7ZU064-05-FPR RSL10 1 November 2010 17:20

THE REVIEW OF SYMBOLIC LOGIC
Volume 0, Number 0, Month 2010

The Expressive Power of Memory Logics

CARLOS ARECES
INRIA Nancy Grand Est

DIEGO FIGUEIRA
INRIA Saclay, ENS Cachan, LSV

SANTIAGO FIGUEIRA
Departamento de Computacién, FCEyN, UBA and CONICET

SERGIO MERA
Departamento de Computacién, FCEyN, UBA

Abstract. We investigate the expressive power of memory logics. These are modal
logics extended with the possibility to store (or remove) the current node of evaluation in
(or from) a memory, and to perform membership tests on the current memory. From this
perspective, the hybrid logic HL(]), for example, can be thought of as a particular case
of a memory logic where the memory is an indexed list of elements of the domain.

This work focuses in the case where the memory is a set, and we can test whether the
current node belongs to the set or not. We prove that, in terms of expressive power, the
memory logics we discuss here lie between the basic modal logic K and HL(]). We show
that the satisfiability problem of most of the logics we cover is undecidable. The only
logic with a decidable satisfiability problem is obtained by imposing strong constraints on
which elements can be memorized.

81. Modal Logics and Memory Logics Nowadays, the term modal logics
loosely refers to an extremely wide variety of languages, which are used in many
different applications (see, e.g., (Blackburn et al., 2006)). Actually, the fact that the
number of members in this family keeps constantly increasing is one of the defining
characteristic of the field. While most modal logics have certain general aspects
in common (e.g., they are usually interpreted in terms of relational structures and
they are computationally well behaved), there usually are as many modal logics
satisfying any of these “characterizing properties” as there are modal logics not
honoring them. As a result, it is very hard indeed to come up with a proper definition
of what a modal logic is. Perhaps one of the few general traits of the field is the
desire to investigate languages specially tailored for specific tasks.

In this article we investigate the expressive power of a family of modal logics called
memory logics, which extend both the semantics and the syntax of the classical
modal logic. Many logical properties of memory logics have been investigated in
recent articles. The original idea was introduced in (Areces, 2007). Areces, Figueira,
Gorin, & Mera (2009) investigate tableau algorithms and model checking for mem-
ory logics, while Areces, Figueira, & Mera (2009) discuss axiomatic completeness
results. In this article we extend results originally presented in (Areces et al., 2008)
and provide full proofs.

We will introduce and motivate memory logics now. We need first some basic
definitions. Let § be a first-order relational signature (i.e., a first order signature
without function and constant symbols), and let M = (D,Z) be a relational struc-

© 2010 Association for Symbolic Logic
1 doi:10.1017/S1755020300000000

7U064-05-FPR

RSL10 1 November 2010 17:20

2 ARECES, FIGUEIRA, FIGUEIRA AND MERA

ture interpreting S (i.e., D is a non empty set and Z is an interpretation function
that assigns to all relational symbols in S a relation of the correct arity). It is well
known that the basic modal language K can be interpreted on M (see (Blackburn
et al., 2001) for details). When interpreting modal formulas on relational structures,
elements in the domain are sometimes called states, and the interpretations of
relational symbols are called accessibility relations.

It is often said that modal languages provide an internal perspective of the
structures over which they are evaluated. As Blackburn, de Rijke, & Venema (2001)
put it,

“a modal formula [can be seen as| a little automaton standing at
some state in a relational structure, and only permitted to explore
the structure by making journeys to neighboring states.”

It is natural to think of a modal formula as ezploring the structure, but what
about changing it? Suppose we want to grant our little automaton the additional
power to modify the structure during its exploratory trips. This question is not
new, and it has resulted in different proposals of what are called dynamic logics.

