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Abstract Probabilistic timed automata can be used to model systems in which
probabilistic and timing behaviour coexist. Verification of probabilistic timed au-
tomata models is generally performed with regard to a single reference valuation π0
of the timing parameters. Given such a parameter valuation, we present a method
for obtaining automatically a constraint K0 on timing parameters for which the
reachability probabilities (1) remain invariant and (2) are equal to the reachability
probabilities for the reference valuation. The method relies on parametric analysis
of a non-probabilistic version of the probabilistic timed automata model using the
“inverse method”. The method presents the following advantages. First, since K0

corresponds to a dense domain around π0 on which the system behaves uniformly,
it gives us a measure of robustness of the system. Second, it allows us to obtain
a valuation satisfying K0 which is as small as possible while preserving reachabil-
ity probabilities, thus making the probabilistic analysis of the system easier and
faster in practice. We provide examples of the application of our technique to mod-
els of randomized protocols, and introduce an extension of the method allowing
the generation of a “probabilistic cartography” of a system.
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1 Introduction

Timed automata are finite control automata equipped with clocks, which are real-
valued variables which increase uniformly at the same rate [1]. This modelling
formalism is useful for reasoning about real-time systems, because one can specify
quantitatively the interval of time during which the transitions can occur, using
the bounds involved in invariants and guards labelling the nodes and arcs of the
automaton. An extension of timed automata to the probabilistic framework, where
discrete actions are replaced by discrete probability distributions over discrete ac-
tions, has been defined in [10,17]. This formalism has been applied to a number
of case studies [16]. Model-checking analysis of probabilistic timed automata nor-
mally proceeds by reducing the model to a finite-state probabilistic system [17,16,
20,15].

The constants used in some timing constraints of a real-time system may not
be known, or may be known with some uncertainty. Therefore methods for au-
tomatically generating values on parameters in timing constraints for which the
system behaves correctly are desirable. Methods for synthesising such parameters
in timed automata have first been presented in [2]. In [4], the following inverse
problem has been considered: given a parametric timed automaton and a reference
valuation π0, which is a particular valuation of the parameters of the model, find
a constraint K0 on the parameters which is satisfied by the reference valuation
and in which the model behaves in the same manner as in the case of the refer-
ence valuation. For example, if π0 is known to exhibit good behaviour, such as
the impossibility of reaching an error state, then our aim is to find a constraint
on the parameters within which such good behaviour is guaranteed. In particular,
this allows the system designer to optimize some parameters of the system.

In this paper, we introduce parametric probabilistic timed automata, which
combine probabilistic timed automata and parametric timed automata. We then
consider the application of the inverse method to parametric probabilistic timed
automata models. In this context, the computed constraint K0 defines parameter
valuations for which, in particular, minimum (resp., maximum) probabilities of
satisfying a given property (e.g. reachability of an error state) are all equal. The
method presents the following advantages. First, since K0 corresponds to a dense
domain around π0 on which the system behaves uniformly, it gives us a measure
of robustness of the system. Second, it usually allows us to change the timing
constants of the system to a valuation in K0 smaller than π0, while maintaining
the behaviour of the system, thus making the probabilistic analysis of the system
easier and faster in practice. Indeed, probabilistic analyses of timed systems are
often performed using an integer-time semantics, in which the performance of the
analysis depends critically on the size of the timing constants used in the system.
Therefore obtaining small values of such constants is of interest for improving
the performance of integer-time analysis. Our approach is also useful for avoiding
repeated executions of probabilistic model checking analyses for the same model
with different parameter valuations, not only in the case in which we aim to test the
robustness of the system, but also in the case in which we aim to understand the
way in which different parameter valuations have an impact on the probabilistic
behaviour of the system. This is an advantage both for verification based on the
integer-time semantics and that based on a continuous-time approach, such as [15].
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In order to compute such a constraint K0, we transform the system into a
non-probabilistic timed automaton, and apply the original inverse method of [4] to
this timed automaton. The justification for this transformation is a pragmatic one:
in this way a constraint K0 can be obtained quickly (usually in a few seconds),
without computations concerning probability values, and then can subsequently
be used to alleviate the computation of reachability probabilities, which is the
bottleneck in the probabilistic model-checking process.

We provide examples of the application of our technique to models of ran-
domized protocols, and show that the computation times of reachability probabil-
ities drastically decrease when applied to much smaller values than π0 within K0,
when using the integer-time semantics verification approach. Furthermore, by us-
ing small parameter values within K0, the use of the integer-time semantics ap-
proach becomes competitive, and in some cases improves on, the continuous-time,
game-based verification engine of [15].

We also show that the behavioural cartography introduced in [5] can be applied
to probabilistic systems as well, thus allowing us to synthesise a “probabilistic car-
tography” of a system. As a consequence, the value of the reachability probabilities
is uniform in each “tile” or part of the parametric space.

An illustrative example. Consider the CSMA/CD protocol, as studied in the con-
text of probabilistic timed automata in [20]. We consider the case in which there
are two stations, 1 and 2, trying to send data at the same time. The overall model
is given by the parallel composition of three probabilistic timed automata repre-
senting the medium and two stations trying to send data.

INIT
true

TRANSMIT
true

COLLIDE
y ≤ δ

send1

y := 0

send2

y := 0

end1

y := 0

end2

y := 0

y ≤ δ
send1

y := 0

y ≤ δ
send2

y := 0

y ≥ δ
busy1

y ≥ δ
busy2

cd
y := 0

Fig. 1 CSMA/CD Medium

The probabilistic timed automaton representing the medium is given in Fig-
ure 1. We use the standard conventions for the graphical representation of timed
automata. The medium is initially ready to accept data from any station (event
send1 or send2). Once a station, say 1, starts sending its data there is an interval
of time (at most δ), representing the time it takes for a signal to propagate between
the stations. In this interval the medium can accept data from station 2 (resulting
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TRANSMIT
xi ≤ λ

INIT
xi = 0

DONE
true

WAIT
xi ≤ backoff i

COLLIDE
xi = 0

sendi

xi := 0
xi = λ
endi

cd
xi := 0

bci := min(bci + 1, bcmax)

xi = backoff i
sendi

xi := 0

xi = backoff i
busyi
xi := 0

bci := min(bci + 1, bcmax)

backoff i := RAND(bci) ∗ slot

Fig. 2 CSMA/CD Station i

in a collision). After this interval, if station 2 tries to send data it will get the busy
signal (busy2). When a collision occurs, there is a delay (again at most δ) before
the stations realize there has been a collision, after which the medium will become
free (event cd). If the stations do not collide, then when station 1 finishes sending
its data (event end1) the medium becomes idle.

We model the situation in which initially the stations collide. The probabilistic
timed automaton representing a station i (i = 1, 2) is given in Figure 2. Station
i starts by sending its data. If there is no collision, then, after λ time units,
the station finishes sending its data (event end i). On the other hand, if there is
a collision (event cd), the station attempts to retransmit the packet, where the
scheduling of the retransmission is determined by a truncated binary exponential
backoff process. The number of slots (each of length slot) that station i waits after
the nth transmission failure is chosen as a uniformly distributed random integer
in the range 0, 1, 2, . . . , 2bci+1 − 1, where bci = min(n, bcmax ), and bcmax is a
fixed upper bound for bci (initially bci = n = 0). This random choice is depicted
in Figure 2 by the assignment backoff i := RAND(bci) ∗ slot . Once this time has
elapsed, if the medium appears free the station resends the data (event send i),
while if the medium is sensed busy (event busyi) the station repeats this process.

We consider in the following that bcmax is a constant equal to 1, and that δ, λ
and slot are parameters. The reference valuation for these parameters, taken from
the IEEE standard 802.3 for 10 Mbps Ethernet, is δ = 26 microseconds, λ = 808
microseconds, and slot = 2δ = 52 microseconds. The method for inferring a con-
straint K0 on the parameters, which is satisfied by the reference valuation and
in which the behaviour of the model remains the same, consists in transforming
the system into a non-probabilistic parametric timed automaton. We replace the
random choice of the number of slots backoff i := RAND(bci) ∗ slot with a non-
deterministic choice. The application of the inverse method to the non-probabilistic
parametric timed automaton (see Section 5.1) infers for K0 the following con-
straint: (0 < δ < slot) ∧ (15slot < λ < 16slot). In particular, the minimum and
maximum probabilities for a message sent by a station to be transmitted after hav-
ing collided exactly k times with another message are the same under the reference
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valuation and any other parameter valuation satisfying K0. This has two practi-
cal implications. Firstly, in order to compute the aforementioned minimum and
maximum probabilities for δ = 26, λ = 808, slot = 52, it suffices to compute the
minimum and maximum probabilities for δ = 1, λ = 31, slot = 2 (because both val-
uations satisfy the constraint (0 < δ < slot)∧ (15slot < λ < 16slot) synthesised by
the inverse method). Note that, with the valuation δ = 26, λ = 808, slot = 52, and
considering the property of transmitting after exactly 10 collisions, our discrete-
time model has 101337 states, whereas the valuation δ = 1, λ = 31, slot = 2 results
in a discrete-time model with 4861 states. The second practical implication con-
cerns the case in which the system designer wishes to understand the behaviour
of the system, in terms of minimum and maximum probabilities, for a number of
parameter valuations. The approach of obtaining such information by changing
manually the timing parameters and repeating model-checking analysis is poten-
tially time consuming. Instead, the application of the inverse method shows that
the minimum and maximum probabilities remain invariant for all parameter val-
uations satisfying the constraint K0.

This paper is an extended and improved version of [7]. Firstly, Proposition 1
of [7] has been modified, in order to take into account a situation not considered
in [7]. We define criteria so that our results hold, and give syntactic conditions
for the model to satisfy these criteria. Secondly, the section on experiments has
been improved, and the use of the latest version of Imitator [6] dramatically
reduces the computation time of one of the case studies. Finally, we also extend
the behavioural cartography [5] to the probabilistic case.

