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Abstract
There are two schools of thought on reasoning about distributed systems: one following inter-
leaving based semantics, and one following partial-order/graph based semantics. This paper
compares these two approaches and argues in favour of the latter. An introductory treatment of
the split-width technique is also provided.

1 Introduction

Distributed systems form a crucially important but particularly challenging domain. Design-
ing correct distributed systems is demanding, and verifying its correctness is even more so.
The main cause of difficulty here is concurrency and interaction (or communication) between
various distributed components. Hence it is important to provide a framework that makes
easy the design of systems as well as their analysis. In this paper we argue in favour of
(visual) graph based techniques towards this end.

The behaviour of a distributed system is often understood by means of an interleaving
based semantics. People are guided by this understanding when designing a system, and also
when formally expressing properties for system verification. But interleavings obfuscate the
interactions between components. This inherent complication of interleaving based semantics
makes the design and verification vulnerable to many (human) errors. Moreover, expressing
distributed properties on interleavings is non-trivial and sometimes also impossible to achieve.
In contrast, a visual understanding of behaviours of distributed systems would make it less
prone to errors — in the understanding of the semantics, in the statement of properties
and in verification algorithms. Not only does the visual approach help in providing right
intuitions, but, we will demonstrate that, it is also very powerful and efficient.

What you see is what you understand A good example of the visual representation of
behaviours is the ITU standard message sequence charts (MSCs) [20] which describe protocols
involving message exchanges. The events executed by a local process are linearly ordered,
see e.g., Figure 3. The transmission of the messages is also depicted. This visual description
reveals not only the interactions between components but also the concurrency and the
causality relations. The causality relation corresponds to the transitive closure of the linear
orders on processes and of the message relation. Events that are not causally ordered are
concurrent.

Another example which illustrates the power of visual representations is nested words [5]
for the behaviours of recursive programs. The binary relation matching push-pop pairs,
which is very fundamental for reasoning about recursive (or pushdown) systems, is explicitly
provided in a nested word.
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What you see is what you state One main advantage of such a visual representation is the
ease and power of specification. The underlying graph structure provides a richer framework
for formal specification. For example, monadic second order logic (MSO) may have causality
relation, concurrency relation, process ordering, message transmissions, push-pop matching
relation etc. as basic predicates. Many of these fundamental relations are very difficult (or
even impossible) to recover if we settle for an interleaving based understanding. For example,
the monadic second order logic over words cannot express a matching push-pop relation even
when we assume a visible alphabet (one in which letter dictates whether it is a push position
or a pop position). This is because such a relation requires some implicit counting for which
MSO over words is too weak.

What about LTL? Temporal logics and navigation logics have been studied over the intuitive
visual descriptions, for instance over nested words [3,4], MSCs [8], nested traces [7], multiply
nested words [24], etc. Such logics allow us to express the fundamental relations (causality,
concurrency, message matching, push-pop matching, etc.) as basic modalities. Thus,
properties of distributed systems can be easily and naturally expressed. On the other hand, if
the behaviour of a distributed system is understood in terms of linear sequences of events, one
is tempted to use LTL over words for specifications. But the classical modalities of LTL are
not suited to the distributed setting. For example, the temporal next modality of LTL over
words is nonsensical in the actual distributed behaviour since concurrent/independent events
can be ordered arbitrarily by the operational semantics. So, LTL is sometimes deformed by
removing the next modality [28].

When does a specification over linearizations make sense? In fact, a specification of distrib-
uted systems given over linearisations (by means of MSO or LTL) is meaningful only if it is
satisfied by all or none of the equivalent linearisations of any given distributed behaviour.
We say a distributed specification is closed if it satisfies this inevitable semantic closure
condition. In some particular cases, it is decidable to check whether a given specification,
e.g., in LTL over words, is closed [27,29]. But this does not provide a convenient specification
language, which would syntactically ensure that all specifications are closed. On the other
hand, logics over graph-based representations naturally eliminate this problem since the
semantics is independent of the linearisations.

Why care beyond reachability? Very often people care only about reachability, and not
beyond it. One of the main reasons is that, in the case of sequential non-recursive systems,
the model-checking and satisfiability problems reduce to reachability. Most of the decision
procedures proceed by building a machine which accepts the models of the specification.
This is then followed by boolean operations on the machine model and finally performing
an emptiness checking on the resulting machine which is nothing but a reachability test.
However, for distributed systems, such translations from specifications to machine models
do not exist. Closure under boolean operations also does not hold in general. Hence the
model checking and satisfiability problems in the distributed setting cannot be reduced
to reachability. Thus, while it is necessary and important to study the basic reachability
problem, it is not sufficient. We need to devise techniques / verification procedures for
specifications given in logical languages.

But we have techniques and tools available for words. What about graphs? In fact, graph
theory is a very well-studied and mature discipline. We may use the insights and results
from graph theory to our advantage. For example, generic logics on graphs serve as a good
specification formalism. Graph measures such as tree-width (or clique-width or split-width)
could offer good under-approximation parameters towards regaining decidability of our Turing
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WYS

WYG
Understanding
(Behaviours)

Expressiveness
(Specifications)

Efficiency
(Complexity of algorithms)

Words - interleaved sequence of
events. Interactions are
obfuscated and very diffi-
cult to recover.

- combinatorial explosion
(single distributed beha-
viour results in a huge
number of interleaved
traces)

- too weak for many nat-
ural specifications

- requires semantical clos-
ure to be meaningful:
equivalent linear traces
should agree on a specific-
ation

- undecidable in general
- decidable under restric-
tions

- reductions to sequential
word automata

- many tools available on
the shelf

- good space complexity

Graphs - visual description of
events

- interactions are visible /
self-explained

- no combinatorial explo-
sion

- powerful specifications.
trivial to express interac-
tions

- independent of particular
linearisation (i.e., natur-
ally meaningful)

- undecidable in general
- decidable under (more le-
nient) restrictions

- reductions to tree
automata via tree-
interpretations

- good time complexity

Table 1 Comparing interleavings and graphs: WYSIWYG.

powerful systems. The generic proof technique via tree interpretations helps us in obtaining
efficient algorithms. We explore these directions in this paper with the help of split-width.

Split-width? Tree-interpretations? Split-width [2, 15, 16] offers an intuitive visual technique
to decompose our behaviour graphs such as MSCs and nested words. The decomposition
is mainly a divide-and-conquer technique which naturally results in a tree decomposition.
Every behaviour can now be interpreted over its decomposition tree. Properties over the
behaviour naturally transfer into properties over the decomposition tree. This allows us to
use tree-automata techniques to obtain uniform and efficient decision procedures for a range
of problems such as reachability, model checking against logical formalisms etc. Furthermore,
the simple visual mechanism of split-width is as powerful as yardstick graph measures such
as tree-width or clique-width. Hence it captures any class of distributed behaviours with a
decidable MSO theory.

