
IMITATOR 2.5: A Tool for Analyzing
Robustness in Scheduling Problems

Étienne André1, Laurent Fribourg2, Ulrich Kühne3 and Romain Soulat2

1LIPN, CNRS UMR 7030, Université Paris 13, France
2LSV – ENS Cachan & CNRS
3Universität Bremen, Germany

Abstract. The tool Imitator implements the Inverse Method (IM ) for
Timed Automata (TAs). Given a TA A and a tuple π0 of reference val-
uations for timings, IM synthesizes a constraint around π0 where A be-
haves in the same discrete manner. This provides us with a quantitative
measure of robustness of the behavior of A around π0. The new version
Imitator 2.5 integrates the new features of stopwatches (in addition
to standard clocks) and updates (in addition to standard clock resets),
as well as powerful algorithmic improvements for state space reduction.
These new features make the tool well-suited to analyze the robustness
of solutions in several classes of preemptive scheduling problems.

Keywords: Real-Time Systems, Parametric Timed Automata, Stopwatches

1 Motivation

Imitator 2.5 (for Inverse Method for Inferring Time AbstracT behaviOR) is
a tool for parameter synthesis in the framework of real-time systems based on
the inverse method IM for Parametric Timed Automata (PTAs). Different from
CEGAR-based methods, this algorithm for parameter synthesis makes use of a
“good” parameter valuation π0 instead of a set of “bad” states [4]. Imitator
takes as input a network of PTAs with stopwatches and a reference valuation π0;
it synthesizes a constraint K on the parameters such that (1) π0 |= K and (2) for
all parameter valuation π satisfying K, the trace set (i.e., the discrete behavior)
of A under π is the same as for A under π0. This provides the system with a
criterion of robustness (see, e.g., [14]) around π0.

PTA

Reference
valuation π0

Imitator Constraint K

Fig. 1. Functional view of Imitator



History and New Features A basic implementation named Imitator has
first been proposed, under the form of a Python script calling HyTech [11].
The tool has then been entirely rewritten in Imitator II [3], under the form
of a standalone OCaml program. A number of case studies containing up to 60
timing parameters could be efficiently verified in the purely timed framework.

Since [3], we extended the input formalism to PTAs equipped with stop-
watches: clocks can now be stopped for some time while others keep growing.
Also, we added clock updates: clocks can now be set to arbitrary linear com-
binations of other clocks, parameters and discrete variables. These extensions,
together with powerful algorithmic improvements for state space reduction, allow
us to consider larger classes of case studies, such as scheduling problems.

2 Architecture and Features

The core of Imitator (available in [1] under the GNU GPL license) is written
in OCaml, and interacts with the Parma Polyhedra Library (PPL) [6]. Exact
arithmetics with unbounded precision is used. Imitator takes as input a net-
work of PTAs with stopwatches. The input syntax allows the use of clocks (or
stopwatches), rational-valued discrete variables, and parameters (i.e., unknown
constants) to be used altogether in linear terms, within guards, invariants and
updates. A constraint is output in text format; furthermore, the set of traces
computed by the analysis can be output under a graphical form (using Graphviz)
for case studies with reasonable size (up to a few thousands reachable states).

Imitator implements in particular the following algorithms:

Full reachability analysis Given a PTA, it computes the reachability graph.
Inverse method Given a PTA and a reference parameter valuation π0, it com-

putes a constraint K on the parameter guaranteeing the same time-abstract
behavior as under π0 (see Figure 1).

Imitator 2.5 makes use of several algorithmic optimizations. In particu-
lar, we implemented a technique that merges any two states sharing the same
discrete part and such that the union of their constraint on the clocks and pa-
rameters is convex [5]. This optimization preserves the correctness of all our
algorithms; better, the output constraint is then always weaker or equal, i.e.,
covers a set of parameter valuations larger or equal. It behaves particularly well
in the framework of scheduling problems, where the state space is drastically re-
duced. Actually, most of the scheduling examples we consider run out of memory
without this merging technique.

3 Application to Robustness Analysis in Scheduling

Due to the aforementioned state space reduction and the use of stopwatches,
Imitator 2.5 becomes an interesting tool for synthesizing robust conditions for
scheduling problems. Let us illustrate this on a preemptive jobshop example



given in [2]. The jobshop scheduling problem is a generic resource allocation
problem in which common resources (“machines”) are required at various time
points (and for given duration) by different tasks. For instance, one needs to use
a machine m1 for d1 time units, machine m2 for d2 time units, and so on. The
goal is to find a way (“schedule”) to allocate the resources such that all tasks ter-
minate as early as possible (“minimal makespan”). Let us consider the jobshop
problem {J1, J2} for 2 jobs and 3 machines with: J1 = (m1, d1), (m2, d2), (m3, d3)
and J2 = (m2, d

′
2) with d1 = 3, d2 = 2, d3 = 4, d′2 = 5. There are many possible

schedules. In [2], this problem is modeled as a product A of TAs with stop-
watches, each TA modeling a job. Each schedule corresponds to a branch in the
reachability tree of A. The makespan value corresponds to the duration of the
shortest branch, here 9.