Comparison to related work. As noted in [11], parameter synthesis of probabilis-
tic models has received scant attention. Lanotte et al. [21] consider parametric
discrete-time Markov chains (DTMCs), and establish minimal (and maximal) pa-
rameter values for the probabilities associated with transitions in order to ensure
reachability properties. Daws [9] also consider DTMCs in which the transition
probabilities are parameters. Han et al. [11] study continuous-time Markov chains
in which the average speed (rate) of state changes are parameters. In contrast
to [21,9,11], we consider here the model of probabilistic timed automata. The
parameters correspond to the timings that appear in guards of transitions and in-
variants of locations. Such a parametric framework of probabilistic timed automata
appears in [8], but the model there did not feature non-deterministic choice. In
contrast, our model here features both nondeterministic and probabilistic choice.

Plan of the paper. In Section 2, we present the definition of probabilistic timed
automata. In Section 3, we present the definition of parametric probabilistic timed
automata. In Section 4, we apply the inverse method to probabilistic timed au-
tomata in the following way: we construct a non-probabilistic version of the model,
which is then subject to the inverse method for parametric timed automata. In
Section 5, we apply the method to two probabilistic protocols with timing param-
eters (CSMA/CD and IEEE 802.11 WLAN). In Section 6, we iteratively apply
this extension of the inverse method to compute a probabilistic cartography of the
system. We conclude in Section 7.
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2 Probabilistic Timed Automata

2.1 Preliminaries

Let R≥0 be the set of non-negative real numbers. A (discrete) probability distribu-
tion over a countable set Z is a function µ : Z → [0, 1] such that

∑
z∈Z µ(z) = 1.

We define support(µ) = {z ∈ Z | µ(z) > 0}. Then for an uncountable set Z we
define Dist(Z) to be the set of functions µ : Z → [0, 1], such that support(µ) is
a countable set and µ restricted to support(µ) is a (discrete) probability distribu-
tion. A point distribution is a distribution µ ∈ Dist(Z) such that µ(z) = 1 for some
(unique) z ∈ Z. Often we write µz for the point distribution such that µ(z) = 1.

Let V be a set of variables of the form V = {v1, . . . , vN}. An inequality on
the variables of V is e ≺ e′, where ≺∈ {<,≤}, and e, e′ are two linear terms of
the form

∑
1≤i≤N αivi + d where vi ∈ V , αi ∈ N, for 1 ≤ i ≤ N , and d ∈ N. A

constraint on the variables of V is a conjunction of inequalities on the variables
of V .

2.2 Timed Probabilistic Systems

We review the definition of timed probabilistic systems, as defined in [17], which
are variants of Segala’s probabilistic timed automata [22]. A timed probabilistic
system (TPS) is a tuple T = (S, S0, Act,⇒) where S is a set of states, including
a set S0 of initial states, Act is a finite set of actions (disjoint from R≥0), and
⇒ ⊆ S×R≥0×Act×Dist(S) is a probabilistic transition relation. We assume that
the probabilistic transition relation is total; that is, for every state s ∈ S, there
exists (s, d, a, µ) ∈ ⇒ for some d ∈ R≥0, a ∈ Act and µ ∈ Dist(S).

A transition s
d,a,µ−−−→ s′ is made from a state s ∈ S by first nondeterministically

selecting a duration-action-distribution triple (d, a, µ) such that (s, d, a, µ) ∈ ⇒,
and second by making a probabilistic choice of target state s′ according to distri-
bution µ, such that µ(s′) > 0. A path of a TPS is a non-empty finite sequence

of transitions ω = s0
d0,a0,µ0−−−−−→ s1

d1,a1,µ1−−−−−→ · · ·
dn−1,an−1,µn−1−−−−−−−−−−−→ sn. Given a path

ω = s0
d0,a0,µ0−−−−−→ s1

d1,a1,µ1−−−−−→ · · ·
dn−1,an−1,µn−1−−−−−−−−−−−→ sn, we let last(ω) = sn. The

length of ω, denoted by |ω|, is the number of transitions in ω. The set of paths of a
TPS T is denoted by PathT. When clear from the context we omit the superscript
T and write Path. We let Path(s) denote the set of paths commencing in the state
s ∈ S.

A scheduler is a function which resolves nondeterminism by choosing, based
on the path executed so far, an outgoing transition in the last state of the path.
Formally, a scheduler of a TPS is a function σ such that, for each path ω of the
TPS, if σ(ω) = (d, a, µ) then (last(ω), d, a, µ) ∈ ⇒. Intuitively, given a scheduler σ
of a TPS, after taking a finite path ω, the TPS will be in state s in the next step
with probability µ(s), where σ(ω) = (d, a, µ). We denote the set of paths induced

by a given scheduler σ to be Pathσ = {ω = s0
d0,a0,µ0−−−−−→ · · ·

dn−1,an−1,µn−1−−−−−−−−−−−→ sn |
σ(pref(ω, i)) = (di, ai, µi) for all i < n}, where pref(ω, i) returns the prefix of ω
up to length i. Then we define Pathσ(s) = Pathσ ∩ Path(s). For each s ∈ S and
scheduler σ, we can define the probability measure Probσs over measurable sets of
paths in the standard way [14].
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2.3 Probabilistic Timed Automata

Probabilistic timed automata [10,17] are an extension of classical timed au-
tomata [1] with discrete probability distributions, and can be used to model prob-
abilistic real-time systems, such as timed randomized protocols or fault-tolerant
systems. This probabilistic extension adds discrete probability distributions over
edges, so that the choice of the next location of the automaton is not only nonde-
terministic, but now also probabilistic.

2.3.1 Syntax

A clock is a variable xi which takes values in R≥0. All clocks evolve linearly at
the same rate. We denote a set of clocks by X = {x1, . . . , xH}. We define a clock
valuation as a function w : X → R≥0 assigning a non-negative real value to each
clock. We will often identify a valuation w with the point (w(x1), . . . , w(xH)) ∈
RH≥0. For d ∈ R≥0, we write w+ d to denote the valuation such that (w+ d)(x) =
w(x) + d for all x ∈ X. Given a clock valuation w and a set ρ ⊆ X of clocks, we
denote by ρ(w) the clock valuation such that ρ(w)(x) = 0 if x ∈ ρ and ρ(w)(x) =
w(x) otherwise.

A constraint on clocks X is a constraint on the set of variables X. Given a
constraint D on the clocks and a clock valuation w, we obtain D[w] by replacing
each clock x in D with w(x). A clock valuation w satisfies constraint D (denoted
by w |= D) if D[w] evaluates to true.

A probabilistic timed automaton (PTA) A is a tuple A = (Σ,Q, q,X, I, prob),
where:

– Σ is a finite set of actions,
– Q is a finite set of locations with an initial location q ∈ Q,
– X is a set of clocks,
– I is the invariant function, assigning to every q ∈ Q a constraint I(q) on the

clocks X, and
– prob is the probabilistic edge relation consisting of elements of the form

(q, g, a, η), where q ∈ Q, g is a constraint on the clocks X, a ∈ Σ, and
η ∈ Dist(2X ×Q).

We use the following conventions for the graphical representation of probabilistic
timed automata: locations are represented by nodes, within which name and the
invariant of the location is written; probabilistic edges are represented by arcs
from locations, labelled by the associated guard and event, and which split into
multiple arcs, each of which leads to a location and which is labelled by a set of
clocks to be reset to 0 and a probability (probabilistic edges which correspond to
probability 1 are illustrated by a single arc from location to location).

Example 1 Consider the PTA shown in Figure 3 (left). From location q0, one can
choose nondeterministically between actions a and b. When choosing action b, one
can reach location q1 (with probability 1) if the guard x ≥ 1 is satisfied. When
choosing action a, if the guard x ≥ 2 ∧ x ≤ 3 is satisfied, then one can reach
location q1 and reset x with probability 1/3, reach location q2 and reset x to 0
with probability 1/3, or reach location q3 and reset x and y to 0 with probability
1/3. The rest of this probabilistic timed automaton does not feature probabilistic
edges, and can be explained in a similar way as for timed automata.
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q
x ≤ 10

q′

y ≤ 20

q′′

x ≤ 3

q′′′

z = 0

b
x ≥ 1

a
x ≥ 2 ∧ x ≤ 3

1
3

x := 0
1
3

x := 0

1
3

y := 0
z := 0

d

d

c
q

x ≤ 10

q′

y ≤ 20

q′′

x ≤ 3

a
x ≥ 1

a
x ≥ 2

1
3

x := 0 1
3

x := 0

1
3

y := 0

d

d

Fig. 3 Examples of PTAs satisfying the assumptions of determinism on actions and reset
unicity (left) and satisfying neither assumption (right)

Networks of PTAs can be defined by using parallel composition based on the
synchronization of discrete transitions of different components sharing the same
action [19].

Syntactic assumptions on PTAs. We make the following syntactic assumptions on
probabilistic timed automata in order to simplify both the presentation and the
proofs of later results.

Determinism on actions: Given a location q ∈ Q and action a ∈ Σ, there is at
most one probabilistic edge of the form (q, , a, ) ∈ prob.

Reset unicity: For any probabilistic edge (q, g, a, η) ∈ prob and location q′ ∈ Q,
there exists at most one ρ ∈ 2X such that η(ρ, q′) > 0.

Example 2 In Figure 3 we give an example of a PTA which satisfies neither de-
terminism on actions nor reset unicity (right), and an example of a PTA which
satisfies both assumptions (left). The PTA on the right does not satisfy determin-
ism on actions, because there are two probabilistic edges labelled by a exiting the
location q; it also does not satisfy the assumption of reset unicity, because the
lower probabilistic edge has two distinct probabilistic alternatives which lead to
location q′′.

The assumptions of determinism on actions and reset unicity are commonly
met in practice, and they simplify the proofs of our subsequent results. For the
remainder of this paper, we assume that all of the PTAs we consider satisfy the
assumptions of determinism on actions and reset unicity.

2.3.2 Semantics

In this section, we will consider the PTA A = (Σ,Q, q,X, I, prob). A state of A is
a pair (q, w) ∈ Q× (X → R≥0) such that w |= I ′(q). Informally, the behaviour of
A can be understood as follows. The model starts in the initial location q with all
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clocks set to 0. In this, and any other state (q, w), there is a nondeterministic choice
of (1) the amount of time which then passes, and (2) which discrete transition is
subsequently taken. Note that, for point (1), time can pass only if invariant I ′(q)
is satisfied while time elapses. Furthermore, for point (2), a discrete transition
can be made according to any probabilistic edge (q, g, a, η) ∈ prob′ with source
location q which is enabled; that is the constraint g is satisfied by the current clock
valuation w. Then the probability of moving to the location q′ and resetting all of
the clocks in ρ to 0 is given by η(ρ, q′).

