. Our techniques
can be easily adapted to these cases, too.

Table 3 gives an overview of the complexity results for the typings problems
previously defined. We will see in Section 4 that, for R-DTDs and R-SDTDs, each
problem on trees is logspace-reducible to a set of problems on strings (thus, it
suffices to prove the results in Table 3 for words) and that, for R-EDTDs, the
problems on trees depend on the problems on boxes in a more complex manner.
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In particular, rowD includes two problems that are actually the same (they only
differ if R = dREs, as shown in Martens et al. [31]). Each number in brackets
refers either to the corresponding statement/proof in the paper (if rounded) or
the paper where the particular result has already been proved (if squared).

Table 3: Complexity results in case of top-down design

[1] [2]

nFAs / nFA-DTDs / nFA-SDTDs nFA-EDTDs

[A] loc PSPACE-complete (5.3) EXPTIME-complete (4.19)

in PSPACE [31] ∨ (7.1) EXPTIME-hard (4.18)[B] ml
PSPACE-hard (5.2) in 2-EXPSPACE (7.10)

EXPTIME-hard (4.18)[C] perf PSPACE-complete (6.7)
in coNEXPTIME (7.9)

PSPACE-hard (5.4) EXPTIME-hard (4.9)[D] ∃-loc/∃-ml
in EXPSPACE [31] ∨ (6.11) in 2-EXPSPACE (7.4)

EXPTIME-hard (4.9)[E] ∃-perf PSPACE-complete (6.8)
in coNEXPTIME (7.8)

We now present examples that separate the different design properties of
typings.

Example 2. Let τ = 〈{s, a, b, c}, π, s〉 be an nRE-DTD where π(s) = a∗bc∗, and
T = s(f1f2) be a kernel tree. It is easy to see that both s1(a

∗bc∗), s2(c
∗) and

s1(a
∗), s2(a

∗bc∗) are local typings as a∗bc∗c∗ ≡ a∗a∗bc∗ ≡ a∗bc∗. In fact, they
are also maximal local typings, and so there is no perfect typing for this design.
Observe that, for instance, s1(a?), s2(a

∗bc∗) is still a local typing that, however,
is not maximal because it imposes unnecessary constraints to the local sites. If
desired, one could leave them more freedom, e.g., type the first function with
a∗.

Example 3. Let τ = s(a∗bc∗) be a type and T = s(f1bf2) be a kernel tree. The
typing s1(a

∗), s2(c
∗) is perfect. This has to be an excellent typing since there is

no alternative maximal local typing.

Example 4. Let τ = (ab)∗ be a type and T = s(f1f2) be a kernel tree. The
typing s1((ab)

∗), s2((ab)
∗) is a unique maximal local but it is not perfect. Con-

sider, in fact, typing s1(a), s2(b). It is sound but (a, b) ≤ ((ab)∗, (ab)∗) does not
hold. Clearly, a perfect typing cannot exist.

Example 5. Let τ = (ab)+ be a type and T = s(f1f2) be a kernel tree. There
are three maximal local typings:

s1((ab)
∗), s2((ab)

+) s1((ab)
∗a), s2(b(ab)

∗) s1((ab)
+), s2((ab)

∗)

according to whether either s1, s1(a), or none of them may belong to each
possible ext(f1), respectively.
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The following theorem completes the comparison of the properties of typing
we study. (Note that its converse is not true by Example 4.)

Theorem 2.1. Every perfect typing is unique maximal local.

Proof. Consider a perfect typing (τn) for T (fn) and τ . We observe that (τn)
is local, by definition. Moreover, by definition, for each other sound (so also
local) typing (τ ′n), we have (τ ′n) ≤ (τn). The typing, (τn) is maximal because
there exists no other sound typing (τ ′′n ) such that (τn) < (τ ′′n ), and it is unique
because there is no another local typing (τ ′′n ) such that for some index i and
some string w, then w ∈ [τ ′′i ] but w /∈ [τi].

3. Bottom-up design

In this section, we consider bottom-up design.

3.1. R-EDTDs typing

Let T (fn) be a kernel and (τn) be an R-EDTD-typing where each τi =
〈Σi, Σ̃i, πi, s̃i, µi〉. We next present the construction of T (τn), that (to be as
general as possible) is an nFA-EDTD. We use the following notations:

1. Σ0 contains the element names in T (the labels but not the functions);

2. Σ̃0 contains a specialized element name ãx0 , for each a ∈ Σ0 and each node
x of T with label a.

3. s0 is the root of T ;

4. si is the root of trees in [τi] for each i.

We also make without loss of generality the following assumptions:

1. Σ̃i ∩ Σ̃j = ∅, for each i, j, i 6= j. (Note that Σi ∩ Σj 6=i may be nonempty.)

Consider the nFA-EDTD T (τn) = 〈Σ, Σ̃, π, s̃0, µ〉 defined as follows:

1. Σ = Σ0 ∪ (Σ1 − {s1}) ∪ . . . ∪ (Σn − {sn});

2. Σ̃ = Σ̃0 ∪ (Σ̃1 − {s̃1}) ∪ . . . ∪ (Σ̃n − {s̃n});

3. s̃0 = s̃x0 , where x is the root of T ;

4. µ(ã) = a for each ã ∈ Σ̃;

5. π(ãx0 ) = nFA({ε}) for each leaf-node x of T with label a ∈ Σ0;

6. π(ãi) = nFA([πi(ãi)]) for each ãi ∈ Σ̃ with i in [1..n]

7. for each node x of T with label a and children y1 . . . yp, we define π(ã
x
0) =

nFA(L1 . . . Lp) where each language Lk is

� {b̃yk

0 } if yk has label b ∈ Σ;
� [πi(s̃i)] if yk is labeled by fi.
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The previous algorithm clearly runs in polynomial time by scanning the tree
T and preforming some easy regular language manipulation. Also, the size of
T (τn) is linear in the size of the input pair T and (τn). This is clearly true
for R ∈ {nFA, dFA} where only a linear number of ε-transitions is required. If
R ∈ {nRE, dRE}, it is also true because the translation from regular expressions
to nFAs produce at most an n log2 n blow up but because in these cases we
might define T (τn) directly as an nRE-EDTD-type of actual linear size. These
considerations immediately yield the following proposition:

Proposition 3.1. Given T (fn) and (τn), the nFA-EDTD-type T (τn) can be con-
structed in polynomial time, and its size is linear in the input pair.

Now we prove that our construction preserves the semantics of extT (τn).

Theorem 3.2. Given a kernel T (fn) and an R-EDTD-typing (τn), [T (τn)] =
extT (τn) holds for each possible R.

Proof. By construction of T (τn), we assume the specialized element names in
each type τi of (τn) to be different (in fact, they could always be renamed
appropriately before building T (τn)). Also, the specialized element names added
for giving witnesses to the nodes of T labeled with an element name belong to
a fresh set (it is Σ̃0). This means that there is no “competition” among all of
these witnesses. So we just create new content models that exactly allow all
and only the trees being valid for each τi and the non-function nodes that are
already in T . But this is exactly the semantic definition of extT (τn).

Corollary 3.3. All the problems cons[nFA-EDTD], cons[dFA-EDTD], cons[nRE-EDTD],
and cons[dRE-EDTD] always have a yes answer. Thus, they are decidable in constant
time.

Proof. For cons[nFA-EDTD], cons[dFA-EDTD], and cons[nRE-EDTD] the decision-answer
is always “yes” because each content model in T (τn) is, respectively, already
an nFA, expressible by a dFA, and expressible by an nRE.

For cons[dRE-EDTD] the decision-answer is always “yes” as well, but the reason
is less obvious. In general, there are regular languages not expressible by dREs.
Anyway, in our case, by considering how π is built in T (τn), we are sure that
each content model has an equivalent dRE. In fact, π(ãx0) = ε (step 4) is already
a dRE; π(ãi) = nFA([πi(ãi)]) (step 5) has an equivalent dRE because πi(ãi) is
already a dRE by definition; π(ãx0 ) = nFA(L1 . . . Lp) (step 6) is expressible by a
dRE because each Lk originates itself from a dRE and does not share any symbol
with any Lj 6=k.

By Corollary 3.3, we now give a safe and easy construction of typeT (τn) from
T (τn) according to the schema language S used for (τn).

� For nFA-EDTDs, we choose typeT (τn) = T (τn);
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� For dFA-EDTDs, we modify T (τn) by computing the ε-closure for each content
model. Notice that this can be done in polynomial time and the size of
typeT (τn) is at most quadratic (and there are cases where this could really
happen) in the size of T (τn) because each content model originates from
dFAs that do not share any symbol.

� For nRE-EDTDs or dRE-EDTDs, we modify the content models of T (τn) as
follows: each π(ãi) = πi(ãi) and each π(ãx0) = R1 . . . Rp where the generic

Rk is either b̃yk

0 or πi(s̃i) (compare with the T (τn) definition). Also here the
size of typeT (τn) is linear in the size of T (τn) due to the previous corollary.

3.2. R-SDTDs typing

For R-SDTDs we also use T (τn) as defined for R-EDTDs because any R-SDTD
can be seen as a special R-EDTD and the algorithm for building T (τn) still works
with no problem. At this point, it should be clear that T (τn) can easily not be
an R-SDTD because of our assumptions (Σ̃i ∩ Σ̃j 6=i = ∅). But, in this case it
is also possible that T (τn) does not have an equivalent R-SDTD. Indeed, T (fn)
may contain some pattern that already prohibits obtaining an R-SDTD for any
possible typing (τn), or it may contain a function-layout that prohibits obtaining
an R-SDTD for some (τn). So, we have to discriminate when this is possible or
not. Such a problem (deciding whether an R-EDTD has an equivalent R-SDTD)
is in general (when R stands for nREs or nFAs) an EXPTIME-complete problem
[29]. Nevertheless, we will show that, in our case, it is almost always “easier”
and in particular that, in general, it depends on the complexity of equivalence
between tree-languages specified by nFA-SDTDs, which, in turn depends on the
complexity of equivalence between string-languages specified by nFAs. Before
giving proofs of that, we illustrate the definition of distributed document using
nRE-SDTD-types.

Example 6. Let T = s0(f1 a(b f2) c) be a kernel tree and τ1, τ2 be two
nRE-SDTD-types describing respectively b · d+ · a(b+)

∗
and b∗. In the nRE-SDTDs

syntax, τ1 = 〈{s1, a, b, d}, {s̃1, ã1, b̃1, d̃1}, π1, s̃1, µ1〉 and τ2 = 〈{s2, b}, {s̃2, b̃2},
π2, s̃2, µ2〉 two types where:

� Σ0 = {s0, a, b, c}; Σ̃0 = {s̃10, ã
3
0, b̃

4
0, c̃

6
0, }, where {1, 3, 4, 6} are the nodes of T

with label in Σ0 (based on a preorder traversal of T ;)

� π1(s̃1) = b̃1 · d̃
+
1 · ã∗1; π1(ã1) = b̃+1 ; π2(s̃2) = b̃∗2; π1(b̃1) = π1(d̃1) = π2(b̃2) = ε;

� µ1 and µ2 are clear;

For instance, the activation of both f1 and f2 may return trees s1(bda(bbb)) and

s2(bb), respectively. In general, the resulting type is s0(b ·d+ ·a(b+)
+
· c). It can

be described by an nRE-SDTDs. Thus, (τ1, τ2) is an nRE-SDTDs-typing consistent
with T .

Now we need to introduce some definitions and mention previous results.

Lemma 3.4. Let τ = 〈Σ, Σ̃, π, s̃, µ〉 be an R-SDTD. For each ã ∈ Σ̃, also
τ(ã) = 〈Σ, Σ̃, π, ã, µ〉 is.
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Proof. By definition of R-SDTD (in the worst case, if τ is reduced, then τ(ã)
may be not.)

Definition 15 ([29]). A tree language L is closed under ancestor-guarded
subtree exchange if the following holds. For each t1, t2 ∈ L, and for each x1, x2

in t1, t2, respectively, with anc-strt1(x1) = anc-strt2(x2), the trees obtained by
exchanging treet1(x1) and treet2(x2) are still in L.

Lemma 3.5 ([29]). A tree language is definable by a R-SDTD iff it is “closed
under ancestor-guarded subtree exchange” and each content model is defined by
an R-type.