How efficient are the decision preocedures? Since graphs have a richer structure, and allow
richer specifications, the verification problems are more challenging in the case of graphs
as compared to words. However, our decision procedures for visual behaviours via split-
width match the same time complexity as the decision procedures based on the interleaving
semantics. In short, the visual technique solves more for the same price.

What you see in Table 1 is what you get. The rest of this article illustrates this.

2 Communicating Recursive Programs

We aim at analysing complex distributed systems consisting of several multithreaded recursive
programs communicating via channels. In this section, we introduce the abstract model for
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Figure 1 An Architecture. It has four data-
structures and two processes. Writer and Reader
of the data-structures are depicted by the incoming
and outgoing arrows respectively.

Stack d1 Queue d2 Queue d3 Bag d4

Process p Process q

such systems and we give its operational semantics resulting in linear behaviours. We also
recall some undecidability results on these systems.

The overall structure of a system is given by its architecture, consisting of a finite set of
processes, and a finite set of data-structures. We are mainly interested in stack and queue
data-structures, though we also handle bags.

An architecture A is a tuple (Procs,DS,Writer,Reader) consisting of a finite set Procs of
processes, a finite set DS = Bags ] Stacks ] Queues of data-structures and functions Writer
and Reader which assign to each data-structure the process that will write into it and the
process that will read from it respectively. In the special case of communicating recursive
programs, we use stacks for recursion and queues for FIFO message passing. Bags are
useful when no specific order is imposed on the message delivery. Since stacks are used to
model recursion, we assume that Writer(s) = Reader(s) for all s ∈ Stacks. An architecture is
depicted in Figure 1.

Each process is described as a finite state machine in which transitions may either be
internal, only modifying the local state of the machine, or access a data-structure. In the
latter case, it is executing either a write event, adding a value to the data-structure, or a
read event, removing a value from the data-structure.

Since these data-structures permit only destructive reads, they induce a binary matching
relation between write events and read events of a behaviour.

I Definition 1. A system of concurrent processes with data structures (CPDS) over an archi-
tecture A and an alphabet Σ of action names is a tuple S = (Locs,Val, (Transp)p∈Procs, `in,Fin)
where Locs is a finite set of locations, Val is a finite set of values that can be stored in the
data-structures, `in ∈ Locs is the initial location, Fin ⊆ LocsProcs is the set of global final
locations, and Transp is the set of transitions of process p. Transp may have write (resp. read)
transitions on data-structure d only if Writer(d) = p (resp. Reader(p) = d). For `, `′ ∈ Locs,
a ∈ Σ, d ∈ DS and v ∈ Val, Transp has

internal transitions of the form `
a−→ `′,

write transitions of the form `
a,d!v−−−→ `′ with Writer(d) = p, and

read transitions of the form `
a,d?v−−−→ `′ with Reader(d) = p.

The operational semantics of a CPDS S may be given as an infinite state transition
system T S. The infinite set of states of T S is LocsProcs × (Val∗)DS. In the following, a state
of T S is a pair (`, z) where ` = (`p)p∈Procs and z = (zd)d∈DS. Such a state is initial if `p = `in
for all p ∈ Procs and zd = ε for all d ∈ DS. It is final if ` ∈ Fin and zd = ε for all d ∈ DS.
The transitions of the CPDS S induce the transitions of T S as follows.

(`, z) p,a==⇒ (`′, z) if `p
a−→ `′p in Transp and `′q = `q for all q 6= p,

(`, z) p,a,d!===⇒ (`′, z′) if `p
a,d!v−−−→ `′p in Transp for some value v ∈ Val and `′q = `q for all

q 6= p, and z′d = zdv, and z′c = zc for all c 6= d,
(`, z) p,a,d?====⇒ (`′, z′) if `p

a,d?v−−−→ `′p in Transp for some value v ∈ Val and `′q = `q for all
q 6= p, and z′c = zc for all c 6= d, and zd = uvw and z′d = uw for some u,w ∈ Val∗. If
d ∈ Queues (resp. d ∈ Stacks) we require in addition that u = ε (resp. w = ε).
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Figure 2 A CBM over the architecture given in Figure 1 and alphabet {a, b}.

A run of T S is a sequence of consecutive transitions, it is accepting if it starts in the
initial state and ends in some final state of T S. The linear trace of the run is the word
obtained by concatenating the sequence of transition labels. It is a word over the alphabet
Γ = (Procs × Σ) ∪ (Procs × Σ× DS× {!, ?}). We denote by Llin(S) the set of linear traces
accepted by the operational semantics of S.

Keeping the data-structure access in the linear traces allows us to recover the matching
relation between write actions and corresponding read actions for stacks or queues (but not
for bags). This requires some counting, hence it is not a regular relation (an MSO definable
relation) on the linear traces.

Undecidability. Since the operational semantics is an infinite state system, we cannot analyse
it directly. The most basic problem, reachability, is already undecidable. This is in particular
the case for a single process with a self queue, or a single process with two stacks, or two
processes with two queues between them (the direction of the queues does not matter), or
two processes having a stack each and linked with a queue (see, e.g., [15]). Characterizations
of decidable topologies have been studied in the case of reliable and lossy channels [12] or in
the case of FIFO channels and bags [13].

Since decidable architectures are much too restrictive, under-approximation techniques
have been developped. Decidability is recovered by putting some restrictions on the possible
behaviours of the system. For instance, a very natural restriction is to put a bound on the
data-structure capacities. The operational semantics described above becomes a finite state
transition system. The analysis in this case is restricted to so-called existentially bounded
behaviours [18]. Many other under-approximation classes have been studied, e.g., bounded
context [30], bounded phase [21], bounded scope [23], etc.

3 Distributed Behaviours

In this section, we introduce the distributed semantics of CPDSs. We relate the distributed
semantics and the operational semantics by showing that the linear traces arising from the
latter are exactly the linearisations of the graphs defined by the former. We illustrate the
benefits of considering the distributed semantics in the rest of this paper.