A PTA can be interpreted as an infinite TPS. Due to the continuous nature
of clocks, the underlying TPS has uncountably many states, and is uncountably
branching. A PTA can thus be considered as a finite description of infinite TPS.
Let A = (Σ,Q, q0, X, I, prob) be a PTA. The semantics of A is the TPS TA =
(S, S0, Σ,⇒) with S = {(q, w) ∈ Q×(X → R≥0) | w |= I(q)}, S0 = {(q,0)} where
0(x) = 0 for all x ∈ X, and where ((q, w), d, a, µ) ∈ ⇒ if both of the following
conditions hold :

Time elapse: w + d |= I(q) ;
Edge traversal: there exists a probabilistic edge (q, g, a, η) ∈ prob such that w +

d |= g and, for each (ρ, q′) ∈ support(η), we have µ(q′, ρ(w + d)) = η(ρ, q′).

We write PathA for PathTA . Observe that the rule for discrete transitions is a
simplified version of the standard rule [17], and which is permitted by the assump-
tion of reset unicity. The definition of TA also relies on the fact that A satisfies the
well-formedness assumption explained below.

Well-formedness assumptions on PTAs. In order to define the notion of well-
formedness for PTAs, we introduce below the assumptions of admissible targets
and no deadlock.

A PTA has admissible targets if whenever a probabilistic edge is enabled, all
of the probabilistic alternatives (pairs of target location and clock reset) result
in valid states; that is, they do not result in pairs (q, w) in which w does not
satisfy I(q). More formally, a PTA is said to have admissible targets if, for each
probabilistic edge (q, g, a, η) ∈ prob and state (q, w) ∈ S such that w |= g, we
require that (q′, ρ(w)) ∈ S for each (ρ, q′) ∈ support(η) (equivalently, that ρ(w) |=
I(q′) for each (ρ, q′) ∈ support(η)).

Example 3 An example of a PTA which does not have admissible targets is illus-
trated in Figure 3 (right). It is possible that the value of the clock x exceeds 3
when the lower probabilistic edge from q0 is taken, in which case, on taking the
probabilistic alternative labelled by y := 0, the invariant of q2 is not satisfied.
Instead, the PTA on the left-hand side of Figure 3 has admissible targets.

A PTA can be transformed into a PTA with admissible targets by incorporating
the invariant associated with the target location into the guard of each probabilistic
edge (along the lines of the transformation in [20]).

To guarantee the existence of at least one transition from each state, we as-
sume that the PTA A has no deadlock: in all states of A reachable from (q,0)
(i.e. final states of paths in PathTA), it is always possible to take some probabilis-
tic edge, possibly after letting time elapse. This assumption guarantees that the
probabilistic transition relation of the associated probabilistic system is total (see
Section 2.2).
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For the remainder of this paper, we assume that all of the PTAs we consider
satisfy the well-formedness assumptions of admissible targets, no deadlock, in ad-
dition to the previously introduced assumptions of determinism on actions and
reset unicity.

2.4 Time-abstract Trace Distributions

Let A = (Σ,Q, q,X, I, prob) be a PTA. Given a path ω = (q0, w0)
d0,a0,µ0−−−−−→

(q1, w1)
d1,a1,µ1−−−−−→ · · ·

dn−1,an−1,µn−1−−−−−−−−−−−→ (qn, wn) of A, we let the time-abstract trace of
ω be the sequence of alternating locations and actions q0a0q1a1 · · · an−1qn. We let
trace : Path → (Q×Σ)∗ be the function associating the time-abstract trace with
each path of Path. Then the time-abstract trace distribution of σ and state s ∈ S is
the probability measure over traces denoted by tdσs defined according to trace and
the trace distribution construction of Segala [22]. Although we do not consider the
details of the construction of trace distributions in this paper, we note that, for
example, the probability assigned by tdσs to traces in which a certain location is
reached is defined to be the same as the probability assigned by Probσs to the set of
paths in which this location is reached. The set of time-abstract trace distributions
of the TPS TA is denoted by tdist(TA) = {tdσs | σ is a scheduler of TA and s ∈ S0}.

Example 4 Consider the PTA of Figure 3 (left). In this case, the uncountable num-
ber of schedulers of the PTA results in a finite number of trace distributions. More
precisely, the set of time-abstract trace distributions of the PTA comprises td and
td′, which take the following form: td(qbq′w) = 1, td′(qaq′w) = 1

3 , td′(qaq′′w′) = 1
3

and td′(qaq′′′cq′′w′) = 1
3 , where w is a sequence comprised of a finite number of

repetitions of dq′, and w′ is a sequence comprised of a finite number of repetitions
of dq′′. Intuitively, the time-abstract trace distribution td (td′, respectively) cor-
responds to the class of schedulers which nondeterministically chooses the edge
labelled by b (a, respectively) from location q.

3 Parametric Probabilistic Timed Automata

3.1 Definition of Parametric Probabilistic Timed Automata

In this section, we extend the definition of probabilistic timed automata to the
parametric case.

Let P = {p1, . . . , pM} be a set of parameters. A parameter valuation π is a
function π : P → R≥0 assigning a non-negative real value to each parameter.
We will often identify a valuation π with the point (π(p1), . . . , π(pM )) ∈ RM≥0. A
constraint on the parameters P (constraint on the clocks X and the parameters P ,
respectively) is a constraint on the set of variables P (on the set of variables X∪P ,
respectively). In the sequel, the letter K (C, respectively) denotes a constraint on
the parameters (on the clocks and the parameters, respectively). We consider true
as a constraint on P , corresponding to the set of all possible values for P .

Given a parameter valuation π and a constraint C, we denote by C[π] the
constraint obtained by replacing each parameter p in C with π(p). Likewise, given
a clock valuation w, we denote by C[π][w] the expression obtained by replacing
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each clock x in C[π] with w(x). We say that π satisfies C, denoted by π |= C, if
the set of clock valuations that satisfy C[π] is nonempty. Similarly, we say that
π satisfies K, denoted by π |= K, if the expression obtained by replacing each
parameter p in K with π(p) evaluates to true.

The following definition is an extension of the class of probabilistic timed au-
tomata to the parametric case. Parametric probabilistic timed automata allow
the use of parameters in place of constants within guards and invariants, and are
based on parametric timed automata [2]. A parametric probabilistic timed automa-
ton (PPTA) A is a tuple of the form A = (Σ,Q, q,X, P, I, prob), where:

– Σ is a finite set of actions,
– Q is a finite set of locations with an initial location q ∈ Q,
– X is a finite set of clocks,
– P is a finite set of parameters,
– I is the invariant function, assigning to every q ∈ Q a constraint I(q) on the

clocks X and the parameters P , and
– prob is the probabilistic edge relation consisting of elements of the form

(q, g, a, η), where q ∈ Q, g is a constraint on the clocks X and the param-
eters P , a ∈ Σ and η ∈ Dist(2X ×Q).

Given a PPTA A = (Σ,Q, q,X, P, I, prob) and a parameter valuation π, we
denote by A[π] = (Σ,Q, q,X, I ′, prob′) the PTA obtained by fixing π in the
constraints of A: more precisely, for each q ∈ Q, let I ′(q) = I(q)[π], and let
prob′ = {(q, g[π], a, η) | (q, g, a, η) ∈ prob}.

In this paper, given a PPTA A, we will consider only parameter valuations
which guarantee that the PTA A[π] exhibits determinism on actions, reset unicity
and well-formedness.

Anchored PPTAs. It has been shown that the inverse method can be applied to
obtain a constraint on the parameter valuations such that all parameter valuations
satisfying the constraint result in equivalent models on time-abstract traces [4].
However, we give an example below in which we show that equivalence on time-
abstract traces is not enough to guarantee the equivalence on time-abstract trace
distributions. Then we will define a restriction on PPTA so that equivalence on
time-abstract traces is enough to guarantee the equivalence of time-abstract trace
distributions.

First, we present an example of a PPTA A and two parameter valuations π1
and π2 such that A[π1] and A[π2] are time-abstract trace equivalent but not time-
abstract trace distribution equivalent. Consider the PPTA A given in Figure 4.

Consider the following valuations of the parameters:

π1 : p1 = p2 = p3 = p4 = 0

and

π2 : p1 = p2 = p4 = 1, p3 = 0.

In the following, we consider the maximum probability of reaching q4 from q0
with x = y = 1. Two cases arise, depending on the valuation of the parameters.

1. For π1, the aforementioned maximum probability is 1: we leave q0 with x = 0,
then we can take edges going to q4, regardless of whether we are in q2 or q3;
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q0
x ≤ 1

q1
true

q2
x ≤ p1
∧ y ≤ p2

q3
x ≤ p3

∧ y ≤ p4

q4
true

x := 0

1
2

1
2

x ≥ p1 y ≥ p4

Fig. 4 An example justifying the restriction to a subclass of PPTA in Proposition 1

2. For π2, the aforementioned maximum probability is 1/2: either we leave q0
with x = 0, then we can take the edge from q2 to q4 after letting 1 time unit
elapse in q2, but not the edge from q3 to q4; or we leave q0 with x = 1, then
can take the edge from q3 to q4, but not the edge from q2 to q4.

Therefore we have exhibited two different probabilistic timed automata A[π1]
and A[π2] that are time-abstract trace equivalent (both can perform traces lead-
ing to q4 via the same edges), but that feature different maximum reachability
probabilities. Because time-abstract trace distribution equivalent PTA must have
the same maximum reachability probabilities, we conclude that A[π1] and A[π2]
are not time-abstract trace distribution equivalent.