Remark 3. Intuitively, this means that the witness associated by an R-SDTD-
type τ to a node x of a tree t ∈ [τ ] only depends on the string anc-strt(x). This is
consistent with the definition of dual(τ) as a dFA. In fact, the (unique) sequence
of states that dual(τ) scans for recognizing anc-strt(x) (except the initial one)
exactly gives the unique witness to each node of t in the path from the root to
x.

Proposition 3.6. [11]

1. There is an equivalent dRE for each one-unambiguous regular language;

2. Let A be a minimum dFA. There is an algorithm, that runs in time
quadratic in the size of A, deciding whether [A] is one-unambiguous;

3. There are one-unambiguous regular languages where the smallest equiva-
lent dRE is exponential in the size of the minimum equivalent dFA. (This
is worst-case optimal;)

4. There are one-unambiguous regular languages where some nRE is exponen-
tially more succinct than the smallest equivalent dRE. In particular, the
language {(a+ b)mb(a+ b)n : m ≤ n, n > 0} has such a property;

5. The set of all one-unambiguous regular languages is not closed under con-
catenation.

Corollary 3.7.

(1) Problem one-unamb[nRE] is in EXPTIME.

(2) For each nRE defining a one-unambiguous grammar, there exists an equiva-
lent dRE which is, at most, doubly exponential in size. (An exact bound is
still open.)

(3) There are pairs of dREs the concatenation of which, by a string separator,
defines a one-unambiguous language such that the smallest equivalent dRE
has an exponential size.

Proof. (1): Let r be an nRE. Build, in polynomial time from r, an equivalent
nFA A. Run the quadratic-time algorithm described in [11] on the minimum
dFA (at most exponentially larger) equivalent to A.

(2): By Proposition 3.6, the dRE r′ that we construct from the dFAA, introduced
in (1), has at most size exponential in the size of A. Thus, the size of r′ is at
most doubly exponential in the size of r.
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(3): Let r1 = (a+ b)m and r2 = (a+ b)n be to nREs, with m ≤ n. By definition,
it is clear that they are also both dREs linear in n. Consider the new nRE

r = r1br2. By the previous proposition, r defines a one-unambiguous language
but its smallest equivalent dRE is exponentially larger.

Lemma 3.8 ([7]). Problem one-unamb[nRE] is PSPACE-hard.

Definition 16. concat-univ[R] is the following decision problem. Let Σ be
an alphabet. Given two R-types τ1 and τ2 over Σ, is [τ1] ◦ [τ2] = Σ∗.

Lemma 3.9 ([25, 31, 32]). concat-univ[R] is PSPACE-complete for each R ∈
{nFA, nRE, dFA, dRE}.

After introducing some necessary definitions and results, we are ready for
proving the following theorem. It is fundamental for pinpointing the complexity
of cons[R-SDTDs], for giving size-bounds about typeT (τn) and the guidelines for
constructing it.

Theorem 3.10. Let T (fn) be a kernel and (τn) be an R-SDTD-typing.

1. If R ∈ {nFA, nRE} (nondeterministic and closed under concatenation),
then cons[R-SDTD] is polynomial-time Turing reducible to equiv[R-SDTD] and
typeT (τn) is not larger than T (τn);

2. If R = dFA (deterministic and closed under concatenation), then prob-
lem cons[R-SDTD] is polynomial-time Turing reducible to equiv[nFA-SDTD] and
typeT (τn) has unavoidably a single-exponential blow up w.r.t. T (τn) in the
worst case;

3. If R = dRE (not closed under concatenation), then cons[R-SDTD] is polynomial-
space Turing reducible to one-unamb[nRE]. There are cases where the size
of typeT (τn) is, at least, exponential in the size of T (τn). A doubly ex-
ponential size is sufficient in the worst case. (The exact bound is still
open.)

Proof. First of all we observe that, by construction, the only content models of
T (τn) that might not satisfy the single-type requirement are those related to the
witnesses of the non-leaf nodes of T . More formally, let x be any non-leaf node
of T the label of which is denoted by a, the content model π(ãx0) of its (unique)
witness ãx0 is the only one(s) that may contain some conflict. All other content
models either refer to leaves (ε is single-type) or come from some τi (that is
already single-type.)

Case 1. Proof Idea: Consider (τn) being simply an R-EDTD. Build T (τn)
and (from it) typeT (τn) = 〈Σ, Σ̃, π, s̃0, µ〉 (both in polynomial time as described
in Section 3.1) and try to “simplify” the latter (in a bottom-up way starting
from the nodes of T having only leaves as children and going on to the root) for
satisfying the single-type requirement. If the algorithm does not fail during its
run (cons[R-SDTD] admits a “yes” answer), then the resulting typeT (τn) is now
anR-SDTD. During the proof we only make use of the “ancestor-guarded subtree
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exchange” property, and so, by Lemma 3.5, we can conclude that if we cannot
simplify typeT (τn), then it does not have an equivalent R-SDTD. Moreover, due
to the simplification process that does not change the structure of T (τn) but
only merges some specialized element names, then the resulting type is at most
as large as the original one. Finally, to check the subtree exchange property we
only use equivalence between R-SDTDs and the number of performed steps is
clearly polynomial in the size of T (τn) witch, by Proposition 3.1, is polynomial
in T and (τn).

More formally, for each node x of T having only leaves as children and of
course an element name as label, say a, and for each pair of children y 6= z of
x, do:

1. If both y and z are not function nodes and have the same label, say b. As
π(b̃y0) = π(b̃z0) = ε (by definition) we can consider hereafter, by Lemma
3.5, b̃y0 and b̃z0 the same element.

2. If only one of the two, say y, has an element name as label, say b, while
z has a function as label, say fi, and πi(s̃i) contains in its specification
an element b̃i (at most one, as τi is already an R-SDTD), by Lemma 3.5,
if [typeT (τn, b̃i)] = {b()}, then we can consider hereafter, b̃i and b̃y0 the
same element; otherwise we can conclude that typeT (τn) does not have an
equivalent R-SDTD.

3. Finally, if both y and z are function nodes having label fi and fj , respec-
tively, for each element name in Σ, say b, if both πi(s̃i) and πj(s̃j) contain

in their specifications the elements b̃i and b̃j (at most one for each of

them, as τi and τj are already R-SDTD), by Lemma 3.5, if [typeT (τn, b̃i)] =

[typeT (τn, b̃j)] (by construction, this can be done by deciding whether the

two R-SDTDs τi(b̃i) and τj(b̃j) are equivalent), then we can consider here-

after, b̃i and b̃j the same element; otherwise if for some b̃i and b̃j this is not
true, we can conclude that typeT (τn) does not have an equivalent R-SDTD;

If the corresponding condition is satisfied for each y and z, then we can conclude
that π(ãx0) complies with the single-type requirement, that typeT (τn, ã

x
0) has an

equivalent R-SDTD (obtained by applying the previous steps), and that it can
be used for checking equivalences when we consider the parent of x, its children
and (some modifications of) the three previous steps (see further.)

If typeT (τn, ã
x
0) has an equivalent R-SDTD for each considered node x, then

the next iteration considers each node x′ of T having only leaves as children
or a node already analyzed. We perform Step 3 exactly as above, while Step
1 or Step 2 with the following trivial changes. Let y be, now, a non-leaf node
(instead of a leaf one):

1′. If both y and z are not function nodes and have the same label, say b. By
Lemma 3.5, if [typeT (τn, b̃

y
0)] = {b()} we can consider hereafter, b̃y0 and b̃z0

the same element; otherwise we can conclude that typeT (τn) does not have
an equivalent R-SDTD;

2′. If only one of the two, say y, has an element name as label, say b, while
z has a function as label, say fi, and πi(s̃i) contains in its specification an

25



element b̃i (at most one, as τi is already an R-SDTD), by Lemma 3.5, if
[typeT (τn, b̃i)] = [typeT (τn, b̃

y
0)], then we can consider hereafter, b̃i and b̃y0

the same element; otherwise we can conclude that typeT (τn) does not have
an equivalent R-SDTD.

Finally, if we reach the root of T and after checking equivalences on its chil-
dren we can conclude that π(s̃0) complies with the single-type requirement,
then typeT (τn, s̃0) = typeT (τn) is now (after merging the prescribed specialized
element names) an R-SDTD.

Case 2. If R = dFA then, when we merge some specialized element names
in the same content model, we can obtain an nFA. So, we can still invoke the
equiv[nFA-SDTD] problem but the size of typeT (τn) may be exponential as we want
it to be a dFA-SDTD, and there are cases for which this may happen already
by concatenating two dFAs [43]. Given that, the blowup cannot be larger than
single-exponential, this bound is optimal.

Case 3. If R = dRE then, when we merge some specialized element names
in the same content model, we can obtain (due to the concatenation and by
Proposition 3.6) an nRE that may not be expressible by a dRE. We can still
invoke the equiv[nRE-SDTD] problem (as necessary condition) but we also have to
invoke the one-unamb[nRE] problem (at least as hard as the first one). Notice
that this new check does not compromise the soundness of the algorithm. In fact,
for each possible dRE-SDTD (if any) equivalent to typeT (τn) the unique witness
that can be assigned to x, due to Lemma 3.5, must define the same language as
π(ãx0) by applying µ to them. Finally, if both the two decision problems answer
yes, then we can consider a new iteration of the previous algorithm. In case that
each content model has an equivalent dRE specification and we reach the root
of T , we can conclude that typeT (τn) is now a dRE-SDTD. By Proposition 3.6,
there are cases where typeT (τn) may require, at least, single-exponential size.
By Corollary 3.7, a doubly exponential size is sufficient in the worst case.

We now have the following result:

Corollary 3.11.

(1) Problems cons[nRE-SDTD] and cons[nFA-SDTD] are PSPACE-complete;

(2) Problem cons[dFA-SDTD] is PSPACE-complete;

(3) Problem cons[dRE-SDTD] is both PSPACE-hard and in EXPTIME;

Proof. Membership. For (1) and (2) consider that both equiv[nRE-SDTD] and
equiv[nFA-SDTD] are feasible in PSPACE [29]. While for (3) we also consider that
one-unamb[nRE] is doable in EXPTIME, by Corollary 3.7.

Hardness. For (1) we know that both equiv[nRE-SDTD] and equiv[nFA-SDTD] are
also PSPACE-hard [29].

For (2) and (3) we directly consider a reduction from concat-univ[R] (PSPACE-hard,
by Lemma 3.9) to problem cons[R-SDTD] (R ∈ {dFA, dRE}). In particular, let A1,
A2 be two R-types, we consider the consistency problem for the kernel tree
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T = s(a(f1f2) a(f3)) and the R-SDTDs typing (τ1, τ2, τ3) where the trees in
τ1, τ2 have only one level other than the root, π1(s̃1) = A1, π2(s̃2) = A2, and
[π3(s̃3)] = Σ∗. It is easy to see that (τ1, τ2, τ3) is consistent with T if and only
if [A1] ◦ [A2] = Σ∗.

We conclude this section with a remark.

Remark 4. The exponential blow-up affecting typeT (τn) may suggest that
there are cases for which it may be better to store an XML document in a
distributed manner keeping each part valid w.r.t. its local (and small) type τi
rather than validate the whole document w.r.t. a very large type.

3.3. R-DTDs typing

Even for R-DTDs we use T (τn) as defined for R-EDTDs. But here the algo-
rithm we introduced for R-EDTDs does not work any more because an R-DTD-
typing is structurally different from an R-SDTD or an R-EDTD.

Let T be a kernel and (τn) be an R-DTD-typing. Before building T (τn)
we construct, from (τn), an equivalent R-SDTD-typing (τ ′n) as follows. Let
τi = 〈Σi, πi, si〉 be the ith type in (τn). Consider the R-SDTD-type τi =
〈Σi, Σ̃i, π

′
i, s̃i, µi〉 defined as follows:

� ã ∈ Σ̃i iff a ∈ Σi;

� µi is a bijection between Σ̃i and Σi;

� π′
i(ã) = µ−1(πi(a)).