Consider, for example, the task of assigning semantics to a programming lan-
guage. Clearly, the different instructions of the language change the computational
state. It is then natural to define their semantics by specifying which changes
each atomic operation of the language introduces. This idea is at the core of
formalisms like Hoare-Floyd logics (Floyd, 1967; Hoare, 1969) which include, for
example, special operators to indicate the state of variables before and after a
given instruction.

As a second example, consider the area of linguistics called dynamic seman-
tics. One of its fundamental claims is that the standard truth-conditional view of
sentence meaning —which is the result of using classical logic as representation
languages— does not do sufficient justice to the fact that uttering a sentence
changes the context it was uttered in. Deriving inspiration, in part, from work on
the semantics of programming languages, dynamic semantic theories have developed
several variations on the idea that the meaning of a sentence should be equated with
the changes it makes to a context. Different dynamic logics like those introduced
by Groenendijk & Stokhof in (1991a; 1991b) try to capture these ideas.

As yet a third example with an ample literature, we can mention dynamic
epistemic logics (Plaza, 1989; Gerbrandy, 1999; van Benthem, 2001, 2005; van
Benthem et al., 2006; van Ditmarsch et al., 2007). These logics model the evolution
of the knowledge of epistemic agents via updates to the model representing their
epistemic state. For example, some of these languages represent the act of an agent
updating its epistemic state with the information that ¢ is true by eliminating all
alternative epistemic states where —p holds.

Our last family of examples come from the area of temporal logics for verification.
In this area, it is many times necessary to model time-critical systems that depend
on quantitative rather than qualitative properties. Many temporal logics introduced
for this task use explicit global clocks which are accessed and controlled through
logical operators. Examples of such logics are XCTL (Harel et al., 1990), half-order
logics (Alur & Henzinger, 1989; Henzinger, 1990), and timed and metric temporal
logics (Alur et al., 1993, 1996; Koymans, 1990; Ouaknine & Worrell, 2005).

7ZU064-05-FPR RSL10 1 November 2010 17:20

THE EXPRESSIVE POWER OF MEMORY LOGICS 3

By contrast, other logics which are also called dynamic are not dynamic in
the sense mentioned above, the main example being Propositional Dynamic Logic
PDL, (Harel, 1984). In PDL formulas are evaluated in a model but they cannot
modify it (even though the language does include special operators to verify that
certain property holds in a given state and continue evaluation accordingly, which
provide extended expressivity (Berman & Paterson, 1981)).

Memory logics can be seen as an attempt to investigate some of the common
characteristics of all these logics, in the simplest possible set up. Going back to
our little automaton, suppose we extend our definition of a model to a triple
M = (D,Z,M), where M is an arbitrary subset of D. We can think of M as
a memory where the automaton can store states that are considered particularly
interesting. Defining the semantics of this operator is straightforward. Let us write
(D, Z,M),w | ¢ for w € D and ¢ a formula to indicate that ¢ is true at w
in the relational structure (D,Z) extended with the memory M. Let us use @
(‘remember’) to represent the memorize operator. We can then define

(D, Z,M),w = @y iff (D,Z, M U {w}),w = ¢.

In other words, @ is an instruction to modify the memory of the model, and ¢
is evaluated in the modified structure. The operation @) by itself is totally useless.
If we cannot access the information stored in M, @y is equivalent to . Let us
add then an operator ® (‘known’) that checks whether the current state has been
previously remembered:

(D, Z,M),w = ® iff w € M.

This simple language gives us already new tautologies. For example, it is easy to
see that the formula @E) is always true. It is also not difficult to see (using well
known results from modal logic) that the memory logic operator gives us additional
expressivity. Let us remind the semantics of the standard (unary) modal operator
diamond (r) of the basic modal language!. Assuming that Z(r) is a binary relation,
we define:

(D, I, M),w = (r)y iff for some v’ € D s.t. (w,w') € Z(r) (D,Z, M), w" = .

That is, the formula (r)¢ is true in a state w if the formula ¢ is true in an r-
successor. Now, the memory logic formula @(r)®) is true in a state when evaluated
on a model with an empty memory if and only if it is self reachable via the
accessibility relation Z(r). ILe.,

(D,Z,0),w F ©(rn® iff (w,w) € Z(r).