This case was not considered in Proposition 1 in the conference version
of this paper [7], which explains the restriction to “anchored PPTAs” (intro-
duced below) that we apply to the forthcoming Proposition 1 of this paper. Be-
fore formally stating this restriction, we first introduce some terminology. Let
A = (Σ,Q, q,X, P, I, prob) be a PPTA. A probability-1 edge is probabilistic edge
(q, g, a, η) ∈ prob such that η is a point distribution. A probabilistic edge which is
not a probability-1 edge is called a probabilistically-branching edge. A unique-time
probabilistic edge is a probabilistic edge (q, g, a, η) such that x ≤ θ and θ ≤ x are
two of the conjuncts of g for some clock x ∈ X and θ ∈ N ∪ P (hence, we have
x = θ). Intuitively, a unique-time probabilistic edge can be taken when the value
of a clock equals a particular value (a constant or a parameter value).

Next we introduce some terminology to reason about sequences of proba-
bilistic edges that can potentially be executed consecutively: a structural path
of A is a sequence (q0, g0, a0, η0) · · · (qn−1, gn−1, an−1, ηn−1)qn in (prob)∗Q such
that ηi( , qi+1) > 0 for 0 ≤ i < n. Structural paths correspond to a path
through the graph structure of the PPTA: in the example of Figure 3, (q, (x ≥
2 ∧ x ≤ 3), a, η)(q′′′, true, c, η∅,q′′)(q

′′, true, d, η∅,q′′)q
′′ is a structural path, where

η({x}, q′) = η({x}, q′′) = η({y, z}, q′′′) = 1
3 and η∅,q′′(∅, q′′) = 1, as is

(q′′, true, d, η∅,q′′)(q
′′, true, d, η∅,q′′)q

′′.
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The PPTA A is anchored if there does not exist a structural path
(q0, g0, a0, η0) · · · (qn−1, gn−1, an−1, ηn−1)qn such that:

1. (qn−1, gn−1, an−1, ηn−1) is a probabilistically-branching edge,
2. (q0, g0, a0, η0) is not a unique-time probabilistic edge, and
3. ηi(X, qi+1) = 0 for each 0 ≤ i < n.

Condition 3 states that the full clock set X is never reset to 0 along the structural
path. Intuitively, in an anchored PPTA, a probabilistically-branching edge cannot
be taken after a non-unique-time probabilistic edge without first a reset of all
clocks to 0.

Note that the PPTA of Figure 4 is not an anchored PPTA: for example, the
probabilistic edge from q1 is probabilistically branching, but it is not unique time.
Note that, even if the probabilistic edge from q1 is transformed into a unique-
time probabilistic edge, the resulting PPTA would not be anchored, because the
probabilistic edge from q0, which precedes that from q1 in a structural path, is not
unique time.

3.2 Time-abstract Trace Distribution Equivalence for Parametric Probabilistic
Timed Automata

In this subsection we introduce time-abstract trace distribution equivalence as
a means of reasoning whether two parameter values of the same PPTA exhibit
equivalent behaviour. Let A = (Σ,Q, q,X, P, I, prob) be a PPTA, and let π and
π′ be valuations of the parameters in P . We say that A[π] and A[π′] are time-
abstract trace distribution equivalent, written A[π] ≈tdist A[π′], if tdist(TA[π]) =

tdist(TA[π′]). IfA[π] ≈tdist A[π′], we can conclude that the TPSs have time-abstract
equivalent finite behaviours: for example, they assign the same maximum and
minimum probabilities of reaching a certain location [18] (in general, they assign
the same maximum and minimum probabilities to linear-time properties on finite
traces).

First we introduce some notation. The path ω = (q0, w0)
d0,a0,µ0−−−−−→

· · ·
dn−1,an−1,µn−1−−−−−−−−−−−→ (qn, wn) of TA[π], is time-abstract path equivalent to the path

ω′ = (q′0, w
′
0)

d′0,a
′
0,µ
′
0−−−−−→ · · ·

d′n−1,a
′
n−1,µ

′
n−1−−−−−−−−−−−→ (q′n, w

′
n) of TA[π′], written ω ≡ ω′, if

qi = q′i, ai = a′i, and µi(qi+1, wi) = µ′i(q
′
i+1, w

′
i) for all i = 0, . . . , n − 1, and

qn = q′n. We extend the notion of time-abstract path equivalence to sets of paths:
two sets of paths Ω ⊆ PathA[π] and Ω′ ⊆ PathA[π′] are time-abstract path equiv-
alent, written Ω ≡ Ω′, if (1) for each path ω ∈ Ω, there exists ω′ ∈ Ω′ such that
ω ≡ ω′, and (2) conversely, for each path ω ∈ Ω′, there exists ω′ ∈ Ω such that
ω ≡ ω′.

The following result allows us to relate time-abstract equivalence on paths to
time-abstract trace distribution equivalence for anchored PPTAs.

Proposition 1 Let A be an anchored PPTA, and let π and π′ be valuations of
parameters P . If PathA[π](q,0) ≡ PathA[π′](q,0), then A[π] ≈tdist A[π′].

The proof of Proposition 1 is given in Appendix A.



14 Étienne André et al.

3.3 Non-probabilistic Version of a PPTA

In this subsection, along the lines of [18,19], we explain how probability values
can be abstracted away from a PPTA to result in a non-probabilistic parametric
timed automaton. First we explain how a PPTA can be transformed into a PPTA
featuring point distributions only. This is done by replacing probabilistic choice
within a single probabilistic edge by nondeterministic choice between multiple
probabilistic edges, each of which corresponds to a point distribution.

The non-probabilistic version of A = (Σ,Q, q,X, P, I, prob), written A∗ =
(Σ,Q, q,X, P, I, prob∗), is a PPTA which agrees with A on all elements apart
from the probabilistic edge relation: let prob∗ be the smallest probabilistic edge
relation such that for every edge (q, g, a, η) ∈ prob and (ρ, q′) ∈ support(η), we have
(q, g, a, η(ρ,q′)) ∈ prob∗ (recall that η(ρ,q′) denotes the point distribution assigning
probability 1 to the element (ρ, q′)). Observe that the state sets of TA[π] and
TA∗[π] are equal.

Proposition 2 Let π be a valuation of P and (q, w) be a state of TA[π] (and

TA∗[π]). For each step (q, w)
d,a,µ−−−→ (q′, w′) of TA[π], there exists the step

(q, w)
d,a,µ(q′,w′)−−−−−−−→ (q′, w′) of TA∗[π]. Conversely, for each step (q, w)

d,a,µ(q′,w′)−−−−−−−→
(q′, w′) of TA∗[π], there exists a step (q, w)

d,a,µ−−−→ (q′, w′) of TA[π].

Proposition 2 allows us to obtain a one-to-one mapping between transitions
of A[π] and A∗[π]. By reasoning inductively, we can extend the proposition to
obtain a one-to-one mapping between paths of A[π] and A∗[π]. Note that, by the
combination of determinism on actions and reset unicity, the probability of the
transitions of A[π] is encoded in the actions and target locations of the associated
transitions of A∗[π]. This implies that, for any pair ω∗, ω

′
∗ of paths such that

ω∗ ∈ PathA
∗[π](q,0), ω′∗ ∈ PathA

∗[π′](q,0) and ω∗ ≡ ω′∗, we can generate ω and
ω′ from ω∗ and ω′∗, respectively, via the one-to-one mapping between paths of
A[π] and A∗[π], such that ω ∈ PathA[π](q,0), ω′ ∈ PathA[π′](q,0) and ω ≡ ω′.
Together, these facts allow us to show the following.

Proposition 3 Let A be a PPTA, and let π and π′ be valuation of parameters P .
If PathA

∗[π](q,0) ≡ PathA
∗[π′](q,0), then PathA[π](q,0) ≡ PathA[π′](q,0).

We note that a PPTA featuring point distributions only has a one-to-one
mapping with a classical parametric timed automaton: a probabilistic edge
(q, g, a, η(ρ,q′)) of the PPTA corresponds to the edge (q, g, a, ρ, q′) of a classical
parametric timed automaton. In subsequent sections of the paper, this allows us
to apply methods for classical parametric timed automata to PPTAs featuring
point distributions.

4 The Inverse Method for PPTAs

4.1 The Inverse Problem

Given an anchored PPTA A and a valuation π0 of the parameters, we present in
this section a method allowing to synthesise a constraint K0 on the parameters
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of A such that π0 |= K0 and, for all π |= K0, A[π] and A[π0] are time-abstract
trace distribution equivalent. As a consequence, the PTAs A[π] and A[π0] assign
the same maximum and minimum probabilities to linear-time properties on finite
traces.

The problem can be stated as follows.

The Inverse Problem for PPTAs
Let A be an anchored PPTA and π0 a valuation of the parameters. Find a
constraint K0 such that :

1. π0 |= K0, and
2. A[π] ≈tdist A[π0], for all π |= K0.

4.2 The Inverse Method on Classical Parametric Timed Automata

In [4], we introduced the inverse method algorithm IM , which allows us to solve
the following problem: given a (non-probabilistic) parametric timed automaton T
and a reference valuation π0, IM (T , π0) synthesises a constraint K0 such that

1. π0 |= K0, and
2. PathT [π0](q,0) ≡ PathT [π](q,0) for all π |= K0.

In particular, this method guarantees that, for any π |= K0, time-abstract linear
time properties are preserved. Note however that timed properties, i.e. making use
of a deadline inside the property, are not preserved in general because they are
not time-abstract. A brief explanation of the algorithm is given in Appendix B.

Recall from [4] that the constraint output by this inverse method IM is not (in
general) the weakest constraint satisfying this problem. One reason for this is that
the constraint is always in conjunctive form. In contrast, the weakest constraint
may be in disjunctive form (see [3]).

The inverse method IM is a semi-decidable algorithm whose termination has
been proven for subclasses of parametric timed automata, and usually terminates
in practice. See [3] for a more exhaustive description of the inverse method and its
properties.

4.3 The Inverse Method for PPTAs

Given an anchored PPTA A, we can now solve the inverse problem for A by
applying the algorithm IM to the non-probabilistic version A∗ of A.

Theorem 1 Given an anchored PPTA A and a reference valuation π0, the con-
straint K0 returned by IM (A∗, π0) solves the inverse problem for anchored PPTAs,
i.e.:

1. π0 |= K0, and
2. A[π] ≈tdist A[π0], for all π |= K0.