As a first example, the graph on Figure 2 provides a visual description of the behaviour of
a CPDS. On such a graph, called concurrent behaviour with matching (CBM), the horizontal
lines describe the linear behaviour of each process of the system, the other edges describe
the matching relations between writes and corresponding reads. The CBM in Figure 2, is
over the architecture of Figure 1. The curved arrows on process p and process q form the
matching relations of stack d1 and bag d4 respectively. The matching relations induced by
queues are shown by the arrows between the processes. As a comparison, the operational
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semantics generates linearisations of this behaviour such as

Lin1 = (p, a)(p, b, d1, !)(p, a, d3, !)(p, b, d1, !)(q, a, d4, !)(q, b, d2, !)(q, b, d4, !)
(q, a, d4, !)(q, a, d2, !)(q, b, d4, ?)(q, a, d3, ?)(q, b, d4, ?)(q, a, d2, !)
(q, b, d4, !)(q, b, d4, ?)(q, a, d4, ?)(p, a, d2, ?)(p, b, d1, ?)(p, a, d1, !)
(p, a, d2, ?)(p, a, d1, ?)(p, b, d1, ?)(p, b, d2, ?)(p, a)

Lin2 = (p, a)(q, a, d4, !)(p, b, d1, !)(q, b, d2, !)(p, a, d3, !)(q, b, d4, !)(p, b, d1, !)
(q, a, d4, !)(p, b, d1, ?)(q, a, d2, !)(p, a, d2, ?)(q, b, d4, ?)(p, a, d1, !)
(q, a, d3, ?)(p, a, d2, ?)(q, b, d4, ?)(p, a, d1, ?)(q, a, d2, !)
(p, b, d1, ?)(q, b, d4, !)(p, b, d2, ?)(q, b, d4, ?)(p, a)(q, a, d4, ?)

from which it is much harder to get an intuition of the interactions going on in this behaviour.
Actually, when we have bags, we cannot uniquely reconstruct a CBM from a linearisation.
Hence, for distributed systems, graphs provide a visual and intuitive description of behaviours
well-suited for human beings.

In the next sections, we discuss further the benefits of describing behaviours as directed
graphs. Here, we define these CBMs. The intuition is easy, we have one linear trace for each
process and in addition binary matching relations relating write events to corresponding
reads. The formal definition has to state additional properties so that the matching relations
comply with the access policies of data-structures.

I Definition 2. A concurrent behaviour with matching (CBM) over architecture A and
alphabet Σ is a tupleM = ((wp)p∈Procs, (Bd)d∈DS) where wp ∈ Σ∗ is the sequence of events
on process p and Bd is the binary relation matching write events on data-structure d with
their corresponding read events. We let Ep = {(p, i) | 1 ≤ i ≤ |wp|} be the set of events on
process p ∈ Procs and E =

⋃
p∈Procs Ep. For an event e = (p, i) ∈ Ep, we set pid(e) = p and λ(e)

be the ith letter of wp. We write → for the successor relation on processes: (p, i)→ (p, i+ 1)
if 1 ≤ i < |wp|.

The matching relations should comply with the architecture: Bd ⊆ EWriter(d) × EReader(d)
for all d ∈ DS and data-structure accesses are disjoint: if e1 Bd e2 and e3 Bd

′
e4 are different

edges (d 6= d′ or (e1, e2) 6= (e3, e4)) then they are disjoint (|{e1, e2, e3, e4}| = 4). Finally,
writes should precede reads, so we require the relation < = (→∪B)+ to be a strict partial
order on the set E of events, where B =

⋃
d∈DS B

d is the set of all matching edges. There are
no additional constraints for bags, but for stacks or queues we have to impose in addition
∀d ∈ Stacks, Bd conforms to LIFO: if e1 Bd f1, e2 Bd f2 and e1 < e2 < f1 then f2 < f1,
∀d ∈ Queues, Bd conforms to FIFO: if e1 Bd f1, e2 Bd f2 and e1 < e2 then f1 < f2.

We let CBM(A,Σ) be the set of CBMs over A and Σ.

A run of a CPDS S on a CBM M is simply a labelling ρ : E → Locs of events by states
which is compatible with the transition relation. We denote by ρ− : E → Locs the map that
associates with each event the state which labels its predecessor: ρ−(e) = ρ(e′) if e′ → e and
ρ−(e) = `in if e is minimal on its process. Then, the map ρ is a run if

(T1) for all eBd f , there exists some value v ∈ Val such that ρ−(e) λ(e),d!v−−−−−→ ρ(e) in Transpid(e)

and ρ−(f) λ(f),d?v−−−−−→ ρ(f) in Transpid(f),

(T2) for all internal events e we have ρ−(e) λ(e)−−−→ ρ(e) in Transpid(e).
A run ρ is accepting if lastρ ∈ Fin where lastρ ∈ LocsProcs gives the final location of the run for
each process: lastρp = `in if Ep = ∅ and lastρp = ρ(max(Ep)) otherwise. We denote by Lcbm(S)
the set of CBMs accepted by S.
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We explain now the relationship between the distributed semantics and the sequential
operational semantics. Intuitively, the linear traces of the operational semantics are precisely
the linearisations of the CBMs accepted by the distributed semantics. Let us make this
statement more precise. Consider a CBM M and define the labelling γ : E → Γ where
Γ = (Procs× Σ) ∪ (Procs× Σ× DS× {!, ?}) by γ(e) = (pid(e), λ(e)) if e is an internal event,
and if eBd f then γ(e) = (pid(e), λ(e), d!) and γ(f) = (pid(f), λ(f), d?). A linearisation of
M is given by a total order vlin on the set E of events which is compatible with the causality
relation: < ⊆ vlin. It defines the word γ(e1)γ(e2) · · · γ(en) ∈ Γ∗ if the linear order on E is
e1 @lin e2 @lin · · · @lin en. We denote by Lin(M) ⊆ Γ∗ the set of linearisations ofM.

I Theorem 3. We have Lin(Lcbm(S)) = Llin(S).

However, there are also subtle differences between these two semantics. As seen above,
it is possible to derive the linear traces from the CBMs, but the converse is not pos-
sible in general. For instance, if the data-structure d is a bag, then the linear trace
(p, a1, d!)(p, a2, d!)(p, a3, d?)(p, a4, d?) is both a linearisation of the CBM M1 which matches
a1 with a3 and the CBMM2 which matches a1 with a4. Hence, some specifications involving
the matching relations may not be expressible on the linearisations.

If we only have stacks and queues, then we can unambiguously reconstruct a CBM from
a linear trace w ∈ Llin(S). This is achieved as follows. For each p ∈ Procs, the sequence of
actions executed by process p is the word wp ∈ Σ∗ obtained as the projection on Σ of the
subword of w consisting of the letters whose first component is process p. This yields the
first component (wp)p∈Procs of the CBM M associated with w. Notice that there is a natural
bijection between the set of positions of w and the set E of events of M. To define the
matching relations, consider two events e, f associated with positions i, j of w. Then, eBd f
iff the letters of w at positions i and j are w(i) ∈ Procs×Σ×{d!} and w(j) ∈ Procs×Σ×{d?}
and

if d ∈ Queues then the number of writes to d before i equals the number of reads from d

before j,
if d ∈ Stacks then j is the minimal position after i such that between i and j, the number
of writes to d equals the number of reads from d.