As formulas of the basic modal language have the tree model property (i.e., a
formula is satisfiable if and only if it is satisfiable in model which is a tree, and
hence it does not contain reflexive loops (Blackburn et al., 2001)), this property
cannot be expressed in the basic modal language.

In the same spirit of the operators @) and &) introduced above, we can naturally
define operators that modify any element of a model (adding or deleting states or
modifying the interpretation function). In this paper we will restrict ourselves to

1 Of course, the operator is usually defined on models without memory. We will define
it so that it does not interact with the memory M.

7U064-05-FPR

RSL10 1 November 2010 17:20

4 ARECES, FIGUEIRA, FIGUEIRA AND MERA

operators that can access and modify only the memory M (even though we will
briefly discuss possible alternative structures for A). In Section §2. we will formally
introduce the syntax and semantics of the memory logics we will investigate. In
Section §3. we will define suitable notions of model equivalence for each language,
which we will use in Section §4. to investigate their expressive power. In Section §5.
we will show that most of the languages obtained, even in this simple set up, are
undecidable. We show one case where decidability is regained by imposing a very
strict ‘memorization policy’. Section §6. finishes the paper with our conclusions and
ideas for future work.

We close this section with some additional details on how memory logics were
originally conceived, and how they relate to binding and hybrid logics.

Memory Logics and Hybrid Logics, or how Memory Logics were Born
Memory logics where initially defined for purely theoretical reasons (related to
questions concerning binding and decidability), but it soon became clear that they
could provide an interesting perspective on the question of how a formula can
modify the model in which it is being evaluated, as we discussed above.

Memory logics were originally inspired by hybrid logics containing binders like
HL(]) (see (Areces & ten Cate, 2006)). But while | was introduced to investigate
dynamic naming of elements in a model, memory logics include operators to store
and retrieve information from some kind of information structure or memory. In
any case, once we take the appropriate point of view HL(]) can be considered the
first memory logic.

Let us start by formally introducing HL(]). Assume a signature S = (PROP, NOM,
REL), where PROP, NOM and REL are countably infinite, pairwise disjoint sets
of propositional, nominal and relational symbols respectively. For simplicity, and
as it is usually done with modal languages, we will only introduce unary modal
operators?. The syntax of HL(]) is defined as follows

pu=T|plil-p|leAp|{re|lie,

where p € PROP, ¢ € NOM and r € REL. We can see that the language of HL(]) is
the language of the basic modal logic K (see (Blackburn et al., 2001) for details)
extended with nominals and J:.

Semantically, HL(]) is also very close to K. HL(])-formulas are interpreted on
relational structures extended with an assignment function to interpret nominals.
Formally, a model for HL(}) is a tuple (D,Z,g) where g : NOM — D is an
assignment function. 7 assigns a subset of D to elements in PROP, and a binary
relation on D to elements of REL. Given (D, Z, g), the semantic conditions for HL({)

2 Actually, we will restrict ourselves to unary modalities through the article.

7ZU064-05-FPR RSL10 1 November 2010 17:20

THE EXPRESSIVE POWER OF MEMORY LOGICS 5

are defined as:
D, Z,9),wET iff always

(

(D,Z,g9),wEDp iff weZI(p)

(D,Z,g9),w =i it g(i) =w

<D717g>7w):_‘</7 iff <sz’g>7wbé§0

(D,Z,g9),wkE=@Ay iff (D,Z,9),wlypand (D,Z,g),w =1

(D,Z,9),w |= (ryp iff thereis w’ s.t. (w,w’) € Z(r) and (D,Z,g),w' = ¢
(D.Z,g9),w =i i (D,Z,¢'),w = ¢ where ¢'(j) = g(j) for j #1i

and ¢'(i) = w.