The two types are trivially equivalent. So, we can build the new nFA-EDTD-
type (or nRE-EDTD-type), representing extT (τn), by using (τ ′n). But since the
overhead of constructing (τ ′n) is completely negligible, we still denote it by T (τn)
instead of T (τ ′n).

Also in this case we would like to decide whether T (τn) has an equiva-
lent R-DTD-type or not, and even the general problem (when R stands for
nREs or nFAs) of deciding whether an R-EDTD has an equivalent R-DTD is
EXPTIME-complete [29]. As for R-SDTD, we will show that in our settings we
can do better.

Definition 17 ([35]). A tree language L is closed under subtree substitu-
tion if the following holds. Whenever for two trees t1, t2 ∈ L with nodes x1 and
x2, respectively, labt1(x1) = labt2(x2), then the trees obtained, from t1 and t2,
by exchanging treet1(x1) and treet2(x2) are still still in L.

Lemma 3.12 ([35]). A tree language is definable by an R-DTD iff it is “closed
under subtree substitution” and each content model is defined by an R-type.

The following theorem (with the related corollary) concludes the set of results
for the bottom-up design problem, and gives the last guidelines for constructing
typeT (τn) or evaluating its size.

Theorem 3.13. Let T (fn) be a kernel and (τn) be an R-DTD-typing.
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1. If R ∈ {nFA, nRE}, then cons[R-DTD] is polynomial-time Turing reducible
to equiv[R-SDTD] and typeT (τn) is linear in T (τn);

2. If R = dFA, then cons[R-DTD] is polynomial-time Turing reducible to equiv[nFA-SDTD]

and typeT (τn) has unavoidably a single-exponential blow up w.r.t. T (τn)
in the worst case;

3. If R = dRE, then cons[R-DTD] is polynomial-space Turing reducible to
one-unamb[nRE] and there are case where typeT (τn) is, at least, exponen-
tially larger than T (τn). A doubly exponential size is sufficient in the worst
case. (The exact bound is still open.)

Proof. Build the R-SDTD-typing (τ ′n) from (τn) as said before. Perform, from
T and (τ ′n), the decision-algorithm defined in the proof of Theorem 3.10 by
enforcing, due to Lemma 3.12, the additional constraint at the end of each
macro-step when we assert that typeT (τn, ã

x
0) has an equivalent R-SDTD:

� [µ(π(ã′))] = [µ(π(ã′′))] for each ã′, ã′′ already considered;

Finally, notice that the (polynomial number) additional steps are special cases
of calls to equiv[R-SDTD], and that the same observations made for R-SDTDs hold
for typeT (τn) as well.

Corollary 3.14. We have the following results:

(1) Problems cons[nRE-DTD] and cons[nFA-DTD] are PSPACE-complete;

(2) Problem cons[dFA-DTD] is PSPACE-complete;

(3) Problem cons[dRE-DTD] is both PSPACE-hard and in EXPTIME;

Proof. Membership. As for R-SDTDs (see Corollary 3.11).

Hardness. For (1) we know that both equiv[nRE-DTD] and equiv[nFA-DTD] are also
PSPACE-hard [29, 32].

For (2) and (3) we use the same reduction (from concat-univ[R]) that we
have used in Corollary 3.11, where the problem cons[R-SDTD] is replaced now
by cons[R-DTD]. In particular, we just notice that also in this case (τ1, τ2, τ3) is
consistent with T = s(a(f1f2) a(f3)) if and only if [π1(s̃1)]◦ [π2(s̃2)] = [π3(s̃3)] =
Σ∗.

4. Top-down design

In this section, we consider design problems where we start from a kernel
and a given global type, and we show how to reduce each of these problems on
trees to a set of typing problems on strings. In the next section, we will show
how to solve the problems for strings.
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4.1. R-DTDs

We briefly present some obvious results on equivalence of R-DTDs. The proof
of the next result is obvious and thus omitted.

Proposition 4.1. Two reduced R-DTDs τ1 and τ2 are equivalent if and only if
the following are true:

1. They have the same root;

2. They use the same element names;

3. For each element name a, the content models of a in both are equivalent.

Theorem 4.2. Let D = 〈τ, T (fn)〉 be a distributed design where τ = 〈Σ, π, s〉
is an R-DTD. The following are equivalent:

(1) D admits a local R-DTD-typing;

(2) The R-design Dx = 〈π(lab(x)), child-str(x)〉 admits a local R-typing for each
node x in T where lab(x) ∈ Σ.

Proof. (1) ⇒ (2): Let (τn) be a local typing for D, then typeT (τn) ≡ τ holds.
This means (by Proposition 4.1) that for each node x in T such that lab(x) ∈ Σ,
the content model π(lab(x)) of x has an equivalent specification in typeT (τn).
But this means that the subset of types in (τn) in bijection with the functions
of child-str(x) represents a local typing for Dx as well.

(2) ⇒ (1): Also in this case, by Proposition 4.1, since each node x such that
lab(x) ∈ Σ has a local typing, this means that such a typing allows describing
exactly the content model π(lab(x)). Thus, by combining all the local typings of
the various string-designs with the content models of τ we obtain a D-consistent
typing also local forD. To be more precise, we now show how to exploit the local
string-typings for building a local typing for D. First of all we observe that, for
each i in [1..n], there exists only one node x of T such that fi is in the kernel string
child-str(x) of Dx. Since each Dx admits a local typing, then there is a sequence,
say (τstr1 , . . . , τstrn ), of string-types (one for each function) allowing that. In
particular, if for some x, child-str(x) has no function, then this necessarily means
that Dx admits a trivial local typing, namely [π(lab(x))] = {child-str(x)} must
hold. Let i be an index in [1..n], and x be the parent of fi. The new type (not
necessarily reduced) τi = 〈Σi, πi, si〉 is defined as follows:

� Σi = Σ ∪ {si};

� πi contains all the rules of π and the extra rule πi(si) = τstri .

Finally, it is very easy to see that, T (τn) is structurally equivalent to τ .

Corollary 4.3. The problems loc[R-DTD], ml[R-DTD] perf[R-DTD], ∃-loc[R-DTD],
∃-ml[R-DTD] and ∃-perf[R-DTD] are logspace Turing reducible to loc[R], ml[R],
perf[R], ∃-loc[R], ∃-ml[R] and ∃-perf[R], respectively.

29



Proof. Let D = 〈〈Σ, π, s〉, T (fn)〉 be a top-down R-DTD-design.
Consider, firstly, the ∃-loc[R-DTD] problem. Scan T in document order, which

is well known to be feasible in logarithmic space [16]. For each node x in T such
that lab(x) ∈ Σ, solve the problem ∃-loc[R] for the design Dx.

If we consider, instead, the problem loc[R-DTD], as (τn) is D-consistent, then
typeT (τn) exists and there are no different content models for the same element
name. So it is also enough to scan T in document order, and for each node x
in T such that lab(x) ∈ Σ, solve the problem loc[R] for the design Dx and the
subset of types from (τn) in bijection with the functions in Dx.

For the maximal and perfect requirements, as they are specializations of
the local requirement, it is enough to observe that, by Theorem 4.2, they only
depend on the structure of the various Dx.

4.2. R-SDTDs

Before proving that a similar reduction still holds for R-SDTDs, we need a
proposition and a new definition.

Proposition 4.4. Let τ1 = 〈Σ1, Σ̃1, π1, s̃1, µ1〉 and τ2 = 〈Σ2, Σ̃2, π2, s̃2, µ2〉 be
two reduced R-SDTDs. If they are equivalent, then for each i, j in [1..2], and
each ãi ∈ Σ̃i there is ãj ∈ Σ̃j such that µi(πi(ãi)) = µj(πj(ãj)).

Proof. As τ1 is reduced, for each specialized element name ã1 ∈ Σ̃1 there is a
tree t ∈ [τ1] such that its unique witness t′ contains at least one node having ã1
as label. So, let us fix ã1, t, and a node x of t such that anc-str(x) ends with
the element name a. As τ1 and τ2 are equivalent, there must exist also a unique
witness t′′ for t produced by τ2. Let us denote by ã2 the specialized element
name associated to x in t′′. As [τ1] = [τ2], if µ1(π1(ã1)) 6= µ2(π2(ã2)), then we
would violate the ancestor-guarded subtree exchange property.

Definition 18. Let D = 〈τ, T (fn)〉 be a distributed design where the type
τ = 〈Σ, Σ̃, π, s̃, µ〉 is an R-SDTD. For each node x in T such that lab(x) ∈ Σ we
denote by Dx = 〈π(ã), wx〉 the the unique string-design induced by D, where ã
is the (unique) witness assigned by τ to x. Moreover, wx = ε if x is a leaf, and
it is the string obtained from children(x) by changing each non-function node
with the corresponding (unique) witness assigned by τ , otherwise.

Theorem 4.5. Let D = 〈τ, T (fn)〉 be a distributed design where the type τ =
〈Σ, Σ̃, π, s̃, µ〉 is an R-SDTD. The following are equivalent:

(1) D admits a local R-SDTD-typing;

(2) Each R-design induced by D admits a local R-typing.

Proof. (1) ⇒ (2): Since D admits a local R-SDTD-typing, say (τn), then (τn)
is R-SDTD-consistent with T , and typeT (τn) ≡ τ holds. For each node x of T
having an element name as label, say a, consider the unique witness associated
by τ and typeT (τn) to x, say ãτ and ãT , respectively. By hypothesis, both
πτ (ãτ ) and πT (ãT ) satisfy the single-type requirement, and by Proposition 4.4,
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µτ (πτ (ãτ )) ≡ µT (πT (ãT )). Thus, as πτ (ãτ ) and the children of x have a local
decomposition induced by (τn), then also πT (ãT ) and the children of x (namely
Dx) have.

(2) ⇒ (1): We show, if the premise is true, how to build (τn) in such a way
that typeT (τn) ≡ τ holds and in particular that, from a structural point of view,
typeT (τn) is equivalent to τ . We denote by (τstr1 , . . . , τstrn ) one possible sequence
of string-types satisfying contemporarily all the string-designs. In particular, if
for some node x of T the kernel string of Dx has no function call this necessarily
means that Dx admits a trivial local typing, namely µ(π(ã)) = child-str(x),
where ã is the unique witness assigned by τ to x. In particular, for each function
fi consider its parent node in T , say x. The new type τi = 〈Σi, Σ̃i, πi, s̃i, µi〉 is
defined as follows:

� Σi = Σ ∪ {si};

� Σ̃i = Σ̃ ∪ {s̃i};

� πi contains all the rule of π and the extra rule πi(s̃i) = τstri ;

� s̃i is the usual extra witness for the root of any tree in [τi];

� µi is defined as µ and also µi(s̃i) = si.

It is very easy to see that, if we build T (τn) without renaming the specialized
element names we obtain exactly τ , and so typeT (τn) ≡ τ . In particular, when
we assign the witnesses to the non-function nodes of T we choose exactly those
assigned by τ . The only difference may be in the specification of the content
models because the recomposition after a decomposition may produce a dif-
ferent structure (for instance a different nFA) being, anyway, equivalent to the
original one. Notice that, the “ancestor-guarded subtree exchange” property is
guarantied because we also require that all the designs without any function call
admit local typings. For instance, if Dx = 〈π(ã), ε〉 admits a local typing, where
x is a leaf node of T and ã is its witness assigned by τ , this necessarily means
that π(ã) = {ε}, and we automatically take it into account when we build each
τi.

Corollary 4.6. The problems loc[R-SDTD], ml[R-SDTD], perf[R-SDTD], ∃-loc[R-SDTD],
∃-ml[R-SDTD] and ∃-perf[R-SDTD] are logspace Turing reducible to loc[R], ml[R],
perf[R], ∃-loc[R], ∃-ml[R] and ∃-perf[R], respectively.

Proof. Exactly the same as for R-DTDs.