Notice that, even in the case of stacks and queues for which the matching relations can
be unambiguously recovered from linear traces, these relations are not MSO definable on
the linear traces. Hence, even with the powerful MSO logic, we cannot specify properties
involving matching relations on linear traces. We will discuss this more precisely in the next
section.

4 Specifications

The simplest specifications consist of local state reachability or global state reachability:
is there a run of S which reaches a given local state ` ∈ Locs on some process p ∈ Procs
or a given global state ` ∈ LocsProcs. To express more elaborate properties, we need some
specification languages, such as first-order logic, monadic second-order logic, temporal logic,
propositional dynamic logic, etc. Here it makes a big difference whether we work with the
sequential operational semantics or the distributed semantics. In the first case, traces are
words and the logics will refer to the linear order vlin, whereas in the latter case, behaviours
are graphs and the logic will have direct access to the causal ordering < as well as to the
process successor relation → and the matching relations Bd. The process successor relation
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Figure 3 A request/response scenario

→ can be easily recovered from the linear order vlin. This is not the case for Bd, hence also
for the causal ordering <, in the logics mentioned above. Actually, recovering a relation
Bd is possible if d is a stack or a queue but it requires some counting as explained above.
This counting is not possible, even in the powerful MSO logic, unless the capacity of the
data-structure d is bounded by some fixed value B. In this case, it is possible to express Bd
in MSO, though the formula is non-trivial and depends on the bound B. Hence, we favour
specification logics on CBMs rather than on linear traces.

The partial order < = (→∪B)+ that comes with a CBM M = ((wp)p∈Procs, (Bd)d∈DS)
describes the causality relation between events. Some specifications rely on this causality
relation. For instance, a distributed system may receive requests on some process p, do some
internal computation involving several other processes, and finally deliver an answer on some
other process q. A natural specification is that every request should be answered. Indeed,
the answer to a request should be in its causal future. Such a specification is easy to write
on CBMs where the causal ordering is available. For instance, it corresponds to the first
order formula ϕ = ∀x (request(x) =⇒ ∃y (x < y ∧ response(y))) or to the local LTL formula
G(request =⇒ F response) (where G means for all events in the causal future and F means
for some event in the causal future). The CBM M depicted in Figure 3 does not satisfy this
specification as Request 2 is not responded. Request 1 has Response 2 in its future, though
not Response 1. Recall that, by Theorem 3, linear traces are linear extensions of CBMs
and events that are concurent inM may be ordered arbitrarily in a linear trace. Therefore,
Lin(M) includes many linearisations in which the responses follow the requests and from
which it is not easy to see whether the specification is satisfied or not.

As explained above, recovering the causal order < from the total order vlin is not possible,
even with very expressive specification languages such as MSO over words. As a conclusion, a
simple and natural specification such as the request/response property, cannot be reduced to
a reachability problem on the operational semantics in general. Such a reduction is possible
when the data-structures are restricted to bounded stacks and bounded queues (no bags),
but it is non-trivial.

The same argument holds for specifications that involve the matching relation associated
with a stack. For instance, we may specify that after receiving a request, the process calls a
recursive procedure and when this call returns it immediately delivers the response. Again,
matching a call with the corresponding return requires counting which is not a regular
property unless the call depth is bounded.

As another example, a specification may require that when an access to some critical
section is denied, there is a good reason for that, say some concurrent event is accessing the
critical section. Again, concurrency — which is the absence of causal ordering — cannot be
expressed on the linear traces in general.
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We introduce below two powerful specification languages on CBMs. First, monadic
second-order logic over CBM(A,Σ) is denoted MSO(A,Σ). It follows the syntax:

ϕ ::= false | a(x) | p(x) | x ≤ y | xBd y | x→ y | x ∈ X | ϕ ∨ ϕ | ¬ϕ | ∃xϕ | ∃X ϕ

where p ∈ Procs, d ∈ DS and a ∈ Σ. The semantics is as expected. Every sentence ϕ in MSO
defines a language Lcbm(ϕ) ⊆ CBM(A,Σ) consisting of all CBMs that satisfy that sentence. A
language L ⊆ CBM(A,Σ) is MSO definable if L = Lcbm(ϕ) for some sentence ϕ ∈ MSO(A,Σ).

I Remark. The set CBM(A,Σ) is MSO definable in the class of graphs over the signature
associated with (A,Σ). More precisely, there is an MSO(A,Σ) sentence Φcbm such that a
graph G = (E ,→, (Bd)d∈DS, pid, λ) satisfies Φcbm iff it is a CBM over (A,Σ). It is easy to
obtain the formula Φcbm from Definition 2, including the LIFO and FIFO conditions for
stacks and queues.

I Remark. The language Lcbm(S) of a CPDS S is definable with an existential MSO sentence
ΦS . Intuitively, with an existential prefix ∃(Xp,τ )p∈Procs,τ∈Transp

the formula guesses for each
transition τ ∈ Transp the set of events from process p ∈ Procs that will execute this transition,
and then checks with a first-order formula that this guess defines an accepting run of S.

I Remark. Notice that CBM-graphs have degree bounded by 3 since any event may take
part in at most one matching relation. Therefore, on CBMs, the logic MSO2 in which we
may also quantify over edges (individual variables or set variables) has the same expressive
power as MSO.

We are interested in two decision problems: satisfiability of a specification and model
checking of a system against a specification. Given an architecture A, an alphabet Σ and
an MSO sentence ϕ ∈ MSO(A,Σ), the satisfiability problem asks whetherM |= ϕ for some
M∈ CBM(A,Σ). For the model checking problem, we are also given a CPDS S and we ask
whether the specification is satisfied for all (or for some) behaviours of the system: M |= ϕ

for allM∈ Lcbm(S).
Since reachability (or equivalently emptiness) is undecidable in general for CPDSs, both

satisfiability and model checking are undecidable for any specification language that can
express reachability, in particular MSO. This is trivial for model checking: the specification
false is satisfied iff the language of S is empty, i.e., if the final states are not reachable. For
satisfiability, it follows from the remark above since ΦS is satisfiable iff the set of final states
is reachable in S.