Proof Since K0 is a solution of the inverse problem for A∗, we have
PathA

∗[π](q,0) ≡ PathA
∗[π0](q,0) for all π |= K0; hence, we have by Proposi-

tion 3 that PathA[π](q,0) ≡ PathA[π0](q,0) for all π |= K0. From Proposition 1,
we conclude that A[π] ≈tdist A[π0] for all π |= K0. ut
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Remark. The constraint K0 output by our method is not the weakest constraint
satisfying the inverse problem as defined in Section 4.1 because, as said above, the
constraint output by the inverse method defined in [4] is itself not the weakest
constraint satisfying the inverse problem for (non-probabilistic) parametric timed
automata. We will address this problem in Section 6.

Application to the computation of probabilities. Given an anchored PPTA A and
a valuation π0 of the parameters, in order to determine the minimum or maximum
probability pr of satisfying a linear-time property ϕ on finite traces of A[π0], it is
sufficient to proceed as follows:

1. Compute K0 = IM (A∗, π0);
2. Compute pr (using a probabilistic model-checking tool, such as Prism) for
A[π1], for some π1 |= K0.

As a consequence of Theorem 1, given the computation ofK0 using IM (A∗, π0),
the minimum and maximum probabilities of satisfying linear-time properties on
finite traces will be the same in A[π1] and A[π0].

An advantage of our method is that one can take π1 small enough in order to
make the computation of probabilistic model-checking tools such as Prism easier,
because their performance depends on the size of the state space of the model used
as input, which in turn depends on the size of the constants used in the PTA (see
Section 5 below for a comparison for various case studies).

5 Application of the Inverse Method to PPTAs: Case Studies

In this section, we show the interest of the inverse method in the context of two case
studies. More precisely, we consider two protocols, each modeled as a PPTA, and
each with an associated standard reference valuation π0. Our approach consists of
the following two phases:

1. Using the tool Imitator [6], which implements the inverse method in the non-
probabilistic framework, we synthesise a constraint K0 for the non-probabilistic
version of the protocol.

2. Using the probabilistic model-checking tool Prism [12,23], we compute mini-
mum/maximum probabilities for various reachability properties with regard to
a number of parameter valuations. For parameter valuations satisfying K0, the
probabilities computed by Prism are equal (as stated by Theorem 1); we also
compute the probabilities for some parameter valuations not satisfying K0.

We also consider the way in which the obtained constraint K0 can be used to
increase the efficiency of the model-checking process. More precisely, for each case
study, we consider the smallest possible integer values for the parameters while
satisfying K0 (in each case study, such a parameter valuation is uniquely defined).
First, we compare the time used for verification of properties for such a smallest
parameter valuation to other parameter valuations in the context of model check-
ing using Prism and the integer-time semantics for PTAs, and show that savings of
a factor of at least 10 can be obtained with respect to the reference valuation (or a
rescaled version of the reference valuation, noting that models in which parameters
are rescaled by a constant factor are equivalent according to time-abstract trace
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distribution equivalence). In some cases, the savings are considerably greater. Sec-
ond, we compare the time used for verification for the integer-time semantics with
the smallest parameter valuation to the continuous-time, game-based verification
method also implemented in Prism [15]. In both cases, we find that the integer-
time semantics with the smallest parameter valuation results in lower verification
times than other approaches.

Experiments were performed on an Intel Core 2 Duo with 2GB of RAM.

5.1 CSMA/CD Protocol

We apply here our method to the CSMA/CD Protocol described in Section 1.

Validity of the Example. First, let us explain why this case study satisfies the
criterion of anchored PPTAs defined in Section 3.1, by recalling the model of the
medium (Figure 1 page 3) and the stations (Figure 2 page 4). The only probabilistic
choice is when station i is in location COLLIDE. Such a location can be reached
through a cd action, or through a busyi action.

In the case of a cd action, observe that all three automata synchronise on cd :
furthermore, they all reset their clocks while taking this transition. Hence, all three
clocks are reset just before the probabilistic choice, which satisfies the criterion.

In the case of a busyi action, only two automata synchronise (station i and
the medium), and they both reset their clock. However, the third clock is not
reset. But then the busy1 signal can only be sent after a sequence of actions of the
form cd ; τ2; send2; (τ1; busy1)∗, where τi represents the unlabelled transition from
location COLLIDE to location WAIT in station i. (The case for busy2 is dual.) All
these transitions are either urgent (recall that the invariant of location COLLIDE
is xi = 0) or labelled with a guard with a clock equal to a constant (the value
of backoff i), which corresponds in both cases to a unique-time probabilistic edge.
Noting that a cd action corresponds to resetting all clocks to 0, we conclude that
this case also satisfies the criterion of anchored PPTAs.

Parameter synthesis. Recall that we consider the three parameters λ, δ and slot .
Also recall that the following π0 is the reference valuation taken from the IEEE
standard 802.3 for 10 Mbps Ethernet: λ = 808 microseconds, slot = 52 microsec-
onds and δ = 26 microseconds. As described in Section 4, from a PPTA describing
this system, we can then obtain a non-probabilistic parametric timed automaton.
Applying Imitator to this non-probabilistic model and the reference valuation
π0, we obtain the following constraint in less than 0.3 seconds:

K0 : 0 < δ < slot ∧ 15slot < λ < 16slot .

As noted in Section 4, the constraint synthesised by our method is not neces-
sarily the weakest. This constraint is such that A[π] and A[π0] are time-abstract
trace-distribution equivalent, for any π |= K0. We consider the following three
probabilities:

– Probj , for j ∈ {1, 2}: minimum probability that station 1 transmits its message
after exactly j collisions.

– Prob≤3: minimum probability that station 1 transmits its message with no
more than 3 collisions.
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Table 1 Results of Prism for the CSMA/CD

Name λ slot δ |= K0 States Constr. Prob1 Prob2 Prob≤3 = π0
π0 808 52 26 yes 36335 10 4 5 7 -
π1 31 2 1 yes 1746 0.1 0.1 0.1 0.1 yes
π2 940 60 59 yes 42260 19 6 10 14 yes
π3 940 60 60 no 42753 23 5 11 16 no
π4 52 52 26 no 6212 1 0.6 1 2 yes
π5 404 26 13 yes 18350 3 1 2 2 yes

Computation of probabilities. We apply Prism to the system with the parameters
set to different valuations (including π0). The three probabilities for the reference
valuation π0 are 0.5, 0.38 and 0.97, respectively.

Information concerning the use of the constraint K0 in the context of the
integer-time semantics approach is given in Table 1. The first to fourth columns
describe the parameter valuations considered. The fifth column indicates whether
the parameter valuation satisfies K0. The sixth and seventh columns give the num-
ber of states corresponding to the valuation in the integer-time semantics, together
with the time in seconds required by Prism for the construction of the model. The
following three columns give the time in seconds used by Prism to perform verifi-
cation of the three considered properties.1 For the parameter valuations π1 to π5,
the final column indicates whether the probabilities computed for the properties
are the same as those computed for π0.

From the results of Section 4, the probabilities for π0, π1 and π2 are identical.
Instead, for π3, in which the constraint K0 is violated by considering the limit case
where δ = slot , the probabilities of the properties are 0, 0.19 and 0.61, respectively.
A further observation is that, even if the value of λ violates K0 (see, e.g. π4), the
probabilities can remain the same as for π0.

The smallest integer parameter valuation satisfying K0 is π1. We observe that
the use of π1 in the PPTA model of the system results in a smaller state space,
and reduces verification times for all three properties, in comparison to the other
parameter valuations considered. It is instructive to compare the results for π1
with those for π5, which is a rescaling of the reference valuation π0 by a factor of
1
2 : in this case the construction and verification times for π1 are at least a factor of
10 better than those for π5. Furthermore, the verification times for the integer-time
semantics with parameter valuation π1 were similar to those for the continuous-
time, game-based verification engine of Prism applied to the model with parameter
valuation π0 (the results for π1 are also similar, which agrees with the widely-
recognized fact that continuous-time verification methods, using specialized data
structures, can help to alleviate the state-space blow up caused by the magnitude
of constants used in the guards and invariants). However, when considering a
more realistic model in which the upper bound bcmax on the variables used by
the stations to count the number of collisions is greater than 1, verification using
the integer-time semantics with parameter valuation π1 can be significantly faster
than that using the continuous-time engine. We consider the cases in which bcmax
is equal to 5 or to 9, in both cases using Imitator to verify that the model with π1
is equivalent to the model with π0 (for bcmax = 9 we used a 2.66GHz Intel Core I7
with 4GB, which used 199 seconds to compute the constraint), and the property

1 The verification engine used was the sparse matrix engine.
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Prob≤3. For bcmax equal to 5, the integer-time semantics with π1 uses in total 1.2
seconds (including construction time), whereas the continuous-time engine used
5.6 seconds. For bcmax equal to 9, the integer-time semantics with π1 uses in total
98 seconds (including construction time), whereas the continuous-time engine did
not terminate within 2 hours (we also note that the integer-time semantics for
bcmax equal to 9, but with π5, terminated after 117 minutes, and only when using
the MTBDD engine of Prism, with the other engines running out of memory).

5.2 IEEE 802.11 Wireless Local Area Network Protocol

We also applied our method to the IEEE 802.11 Wireless Local Area Network
Protocol.

Validity of the Example. This case study is obviously an anchored PPTA (de-
fined in Section 3.1) because all transitions of the synchronised model are labelled
with at least one clock equality (a clock constrained to be equal to a parameter).
By recursion (the clocks are initially set to 0), all paths feature a unique-time
probabilistic edge, and the criterion is satisfied.

Parameter synthesis. We consider the following valuation π0 of the parameters
corresponding to the IEEE 802.11 standard and given, e.g. in [23,18].2 (Timing
values are given in microseconds.)

ASLOTTIME = 50 DIFS = 128 VULN = 48 TRANSTIME = 224
ACKTO = 300 ACK = 205 SIFS = 28

As in the case of the CSMA/CD protocol, the probabilistic behaviour of this
case study concerns a backoff process used in the case of simultaneous transmission.