One way of looking at the semantic condition for |i.p is that it dynamically creates
a name for the current state (by linking the nominal 7 to it), so that we can later
refer to it during the evaluation of . An alternative perspective is to see |i as an
instruction to modify the model (by storing the current point of evaluation into
1), and continue the evaluation of ¢ in the modified model. The difference between
the two perspectives is subtle, but important for this article. In the latter, we are
considering the assignment g as a kind of memory in our model, while |7 and i are
the tools we use to access the memory for reading and writing. The question then
presents itself naturally: are there other kinds of interesting memory structures and
memory operators?

The assignment g is a very sophisticated memory structure: it has unbounded
size, it provides direct access to all its memory cells, and each stored element can
be unequivocally retrieved. The memory M we discussed above, together with the
operators () and &), provides a much simpler memory structure. Intuitively, these
operators cannot discern between different states stored in M, while an assignment
g keeps a complete mapping between states and nominals. But notice that @ is
a binder, and effectively binds instances of & appearing in its scope. In other
words, as we can see /i and nominals as memory operators which store and retrieve
information from a memory structure, we could see (@ as a binder that binds
occurrences of (&) in its scope. As the memory structure used by @ and & has
less discerning power, we would expect that the logic containing the new operators
is less expressive than HL(]).

82. Syntax and Semantics for Memory Logics In this section we will
introduce the syntax and semantics of the different memory logics that we will
discuss in the article, and fix some terminology.

All the languages we will introduce are obtained by extending (in some cases, also
slightly modifying) the syntax and semantics of the basic modal logic. Furthermore,
with the exception of one case in which we discuss using a stack as a memory
container, all the logics we analyze have the operators @ and ®. Therefore, for
notational convention, we will use ML (for memory logics) as a prefix indicating a
language that uses a set as a container, and that includes @) and &. Then we will
list the additional operators included in the language. Since the usual semantics of
the diamond operator is going to be slightly modified in some cases, we will also
include the diamond explicitly in this list. For example, ML((r)) is basic modal
logic (i.e., with the usual diamond operator) extended with @ and ®).

DEFINITION 2.1. (Syntax) Let PROP = {p1,pa,...} (the propositional symbols)
and REL = {r1,rg,...} (the relational symbols) be disjoint, countable infinite sets.

7U064-05-FPR

RSL10 1 November 2010 17:20

6 ARECES, FIGUEIRA, FIGUEIRA AND MERA

The set FORMS of formulas in the signature (PROP, REL) is defined as:

FORMS =T |p| ¢ [g1 Apa | (N | (M | ® | @

where p € PROP, T € REL and ¢, 1, p2 € FORMS. The other standard operators are
introduced via definitions. In particular [r]p := —=(r)—p and [r]p := ={(r)-e.

Throughout this article we are going to use the usual notion of modal depth of a
formula, that is, the deepest nesting of modal operators. Modal formulas without
modal operators have a modal depth of zero.

DEFINITION 2.2. (Semantics) Given a signature S = (PROP,REL), a model is a
tuple M = (D,Z, M) where D is a nonempty set, T is an interpretation function
such that Z(p) € D for p € PROP and Z(r) C D X D for r € REL. M C D will
be called the memory of the model. For notational convenience, let us assume fized
for the rest of the article the models M = (D, T, M), My = (D1,Zy,M;) and
MQ = <D2,IQ,M2>.

Given a model M and a list of states w1, ..., wy,], w; € D, we define MJwy, ...,
wy] = (D, Z,M U {ws,...,w,}). Now, let M be a model and w € D, then the
semantics for the different operators is defined as:

MawET iff always

Muwkp iff wel(p)

M,w E - iff Mywlte

MwkEeAY iff MywkEpand MywEY

Mow = (rye iff there is w' such that (w,w') € Z(r) and M,w' = ¢
Mow = (rY)e iff thereis w' such that (w,w’) € Z(r) and Mw],w’ = ¢
MuwE@e iff MuwwkEe

Mw k= ® iff we M.