4.3. R-EDTDs

Although R-EDTDs have nice properties simplifying the cons[R-EDTD] problem
and the construction of typeT (τn) (when we start from a kernel and an R-EDTD-
typing), things dramatically change when we consider the problems concerning
locality. The freedom of using, in the same content model, various specialized
element names for the same element name has a price. Consider the following
example.
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Example 7. Let D = 〈τ, T 〉 be a dRE-EDTD-design where T = s0(f1f2) and τ =
〈Σ, Σ̃, π, s̃0, µ〉. In particular, π(s̃0) = ã1(b̃1)∗+ ã2(b̃2)∗; π(ã1) = c̃1; π(ã2) = d̃1;
π(b̃1) = ẽ1 + g̃1; π(b̃2) = g̃1 + h̃1. It is not hard to see that the string-design
〈π(s̃0), f1f2〉 admits only two maximal local typings:

(ε, ã1(b̃1)∗ + ã2(b̃2)∗) (ã1(b̃1)∗ + ã2(b̃2)∗, ε)

But, only the first one is also maximal for D, while the actual second one is
(ã1(b̃1)∗ + ã2(b̃2)∗, (b̃3)∗) where [τ2(b̃

3)] = b(g).

The problem highlighted by the previous example originates from the fact
that b̃1 and b̃2 can not be considered completely distinct as ã1 and ã2 (notice
that [τ(ã1)] ∩ [τ(ã2)] = ∅), and as we naturally do for two different symbols of
an alphabet in string languages, yet they are witnesses for two sets of trees with
a nonempty intersection. In fact, [τ(b̃1)]∩ [τ(b̃2)] = b(g) can be part of τ2 in the
second maximal local typing for D.

From this, it is unclear whether, by only analyzing content models (such as
π(s̃0), in the previous example), we can decide whether a given design admits at
least a local typing. Clearly, if we apply µ to both (ã1(b̃1)∗+ã2(b̃2)∗)·(b̃3)∗ and to
π(s̃0) we obtain the same string-language, namely ab∗, but unfortunately, this is
only a necessary condition and even if (ab∗, b∗) is a maximal local typing for ab∗,
it is not clear how to assign the witnesses for obtaining (ã1(b̃1)∗+ ã2(b̃2)∗, (b̃3)∗).

The following theorems, give a further idea of the higher complexity of lo-
cality when we consider R-EDTD-designs.

Theorem 4.7 ([36, 37]). Problems equiv[nFA-EDTD] and equiv[nRE-EDTD] are
EXPTIME-complete.

Theorem 4.8. Problems ∃-loc[R-EDTD], ∃-ml[R-EDTD], and ∃-perf[R-EDTD] are at
least as hard as equiv[R-EDTD].

Proof. We define a logspace transformation ϕ from equiv[R-EDTD] to ∃-loc[R-EDTD].
Afterwards, we show that the statement also holds for the other two problems
by using exactly the same reduction. Let τ ′, τ ′′ be two arbitrary R-EDTDs. The
application of ϕ to this pair produces the design D = 〈τ, T 〉, where

� T = s0(f1 c f2)
� π(s̃0) = R(ã1c̃1d̃1 + b̃1c̃1d̃2)
� π(d̃1) = R(s̃′0), where s′0 is the root of the trees in [τ ′]
� π(d̃2) = R(s̃′′0 ), where s′′0 is the root of the trees in [τ ′′]
� π(ã1) = π(b̃1) = π(c̃1) = R(ε)
� c̃1 does not appear in any other content model of τ and c appears exactly
once in any tree in [τ ]

Informally, [τ ] = s0(acd([τ
′])+bcd([τ ′′])). First of all, we observe that all the new

content models (other than those being already in τ ′ and τ ′′) can be represented
by R-types, even dREs. Now, it is easy to see that D admits a local typing iff
[τ(d̃1)] = [τ(d̃2)] iff τ ′ ≡ τ ′′. It is [τ1] = s1(a+ b) and [τ2] = s2(d([τ

′])). Finally,
we just notice that if τ ′ ≡ τ ′′ holds, then (τ1, τ2) is the unique maximal local
typing for D which is even perfect.
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Corollary 4.9. Problems ∃-loc[R-EDTD], ∃-ml[R-EDTD], and ∃-perf[R-EDTD] are
EXPTIME-hard if R ∈ {nFA, nRE}.

The equivalence between [τ(d̃1)] = [τ(d̃2)], in the previous reduction, is
necessary because we do not know, a priori, whether f1 is imposing a constraint
on f2 or not. In particular, this is an extreme case of the fact that [τ(d̃1)] ∩
[τ(d̃2)] 6= ∅.

What we really need is to be able to consider completely distinct, in the same
content model, each pair of different specialized element names of the form ã
and ã′, namely [τ(ã)] ∩ [τ(ã′)] = ∅. To do that, given an R-EDTD, we construct
an equivalent nUTA [30], we transform it into an dUTA [15], and finally we try to
derive a new R-EDTD satisfying our requirement. If R = dRE the last step could
not be always possible.

Given an R-EDTD τ = 〈Σ, Σ̃, π, s̃, µ〉, an equivalent nUTA A = 〈K,Σ,∆, F 〉
can be constructed as follows: K = Σ̃; ∆(ã, a) = nFA(π(ã)), for each ã ∈ Σ̃;
F = {s̃0}. Now we want to transform A into an equivalent dUTA Ad (that may
be exponential in size). Notice that Ad will have only one final state as well.
Finally, we convert again Ad (whenever it is possible) into an R-EDTD τd as
follows: Σ̃ = K; π(ã) = R(∆(ã, a)), for each ã ∈ K.

Lemma 4.10. Let τd be an R-EDTD built as above. For each element name,
say a, and each pair ã, ã′ of different specialized element names in Σ̃d(a), then
[τd(ã)] ∩ [τd(ã′)] = ∅.

Proof. It is easy to see that by a (bottom-up) run of Ad over each tree t ∈
[τd(ã)] ∪ [τd(ã′)], there is only one possible state (between ã and ã′) that can
be associated to the root of t, and the states of Ad coincide with the specialized
element names of τd.

Now we are ready for handlingR-EDTDs (that we call normalized) satisfying
the above property. But before we introduce a general property of R-EDTDs.

Proposition 4.11. [29] Let τ be an R-EDTD. Whenever for two trees t1, t2 ∈ [τ ]
with nodes x1 and x2, respectively, there are witnesses t̃1 and t̃2 assigning the
same specialized element name to both x1 and x2, then the trees obtained, from
t1 and t2, by exchanging treet1(x1) and treet2(x2) are still in [τ ].

The following lemma holds for general R-EDTDs but is it also useful for
normalized R-EDTDs. Consider the design D = 〈τd, T 〉 where T = s0(a(f1) f2)
and τd is a normalized nRE-EDTD having π(s̃0) = (ã1+ ã2)+ (we ignore the other
content models). As [τd(ã1)] ∩ [τd(ã2)] = ∅, it is clear that the unique maximal
local typing (τ1, τ2) for D has π1(s̃1) = π(ã1) + π(ã2) and π2(s̃2) = (ã1 + ã2)∗.
Thus the node under the root labeled by a may have either ã1 or ã2 as witness
depending on the tree replacing f1.

Lemma 4.12. Let D = 〈τ, T 〉 be an R-EDTD-design and (τn) be a local typing
for D. For each node x of T having an element name as label, say a, there is a
set of specialized element names Σ̃x ⊆ Σ̃(a) such that

⋃
ã∈Σ̃x [τ(ã)] = [T (τn, ã

x
0)].
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Proof. By hypothesis, [τ ] = [T (τn)]. We recall that this equivalence is obtained
when we consider all the possible extensions of T . Let x be a node of T having
an element name as label, say a, and k be the cardinality of Σ̃(a). First of all,
we observe that if Σ̃x = Σ̃(a), then

[T (τn, ã
x
0)] ⊆ [τ(ã1)] ∪ . . . ∪ [τ(ãk)]

is trivially true. In fact, in such a case, the first member has to be necessarily a
subset of the second one because, otherwise, in some extension of T there would
be a subtree rooted in x which τ cannot produce any witness for.

Starting from Σ̃x = Σ̃(a) we claim that each ãj , with 1 ≤ j ≤ k, is either a
“friend” to keep in Σ̃x or an “intruder” to remove from Σ̃x. Finally, the resulting
Σ̃x will prove the statement. Consider now each ãj . We distinguish two cases:

1. We say that ãj is a friend if and only if [τ(ãj)] ⊆ [T (τn, ã
x
0)] because it

then clearly contributes to prove the statement. We leave it in Σ̃x.

2. We say that ãj is an intruder (and we remove it from Σ̃x) if and only if
one of the following is true:

� [τ(ãj)] ∩ [T (τn, ã
x
0)] = ∅ because even if we remove it from Σ̃x, then

[T (τn, ã
x
0)] ⊆

⋃
ã∈Σ̃x [τ(ã)] is still true.

� [τ(ãj)]∩ [T (τn, ã
x
0)] 6= ∅, [τ(ãj)] * [T (τn, ã

x
0)], and for each (sub)tree st1

in the intersection there is not a tree t1 ∈ [T (τn)] having st1 as subtree
rooted in x, such that at least a witness t̃1 from τ associates ãj to x. It is
still an intruder because for each (sub)tree st1 in the intersection and for
each possible trees t1 ∈ [T (τn)] having st1 as subtree rooted in x, since
tree t1 must necessarily have a witness t̃1 from τ , then t̃1 associates ãi6=j

to x entailing that each st1 is contained also in [τ(ãi)]. Finally, even if
we remove ãj from Σ̃x, then [T (τn, ã

x
0)] ⊆

⋃
ã∈Σ̃x [τ(ã)] is still true.

� [τ(ãj)]∩ [T (τn, ã
x
0)] 6= ∅, [τ(ãj)] * [T (τn, ã

x
0)], and for some (sub)tree st1

in the intersection there is a tree t1 ∈ [T (τn)] having st1 as subtree rooted
in x and there is a witness t̃1 from τ associating ãj to x. Anyway, this
last case is not possible because it would contradict the hypothesis that
(τn) is local. In fact, consider a tree t2 ∈ τ where some node y has also
witness ãj and the subtree rooted in y is st2 ∈ [τ(ãj)]− [T (τn, ã

x
0)]. For

each node z in t1 such that anc-strt1(z) = anc-strt1(x) and the witness
for z in t̃1 is ãj , by Proposition 4.11, we may replace (in t1) each subtree
rooted in z with st2. The new tree is still in τ but cannot be obtained
by any possible extension of T as [T (τn, ã

x
0)] contains all the possible

trees obtainable by all the extensions of the functions under x and st2
is not among them.

Thus, if we consider all the feasible cases, then the claim is true as well as the
theorem: Σ̃x is exactly the set of all friends (or a possible subset if some [τ(ãj)]
can be obtained by the union of some [τ(ãi)] with ãi still in Σ̃x).

Definition 19. Let D = 〈τ, T (fn)〉 be an R-EDTD-design where the type τ =
〈Σ, Σ̃, π, s, µ〉 is normalized. We denote by
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� κ any function associating to each node x of T either a set Σ̃x ⊆ Σ̃(a) if a is
the label of x, or the set {f} if f is the label of x.

� Dx
κ = 〈π(κ(x)), Bx〉, for each node x in T with lab(x) ∈ Σ, the box-design

induced by D and κ where either Bx = {ε} if x is a leaf node, or Bx =
κ(y1) . . . κ(yk) if children(x) = y1 . . . yk.

Given a sound typing (τn) for D, we say that

� κ is induced by the pair (τn) and T if, for each non-function node x of T ,
κ(x) contains exactly all the specialized element names associated to x by
validating each possible tree in extT (τn).

� κ′ ≤ κ iff κ′(x) ⊆ κ(x), for each x.

The intention is to relate locality properties about D with locality properties
about each Dx

κ similarly as we made for R-SDTDs, with the difference that here
Dx

κ depends on the choice of κ. Unfortunately, although τ is normalized, if D
admits local typings, then κmay not be unique. Consider the following example.