Let us explain how to analyze the robustness of the valuation π0 : {d2 =
2, d′2 = 5} with respect to the makespan value 9. We first consider a parametric
version of A where d2 and d′2 become parameters. In the same spirit as in [9], we
add an observer O, which is a TA synchronized with A, that fires a transition
labeled DEADLINE as soon as a schedule spends more than 9 time units. We
then use Imitator (instead of a CEGAR-like method as in [9]) with A ‖ O
as a model input and π0 as a valuation input. This yields the constraint K:
7 > d′2 ∧ 3 > d2 ∧ d′2 + d2 ≥ 7. By the IM principle, the set of traces (i.e.,
discrete runs) of A ‖ O is always the same, for any point (d2, d

′
2) of K. Since the

makespan for π0 is 9, we know that some branches of the tree do not contain
any DEADLINE label. This holds for each point (d2, d

′
2) of K. The makespan

of the system is thus always at most 9 in K. (In particular, we can increase d2
from 2 to 3, or increase d′2 from 5 to 7 while keeping the makespan less than or
equal to 9.)

All case studies and experiments are described in a research report [15], and
available in [1].

4 Comparison with Related Work

The use of models such as PTAs and parametric Time Petri Nets (TPNs) for solv-
ing scheduling problems has received attention in the past few years. For exam-
ple, Roméo [13] performs model checking for parametric TPNs with stopwatches,
and synthesizes parameter valuations satisfying TCTL formulæ. An extension of
Uppaal allows parametric model checking [7], although the model itself remains
non-parametric. The approach most related to Imitator 2.5 is [9, 12], where the
authors infer parametric constraints guaranteeing the feasibility of a schedule,
using PTAs with stopwatches. The main difference between [9, 12] and Imitator
relies in our choice of the inverse method, rather than a CEGAR-based method.
First results obtained on the same case studies are incomparable (although sim-
ilar in form), which seems to indicate that the two methods are complementary.
The problem of finding the schedulability region was attacked in analytic terms
in [8]; the size of our examples is rather modest compared to those treated using
such analytic methods. However, in many schedulability problems, no analytic



solution exists (see, e.g., [16]), and exhaustive simulation is exponential in the
number of jobs. In such cases, symbolic methods as ours and those of [9, 12] are
useful to treat critical real-life examples of small size. We are thus involved in a
project [10] with an industrial partner with first interesting results.

References

1. http://www.lsv.ens-cachan.fr/Software/imitator/.
2. Y. Abdeddäım and O. Maler. Preemptive job-shop scheduling using stopwatch

automata. In TACAS, pages 113–126, 2002.
3. É. André. IMITATOR II: A tool for solving the good parameters problem in timed

automata. In INFINITY, volume 39 of EPTCS, pages 91–99, 2010.
4. É. André, T. Chatain, E. Encrenaz, and L. Fribourg. An inverse method for

parametric timed automata. International Journal of Foundations of Computer
Science, 20(5):819–836, 2009.

5. É. André, L. Fribourg, and R. Soulat. Enhancing the inverse method with state
merging. In NFM, volume 7226 of LNCS, pages 100–105. Springer, 2012.

6. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming, 72(1–2):3–21, 2008.

7. G. Behrmann, K. G. Larsen, and J. I. Rasmussen. Beyond liveness: Efficient pa-
rameter synthesis for time bounded liveness. In FORMATS, pages 81–94, 2005.

8. E. Bini and G. C. Buttazzo. Schedulability analysis of periodic fixed priority
systems. IEEE Trans. Computers, 53(11):1462–1473, 2004.

9. A. Cimatti, L. Palopoli, and Y. Ramadian. Symbolic computation of schedulability
regions using parametric timed automata. In RTSS, pages 80–89, Washington, DC,
USA, 2008. IEEE Computer Society.

10. L. Fribourg and D. Lesens. Projet ROSCOV: Robuste ordonnancement de systèmes
de contrôle de vol. Project report (in French), December 2011. Available at
www.farman.ens-cachan.fr/ROSCOV.pdf.

11. T. A. Henzinger, P. H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid
systems. Software Tools for Technology Transfer, 1:460–463, 1997.

12. T. Le, L. Palopoli, R. Passerone, Y. Ramadian, and A. Cimatti. Parametric analysis
of distributed firm real-time systems: A case study. In ETFA, pages 1–8, 2010.

13. D. Lime, O. H. Roux, C. Seidner, and L.-M. Traonouez. Romeo: A parametric
model-checker for Petri nets with stopwatches. In TACAS, volume 5505 of LNCS,
pages 54–57. Springer, 2009.

14. N. Markey. Robustness in real-time systems. In SIES, pages 28–34. IEEE, 2011.
15. R. Soulat. Scheduling with IMITATOR: Some case studies. Research Report LSV-

12-05, Laboratoire Spécification et Vérification, France, March 2012. Available on
www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2012-05.pdf.

16. J. Sun, M. K. Gardner, and J. W. S. Liu. Bounding completion times of jobs
with arbitrary release times, variable execution times, and resource sharing. IEEE
Trans. Softw. Eng., 23:603–615, 1997.