Taking a parametric timed automaton version of the model and the parameter
valuation π0 as input, Imitator computes the following constraint K0 in 13 s:

VULN + TRANSTIME > 5 ∗ASLOTTIME
∧ DIFS > 2 ∗ASLOTTIME
∧ ASLOTTIME > VULN
∧ ASLOTTIME > VULN + TRANSTIME
∧ ACK > 4 ∗ASLOTTIME
∧ 3 ∗ASLOTTIME > DIFS
∧ 4 ∗ASLOTTIME + VULN > ACK
∧ 6 ∗ASLOTTIME = ACKTO
∧ 6 ∗ASLOTTIME = VULN + TRANSTIME + SIFS

2 The only difference with regard to [23,18] is the use of a single parameter TRANSTIME for
the length of a packet transmission, instead of lower and upper bounds on this length, namely
TRANSTIMEMIN and TRANSTIMEMAX , respectively. This simplifies the model with no
consequence, since TRANSTIMEMAX had no incidence on the (time-abstract) behaviour
of the system, and was only constrained to be greater or equal to TRANSTIMEMIN . An
advantage of considering a single transmission time is that the model trivially satisfies the
criterion of anchored PPTAs. Furthermore, in contrast to [23,18], we set the upper limit of the
backoff counter to 1.
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Table 2 Results of Prism for the IEEE 802.11 Protocol

Name p1 p2 p3 p4 p5 p6 p7 States Constr. Prob2 Prob3

π0 50 128 48 224 300 205 28 1,671,933 173 585 692
π1 50 128 48 75 300 205 28 1,527,254 121 459 553
π2 2 5 1 5 12 1 1 117,510 0.76 2.09 2.45
π3 4 10 2 10 24 2 2 169,881 1.22 4.55 5.31

Computation of probabilities. We consider the maximum probability that either
station’s collision counter reaches k, for k = 2, 3, as considered in [18]. The results
of the application of Prism are given in Table 2, where the probabilities are de-
noted by Probi for k = 2, 3. The parameters p1, p2, . . . , p7 stand for ASLOTTIME ,
DIFS , VULN , TRANSTIME , ACKTO , ACK , SIFS respectively. The significance
of the columns is similar to that for Table 1. Note that all the parameter valua-
tions considered satisfy K0, and therefore the computed probabilities for all pa-
rameter valuations are the same: the probabilities Prob2 and Prob3 are 0.0625
and 0.001953125, respectively. Note that π2 corresponds to one of the smallest
possible integer valuations according to K0: the computation time in this case
is dramatically decreased compared to, e.g. π0, thus showing the interest of our
method.

Remark. This model features “asap” transitions, viz. transitions that must be
fired as soon as the corresponding guard is satisfiable. Unfortunately, Imitator
does not support the use of such “asap” transitions. However, in this particular
example, the “asap” semantics is not strictly needed, as all these “asap” transi-
tions have a guard equal to true. Hence, we implemented them using transitions
that must be fired immediately after entering their source location. This was done
in a straightforward manner by adding an extra clock reset to 0 in any transi-
tion leading to such a location and letting the invariant condition of the location
constrain the value of the extra clock to 0.

6 Cartography of Probabilistic Timed Automata

In this section, we address the following weakness of the inverse method: Given an
anchored PPTA A and a valuation π0, the constraint K0 = IM (A∗, π0) may not
be the largest set of parameter valuations solving the inverse problem.

We presented in [5] an algorithm iterating the inverse method in the framework
of non-probabilistic parametric timed automata. This algorithm allows us to cover
(part of) the parametric space with behavioural tiles, i.e. constraints for which the
sets of time-abstract traces are uniform. Formally, a constraint K is said to be
a behavioural tile (or more simply a tile) if, for all π1, π2 ∈ K, the sets of time-
abstract traces of A[π1] and A[π2] are equal. Examples of tiles are constraints
synthesised by the inverse method; in that case, tiles are always convex.

In this section, we give details about the extension of this algorithm to the
probabilistic case mentioned in [5]. We first briefly recall the Behavioural Car-
tography Algorithm (Section 6.1) and describe its extension to the probabilistic
framework (Section 6.2).



An Extension of the Inverse Method to Probabilistic Timed Automata 21

6.1 The Behavioural Cartography Algorithm

We briefly recall the Behavioural Cartography Algorithm, defined in [5] in the
framework of (non-probabilistic) parametric timed automata. This algorithm relies
on the idea of covering the parametric space within a rectangular real-valued
parameter domain V0. By iterating the inverse method IM described in Section 4.1
over all the integer valuations of the rectangle V0 (of which there are a finite
number), one is able to decompose the parametric space included into V0 into a
list Tiling of behavioural tiles. We recall this algorithm BC (A, V0) in Appendix C.

In practice, not only the integer valuations of V0 are covered by Tiling , but also
most of the real-valued space of V0. Furthermore, the space covered by Tiling often
largely exceeds the limits of V0. We can show in particular that, for a rectangle V0
large enough and a grid tight enough, the full coverage of the whole real-valued
parametric space (inside and outside V0) is ensured for some classes of parametric
timed automata, in particular for acyclic systems (see [3] for details).

6.2 Extending the Cartography to the Probabilistic Framework

Using the Behavioural Cartography Algorithm and the application of the inverse
method to PPTAs described in Section 4, we can construct a cartography of a
PPTA A. This can be done in a straightforward manner by applying the algo-
rithm BC to the non-probabilistic version A∗ of A.

From Theorem 1, we have the following proposition.

Proposition 4 Let A be an anchored PPTA and let V0 be a rectangle. Let
Tiling = BC (A∗, V0). Then for all tiles K ∈ Tiling, for all π, π′ |= K,
A[π] ≈tdist A[π′].

Given a reachability property, one can then construct a probabilistic cartography
of the system. Formally, given an anchored PPTA A, a rectangle V0 and a linear
temporal logic property on finite traces ϕ:

1. Compute Tiling = BC (A∗, V0);
2. For each tile K ∈ Tiling , select π |= K, and compute the minimum or maxi-

mum probability pr of satisfying ϕ in A[π] (using, e.g. Prism).

An advantage of the cartography algorithm is that, if one wants to consider
another property ϕ′, one can keep Tiling as computed in step 1, and only perform
again step 2. Only the value of the considered probability in each tile changes,
leading to different partitions into good and bad subspaces.

Note also that, as we proposed in general for the inverse method, for the sake of
efficiency when using a probabilistic model-checking tool, one should rather select
in step 2 a “small” π for each tile K (i.e. a valuation with small constants).

7 Final Remarks

In this paper we have shown that the inverse method presented in [4] can be
applied, not just to non-probabilistic parametric timed automata, but also to their
probabilistic extension, for proving time-abstract properties. The method relies on
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the conversion of PPTAs to non-probabilistic parametric timed automata, then on
the application of the inverse method of [4]. To our knowledge, no other method
allows the synthesis of constraints on the parameters within which the values of
reachability probabilities are preserved.

We envisage that the main benefit of this work to be twofold. First, the inverse
method may be applied as a (generally fast) non-probabilistic pre-processing step
before integer-time semantics verification, given that it can be used to obtain
parameter values smaller than those of the reference valuation, which reduces
the size of the integer-time PTA models prior to probabilistic model checking.
In certain cases, this makes possible probabilistic verification of systems which
cannot be model checked directly, due to the prohibitive size of the constants of
the reference valuation. Furthermore, recall that, for the CSMA/CD case study
that we considered, the use of a “small” parameter valuation with integer-time
semantics verification yielded results that were competitive with and often better
than those obtained using the continuous-time engine of Prism.

Second, the method gives information concerning the robustness of the con-
sidered PPTA: we guarantee that the minimum and maximum probabilities com-
puted for π0 are the same for other valuations “around” π0, i.e. for any valuation π
within K0. More generally, we have shown that we can obtain a (sometimes par-
tial) covering of the space of parameter valuations with tiles in which probabilities
of satisfying properties are equal: this can allow us to obtain a more complete
view of the effect of differences between parameter valuations on the probabilities
of satisfying properties without necessarily having to repeat probability computa-
tions for a large number of parameter valuations. This point applies both to the
case in which the underlying verification method uses the integer-time semantics
and to the case in which a continuous-time approach is used.

As future work, we aim at relaxing the restriction of anchored PPTAs. This
will allow us in particular to consider case studies such as the Root Contention
Protocol of the IEEE 1394 (“FireWire”) High Performance Serial Bus, considered
in the parametric framework in [13]. Indeed, although the condition of anchored
PPTAs does not apply to this case study, the application of the inverse method
to this example yields correct results in practice.

Let us finally point out that, in [18,19,16], another class of properties, named
“soft deadline properties”, is treated: for example, the minimum probability of a
station delivering a packet within some deadline. Such properties are not “time-
abstract”, and fall beyond the class of those considered here. We plan to explore
soft deadline properties in future work.
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A Proof of Proposition 1

In order to prove Proposition 1, we show that, for any scheduler σ of TA[π], we can construct a

scheduler σ′ of TA[π′] such that σ and σ′ generate the same time-abstract trace distributions
(from the initial state). For this task, we require a number of preliminary definitions and results.
First, we present a sufficient condition for two schedulers to generate the same time-abstract
trace distributions. Recall that, given that we assume reset unicity, for all of the distributions
µ ∈ Dist(Q× (X → R≥0)) we consider in the transition relation of TA[π] and TA[π′], for each

location q there will be at most one clock valuation w such that µ(q, w) > 0. We will use wµq
to denote this clock valuation. In the following, given two distributions µ, µ′ ∈ Dist(Q× (X →
R≥0)), we write µ ' µ′ if, for each q ∈ Q, we have µ(q, wµq ) = µ′(q, wµ

′
q ). Given a triple

(d, a, µ) ∈ R≥0 ×Σ × Dist(Q× (X → R≥0)), we let dist(d, a, µ) = µ.

Lemma 1 Let σ be a scheduler of TA[π] and σ′ be a scheduler of TA[π′]. If dist(σ(ω)) '
dist(σ(ω′)) for each ω ∈ Pathσ(q,0) and ω′ ∈ Pathσ

′
(q,0) such that ω ≡ ω′, then tdσ(q,0) =

tdσ
′

(q,0).