Given a model M and w € D, the set of propositions that are true at a given
state w is defined as props(w) = {p € PROP | w € Z(p)}. Given two models My and
My, and states wy € Dy and wo € Do, we say that they agree when props(wy) =
props(ws) and wy € M iff wa € Ms.

Given a model M and w in the domain of M, we call (M, w) a pointed model.

7

A particularly interesting class of models to investigate is the class Cy = {M |
M = (D,Z,0)}, i.e., the class of models where the memory is empty. Since we
are working with logics that deal with the notion of state, it is natural to consider
starting to evaluate a formula in a model of Cy. It is over Cp that the operators ®
and (@ have the most natural interpretation, and as we will see in the next sections,
the restriction to this class has important effects on expressivity and decidability.
It is worth noting that in this case a formula is initially evaluated in a model of Cy,
but during the evaluation the model can change to one with nonempty memory.
We will put an empty set as a subscript on the prefix ML every time we work with
Cyp as the class of initial models. For example ML((r)) restricted to this class of
initial models is MLy ((r)).

We will not consider all possible combinations of operators, since it is not our
intention to be completely exhaustive. We are only going to analyze some combina-
tions that we consider interesting, and in each section we will indicate the fragments
we will be using. In many cases, the results shown for some fragments can be easily
transferred to other fragments, not explicitly analyzed.

7ZU064-05-FPR RSL10 1 November 2010 17:20

THE EXPRESSIVE POWER OF MEMORY LOGICS 7

83. Model Equivalence In this section we will investigate the notion of model
equivalence for some of the memory logics that we introduced. Our goal is to define
tools that will help us investigate their expressive power. In particular, we will define
a notion of model equivalence in terms of Ehrenfeucht-Fraissé games (Ebbinghaus
et al., 1984) and then introduce an alternative, but equivalent, notion in terms of
bisimulations.

DEFINITION 3.3. (Ehrenfeucht-Fraissé Games) Let My and My be two models
and let w, € D1 and wq € D>.

An Ehrenfeucht-Fraissé game EF(Mj, My, w1, ws) is defined as follows. There
are two players called Spoiler and Duplicator. Duplicator immediately looses the
game EF(My, Mo, w1, ws) if w1 and we do not agree (i.e., either props(wi) #
props(ws) or one of the states is in the memory and the other is not). Otherwise,
the game starts, with the players moving alternatively. Spoiler always starts a turn
of the game choosing in which model he will make a move. Let us set s = 1 and
d = 2 in case he chooses My ; otherwise, let s =2 and d = 1.

For the logics ML((r)) and MLy ((r)), the possible moves are as follows:

1. Memorize: Spoiler extends My to Ms U {ws}. The next turn then starts with
EF (M;[w1], Ma[wz], w1, ws) (Duplicator does nothing in this case).

2. Chose Successor: Spoiler chooses r € REL, and vs, an Zs(r)-successor of ws. If
ws has no Zy(r)-successors, then Duplicator wins. Duplicator has to chose vgq,
an Zy(r)-successor of wq, such that vs and vq agree. If there is no such suc-
cessor, Spoiler wins. Otherwise the game continues with EF (M, Ma,v1,v9).

The moves for the logics ML({(r))) and MLy({(r))) are similar, except that during
a chose successor step Spoiler always remembers the current world, i.e., the game
continues with EF (M[w1], Ma[ws],v1,v2) after Duplicator response.

In the case of an infinite game, Duplicator wins. Note that with this definition,
exactly one of Spoiler or Duplicator wins each game.

Given two pointed models (M1, w1) and (Ma, ws) we write (My,w) =EF (Mo,
wa) when Duplicator has a winning strategy for EF(My, Ma, w1, ws) (the exact
type of game involved will usually be clear from the context, and we will write =EF
when we need to specify that the game corresponds to the language of the logic L).