I Remark. We have seen above that reachability reduces to model-checking or to satisfiability.
In the case of finite sequential systems, the converse holds since, for any MSO formula ϕ,
we can compute an automaton Aϕ which accepts exactly the models of ϕ [11, 17,32]. Then,
the model-checking problem reduces to the emptiness problem for the intersection of the
system and the negation of the formula. But this approach fails for distributed systems
because it is not possible in general to compute an automaton equivalent to a given formula.
Indeed, we have already seen that the matching relation, hence also the partial order, cannot
be computed by an automaton on the linearisations. Even if we stay in the distributed
semantics, an MSO formula cannot be translated to a CPDS in general. This is because even
the simpler class of message passing automata (i.e., when DS = Queues) is not closed under
complementation [9]. Therefore the model-checking problem for CPDSs and MSO does not
reduce to reachability in general.

Is MSO the ultimate logic? MSO is a very expressive logic for specifications. Its drawback is
that, even when we recover decidability by restricting to some under-approximation class,
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the complexity of the decision procedure in non-elementary. This is already the case for
words or trees. To get better complexity, one should use other formalisms such as Temporal
Logics or Propositional Dynamic Logic (PDL). Towards expressing properties of CBMs, the
classical LTL over words has been extended to visible behaviours such as nested words [3, 4],
MSCs [8], nested traces [7], multiply nested words [24], etc. These temporal logics have
explicit modalities that allow one to retrieve matching edges or to follow the partial order.
Below, we describe propositional dynamic logic which embeds all these logics and provides
powerful navigational abilities.

In PDL, there are two types of formulas. State formulas (σ) describe the properties of
events in a behaviours, hence they have an implicit first-order free variable assigned to the
current event. Atomic propositions such as p or a assert that the current event is on process
p ∈ Procs or is labelled a ∈ Σ. In addition to boolean connectives, we have a path modality
〈π〉σ claiming the existence of a path following π from the current node to an event satisfying
σ. A path formula π has two implicit first-order free variables assigned to the end points of
the path. They are built from basic moves following edges of the graph (in our case → and
Bd), either forwards or backwards, using rational expressions that may use intersection in
addition to the classical union, concatenation and iteration. In addition, we may check a
state formula σ along a path. Formally, the syntax of ICPDL(A,Σ) is given by

σ ::= false | p | a | σ ∨ σ | ¬σ | 〈π〉σ
π ::= test(σ) | → | Bd | π−1 | π + π | π ∩ π | π · π | π∗

where p ∈ Procs, d ∈ DS and a ∈ Σ. If intersection π ∩ π is not allowed, the fragment is PDL
with converse (CPDL)1.

5 Graph theoretic approach to verification

In this section, we show how results from graph theory may help in designing decidable
under-approximation techniques for the verification of CPDSs. The distributed semantics
defines the behaviours as graphs, hence we are interested in checking properties of the set of
graphs Lcbm(S) accepted by a CPDS. More precisely, our aim is to solve the model checking
problem: given a system S and a specification ϕ ∈ MSO(A,Σ), does S |= ϕ, i.e., is the
formula ϕ valid on Lcbm(S)?

Let us fix some architecture A and the set Σ of action labels. Decidability of the model-
checking problem is equivalent to decidability of the MSO theory of the set CBM(A,Σ) of
CBM-graphs. Indeed, we have seen in Remark 4 that from a CPDS S we can compute a
formula ΦS which defines Lcbm(S). Therefore, S |= ϕ iff ¬ΦS ∨ ϕ is valid on CBM(A,Σ).
Hence, decidability of model-checking reduces to decidability of the MSO theory of CBM(A,Σ).
For the converse, it suffices to consider a universal CPDS S with Lcbm(S) = CBM(A,Σ).

We have seen in Section 2 that reachability, the most basic model-checking problem, is
undecidable for CPDS, even for very simple architectures such as two processes communicating
via FIFO channels (with no stacks) or a single process with two stacks. Hence, the MSO
theory of CBM(A,Σ) is undecidable in general, which can be seen also directly since CBMs
have unbounded tree-width (or clique-width) in general. Still, it is extremely challenging to
develop correct programs for distributed multi-threaded recursive systems. Hence, techniques

1 If backward paths π−1 are not allowed the fragment is called PDL with intersection (IPDL). In simple
PDL neither backwards paths nor intersection is allowed.
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for approximate verification have been extensively developed recently. We will not discuss
over-approximation techniques in the present paper.

An under-approximation technique restricts the problems (reachability, satisfiability or
model-checking) to a decidable subclass C ⊆ CBM(A,Σ) of behaviours. Often the subclass Cm
is parametrised with some integer m. We cover more behaviours by increasing the parameter
m. The approximation family (Cm)m≥0 is complete or exhaustive if CBM(A,Σ) =

⋃
m Cm.

Hence, the aim of under-approximate verification is to define and study meaningful classes
C ⊆ CBM(A,Σ) with a decidable MSO theory.

Decidability of the MSO theory (or equivalently decidability of the MSO satisfiabiliy
problem) for classes C of graphs has been extensively studied. We recall now some important
results that will be useful for our purpose (see [14, Chapter 1] for a survey). Recall that
CBM-graphs have degree bounded by 3 since any event may take part in at most one matching
relation. Hence, we restrict our attention to results for classes C of bounded degree graphs.
The following fact summarizes some of the main results (see Theorem 4).

An MSO definable class C of bounded degree graphs has a decidable MSO theory iff it
can be interpreted2 in the class of binary (labelled) trees.

In the light of this fact, under-approximation classes are obtained by MSO definitions
together with tree interpretations. Then, verification problems are reduced to problems on
tree automata, yielding efficient algorithms.

Such tree interpretations can be defined specifically for some class C ⊆ CBM(A,Σ). This
is for instance the case for bounded phase behaviours of multi-pushdown automata [21]
where multiply nested words of bounded phase are interpreted in binary trees called stack-
trees. Another example is given by the interpretation of some classes of multiply nested
words in visibly (k-)path trees in order to prove decidability of emptiness and closure under
complement of multi-pushdown automata when restricted to some classes of behaviours that
can be interpreted in these path-trees [25] .

A higher level approach is to prove some combinatorial property on the class C which
ensures the existence of a tree interpretation. For instance, one may show that the class C
has bounded tree-width (and is MSO definable). This is the approach taken in [26], where
decidability of several under-approximation classes is established by proving that they are
MSO definable and have bounded tree-width. For most of the classes considered in [26] the
decidability had been already proved directly. Hence, [26] provides a unifying approach as
well as efficient algorithms based on tree interpretations.