Example 8. Let D = 〈τ, T 〉 be a normalized dRE-EDTD-design where T =
s0(f1a(f2)f3), τ = 〈Σ, Σ̃, π, s̃0, µ〉, π(s̃0) = (ã1ã2)+, π(ã1) = b̃1, and π(ã2) = c̃1.
We have two successfully mappings κ1, κ2 such that

� κ1(x1) = s̃0, κ
1(x3) = ã1, Dx1

κ1 = 〈(ã1ã2)+, f1ã1f3〉, and Dx3

κ1 = 〈b̃1, f2〉
� κ2(x1) = s̃0, κ

2(x3) = ã2, Dx1

κ2 = 〈(ã1ã2)+, f1ã
2f3〉, and Dx3

κ2 = 〈c̃1, f2〉

From them we have two different maximal local typings for D:

((ã1ã2)∗, b̃1, ã2(ã1ã2)∗) ((ã1ã2)∗ã1, c̃1, (ã1ã2)∗)

Notice that they are substantially different and also that from the other possible
mapping κ3, where κ3(x3) = {ã1, ã2}, we cannot derive any local typing because
if f2 is replaced by b, then f3 must start with a(c), and if f2 is replaced by c,
then f1 must start with a(b). But ((ã1ã2)∗ã1, b̃1+ c̃1, ã2(ã1ã2)∗) is neither local
(even) nor sound.

Now we prove the main results of this section.

Theorem 4.13. Let D = 〈τ, T (fn)〉 be a distributed design where τ is a nor-

malized R-EDTD. The following are equivalent:

(1) D admits a local typing;
(2) There is a function κ, as defined above, such that each box-design Dx

κ admits
a local typing.

Proof. (1) ⇒ (2): Let (τn) be a local typing for D, then T (τn) ≡ τ holds.
Consider the function κ induced by (τn) and T (the choice is consistent with
Lemma 4.12). As τ is normalized, there is only one possibility for validating
(in a bottom-up way) each tree in extT (τn). If for some node x of T the box-
design Dx

κ did not admit any local typing, then there would be no possibility of
generating all the strings in π(κ(x)). Contradiction.

(2) ⇒ (1): If for some κ each box-design Dx
κ admits a local typing, then we

can construct each type τi as made for R-SDTDs, in such a way that T (τn) is
structurally equivalent to τ .
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Corollary 4.14. Problem ∃-loc[R-EDTD] (or ∃-ml[R-EDTD] but R 6= dRE) for nor-
malized R-EDTDs is decidable by an oracle machine in NP

C where C is the
complexity class of solving ∃-locB

[R] (or ∃-mlB[R]).

Proof. Let τ = 〈Σ, π, s〉 be a type and T (!fn) be a kernel. Consider the
∃-loc[R-EDTD] problem and the following algorithm:

1. Guess: the function κ;

2. Check: call ∃-locB
[R] over D

x
κ for each node x of T with lab(x) ∈ Σ.

For ∃-ml[R-EDTD] we use the same algorithm since, in general (R 6= dRE), a
maximal local typing always exists if there is a local one.

Problem ∃-ml[dRE-EDTD] will be discussed in Section 7.

Theorem 4.15. Let D = 〈τ, T (fn)〉 be a distributed design where τ is a nor-

malized R-EDTD. The following are equivalent:

(1) D admits a perfect typing;

(2) There is a function κ such that each Dx
κ admits a perfect typing, and for

each sound typing (τ ′n) for D, κ′ ≤ κ where κ′ is induced by (τ ′n).

Proof. (1) ⇒ (2): Let (τn) be the perfect typing of D and κ be the function
induced by (τn). By Theorem 4.14, each box-design Dx

κ admits a local typing,
and clearly it is perfect as (τn) is. Finally, we observe that since (τ ′n) ≤ (τn),
then (τ ′n) can not induce in κ′ more elements than (τn).

(2) ⇒ (1): As we made for R-SDTDs, the typing (τn) that we can construct by
the local typings of the various Dx

κ (without renaming the specialized element
names) together with the needful content models already in τ produces a type
T (τn) structurally equivalent to τ .

Corollary 4.16. Problem ∃-perf[R-EDTD] for normalized R-EDTDs is polyno-
mial time reducible to ∃-perfB[R].

Proof. Let τ = 〈Σ, π, s〉 be a type and T (!fn) be a kernel.

Proof Idea: Build κ in polynomial time and in a top-down style (this is the
technical core of the proof) by assuming that a perfect typing exists. Thus, call
∃-perfB[R] over D

x
κ for each node x of T with lab(x) ∈ Σ.

More formally, let x be the root of T and m be the number of its children.
Consider the following steps:

1. Build from child-str(x) a dRE, that we call r(x), as follows. For each j in
[1..m],

� if child-str(x)[j] is an element name, say a, then replace it with the set
Σ̃j(a) (where the subscript means that all the specialized element names
are renamed with j as subscript);

� else, if child-str(x)[j] is a function, then replace it with Σ̃∗
j (j has the

same meaning as above);
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2. Build from π(s̃0) an R-type τ(x) by replacing, in the alphabet of π(s̃0),
each symbol of the form ãℓ with ãℓ1, . . . , ã

ℓ
m.

3. Perform the intersection L = [r(x)] ∩ [τ(x)].
4. For each child y of x having a as label and position j, then κ(y) contains

all the elements of the form ã such that ãj is in the alphabet of L.

As we know κ(y) for each child y of x, then we repeat the previous steps for
the children of y by considering π(κ(y)) instead of π(s̃0). We will stop when we
reach the leaves of T .

The algorithm is correct because if we have a look at the alphabet of L,
we see that it contains, for each j in [1..m], exactly the specialized element
names that we need to associate to the jth child of x because are induced by
all possible local typings. Intuitively, if the alphabet of L contains, for instance,
ãℓ1 this means that there is a sound typing for D that induces ãℓ for the first
child of x, and if the alphabet of L does not contain, for instance, b̃ℓ3 there is no
sound typing for D inducing b̃ℓ for the third child of x.

Now we consider the remaining complexity result that does not require any
reduction to strings.

Theorem 4.17. Problems loc[R-EDTD], ml[R-EDTD], and perf[R-EDTD] are at least
as hard as equiv[R-EDTD].

Proof. We define a logspace transformation ϕ from equiv[R-EDTD] to loc[R-EDTD].
Afterwards, we show that the statement also holds for the other two problems.
Let τ ′, τ ′′ be two arbitrary R-EDTDs. The application of ϕ to the this pair
produces the design D = 〈τ, T 〉 and the typing τ1, where [τ ] = s0([τ

′]), T =
s0(f1), and [τ1] = s1([τ

′′]). Since T (τ1) is exactly s0([τ
′′]), it is clear that

τ ≡ T (τ1) if and only if τ ′ ≡ τ ′′. Finally, we just notice that τ ′ ≡ τ ′′ iff τ1 is
both perfect and maximal local as T consists of just a function node other than
the root.

Corollary 4.18. Problems loc[nFA-EDTD], ml[nFA-EDTD], and perf[nFA-EDTD] are EXPTIME-hard.

Theorem 4.19. Problem loc[nFA-EDTD] is EXPTIME-complete.

Proof. (Membership) Let D = 〈τ, T 〉 be an nFA-EDTD-design and (τn) be a
D-consistent typing. Build T (τn) in polynomial time (by Proposition 3.1) and
check in exponential time if T (τn) ≡ τ (by Theorem 4.7).

(Hardness) By Corollary 4.18.

5. The typing problems for words

We study in this section the typing problems for words. (Recall that most of
our problems for trees has been reduced to problems for words.) We present a
number of complexity results. We leave for the next section, two issues, namely
perf[nFA] and ∃-perf[nFA], for which we will need a rather complicated automata
construction. We start by recalling a definition and a result that we will use
further.
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Theorem 5.1 ([32]). equiv[nFA] is PSPACE-complete.

The hardness of the equiv[nFA] problem is used to show some hardness results
of our problems.

Theorem 5.2. Problems loc[nFA], ml[nFA], perf[nFA] are PSPACE-hard.

Proof. We define a logspace transformation ϕ, in such a way that

equiv[nFA] ≤
L

m loc[nFA]

Afterwards, we show that the statement also holds for the other two problems.
Let A, A1 be two arbitrary nFAs. The application of ϕ to the pair A, A1

produces the design 〈τ, w〉 and the typing τ1, where τ = A, w = f1 and τ1 = A1.
Since w(τ1) = A1, it is clear that τ ≡ w(τ1) if and only if A ≡ A1. Finally, we
just notice that A ≡ A1 if and only if τ1 is both perfect and maximal local as
w consists of just a function.

We now consider upper bounds. Section 6 will show that perf[nFA] is in
PSPACE. We next show that loc[nFA] is.

Theorem 5.3. loc[nFA] is in PSPACE (so it is PSPACE-complete).

Proof. Let w(fn) be a kernel string, τ be an nFA, and (τn) be a typing. Since
the new automaton w(τn) has size O(‖w‖+ |(τn)|), we can check in polynomial
space if w(τn) ≡ τ .

The proof that also ml[nFA] is in PSPACE requires more technical insights
and it is deferred to Section 7.

Let us turn to the hardness of the ∃-versions of the problems.

Theorem 5.4. ∃-loc[nFA], ∃-ml[nFA], and ∃-perf[nFA] are PSPACE-hard.

Proof. We define a logspace transformation ϕ, in such a way that the following
relations hold:

(1) equiv[nFA] ≤
L
m ∃-loc[nFA];

(2) equiv[nFA] ≤
L
m ∃-ml[nFA];

(3) equiv[nFA] ≤
L
m ∃-perf[nFA].

Let A1 = 〈K1,Σ1,∆1, s1, F1〉, A2 = 〈K2,Σ2,∆2, s2, F2〉 be two nFAs. The
application of ϕ to the pair (A1,A2) produces the design D = 〈A, w〉 where

� w = f1 c f2, with c being a fresh terminal symbol which does not belong to
(Σ1 ∪Σ2);

� while automaton A = 〈K,Σ,∆, s, F 〉 is defined as follows: (i) K = K1 ∪ K2

∪ {s, pc, qc}; (ii) Σ = Σ1 ∪ Σ2 ∪ {a, b, c}; (iii) ∆ = ∆1 ∪ ∆2 ∪ {(s, a, pc),
(s, b, pc), (pc, c, qc), (qc, ε, s1), (qc, ε, s2)}; (iv) F = F1 ∪ F2.
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Intuitively, if we consider A1 and A2 as nREs, then A is (acA1 + bcA2).
We claim that there is a local typing (similarly, maximal local, or perfect)

for D if and only if A1 ≡ A2. First of all, we observe that transformation ϕ is
extremely simple and it is clearly in logspace. In fact, string w is a constant,
while the choice of a terminal symbol which does not appear in A1 nor in A2

can be done in logspace, and also A can be obtained by merging A1 and A2 with
a constant number of transitions. We prove the statement for (1) and we just
notice that whenever there is a local typing for D, then the typing ((a+ b),A1)
is perfect (thus, also maximal).

(⇒) If there is a local typing for D then A1 ≡ A2. Since A = (acA1+bcA2), then
[acA1] and [bcA2] form a partition of [A]. In this case, any local typing must have
the following form ((aX1 + bX2), Y ) where X1, X2, Y are nFAs. Clearly, all the
strings accepted by w are obtained by aX1cY and bX2cY . Then cA1 ≡ X1cY
and cA2 ≡ X2cY must hold. But since any string in [A1] or [A2] does not start
with c, then necessarily [X1] = [X2] = ε. This way, A1 ≡ Y and A2 ≡ Y and
then A1 ≡ A2.

(⇐) If A1 ≡ A2, there is a local typing for D. This part of the proof is trivial
because ((a+ b),A1) always represents a local typing for D.

We now have lower bounds for all these problems and some upper bounds.
We will derive missing upper bounds using the construction of automata that
we call “perfect” for given design problems.

6. Perfect automaton for words

We next present the construction of the perfect automaton for a design word
problem. The perfect automaton has the property that if a perfect typing exists
for this problem, it is “highlighted” by the automaton. This will provide a
PSPACE procedure for finding this perfect typing if it exists.