Even thought in the rest of the article we will use the game notion of model
equivalence, a structural notion can be given that is closer to the usual notion of
bisimulation for modal logics. Both definitions are equivalent, but depending on the
context, one can be more natural than the other (e.g., in Mera (2009) the structural
notion is used to prove results related to Craig interpolation).

DEFINITION 3.4. (Bisimulations) Let M; and Mz be two models. Let ~ be a
binary relation between o(D1) x D1 and p(D3) X Da.
For ML({r)) and MLy((r)) a bisimulation satisfies the following properties:

(nontriv) ~ is not empty.

(agree) If (M, m) ~ (N,n), then m and n agree.

(forth) If (M,m) ~ (N,n) and (m,m’) € I'(r), then there exists n’ € Dy such
that (n,n') € Z3(r) and (M, m/) ~ (N,n’).

(back) If (M, m) ~ (N,n) and (n,n’) € Z%(r), then there exists m' € Dy such that
(m,m’) € I (r) and (M, m’) ~ (N,n’).

7U064-05-FPR

RSL10 1 November 2010 17:20

8 ARECES, FIGUEIRA, FIGUEIRA AND MERA

(remember) If (M,m) ~ (N,n), then (M U{m},m) ~ (N U{n},n).

For the logics ML({r))) and MLy({r)) the (back) and (forth) conditions are
replaced by:

(mforth) If (M,m) ~ (N,n) and (m,m’) € I*(r), then there exists n' € Dy such
that (n,n') € Z2(r) and (M U {m},m’) ~ (N U {n},n’).

(mback) If (M,m) ~ (N,n) and (n,n') € Z%(r), then there exists m’ € Dy such
that (m,m’) € Z'(r) and (M U {m},m’) ~ (N U{n},n’).

Given two pointed models (M, w1) and (Mg, wa) we write (My,w1) € (Ma,
wa) if there is a bisimulation linking (M1, w1) and (Ma,ws). Again, the exact type
of bisimulation involved will usually be clear from the context, and we will write
< when we need to specify that the bisimulation corresponds to the logic L.

As we said before, the notions of Ehrenfeucht-Fraissé games and bisimulations
coincide, as indicated in the following theorem.

THEOREM 3.5. Let L € {ML((r)), MLy({r)), ML((r)), MLy({r))}. Given two
pointed models (My,w1) and (Mg, ws) then (M, wy) EEF (Mo, ws) if and only
if (M1, w1) € (Ma,ws).

Proof. We will discuss the case only for ML((r)) as the proof is similar for languages
containing {(r).

For the right to left direction. Assume that (My,w;) € (Ma,ws) and that
~ is a bisimulation linking (M7, w;) and (Ms,ws). We will prove that there is a
strategy for Duplicator in the game EF (M;j, Mo, w1, ws). First note that the game
EF (M, Mo, wi,ws) is well defined, since by (agree), w1 and wo are agreeing states.
We show that there is a strategy for Duplicator by proving that (1) for any pair of
tuples (S, w) and (@, v) such that (S, w) ~ (@, v), and for any move Spoiler makes
in the game EF(M;[S], M2[Q], w,v), there is always an appropriate answer for
Duplicator such that the next step of the game is EF(M1[S'], M2[Q'],w’,v") and
(S, w'y ~ (Q',v'). Given the initial assumptions, the fact that Duplicator has a
winning strategy on the game EF(M;j, Mo, w1, ws) easily follows from (1). So let
us suppose that (S,w) ~ (Q,v) and consider the game EF(M;[S], M2[Q], w,v).
Without loss of generality, we assume that Spoiler chooses M; to make his move.
There are two kinds of moves Spoiler can do:

e Spoiler make a memorize step, and the game continues with EF(M;[S U
{w}], M2[Q U {v}],w,v). By the (remember) condition, we know that (S U
{w},w) ~(Q U {v},v).

e Spoiler chooses an r-successor w’ of w. By the (forth) condition (we use
(back) here if Duplicator chooses My for his move), there is an r-successor
v of v such that (S,w’) ~ (Q,v’). Using (agree), we know that w’ and
v’ agree, so v’ is a good choice for Duplicator. The game continues with

EF(M1[S], M2[Q],w',v") and (S, w’) ~ (Q,v").