Alternative combinatorial properties may be more convenient, for instance bounded
clique-width, which is equivalent to bounded tree-width on classes of bounded degree graphs.
In [2,16] another decomposition technique, called split-width, is defined specifically for CBMs
(see Section 6). On classes of CBMs, bounded tree-width, bounded clique-width and bounded

2 There are several equivalent ways to define an interpretation of a graph G = (V,E) in a labelled tree
T . We describe the MSO-transductions of Courcelle, but one may, for example, also use the regular
path descriptions of Engelfriet and van Oostrom. An MSO-interpretation is given by a tuple of MSO
formulas. We will give a concrete example in Section 6. Intuitively, not all labelled trees admit a valid
graph interpretation, hence, we use a sentence Φvalid to select the “good” trees. The vertices of the graph
are some nodes of the tree, and we use a formula Φvertex(x) to select those nodes of T which should
be interpreted as vertices of G: V = {u ∈ T | T |= Φvertex(u)}. Finally, a formula Φedge(x, y) encodes
the edge relation of G: T |= Φedge(u, v) iff (u, v) ∈ E. We may also interpret vertex-labelled graphs
by refining Φvertex in a tuple of formulæ Φa(x) which selects those vertices/nodes that are labelled a.
Finally, in case of edge-labelled graphs, the formula Φedge(x, y) is refined in a tuple of formulæ Φd(x, y)
one for each edge-label d.
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split-width are all equivalent. We believe that, for a class of CBMs, establishing a bound on
split-width is easier than the other measures. Also, we will see in Section 6 that split-width
gives an easy and natural interpretation of CBMs in binary trees. Hence, split-width provides
a convenient, necessary and sufficient condition, to establish decidability of the MSO theory
of an under-approximation class.

The following theorem summarizes some of the relevant results. For more details, the
reader is referred to [14, Chapter 1] and [15,16].

I Theorem 4. Let C be a class of bounded degree graphs which is MSO definable. TFAE
1. C has a decidable MSO theory,
2. C can be interpreted in binary trees,
3. C has bounded tree-width,
4. C has bounded clique-width,
5. C has bounded split-width (if C ⊆ CBM(A,Σ) is a class of CBMs).

In order to define a good under-approximation class, one may show that it is MSO
definable and that it satisfies one of the conditions of Theorem 4. We will introduce split-
width in the next section and show that it is a convenient tools for CBMs. Proving MSO
definability is often easy. This is the case for many under-approximation classes, like bounded
context, bounded phase, bounded scope, ordered etc. for multi-pushdown systems. Also, for
distributed systems, it is easy to give an MSO definition for universally bounded MSCs, or
the bounded context and well-queuing assumption of [19,22].

6 Split-width

In this section, we introduce split-width. We explain the associated tree-interpretations
and infer the decidability and complexity of a collection of verification problems when
parametrised by split-width. We also discuss how to use split-width in order to obtain similar
results for various under-approximation classes.

With K. Narayan Kumar, we introduced split-width in [16] for multiply nested words.
The technique was later extended to CBMs in [2, 15].

The idea is to decompose a graph in atomic pieces consisting of matching write/read
pairs, see Figure 4. This can be seen as a two-player turn-based game with a fixed budget k
which will be the width of the decomposition. The existential player (Eve), trying to prove
the existence of a decomposition of width at most k, has to disconnect the CBM graph by
splitting at most k process edges. For instance, the root of Figure 4 is labelled with a CBM
M over the architecture A of Figure 1. The graphM cannot be disconnected by splitting
only one or two process edges. So Eve splits three process edges that are shown as dashed
red edges in the split-CBM M′. The universal player (Adam) will now choose one of the
connected components ofM′ and the game continues. M′ has two connected components
M1 andM2, providing two choices for Adam.

IfM2 is chosen, Eve splits the two process edges and the resulting graphM′2 has now
two connected components. Whichever is chosen by Adam is an atomic write/read edge,
which is a winning position for Eve.

Assume now thatM1 is chosen. Note thatM1 has two blocks of events on process q with
one hole between them. The first block consists of a single event labelled b and the second
one consists of three events labelled cdc. A block of events in a split-CBM is a maximal
sequence of events on a single process. For instance,M′ has two blocks on process p and
three blocks on process q. Clearly, the number of holes on some process is the maximum of
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Figure 4 A split decomposition of width 3.
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Figure 5 A split term s (left) and a labelled term t (right) corresponding to Figure 4.
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zero and the number of blocks minus one on that process. The budget k of Eve is reduced
by the number of holes. For instance, M1 has one hole (on process q) hence Eve is only
allowed two (3− 1) more splits to disconnectM1 without exceeding her budget. Her choice
is depicted inM′1. One connected component ofM′1 is a matching edge which is winning for
Eve. So Adam should chooseM3 lest he lose immediately. Eve splits the remaining process
edge and wins regardless of Adam’s choice.

To summarize, Eve wins a play if it ends in an atomic CBM, i.e., a single internal event or
a matching write/read edge. She loses if she cannot disconnect a non-atomic graph without
introducing more than k split-edges (holes). The split-width of a CBM is the minimum budget
k for which Eve has a winning strategy. A winning strategy for Eve with budget 3 is depicted
in Figure 4 for the CBM M at the root. As explained above, M cannot be disconnected
with only two splits, hence its split-width is exactly 3. We denote by CBMk

split(A,Σ) the set
of CBMs over A and Σ with split-width bounded by k.

I Example 5. Nested words have split-width at most 2. Nested words [5] are CBMs over an
architecture with a single process and a single stack. The bound on split-width can be seen
easily since a nested word w is (a) either the concatenation of two nested words in which
case Eve splits the edge between the two nested words, (b) or is of the form a w b where
w is a nested word, in which case Eve splits the first and last process edges, (c) or is an
atomic CBM.

I Example 6. Existentially k-bounded CBMs have split-width at most k + 1. A CBM M
is existentially k-bounded if it admits a linearization such that the number of unmatched
writes at any point is bounded by k. For instance, the CBM M at the root of Figure 4 is
existentially 3-bounded. Let the linear order witnessing the existential bound be vlin. The
strategy of Eve is to detach the first k + 1 events ofM with respect to vlin by splitting the
corresponding outgoing process edges. The resulting split-CBM M′ must be disconnected.
Indeed, the detached events cannot all be write events, otherwise the bound k is exceeded.
If a read event is detached, then the corresponding write is also detached since it must
come earlier in any linearization. Therefore, the split-CBM M′ contains some connected
components which are atomic CBMs and at most one connected componentM1 which is
non-atomic. Adam must choose the componentM1 to avoid losing the game immediately.
Then, Eve proceeds by splitting some more process edges until k + 1 events are detached in
the vlin order. As above, the resulting split-CBM must be disconnected and at most one of
its connected component is non-atomic. Eve applies the same strategy as long as there is a
non-atomic connected component.

I Example 7. Multiply nested words with at most m phases have split-width at most 2m.
Multiply nested words (MNWs) are CBMs over an architecture with a single process and
several stacks. A phase in a MNW is a factor in which all read events are from the same stack.
A MNW is m-phase bounded if it is the concatenation of at most m phases [21]. All m-phase
bounded MNWs have split-width at most 2m [16]. The bounded phase under-approximation
has been extended to distributed systems in [1, 15].