Let A = 〈K,Σ,∆, s, F 〉 be an nFA. We can assume w.l.o.g. that it has no
ε-transition. Given two states qi, qf in K, a string w in Σ∗ is said to be delimited
in A by qi and qf if (qi, w, qf ) ∈ ∆∗. By exploiting this notion, the sets of all
the states delimiting w in A are defined as follows:

Ini(A, w) = {qi ∈ K : ∃qf ∈ K s.t. (qi, w, qf ) ∈ ∆∗}

Fin(A, w) = {qf ∈ K : ∃qi ∈ K s.t. (qi, w, qf ) ∈ ∆∗}

In particular, if w = ε, these two sets are Ini(A, ε) = Fin(A, ε) = K. Ini(A, w)
is called the set of initial states while Fin(A, w) is the set of final states for
the word w. Given two states qi, qf in K, the local automaton A(qi, qf ) =
〈K ′ ⊆ K, Σ, ∆′, qi, {qf}〉 induced from A by qi, qf is a portion of A containing
all those transitions of A leading from qi to qf . More precisely, for each pair
of states q, q′ in K and for each symbol a in Σ, (q, a, q′) ∈ ∆′ if and only if
there are two strings u, v in Σ∗ such that: (qi, u, q) ∈ ∆∗, (q, a, q′) ∈ ∆, and
(q′, v, qf ) ∈ ∆∗. Finally, given two strings w1, w2 in Σ+, then A(w1, w2) is
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the set of all local automata induced by w1 and w2. It is formally defined as
A(w1, w2) = {A(qi, qf ) : qi ∈ Fin(A, w1), qf ∈ Ini(A, w2)}. In particular, if
wi = ε for some i in [1..n], the kernel string contains consecutive functions. In
particular for the previous definitions we have:

A(w1, ε) = {A(qi, qf ) : qi ∈ Fin(A, w1) and qf ∈ K}

A(ε, w2) = {A(qi, qf ) : qi ∈ K and qf ∈ Ini(A, w2)}

A(ε, ε) = {A(qi, qf ) : qi, qf ∈ K}.

Similarly, given a string w in Σ∗, A(w) is the set of all local automata induced
by w. It is defined as A(w) = {A(qi, qf ) : (qi, w, qf ) ∈ ∆∗} and in particular
A(ε) = {A(q, q) : q ∈ K} is a set of |K| automata, one for each state in K.

Figure 7: A perfect automaton (construction)

Let w(fn) be a kernel string and A be an nFA. The perfect automaton
w.r.t. A and w consists of several local automata suitably joined together by
ε-transitions. It is denoted by Ω(A, w) (or Ω when it is clear from the context
who are A and w). Algorithm 1 describes how to build the perfect automaton
(assume that any pair of local automata have disjoint sets of states labeled as in
A), while Figure 7 shows the perfect automaton obtained by a given finite state
machine and a kernel string. We say that A is compatible with w if the set of all
(legal) local automata in Ω is not empty after correction steps, or equivalently,
if there exists at least a sound typing. Moreover,
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Algorithm 1 PerfectAutomaton(w,A)

1. Input: w(fn) = w0f1w1 . . . fnwn, A = 〈K,Σ,∆, s, F 〉
2.Output: Ω(A, w):=∅
3. for each automaton W ∈ A(w0) do

⊲ add W to Ω
4. for each i in [1..n] do

⊲ for each automaton X ∈ A(wi−1, wi) do
a. add X to Ω
b. for each automaton W ∈ A(wi−1) do

– if label(qfin(W )) = label(qini(X))

· add the transition (qfin(W ), ε, qini(X)) to Ω

c. for each automaton W ∈ A(wi) do
– add W to Ω
– if label(qfin(X)) = label(qini(W ))

· add the transition (qfin(X), ε, qini(W )) to Ω

//Correction steps:

5. for each automaton W ∈ A(w0) do
– if label(qini(W )) 6= s //if w0 = ε

· remove W from Ω //it is illegal

6. merge all automata in Ω being in A(w0) according to their
labels and use the (unique) initial state as initial state for Ω

7. for each automaton W ∈ A(wn) do
– if label(qfin(W )) ∈ F

· F (Ω) = F (Ω) ∪ {qfin(W )}

else //if wn = ε

· remove W from Ω //it is illegal

8. for each automaton A ∈ Ω do

– if (there is no path from qini(Ω) to A or

there is no path from A to any final state of Ω)
· remove A from Ω //it is illegal

� Seq(Ω) denotes the set of all the sequences W0, X1,W1, . . . , Xn,Wn of con-
nected automata in Ω such that: W0 is an automaton in A(w0), while Wi

and Xi are, respectively, in A(wi) and A(wi−1, wi) for any i in [1..n];

� Typ(Ω) = {(Xi) : W0, X1, W1, . . . , Xn, Wn ∈ Seq(Ω)} is the set containing
all different typings (X1, . . . , Xn) from any sequence in Seq(Ω);

� Aut(Ωi) = {Xi : (X1, . . . , Xn) ∈ Typ(Ω)} is the set of all legal automata in
A(wi−1, wi);

� Ωi = ∪Aut(Ωi) is the type obtained by the union of all automata Aut(Ωi);

� (Ωn) is the typing for w and A obtained from Ω.

Let (An) be a sequence of automata. We define the direct extension of (An)
as the set of string defined as [(An)] = {u1 . . . un | for each i ui ∈ [Ai]}.
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Lemma 6.1. For any nFA A, then Ω ≤ A holds. On the other hand, A ≤ Ω
does not hold in general.

Proof. Given a string u in [Ω], then there exists a sequence (τ2n+1) of au-
tomata in Seq(Ω) accepting u and expressible as A(s, q0), A(q0, s1), A(s1, q1),
. . . , A(qn−1, sn), A(sn, qn) for some states q0, s1, q1 . . . , sn, qn. Moreover, by
definition of direct extension, for each string u0σ1u1 . . . σnun in [(τ2n+1)] we
have that u0 ∈ [A(s, q0)], σi ∈ [A(qi−1, si)] and ui ∈ [A(si, qi)], for each i in
[1..n]. But, by definition of local automata, the following sequence of transi-
tions (each of which belongs to ∆∗): (s, w0, q0), (q0, σ1, s1), (s1, w1, q1), . . . ,
(qn−1, σn, sn), (sn, wn, qn), where qn ∈ F , is also derivable by A.

For the second part of the proof consider the string w = afc and the dRE

abc+ d.

Lemma 6.2. Let w(fn) be a string compatible with an nFA A. Any typing in
Typ(Ω) is sound for w and A.

Proof. Given any typing (Xn) in Typ(Ω), by definition, there is a sequence
(τ2n+1) of automata such that Xi = τ2i for each i in [1..n]. By Lemma 6.1
(τ2n+1) ≤ A holds. Moreover as, by definition, the extension of w(Xn) is
[w(Xn)] = {w0σ1w1 . . . σnwn : σi ∈ [Xi], 1 ≤ i ≤ n}. Then w(Xn) ≤ (τ2n+1)
as well since all strings w0, . . . , wn are accepted by τ1, τ3 . . . , τ2n+1, respec-
tively, by definition of local automata induced by a single string. Therefore,
w(Xn) ≤ A.

Theorem 6.3. Let w(fn) be a kernel string compatible with a given nFA A, and
(τn) be a sound typing for them. Then, both w(τn) ≤ Ω and (τn) ≤ (Ωn) hold.

Proof. Since (τn) is sound for w and A, then w(τn) ≤ A holds. In partic-
ular, for each string χ = w0σ1w1 . . . σnwn in [w(τn)], where each σi ∈ [τi],
there is a sequence of states q0, s1, q1 . . . , sn, qn proving the membership of χ
in [A] by the following sequence of transitions (s, w0, q0) ∈ ∆∗, (q0, σ1, s1) ∈
∆∗, (s1, w1, q1) ∈ ∆∗, . . . , (qn−1, σn, sn) ∈ ∆∗, (sn, wn, qn) ∈ ∆∗ where qn ∈ F
holds as well. But, this means that the sequence A(s, q0), A(q0, s1), A(s1, q1),
. . . , A(qn−1, sn), A(sn, qn) of automata belongs to Seq(Ω), so w(τn) ≤ Ω holds.
Moreover, since each A(qi−1, si) ∈ Aut(Ωi), it follows that τi ≤ Ωi for each i,
that is (τn) ≤ (Ωn).

Corollary 6.4. Let w(fn) be a kernel string compatible with a given nFA A,
and (τn) be a local typing for them. Then, w(τn) ≡ Ω ≡ A holds.

Proof. By Lemma 6.1 and Theorem 6.3.

Theorem 6.5. Let w(fn) be a kernel string and A be an nFA compatible with
w. There is a perfect typing for w and A if and only if w(Ωn) ≡ A. If so, the
perfect typing is exactly (Ωn).
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Proof. (⇒) if there is a perfect typing for w and A then w(Ωn) ≡ A. If w and
A admit a perfect typing, say (τn), then (as it is also sound), by Theorem 6.3,
(τn) ≤ (Ωn). Suppose that (τn) < (Ωn) held. There would be (at least) an
i in [1..n] such that τi < Ωi. In other words, there would be an automaton
τ ′i ∈ Aut(Ωi) accepting some strings rejected by τi. Consider the typing (τ ′n) ∈
Typ(Ω) containing τ ′i in position i. By Lemma 6.2, (τ ′n) is sound and then
τ ′i ≤ τi, by definition. But this is a contradiction. Therefore (τn) ≡ (Ωn) and
then w(Ωn) ≡ A, as (τn) is also local.

(⇐)if w(Ωn) ≡ A then there is a perfect typing for w and A. This is true since
(Ωn) is local and because, by Theorem 6.3, (τn) ≤ (Ωn) for any sound typing
(τn).

The following two examples show that if there exists a local typing (τn) for
w and A, then (τn) < (Ωn) might hold. This can happen even if (τn) is a unique
maximal local.

Example 9. Consider the string w = a f1 c f2 e, and the regular expression
τ = abccde compatible with w. Clearly, the typing (b, cd) is local (sound and
complete) for w and τ because w(b, cd) ≡ τ . Nevertheless, (Ω2) = (bc?, c?d)
is (strictly) greater then (b, cd) since [bc?] = {b, bc} ⊃ {b} and [c?d] = {d,
cd} ⊃ {cd}.

Example 10. Let w = a f1 f2 d be a kernel string and τ be the regular ex-
pression a(bc)∗d. Clearly, the typing ((bc)∗, (bc)∗) is local (also unique maximal
local but not perfect). But, as consequence of the construction of perfect au-
tomaton, we have: Aut(Ω1) = {(bc)∗, (bc)∗b} and Aut(Ω2) = {(bc)∗, c(bc)∗}.
Consequently, Ω1 ≡ ((bc)∗b?) and Ω2 ≡ (c?(bc)∗) do not represent a sound (and
hence local) typing since they allow strings such as abccbcd or abcbbcd that are
not accepted by τ .

The following example shows that even if there is no local typing for w and
τ , then Ω ≡ τ may hold.

Example 11. Let a τ be the regular expression ab + ba and w = f1f2. There
are two sound typings : (a, b) and (b, a), but there is no local typing. However,
Ω ≡ τ .

We can now use the perfect automata construction to characterize the com-
plexity of perf[nFA]. We use the next lemma:

Lemma 6.6. Let w(fn) be a kernel string and A be a k-state nFA. The algorithm
for building the perfect automaton Ω(A, w) works in polynomial time.

Proof. Any set A(wi) or A(wi−1, wi) contains at most k2 automata each of
which having size O(k). Therefore, the number of macro-iterations of the algo-
rithm are O(nk2), while the size of Ω is O(nk3). For each wi, the sets Ini(A, wi)
and Fin(A, wi) can be obtained in nondeterministic logarithmic space (thus in
polynomial time) because for any pair of states q1, q2 in A, we check if the
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string wi is in the language [A(q1, q2)]. Finally, all the automata in A(wi) and
A(wi−1, wi) are nothing else but different copies of A having different initial
and finial states.

Now, we have:

Theorem 6.7. perf[nFA] is in PSPACE. So it is also PSPACE-complete by Theo-
rem 5.2.

Proof. Let w(fn) be a kernel string, τ be an nFA, and (τn) be a typing. Construct
the perfect automaton Ω(τ, w). By Lemma 6.6, Ω can be built in polynomial
time w.r.t. |τ | + ‖w‖. Then, check in polynomial space if w(Ωn) ≡ τ ≡ w(τn).

And w.r.t. finding a perfect typing (if it exists), we have:

Theorem 6.8. ∃-perf[nFA] is in PSPACE. So it is also PSPACE-complete by
Theorem 5.4.