Proof The scheduler σ induces a Markov chain Mσ (see [14]), the states of which are finite
paths (starting from (q,0)), and the transition matrix of which assigns to a transition from

path ω to path ω
d,a,µ−−−−→ (q, w) probability µ(q, w) if σ(ω) = (d, a, µ) (probability 0 is assigned

to transitions from ω to paths not resulting from ω by appending the choice of σ(ω)). Similarly,

scheduler σ′ induces a Markov chain Mσ′ . The Markov chains Mσ and Mσ′ are isomorphic:

that is, given a bijection f : Pathσ(q,0)→ Pathσ
′
(q,0) such that f(ω) = ω′, where ω′ is the

unique path of Pathσ
′
(q,0) such that ω ≡ ω′, we have that the Markov chain obtained from

Mσ by substituting each ω ∈ Pathσ(q,0) by f(ω) (in the state space and transition matrix) is

equal to Mσ′ . Because f preserves traces (that is, trace(ω) = trace(f(ω))), we can then derive

that tdσ(q,0) = tdσ
′

(q,0). ut

Recall that the assumption of determinism on actions implies that, for any transition

(q, w)
d,a,µ−−−−→ (q′, w′), the probabilistic edge (q, , a, ) ∈ prob associated with the transition is

unique. A transition (q, w)
d,a,µ−−−−→ (q′, w′) is a unique-time transition if the probabilistic edge

(q, , a, ) ∈ prob is a unique-time probabilistic edge. Similarly, a transition (q, w)
d,a,µ−−−−→ (q′, w′)

is a probability-1 transition if the probabilistic edge (q, , a, ) ∈ prob is a probability-1 edge,
otherwise it is a probabilistically-branching transition. A state (q, w) is clock-0 state if w = 0.
The next lemma follows immediately from the definition of anchored PPTAs.

Lemma 2 Let ω = (q0, w0)
d0,a0,µ0−−−−−−→ · · ·

dn−1,an−1,µn−1−−−−−−−−−−−−→ (qn, wn) be a path in ei-

ther PathA[π](q,0) or PathA[π′](q,0). Then there do not exist indices 0 ≤ i < j ≤ n,

determining the sub-path ω = (qi, wi)
di,ai,µi−−−−−−→ · · ·

dj−1,aj−1,µj−1−−−−−−−−−−−−→ (qj , wj) such that

(1) (qj−1, wj−1)
dj−1,aj−1,µj−1−−−−−−−−−−−−→ (qj , wj) is a probabilistically-branching transition, (2)

(qi, wi)
di,ai,µi−−−−−−→ (qi+1, wi+1) is not a unique-time transition, and (3) (qk, wk) is not a clock-0

state for each i ≤ k < j.

The following lemma states that ≡ preserves the “type” of transitions (where by “type”
we mean unique-time transition/non-unique-time transition and probability-1/probabilistically
branching transition), and follows immediately from the definition of ≡.

Lemma 3 Let ω = (q0, w0)
d0,a0,µ0−−−−−−→ · · ·

dn−1,an−1,µn−1−−−−−−−−−−−−→ (qn, wn) be a path in

PathA[π](q,0) and let ω′ = (q′0, w
′
0)

d′0,a0,µ
′
0−−−−−−→ · · ·

d′n−1,an−1,µ
′
n−1−−−−−−−−−−−−→ (q′n, w

′
n) be a path in

PathA[π′](q,0). Then if ω ≡ ω′, we have that the i-th transition (qi−1, wi−1)
di−1,ai−1,µi−1−−−−−−−−−−−→

(qi, wi) of ω is a unique-time transition (probability-1 transition, respectively) if and only

if the i-th transition (q′i−1, w
′
i−1)

d′i−1,ai−1,µ
′
i−1−−−−−−−−−−−→ (q′i, w

′
i) of ω is a unique-time transition

(probability-1 transition, respectively), for 1 ≤ i ≤ n.
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In the following, for any path ω = (q0, w0)
d0,a0,µ0−−−−−−→ · · ·

dn−1,an−1,µn−1−−−−−−−−−−−−→ (qn, wn) and

any 0 ≤ i ≤ n, we recall that pref(ω, i) is the path prefix (q0, w0)
d0,a0,µ0−−−−−−→ · · ·

di−1,ai−1,µi−1−−−−−−−−−−−→
(qi, wi) comprising the transitions up to the (i+ 1)-th state. We also write suf(ω, i) to denote

the path suffix (qi, wi)
di,ai,µi−−−−−−→ · · ·

dn−1,an−1,µn−1−−−−−−−−−−−−→ (qn, wn) comprising the transitions
from the (i + 1)-th state (as previously, we also refer to states as being paths of length 0, so
pref(ω, 0) is (q0, w0) and suf(ω, n) is (qn, wn)). For 0 ≤ i ≤ j ≤ n, we write ωi..j for the path

(qi, wi)
di,ai,µi−−−−−−→ · · ·

dj−1,aj−1,µj−1−−−−−−−−−−−−→ (qj , wj). We use ω(i) to denote (qi, wi), for 0 ≤ i ≤ n.
We say that a path ω′ is an extension of a path ω if ω = pref(ω′, i) for some 0 ≤ i ≤ |ω′|.

Henceforth, we assume that PathA[π](q,0) ≡ PathA[π′](q,0). Given that we will construct
the scheduler σ′ of A[π′] by induction on the length of paths, we need to avoid blocking
situations in which the paths of σ′ replicate the paths of σ (in the sense of having the same
time-abstract traces) only up to a certain path length, from which point at least one path of
σ cannot be replicated by σ. For example, consider the path ω of σ and the path ω′ of σ′

such that ω ≡ ω′; our aim is to define σ′ so that it replicates the choice σ(ω) = (d, a, µ) in
the sense of choosing some (d′, a, µ′) such that µ ' µ′. The problematic situation, that we
must avoid during the construction of σ′, is that in which, from last(ω′), no transition of the
form (d′, a, µ′) can be taken because the guard g of the probabilistic edge (q, g, a, ) cannot
be enabled from last(ω′) after letting time pass. The next technical lemma explains how this
situation is avoided in the case of non-unique-time transitions: it states that, for any path ω
of A[π] ending in a sequence of non-unique-time transitions, any path of A[π′] that is time-
abstract equivalent to a prefix of ω which ends in the sequence of non-unique-time transitions
can be extended to a path of A[π′] that is time-abstract equivalent to the entire path ω.

Lemma 4 Let σ be a scheduler of TA[π] and let ω be a path of σ for which the last transition
is not a unique-time transition. Let 0 ≤ i < |ω| be the smallest i such that suf(ω, i) comprises

only non-unique-time transitions. Let ω′ be a path of PathA[π′](q,0) such that pref(ω, i) ≡ ω′.
Then there exists a path ω̂′ ∈ PathA[π′](q,0) such that (1) pref(ω̂′, i) = ω′ and (2) ω ≡ ω̂′.

Proof Observe that, because A is an anchored PPTA, any path of either A[π] or A[π′] cycles
through the following phases: visit to a clock-0 state, then a (possibly empty) sequence of
unique-time transitions, then a (possibly empty) sequence of non-unique-time transitions, then
a visit to a clock-0 state, etc. Let 0 ≤ j ≤ i be the largest j such that ω(j) is a clock-0
state. Then from pref(ω, i) ≡ ω′, we have that ω′(j) is a clock-0 state. Furthermore, suf(ω′, j)
contains only unique-time transitions, which follows from the following facts: ωi..j contains
only unique-time actions, ωi..j ≡ suf(ω′, j), and Lemma 3.

Now, from PathA[π](q,0) ≡ PathA[π′](q,0), we have that the existence of the path ω ∈
PathA[π](q,0) implies the existence of a path ω̃ ∈ PathA[π′](q,0) such that ω ≡ ω̃. Let
ω̂′ = ω′ · suf(ω̃, i) (where, in the usual manner, ω′ · suf(ω̃, i) denotes the concatenation of ω′

and suf(ω̃, i)). Then ω̂′ ∈ PathA[π′](q,0), from the following facts.
First, note that ω̂′(j) is a clock-0 state (from pref(ω, i) ≡ ω′ and the fact that ω(j) is a

clock-0 state).
Second, because the fragment of the path ω from point j to point i (that is, ωi..j) contains

only unique-time transitions, together with the fact that ω ≡ ω′ and Lemma 3, we have
that ω′i..j contains only unique-time transitions. Furthermore, note that, after a clock-0 state
followed by a sequence of unique-time transitions, there is only one possible clock valuation:
this clock valuation is determined completely by the sequence of unique-time transitions.

From these facts, we can arrive at the following conclusion: after the fragment of ω′ from
point j to point k, there is only one possible clock valuation for the state ω′(k), and that
ω′(k) = ω̃(k). Intuitively, this means that if suf(ω̃, i) is a possible extension of the path ω̃ from
point i, then suf(ω̃, i) is a also possible extension of the path ω′. This allows us to conclude that

ω̃ ∈ PathA[π′](q,0) implies ω̂′ ∈ PathA[π′](q,0). With regard to the two further conditions on
ω̂′ given in the lemma, we note that condition (1) (pref(ω̂′, i) = ω′) follows immediately from
the definition of ω̂′, and condition (2) (ω ≡ ω̂′) follows from the fact that we assume in the
statement of the lemma that pref(ω, i) ≡ ω′, and from the fact that ω ≡ ω̃ implies trivially
that suf(ω, i) ≡ suf(ω̃, i). ut

Let ω be a path of σ for which the last transition is not a unique-time transition. Let

ω′ be a path of PathA[π′](q,0) such that pref(ω, i) ≡ ω′ and where 0 ≤ i < |ω| be the
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smallest i such that suf(ω, i) comprises only non-unique-time transitions. Lemma 4 allows us

to choose a particular 〈〈ω〉〉ω′ ∈ PathA[π′](q,0), which depends on ω and ω′, such that (1)
pref(〈〈ω〉〉ω′ , i) = ω′ and (2) ω ≡ 〈〈ω〉〉ω′ .