In fact, an upper bound on split-width has been established for many under-approximation
classes. See [16] for many classes of multi-pushdown systems such as bounded scope [23],
ordered [6,10], etc. For many classes of communicating (multi-pushdown) systems, see [1,2,15].

Split-algebra. The split-game introduced above gives the decomposition view (top-down)
which is useful to establish a bound on split-width. A winning strategy of Eve for some CBM
M can be represented with a tree as in Figure 4. Dually, there is also a split-algebra which
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Figure 6 Two CBMs that can be decomposed with the split-term s of Figure 4.

constructs CBMs in a bottom-up fashion starting from atomic ones using two operations:
shuffle (opposite of divide) and merge (opposite of split). The terms of the split-algebra over
A and Σ follow the syntax:

s ::= a | aBd b | !(s) | s tt s

with a, b ∈ Σ and d ∈ DS. The split-term s corresponding to Figure 4 is given on the left of
Figure 5 (recall that the architecture is taken from Figure 1).

Several CBMs may admit a decomposition via the same split-term. For instance, the
split-term s on the left of Figure 5 allows us to decompose both the CBMs M andM′′ of
Figure 6. The main reason is that a shuffle node does not specify how the blocks of the two
children are shuffled, and a merge node does not specify which holes of the child are mended
into process edges. This ambiguity can be removed with an extra labelling as shown on
tree t on the right of Figure 5 corresponding to the decomposition of Figure 4. At a shuffle
node, the labelling consists of a tuple of words (wp)p∈Procs, where wp ∈ {`, r}∗ describes how
the blocks on process p of the children are shuffled. For instance, the shuffle node (n′) of t
is labelled (wp, wq) = (`r, `r`) which means that the first block ofM′ – corresponding to
node (n′) – on process p comes from the left childM1 – corresponding to (n1) – and the
second block comes from the right childM2 – corresponding to (n2). On process q there are
3 blocks, first and third coming fromM1 and second coming fromM2. The same kind of
labelling is used at B-nodes. Now, for a merge node, the labelling is also a tuple of words
(wp)p∈Procs, but now a word wp ∈ {i,m}∗ tells whether the holes (split edges) of the child are
kept as such (i for inherited) or are turned into process edges (m for mended). For instance,
node (n1) – corresponding toM1 – is labelled (m, im) which means that from its childM′1 –
corresponding to (n′1) – the hole of process p is mended, the first split edge of q is inherited
and the second one is mended. Also, each leaf is labelled with its corresponding process.

Note that, the width of a decomposition can be recovered from the labelled split-term
(but not from the unlabelled split-term). Indeed, the labelling of a merge node directly gives
the number of holes of its child, and the labelling of a shuffle node, or a B-node, gives the
number of blocks from which we can infer the number of holes.

Tree-interpretations. Each CBM that can be decomposed with a split-term s admits an
MSO-interpretation (cf. Footnote 2) in the tree s, which is defined by a tuple of formulas over
binary trees (Φvalid, (Φa)a∈Σ, (Φp)p∈Procs, (Φd)d∈DS,Φ→). The interpretation guesses (with
set variables) a labelling to disambiguate the split term as explained above. Not all labelled
split-terms allow an interpretation, so we use a formula Φvalid to check the validity of the
labelling. Essentially, we have to check that, for each process p, the number of blocks at a
node is compatible with that of the children. For instance, a label wp ∈ {`, r}∗ at a shuffle
node assumes |wp|` (resp. |wp|r) blocks on process p from the left (resp. right) child. A label
wp ∈ {i,m}∗ at a merge node assumes |wp| holes on process p from the child. For a Bd node
with p = Writer(d) and q = Reader(d), we request that the children are leaves labelled p (left)
and q (right), and if p = q then we request wp = `r and ws = ε for s 6= p, and if p 6= q then
we request wp = `, wq = r and ws = ε for p 6= s 6= q. In addition, for stack or queue data
structures, the formula Φvalid has to check that the LIFO or FIFO conditions are respected.
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To do so, we need to enrich further the labelling. If d ∈ Stacks then we maintain the Bd

relation between blocks of process p = Reader(d) = Writer(d): iBd j if eBd f for some e in
the ith block of process p and some f in the jth block of process p. This information can be
easily computed by a deterministic bottom-up tree automaton. At a shuffle node, we make
sure that the LIFO condition is respected by rejecting shuffles that would result in a Bd

relation between blocks that is not well-nested. Hence we obtain an EMSO formula to check
the LIFO condition for data structure d. We proceed similarly for queues.

We denote by DSTkvalid the set of split-terms disambiguated by a valid labelling of width
at most k. Each tree t ∈ DSTkvalid encodes a unique CBM of split-width at most k, denoted
cbm(t). Conversely, everyM∈ CBMk

split is encoded by some, often many, trees t ∈ DSTkvalid.
Vertices of cbm(t) are leaves of t hence we let Φvertex(x) = leaf(x). The vertex labelling in

cbm(t) is the corresponding leaf labelling in t. Hence, formulæ Φa(x) and Φp(x) state that
leaf x is labelled a and p in t. The matching relation also admits a trivial interpretation: for
d ∈ DS, Φd(x, y) states that x and y are leaves with a comon father labelled Bd.

The process relation is slightly harder to recover. This is where the additional labelling
is needed. Intuitively, Φ→(x, y) states that from leaf x it is possible to walk up the tree to
some merge node m, then walk down the tree to leaf y, and that the split edge from x to y
has been mended at node m. It is easy to check this property with a tree automaton and
to deduce the (EMSO) formula Φ→(x, y). More precisely, the deterministic bottom-up tree
automaton keeps in its states the block Bx of which x is the right-most event, and the block
By of which y is the left-most event. It goes to an accepting state only if the hole between
Bx and By is mended into a process edge at some merge node. For instance, the process
edge from leaf (n4) to leaf (n5) is established at merge node (n1).

Tree-width, clique-width and split-width. On CBMs, split-width is a measure that is very
similar to clique-width or tree-width. It is shown in [15, 16] that for CBMs, a bound on
split-width implies a (linear) bound on clique-width or tree-width and vice versa. More
precisely, if a CBM has split-width k then it has clique-width at most 2(k + |Procs|) + 1 and
tree-width at most 2(k + |Procs|)− 1. Conversely, if a CBM has clique-width c or tree-width
t then it has split-width bounded by 2c− 3 or 120(t+ 1).