Proof. Let 〈τ, w(fn)〉 be a (string) design. Construct the perfect automaton
Ω(τ, w). By Lemma 6.6, Ω can be built in polynomial time w.r.t. |τ | + ‖w‖.
Then, check if w(Ωn) ≡ τ , which is feasible in polynomial space.

6.1. Additional properties

We now show how to exploit perfect automaton properties to find (maximal)
sound typings when a design does not allow any perfect. Clearly, this technique
can be used for seeking (maximal) local typings as well. Let w(fn) be a kernel
string and A be an nFA-type compatible with w. All the automata belonging
to Aut(Ωi) can be decomposed in at most 2|Aut(Ωi)|− 1 different automata such
that there are no two of them accepting the same string. In particular, this new
set is denoted by Dec(Ωi) and defined as follows:

Dec(Ωi) = {∩A1 − ∪A2 : ∅ 6= A1 ⊆ Aut(Ωi), A2 = Aut(Ωi)− A1}

An example for three automata is given in Figure 8. Finally,Dec(Ω) = {(D1, . . . , Dn) :
Di ∈ Dec(Ωi)} is the set of all different typings from Dec(Ω1)× . . .×Dec(Ωn).
Given a typing (τn), we say that (τn) ∈ Dec(Ω) if there exists a sequence
(Dn) ∈ Dec(Ω) such that τi ≡ Di, for each i.

Given a type τ ≤ Ωi for some i in [1..n], Dec(τ, i) = {τ ∩ τ ′ : τ ′ ∈ Dec(Ωi)}
denotes the partition of τ , namely ∪Dec(τ, i) ≡ τ , obtained by its projection on
Dec(Ωi). Let (τn) be any typing for a kernel string w(fn). Given a string u ∈ Σ∗

and an i in [1..n], then (τn)[τi|u] denotes the new typing obtained from (τn) by
replacing τi with the minimal dFA accepting only the string u. In particular
[w(τn)[τi|u]] is defined as {w0σ1w1 . . . σnwn : σi = u, σj ∈ [τj ] ∀j 6= i} and
clearly,

w(τn) ≡
⋃

u∈[τi]

w(τn)[τi|u]
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Figure 8: Partitioning of (three) sets and enumeration of the parts

We now define an extension of (τn) as the new typing obtained from (τn) by
replacing τi with the new type (τi∪ τ), and denoted by (τn)[τi∪τ ]. In particular,

w(τn)[τi∪τ ] ≡
⋃

u∈[τi∪τ ]

w(τn)[τi|u]

Clearly, if τ ≤ τi, then (τn) ≡ (τn)[τi∪τ ]. Otherwise (τn) < (τn)[τi∪τ ].

Definition 20. A type τ extends another type τ ′ if [τ ]− [τ ′] 6= ∅ holds. More-
over, the extension is called partial or total depending on whether [τ ]∩ [τ ′] 6= ∅
or not, respectively.

Lemma 6.9. Let D = 〈A, w〉 be an nFA-design, (τn) be a consistent sound
typing for D, and τ ∈ Dec(Ωi) be an nFA belonging to the decomposition of Ωi,
for some i in [1..n]. If τ partially extends τi, then the extension (τn)[τi∪τ ] of
(τn) is still sound.

Proof. By definition 20, [τ ] contains at least a string that does not belong to
[τi] but also a string, say u′, accepted by both τi and τ . In order to prove the
statement, we show that w(τn)[τi|u] ≤ Ω holds for each u ∈ [τ ]− [τi] (recall that,
by Lemma 6.1, Ω ≤ A).

Since, by Theorem 6.3, τi ≤ Ωi, then there is a nonempty set A ⊆ Aut(Ωi)
containing all-and-only the automata accepting u′. Clearly, since τ ∈ Dec(Ωi)
and u′ ∈ [τ ], then τ is also in Dec(τ ′, i) for each τ ′ ∈ A. This means that each
string u ∈ [τ ] − [τi] is accepted by all-and-only the automata in A as well. By
Theorem 6.3, w(τn) ≤ Ω, and in particular w(τn)[τi|u′] ≤ Ω, as u′ ∈ [τi ∩ τ ].
In other words, any string in [w(τn)[τi|u′]] is accepted by (at least) a sequence
of automata in Seq(Ω). Finally, as both u and u′ are recognized by all-and-
only the automata in A, then each string w0σ1w1 . . . σnwn in [w(τn)[τi|u]] (with
σi = u) has a twin in [w(τn)[τi|u′]] (with σi = u′) and both of them are accepted
by exactly the same sequences in Seq(Ω).

Theorem 6.10. Let (τn) be a maximal typing for a kernel string w(fn) and an
nFA A compatible with w. Then for each i, Dec(τi, i) ⊆ Dec(Ωi).
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Proof. Let i be an index arbitrarily fixed in [1..n]. As (τn) is maximal then,
by definition, it is sound and, by Theorem 6.3, τi ≤ Ωi. Let Di be a copy
of Dec(Ωi). Then τi ≤ ∪Di. Remove now, from Di, each automata τDi

(if
any) such that [τDi

] ∩ [τi] = ∅. Still, τi ≤ ∪Di holds. Hence, consider the two
possible (and alternative) cases: (1) τi ≡ ∪Di, or (2) τi < ∪Di. In the first case
the theorem is already proved. While, in the latter case, there is (at least) an
automaton τ ∈ Di that partially extends τi entailing relation (τn) < (τn)[τi∪τ ].
But since (τn)[τi∪τ ] is still sound (see Lemma 6.9), then there is a contradiction
because (τn) is assumed to be maximal.

We are now ready to prove a main results of the section. In our original
paper, we showed a 2-EXPSPACE upper bound for ∃-loc[nFA] and ∃-ml[nFA].
This was improved to EXPSPACE in [31]. We present here an alternative proof
of that results using the previous decomposition.

Theorem 6.11. Problems ∃-loc[nFA] and ∃-ml[nFA] are in EXPSPACE.

Proof. By Lemma 6.9 and Theorem 6.10, if an nFA-design D = 〈τ, w〉 admits
a (maximal) local typing, say (τn), then for each τi there exists a subset of
Dec(Ωi), say Di, such that ∪Di ≡ τi.

Let m be the number of states of τ , and ν + n be the length of w where
n is clearly the number of functions and ν is the length of the non-function
symbols in w. By definition, for each i in [1..n], each automaton in Aut(Ωi)
has size at most m and the cardinality of Aut(Ωi) is at most m2. Thus, the

cardinality of Dec(Ωi) is no more than 2m
2

, as well as the cardinality of Di.
In the worst case, an automaton in Dec(Ωi) is obtained as ∩A1 − ∪A2 where

both |A1| = |A2| = O(m2). So, the size of ∩A1 is no more than (m2)m
2

[22],

that is clearly lower than 2m
3

. The size of ∪A2 is at most m3 [22]. Now, for
computing ∩A1−∪A2 we perform the following intersection (∩A1)∩(∪A2). The

complement of ∪A2 may have 2m
3

states [22]. Finally ∩A1 − ∪A2 require no

more than 22m
3

states, and the size of ∪Di ≡ τi is at most 22m
3

∗ 2m
2

being
clearly 2O(m3).

Now, we are ready for computing the size of the nFA w(τn). It is exactly

ν + n ∗ 2O(m3). So, for deciding whether w(τn) ≡ τ we need no more than
exponential space w.r.t. the input size ν + n + m. The only problem we still

have is that we do not know a priori how to choose Di. There are 2
2m

2

possible
subsets. But as NEXPSPACE = EXPSPACE (by Savitch’s theorem), then we can
simply guess each Di.

About ∃-ml[nFA], we must find a maximal Di. But in EXPSPACE we can still
guess the sequence D1, . . . , Dn and prove (by Theorem 6.10), for each Di, that
none of the automata in Dec(Ωi)−Di can be added to Di because the resulting
typing would loose its soundness. After the guess, the number of checks (each

of which may require exponential space) is at most n ∗ 2m
2

.
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7. Complexity for trees

Based on Theorem 6.11, we now obtain complexity bounds for the tree prob-
lems. This completes results obtained in [3, 31] on this topic. The next result
first appeared in [3]. However, the sketch of proof given there was not correct.
A proof was then presented in [31]. We next present a new proof based on
perfect automata.

Theorem 7.1. ml[nFA] is in PSPACE (so the problem is PSPACE-complete).

Proof. Let D = 〈τ, w〉 be an nFA-design, and (τn) be a D-consistent typing.
First of all, we check if (τn) is local (and we have already proved that loc[nFA]

is doable in PSPACE). If so, then τ̄ ∩w(τn) ≡ ∅ (where τ̄ is the nFA of possibly
exponential size accepting the complement of language [τ ]). Subsequently, we
check if (τn) is not maximal. In particular, by Lemma 6.9 and Theorem 6.10,
(τn) is not maximal if there is an nFA A ∈ Dec(Ωi) for some i in [1..n] such that
at least one of the following is true:

� A totally extends τi and w(τn)[τi∪A] is still sound, namely [A]∩ [τi] = ∅ and
τ̄ ∩ w(τn)[τi∪A] ≡ ∅.

� A partially extends τi, namely [A]− [τi] 6= ∅ and [A] ∩ [τi] 6= ∅;

So we proceed as follows:

1. Guess an index i, and a nonempty set of automata A1 ⊆ Aut(Ωi)

2. Compute A2 = Aut(Ωi)− A1

3. Let A denote the automaton ∩A1 − ∪A2 (we do not really build it);

4. If [A] ∩ [τi] = ∅ then,

� if τ̄ ∩ w(τn)[τi∪A] ≡ ∅, then (τn) is not maximal
� else if [A]− [τi] = [A] ∩ [τi] 6= ∅, then (τn) is not maximal

Observe that even if A, τ̄ , or τ̄i may be exponential in size, we only use them
for intersection nonemptiness or intersection emptiness problems that are both
NL-complete problems [26]. Intuitively, we could avoid the materialization of
such automata with “on-the-fly” constructions. Hence, an NL algorithm on a
non-materialized (single) exponential automaton leads to PSPACE. More for-
mally, we consider alternating finite state machines aFAs (for more details see
[17, 42]). We do not completely define them but we just recall what we need:

� given an aFA A, deciding whether [A] = ∅ is PSPACE-complete;

� Any nFA is trivially a special kind of aFA;

� Given two aFAs A and A′, a new aFA for A, A ∪ A′, and A ∩ A′, can be
constructed in polynomial time and its size is linear.

Finally, we observe that all the above emptiness decisions deal with nFAs of
polynomial size and can be checked in PSPACE as well as the nonemptiness
decisions as PSPACE is closed under complement.

Now, we show how to reduce locality problems on boxes to locality problems
on strings.
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Definition 21. Let D = 〈τ, B〉 be an R-design where B = B0f1B1 . . . fnBn is
a kernel box. Consider the kth sequence of strings w0, . . . , wn (with 1 ≤ k ≤
|B0| ∗ . . . ∗ |Bn|) built from B0, . . . , Bn by varying wi among the strings in [Bi]
(in some fixed order) for each i ∈ [0..n]. We denote by Dk = 〈τ, wk〉 the kth

R-design built from D where wk(fn) is the kernel string w0f1w1 . . . fnwn.

Lemma 7.2. Let D = 〈τ, B〉 be an R-design and (τn) be a D-consistent typing.
We have that:

(1) If (τn) is local for D, then it is sound for each Dk;

(2) If (τn) is sound for each Dk, then it is sound for D as well.

Proof. (1): If (τn) is local for D, then B0τ1B1 . . . τnBn ≡ τ . This means that
w0τ1w1 . . . τnwn ≤ τ for each wi ∈ [Bi]. Thus, (τn) is sound for each Dk.

(2): If for each design Dk we have that w0τ1w1 . . . τnwn ≤ τ holds, then
B0τ1B1 . . . τnBn ≤ τ as well.