We now proceed to the proof of Proposition 1. In the standard way, given ω =

(q0, w0)
d0,a0,µ0−−−−−−→ · · ·

dn−1,an−1,µn−1−−−−−−−−−−−−→ (qn, wn), we write ω
d,a,µ−−−−→ (q, w) to denote the path

(q0, w0)
d0,a0,µ0−−−−−−→ · · ·

dn−1,an−1,µn−1−−−−−−−−−−−−→ (qn, wn)
d,a,µ−−−−→ (q, w). In the following, we write

(ω
d,a,µ−−−−→) ∈ PathA[π](q,0) if there exists some state (q, w) such that ω

d,a,µ−−−−→ (q, w) ∈
PathA[π](q,0); analogous notation is used for A[π′].

Proof (Proposition 1) By Lemma 1, it suffices to show the following result: for any scheduler
σ of TA[π], we can construct a scheduler σ′ of TA[π′] such that, for each each ω ∈ Pathσ(q,0)

and ω′ ∈ Pathσ
′
(q,0) such that ω ≡ ω′, we have dist(σ(ω)) ' dist(σ(ω′)).

We proceed the construction of σ′ by considering paths of progressively greater length.
In the following, we let Pathσi (q,0) be the set of paths of Pathσ(q,0) of length i; similarly,

Pathσ
′
i (q,0) denotes the set of paths of Pathσ

′
(q,0) of length i.

Let i ≥ 0. Assume that we have defined σ′ for all paths of Pathσ
′
j (q,0) for all 0 ≤ j < i.

Now we define σ′ for paths of Pathσ
′
i (q,0) Let ω ∈ Pathσi (q,0) be a path of A[π] of length i,

and let ω′ ∈ Pathσ
′
i (q,0) be the unique (by determinism on actions) path of A[π′] of length i

such that ω ≡ ω′. Let σ(ω) = (d, a, µ). Our aim is to show the existence of (last(ω′), d′, a, µ′) in
the probabilistic transition relation of TA[π′] such that µ ' µ′. Then we let σ′(ω′) = (d′, a, µ′).

In the case in which last(ω) is a clock-0 state, we proceed as follows. We note that, from

PathA[π](q,0) ≡ PathA[π′](q,0), the existence of (ω
d,a,µ−−−−→) ∈ PathA[π](q,0) implies the

existence (ω̃
d′,a,µ′−−−−−→) ∈ PathA[π′](q,0) such that ω ≡ ω̃ and µ ' µ′. Given that ω ≡ ω̃ and

ω ≡ ω′, and that last(ω) is a clock-0 state, we must have that last(ω) = last(ω̃) = last(ω′).
In this case it is immediate to see that the fact that (last(ω̃), d′, a, µ′) is in the probabilistic
transition relation of TA[π′] implies that (last(ω′), d′, a, µ′) is in the probabilistic transition

relation of TA[π′]. Hence we let σ′(ω′) = (d′, a, µ′). From µ ' µ′, it follows that dist(σ(ω)) '
dist(σ(ω′)).

Now we consider the case in which last(ω) is not a clock-0 state. We consider two sub-cases.

Sub-case: the last transition of ω is a unique-time transition. Given that A is an anchored
PPTA and from Lemma 2, there exists 0 ≤ j < i such that ω(j) is a clock-0 state and
suf(ω, j) contains only unique-time transitions.

From PathA[π](q,0) ≡ PathA[π′](q,0), the existence of the path (ω
d,a,µ−−−−→) ∈

PathA[π](q,0) implies the existence of a path (ω̃
d′,a,µ′−−−−−→) ∈ PathA[π′](q,0) such that

ω ≡ ω̃ and µ ' µ′. Now consider suf(ω, j) and suf(ω̃, j). Observe that only unique-time
transitions feature along suf(ω̃, j) (this follows from the fact that suf(ω, j) contains only
unique-time transitions, from the fact that ω ≡ ω̃ implies that suf(ω, j) ≡ suf(ω̃, j), and
from Lemma 3). Given that suf(ω̃, j) is a clock-0 state, and that suf(ω̃, j) features only
unique-time transitions, it must be the case that, for each state visited along suf(ω̃, j),
there is only one possible clock valuation. Hence we must have suf(ω′, j) = suf(ω̃, j). This

implies that last(ω′) = last(ω̃). Given that the existence of (ω̃
d′,a,µ′−−−−−→) ∈ PathA[π′](q,0)

implies that (last(ω̃), d′, a, µ′) is in the probabilistic transition relation of TA[π′], it follows

trivially that (last(ω′), d′, a, µ′) is in the probabilistic transition relation of TA[π′]. Hence

we let σ′(ω′) = (d′, a, µ′).
Sub-case: the last transition of ω is not a unique-time transition. Given that A is an an-

chored PPTA and from Lemma 2, there exists 0 ≤ j < i such that suf(ω, j) contains
only non-unique-time transitions.
First, suppose that there exists some path of σ that is an extension of ω and which ends in
a clock-0 state; then let ω↑σ0 be the shortest such path. Given that the last transition of ω
is not a unique-time transition, by Lemma 2, the last transition of ω↑σ0 is not a unique-time
transition. Given that pref(ω, k) ≡ pref(ω′, k), we can employ Lemma 4 to define the path

〈〈ω↑σ0 〉〉pref(ω′,k): the path 〈〈ω↑σ0 〉〉pref(ω′,k) is in PathA[π′](q,0), extends pref(ω′, k), and is
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such that ω↑σ0≡ 〈〈ω↑σ0 〉〉pref(ω′,k). Let (q, w)
d′,a,µ′−−−−−→ (q′, w′) be the (i + 1)-th transition of

〈〈ω↑σ0 〉〉pref(ω′,k). Then we let σ′(ω′) = (d′, a, µ′). From the fact that ω↑σ0≡ 〈〈ω↑σ0 〉〉pref(ω′,k),
we have that µ ' µ′ (in fact, because (last(ω), d, a, µ) and (last(ω′), d′, a, µ′) are not
unique-time transitions, we must have µ(q′) = µ′(q′) = 1).
Alternatively, suppose that there does not exist a path of σ which extends ω and which
ends in a clock-0 state. Note that, by the definition of anchored PPTAs, this means that all
paths of σ that are extensions of ω feature only non-unique-time (and hence probability-1)
transitions. Hence we can conclude the following: all paths of σ that are extensions of ω are

of the form ω
d,a,µ(q,w)−−−−−−−→ (q, w), where σ(ω) = (d, a, µ(q,w)) and ω is either ω itself or a path

of σ that is an extension of ω. These extensions of ω derive a countably infinite sequence
of paths progressively extending ω. We can also find a countably infinite sequence of paths
progressively extending ω′, given the definition of σ′ up to ω′, such that each extension
of ω′ is equivalent under ≡ to the associated extension of ω with the same length. This
sequence of paths is obtained by considering each extension of ω and applying Lemma 4.
This countably infinite sequence defines the transitions chosen by σ′ for any extension
of ω′. It can then be seen that, for any extension of ω under σ, and any ≡-equivalent
extension of ω′ under σ′, the distributions in the transitions of σ and σ′ are '-equivalent.

Given Lemma 1, we have completed the proof of Proposition 1. ut

B The Inverse Method

Given a (classical) parametric timed automaton A and a reference valuation π of parameters,
the inverse method outputs a constraint K such that:

1. π |= K,

2. PathA[π] ≡ PathA[π′], for all π′ |= K.

The algorithm IM can be summarized as follows. Starting with K := true, we iteratively
compute a growing set of reachable symbolic states. A symbolic state of the system is a couple
(q, C), where q is a location of A, and C a constraint on the clocks and the parameters. When
a π-incompatible state (q, C) is encountered (i.e. when π 6|= C), K is refined as follows : a π-
incompatible inequality J (i.e. such that π 6|= J) is selected within C, and ¬J is added to K.
The procedure is then started again with this new K, and so on, until no new reachable state
is computed.

Algorithm 1: IM (A, π)

input : A parametric timed automaton A of initial state s0
input : Valuation π of the parameters
output: Constraint K on the parameters

i← 0 ; K ← true ; S ← {s0}
while true do

while there are π-incompatible states in S do
Select a π-incompatible state (q, C) of S (i.e. s.t. π 6|= C) ;
Select a π-incompatible J in (∃X : C) (i.e. s.t. π 6|= J) ;
K ← K ∧ ¬J ;

S ←
⋃i
j=0 Post

j
A(K)

({s0}) ;

if PostA(K)(S) v S then return K ←
⋂

(q,C)∈S(∃X : C)

i← i+ 1 ;

S ← S ∪ PostA(K)(S) ; // S =
⋃i
j=0 Post

j
A(K)

({s0})

The algorithm IM is given in Figure 1. Given a linear inequality J of the form e < e′ (resp.
e ≤ e′), the expression ¬J denotes the negation of J and corresponds to the linear inequality
e′ ≤ e (resp. e′ < e). Given a constraint C on the clocks and the parameters, the expression
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∃X : C denotes the constraint on the parameters obtained from C after elimination of the
clocks.

We define A(K) as {A[π] | π |= K}, PostiA(K)(S) as the set of states reachable from S

in exactly i steps, and Post∗A(K)(S) as the set of all states reachable from S in A(K) (i.e.

Post∗A(K)(S) =
⋃
i≥0 Post

i
A(K)(S)). Given two sets of states S and S′, we write S v S′ iff

∀s ∈ S,∃s′ ∈ S′ s.t. s = s′.

C The Behavioural Cartography Algorithm

Algorithm 2: Behavioural Cartography Algorithm BC (A, V0)

input : A parametric timed automaton A, a finite rectangle V0 ⊆ RM≥0

output: Tiling: list of tiles (initially empty)

repeat
select an integer valuation π ∈ V0;
if π does not belong to any tile of Tiling then

Add IM (A, π) to Tiling;

until Tiling contains all the integer valuations of V0 ;

Imitator also implements the behavioural cartography algorithm in a fully automated
way.


	Introduction
	Probabilistic Timed Automata
	Parametric Probabilistic Timed Automata
	The Inverse Method for PPTAs
	Application of the Inverse Method to PPTAs: Case Studies
	Cartography of Probabilistic Timed Automata
	Final Remarks
	Proof of Proposition 1
	The Inverse Method
	The Behavioural Cartography Algorithm