Verification procedures for bounded split-width. Most verification problems become decidable
with reasonable complexity when parametrised by a bound on split-width. Intuitively, the
tree-interpretation provided by split-width allows us to uniformly reduce a collection of
problems on CBMs of bounded split-width to problems on trees, which are then solved with
tree automata techniques.

More precisely, let S be a CPDS over (A,Σ) and ϕ ∈ MSO(A,Σ) be a specification. The
model checking problem restricted to the class CBMk

split of CBMs with split-width bounded by
k asks whether Lcbm(S) ∩ CBMk

split ⊆ Lcbm(ϕ). Similarly, the emptiness problem for S (resp.
the satisfiability problem for ϕ) restricted to CBMk

split asks whether Lcbm(S) ∩ CBMk
split = ∅

(resp. Lcbm(ϕ) ∩ CBMk
split 6= ∅). We reduce these problems to the emptiness problem for tree

automata as follows.
First, we can build a tree automaton Akvalid of size 2O(k2|A|) which accepts DSTkvalid. Next,

we can build a tree automaton AkS of size |S|O(k+|Procs|) which accepts a tree t ∈ DSTkvalid if
and only if cbm(t) ∈ Lcbm(S). Therefore, the emptiness problem for the CPDS S restricted
to CBMk

split reduces to the emptiness problem of the tree automaton Akvalid ∩ AkS .
Now, let ϕ be a sentence in MSO(A,Σ). Using the MSO interpretation (Φvalid,Φvertex,

(Φa)a∈Σ, (Φp)p∈Procs, (Φd)d∈DS,Φ→) for k-bounded split-width, we can construct a formula ϕk
from ϕ such that for all trees t ∈ DSTkvalid, we have t |= ϕk if and only if cbm(t) |= ϕ. By [31],
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Problem
Complexity

Architecture A, alphabet Σ, bound k on split-width
being part of the input
(k in unary)

being fixed

CPDS emptiness ExpTime-Complete PTime-Complete
CPDS inclusion or universality 2ExpTime ExpTime-Complete
LTL/CPDL satisfiability, model checking ExpTime-Complete
ICPDL satisfiability or model checking 2ExpTime -Complete
MSO satisfiability or model checking Non-elementary
Table 2 Summary of the complexities for bounded split-width verification.

from the MSO formula ϕk we can construct an equivalent tree automaton Akϕ. Therefore, the
satisfiability problem for the MSO formula ϕ restricted to CBMk

split reduces to the emptiness
problem of the tree automaton Akvalid ∩ Akϕ.

Finally, we deduce easily that Lcbm(S) ∩ CBMk
split ⊆ Lcbm(ϕ) if and only if t |= ϕk for all

trees t accepted by Akvalid ∩ AkS . Therefore, the model checking problem S |= ϕ restricted to
CBMk

split reduces to the emptiness problem for the tree automaton Akvalid ∩ AkS ∩ Ak¬ϕ.
We have described above uniform decision procedures for an array of verification problems.

We refer to [2, 15,16] for more details and we summarise the computational complexities of
these procedures in Table 2.

Verification procedures for other under-approximation classes. Our approach is generic in
yet another sense. Under-approximation classes which admit a bound on split-width also
may benefit from the uniform decision procedures described above, provided these classes
correspond to regular sets of split-terms.

More precisely, let Cm be an under-approximation class with Cm ⊆ CBMk
split. For instance,

we have seen that existentially m-bounded CBMs have split-width at most k = m+ 1 (Ex. 6)
and m-bounded phase MNWs have split-width at most k = 2m (Ex. 7). Assume that we can
construct3 a tree automaton AkCm

which accepts a tree t ∈ DSTkvalid if and only if cbm(t) ∈ Cm.
Then, the decision procedures can be restricted to the class Cm with a further intersection
with the tree automaton AkCm

. For instance, the emptiness problem for S restricted to Cm
reduces to the emptiness problem of Akvalid ∩AkCm

∩AkS . The model checking problem S |= ϕ

restricted to Cm reduces to the emptiness problem of Akvalid ∩ AkCm
∩ AkS ∩ Ak¬ϕ.

Clearly, the bound k on split-width in terms of m as well as the size of AkCm
will impact

on the complexity of the decision procedures. We give below several examples.
First, nested words have split-width bounded by a constant 2, and the set of nested words

can be recognised by a trivial 1-state CPDS. Hence the complexities of various problems
follow the right-most column of Table 2. Notice that already for this simple case, the
complexities match the corresponding lower bounds for all problems.

Next, suppose a class Cm admits a bound on split-width k = poly(m) and AkCm
is of size4

bounded by 2poly(m). Then the decision procedures for various problems with respect to the
under-approximation class Cm follow the complexities given in Table 2.

3 One way to obtain Ak
Cm

is to provide a CPDS Sm which accepts the class Cm, then the automaton Ak
Sm

serves as Ak
Cm

. Similarly, if there is a formula ϕm in MSO(A,Σ) characterising the under-approximation
then the automaton Ak

ϕm
serves as Ak

Cm
.

4 If Cm is recognised by a CPDS Sm of size 2poly(k), then the automaton Ak
Cm

= Ak
Sm

is of size 2poly(k).
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This can be extended as follows. Assume the bound k on split-width of the under-
approximation class Cm is n-fold exponential in m and that the size of the tree automaton
AkCm

is bounded by (n + 1)-fold exponential in m (e.g., if we have a CPDS Sm of size
2poly(k)), then the complexities given in Table 2 (left column) will be augmented by a n-fold
exponentiation. For instance, the class Cm of m-bounded phase MNWs has split-width
bounded by 2m (Ex. 7). Also, it is trivial to get a CPDS Sm for Cm of size poly(m). Hence,
the size of AkCm

= AkSm
is 2poly(m). We deduce that the complexities given in Table 2 (left

column) are augmented by one exponentiation for m-bounded phase MNWs.
Thus the verification method via split-width is uniform not only for a wide range of

problems but also for a wide range of classes. The complexities stated in Table 2 match the
lower-bounds for many known under-approximation classes, thus asserting the optimality of
the uniform decision procedures. For details we refer to [15, Section 4.4].

Word-like A split-decomposition is said to be word-like if for every binary node in the
decomposition tree, one of its subtrees has depth bounded by a constant. In this case,
we could employ word automata instead of tree automata. All behaviours of some under-
approximation classes, like existentially m-bounded, admit a word-like split decomposition.
For many problems, the complexity upper bounds fall to the maximal space-complexity
classes contained in the time-complexity classes. For example, emptiness checking of a CPDS
parametrised by (word-like) split-width k can be done in PSpace instead of ExpTime, and
if k is fixed, in NLogSpace instead of PTime.

Acknowledgement: The authors thank Benedikt Bollig for many fruitful discussions and
constructive comments.
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