A direct consequence of the above theorem is that if a typing is not sound
for some Dk, then it can not be local for D. So a local typing candidate for D
is a typing being sound for each Dk. Now suppose that (τn) is a maximal sound
typing for Dk1 but it is not sound for Dk2 . This means that at least one [τi]
contains some extra string such that [wk2 (τn)] is not fully contained in [τ ]. So
we could remove such strings to obtain a typing sound for both Dk1 and Dk2 but
not maximal forDk1 any more. So we can guess a maximal sound typing for each
Dk and then, remove the exceeding strings. This is equivalent to keeping the
componentwise intersection of these maximal typings. Let β = |B0| ∗ . . . ∗ |Bn|,
we should build β (it is an exponential number) perfect automata. For each i in

[1..n] we should consider the sets of automata Aut(Ω1
i ), . . . , Aut(Ω

β
i ) and from

these the respective decompositions Dec(Ω1
i ), . . . , Dec(Ωβ

i ). Now we can guess

β subsets D1
i , . . . , D

β
i and finally compute τi as (∪D1

i )∩ . . .∩ (∪Dβ
i ). But this is

equivalent to consider directly Aut(Ωi) = Aut(Ω1
i )∪ . . .∪Aut(Ωβ

i ), compute the
decomposition Dec(Ωi) and guess a subset Di from Dec(Ωi). This is much more
convenient because Aut(Ωi) contains at most a quadratic number of automata
w.r.t. the states of τ . Now, we show how to extend the construction of Ω to a
box-design for obtaining this new Aut(Ωi). Let A be an nFA and B(fn) a kernel
box, we have that:

� Ini(A, Bi) = {qi ∈ K : ∃qf ∈ K s.t. (qi, w, qf ) ∈ ∆∗, w ∈ [Bi]}

� Fin(A, Bi) = {qf ∈ K : ∃qi ∈ K s.t. (qi, w, qf ) ∈ ∆∗, w ∈ [Bi]}

� A(Bi−1, Bi) = {A(qi, qf ) : qi ∈ Fin(A, Bi−1), qf ∈ Ini(A, Bi)}

Aut(Ωi) is the set of all legal automata in A(Bi−1, Bi) as for string. Note
that, due to the structure of each Bi, it is very easy to build Ini(A, Bi) and
Fin(A, Bi) without enumerating all the strings in [Bi].

Theorem 7.3. Problems ∃-locB
[nFA] and ∃-mlB[nFA] are in EXPSPACE.
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Proof. Let D = 〈τ, B〉 be an nFA-design where B is a kernel box. We guess,
for each i, a subset of automata in Dec(Ωi), the decomposition of the new set
Aut(Ωi) built as above. Thus, we check if it is a (maximal) local typing for D
as made in the proof of Theorem 6.11.

Corollary 7.4. ∃-loc[nFA-EDTD] and ∃-ml[nFA-EDTD] are in 2-EXPSPACE.

Proof. Let D = 〈τ, T 〉 be an nFA-EDTD-design. We build from τ its equivalent
normalized version τd that, after all, is a dFA-EDTD of exponential size. So the
oracle machine discussed in Corollary 4.14 actually works in NEXPTIME

C where
C is the complexity class of solving ∃-locB

[dFA] (or ∃-ml
B
[dFA]). By Theorem 7.3,

both of these problems are in EXPSPACE. Thus, the whole algorithm works in
2-EXPSPACE. (Note that, EXPSPACE is the best known upper bound even for
∃-loc[dFA] [31].)

The following analysis makes use of a technique introduced in [31] for build-
ing the perfect automaton for dFA-designs.

Definition 22. Let D = 〈τ, B〉 be an R-design where B = B0f1B1 . . . fnBn is
a kernel box. Together with Dk we consider the string design D̂k defined as fol-
lows. Let Σ̂ = Σ⊎{σ0, . . . , σn} be an extension of Σ and σ(fn) = σ0f1σ1 . . . fnσn

be the kernel string built by combining the new symbols with the functions
of B. We denote by D̂k = 〈Ω̂k, σ〉 the kth dFA-design built from D where
Ω̂k = Ω̂k(τ, wk) is the perfect automaton built as described in [31].

The following lemma is a direct consequence of the definition of Ω̂ in [31].

Lemma 7.5. A typing (τn) is sound for Dk iff it is sound for D̂k.

Theorem 7.6. Let D = 〈τ, B〉 be a dFA-design and (τn) be a D-consistent
typing. The following are equivalent:

(1) (τn) is perfect for D;

(2) (τn) is both local for D and perfect for each D̂k.

Proof. (1) ⇒ (2): If (τn) is perfect for D, then it is sound for each Dk, and
by Lemma 7.5, sound for D̂k as well. Suppose that (τn) is not local for some
D̂k, there is a string σ0u1σ1 . . . unσn ∈ [Ω̂k] (all the stings have this form by
definition) not captured by σ(τn). By Lemma 7.5, the string w0u1w1 . . . unwn

belongs to [τ ] and as (τn) is perfect, then each ui ∈ [τi]: contradiction. Suppose
that (τn) is not perfect for some D̂k. There is a sound typing (τ ′n) for D̂k not
contained in (τn), but by Lemma 7.5, (τ ′n) is also sound for Dk, so w(τ ′n) ≤ τ :
again a contradiction because (τn) is perfect.

(2) ⇒ (1): If (τn) is perfect for each D̂k then, by Lemma 7.5, it is sound for
each Dk. Suppose that it is not perfect for D, then there is a sound typing
(τ ′n) not contained in (τn) such that, for some k, w(τ ′n) ≤ [τ ] for the kth string
w0, . . . , wn. So (τ ′n) is sound for Dk and also for D̂k. Contradiction.

Lemma 7.7. ∃-perfB[dFA] is in coNP.
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Proof. Let D = 〈τ, B〉 be a dFA-design where B = B0f1B1 . . . fnBn is a kernel
box. We can decide in NP whether D does not admit any perfect typing by
preforming the following steps:

1. Guess: four string-designs Dk1 , Dk2 , Dk3 , and Dk4 .

2. Check: answer “yes” (D does not admit any perfect typing) if at least
one of the following holds

(a) Dk1 does not admit any perfect typing;
(b) Dk2 , Dk3 have different perfect typings;
(c) Dk4 admits a perfect typing, say (τn), but it is not local for D.

Each of check (a), (b), and the first part of (c) require polynomial time [31]. For
the second part of check (c) we build B(τn) and prove that B(τn) < τ , namely
B(τn)∩τ = ∅. Notice that if the yes answer only depends on step (c) this means
that (τn) is sound for each Dk, and so it is not possible that B(τn) > τ . Thus,
as τ is a dFA, its complement has the same size and the intersection emptiness
can be done in polynomial time as well.

Corollary 7.8. ∃-perf[nFA-EDTD] is in coNEXPTIME.

Proof. Let D = 〈τ, T 〉 be an nFA-EDTD-design. We build from τ its equiva-
lent normalized version τd that, after all, is a dFA-EDTD of exponential size.
By Corollary 4.16 we polynomial-time reduce ∃-perf[R-EDTD] (for normalized

R-EDTDs) to ∃-perfB[R]. So in our case we call ∃-perfB[dFA]. But, as τd may
be exponentially larger, then, by adapting the upper bound of Lemma 7.7, the
whole algorithm works in coNEXPTIME.

Theorem 7.9. perf[nFA-EDTD] is in coNEXPTIME.

Proof. LetD = 〈τ, T 〉 be an nFA-EDTD-design, and (τn) be aD-consistent typing.
Compute in coNEXPTIME a perfect typing (τ ′n) if there is one. Transform (τn)
into a dFA-EDTD-typing of exponential size. As equiv[dUTAs] is in PTIME then we
can decide in EXPTIME whether (τn) and (τ ′n) are equivalent.

Unfortunately, for ml[nFA-EDTD] we do not have any good algorithm. Let D =
〈τ, T 〉 be an nFA-EDTD-design, (τn) be a maximal local typing for D, and κ be de
function induced by (τn) and T . At the moment, we do not even know whether
there could be a (non-maximal) local typing (τ ′n) < (τn) such that κ′ < κ. If
there is none, given a local typing (τn) and its induced function κ, then each
maximal local typing that extends (τn) has to induce the same κ as well. So we
could compare the various Dx

κ with (τn). But, the only know upper bound is
given by the following theorem.

Theorem 7.10. ml[nFA-EDTD] is in 2-EXPSPACE.

Proof. Let D = 〈τ, T 〉 be an nFA-EDTD-design and (τn) be a D-consistent typing.
We can check whether it is not maximal. Check in EXPTIME whether it is local
or not. So, build the normalized type τd from τ . Guess a function κ and check
whether eachDx

κ admits a local typing. This is in 2-EXPSPACE by Corollary 7.4.
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So, build the typing (τ ′n) induced by the box-designs. It may be an nFA-EDTD
typing exponentially larger. Check whether (τn) < (τ ′n). This can be done in
2-EXPTIME. So the algorithm works in 2-EXPSPACE and as this class is closed
under complementation we also can decide ml[nFA-EDTD] in it.

Finally, we consider the reduction from trees to boxes for ∃-ml[dRE-EDTD]. The
difficulties affecting ml[nFA-EDTD] (as we do not know whether there could be a
local typing (τ ′n) < (τn) such that κ′ < κ) concern also the existential problem
in case of dREs.

Theorem 7.11. ∃-ml[dRE-EDTD] for normalized R-EDTDs is decidable by an or-
acle machine in PSPACE

C where C is the complexity class of solving the most
difficult problem between ∃-mlB[dRE] ∃-loc

B
[dFA].

Proof. In this case we have to check two sources of maximality depending on the
choice of κ and on the related box-designs. To do that, we guess a function κ
(the candidate for a maximal local typing) and we check whether each induced
box-design (i) admits a local typing, (ii) is maximal and (iii) is dRE-definable.
So, we have to prove that each κ′ > κ does not lead to any local typing. In
particular:

1. Guess a functions κ;

2. Prove that, for each node x of T with lab(x) ∈ Σ, the answer of ∃-mlB[dRE]
over Dx

κ is “yes”;

3. Prove that, for each κ′ > κ, there is at least a node x of T with lab(x) ∈ Σ
such that the answer of ∃-locB

[dFA] over D
x
κ′ is “no”.

We just notice that there could be an exponential number of κ′ to be enumerated
and checked, as well as the number of calls to ∃-locB

[dFA].

8. Conclusion

As explained in the introduction, this work can serve as a basis for designing
the distribution of a document. It would be interesting to extend our definitions
and methods to richer types of web data. First, this would involve graph data
and not just tree data. Then one should consider unordered collections and
functional dependencies as in the relational model [5, 39]. Other dependencies
and in particular inclusion dependencies would also clearly make sense in this
setting [40]. More specific design methodology would also extend the techniques
presented in this paper by considering concrete network configurations; this is
left for future research.

Database design has a long history, see most database text book. Distributed
database design has also been studied since the early days of databases, but
much less, because distributed data management was limited by the difficulty
to deploy distributed databases. The techniques that were developed, e.g., ver-
tical and horizontal partitioning, are very different from the ones presented here
because we focus on ordered trees and collections are not ordered in relational
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databases. We believe that traditional database studies even on mainly the-
oretical topics such as normal forms are also relevant in a Web setting. An
interesting direction of research is to introduce some of these techniques in our
setting.

In the paper, the focus was on local typing that forces verification to be
purely local. More generally, it would be interesting to consider typings of the
resources that would minimize the communications needed for type checking
(and not completely avoid them). Moreover, it would be interesting to analyze
cases where a kernel document may change from time to time by adhering to
some global type which uses function symbols in the specification itself. We
are investigating this direction. Let us give a short example exhibiting some
of the new difficulties that would arise in case kernel document changes were
taken into account. Consider the kernel string w = af and the type τ = af?ba+.
By directly applying the techniques proposed in this paper, it seems clear that
f?ba+ would be the perfect typing for this design. So, one extension of w may
be afba (by attaching the tree fba complying with the perfect typing) which, in
turn, represents a new kernel. But, this extension might still be extended, by
attaching again tree fba, to form afbaba, since the first extension still contains
a function call and the perfect typing defined for the remote resource should not
vary. This last step could be performed several time. The language obtained by
all possible extensions is defined by the type af?(ba+)+, being clearly different
from τ . The problem here is that τ does not express directly a set of trees
without taking into account a specific typing. New interesting questions might
be: How to look for typings that are, in a sense, fixpoints w.r.t. the original type
with functions? or How to avoid irregularities? or even Is the perfect typing
still unique? Finally, interesting issues may also come from studying the impact
of distributed typing (as studied here) on query optimization.
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