For the other direction, suppose that Duplicator has a winning strategy S on the
game EF(Mq, My, w1, ws). We define ~ in the following way: (S,w) ~ (Q,v) if
and only if EF(M;[S], M2[Q],w,v) is a reachable state of EF(My, My, w1, ws)
when Duplicator follows strategy &. We have to prove that the relation ~ is a
bisimulation. Suppose that (S, w) ~ (Q,v).

7ZU064-05-FPR RSL10 1 November 2010 17:20

THE EXPRESSIVE POWER OF MEMORY LOGICS 9

e The condition (agree) is easy to check.

e To see that the (forth) condition holds, suppose that (m,m’) € Zy(r). One
possible move for Spoiler in the game EF(M;[S], M3[Q],w,v) is to choose
m' from M1, and because Duplicator uses the winning strategy S, he can
answer with a state v/ € My, a successor of v, such that w’ and v’ agree.
Therefore, the next step of the game is EF(M;[S], M2[Q],w’,v"), and by
definition, (S,w’) ~ (Q,v"). The (back) condition is equivalent.

e Finally, to verify the (remember) condition, note that in the game EF(M;][5],
M;[Q], w,v) Spoiler can choose to make a memorize step, and therefore the
next step of the game is E(M;[S U {w}], M3[Q U {v}], w,v). By definition,
that means that (S U{w},w) ~ (Q U {v},v).

Therefore, ~ is actually a bisimulation. Because the state EF(M;j, Mo, wy,ws) is
(trivially) reachable, (M, w1) ~ (Ms, ws) as desired. O

As one could expect, both notions of model equivalence preserve the truth value
of formulas. Given two pointed models (M1, w1) and (Ma, ws), we write (M1, w1)
=, (May,wq) if for any formula ¢ in the language of the logic £ we have that
M, wy | ¢ if and only if Mo, ws = . Proving then that (Mq,w1) =EF (Mo, ws)
(equivalently (M1, w1) €, (Mo, ws)) implies (M1, w1) =, (Ma, ws) only requires
a simple induction. Establishing that the notions EEF , €, and =, coincide on
image finite models (i.e., models where each state has only a finite number of
successors considering the union of the accessibility relations) is only slightly harder.

THEOREM 3.6. Let £ € {ML({r)), MLy({r)), ML({r)), MLy({r))}. Let (M,
wy) and (Ma,ws) be two pointed models. Then (My, w1) =EF (Mo, ws) (equiv-
alently, (My, w1) € (Ma,ws)) implies (M1, w1) =¢ (Ma,wa). If My and My
are image finite, then (My,w1) =g (Ma,wa) implies both (My,w1) =EF (Mg, ws)
and (./\/ll,w1> (:)L <M2,w2>.

84. Expressive Power In this section we compare the expressive power of
memory logics with respect to both modal and hybrid logics. To do this, we will
have to find a natural mapping between models of each logic. Such a mapping is
easy to define in the case of the MLy logics, where we only consider models with an
empty memory: each modal model (D, 7) can be identified with the memory model
(D,Z,0). Similarly, for sentences of HL(]) (i.e., formulas where each nominal i
appears in the scope of |i) the memory model (D,Z,) can be identified with the
hybrid model (D,Z, g) for g an arbitrary assignment. In other cases, the definition
will involve a change in the signature. But for the moment, assume that we consider
two logics £ and £’ such that both can be evaluated over the same class of models
(modulo representation issues).

DEFINITION 4.7. (£ < L') We say that L' is at least as expressive as L (notation
L < L) if there is a function Tr between formulas of L and L' such that for every
model M and every formula ¢ of L we have that

M =c ¢ iff M= Tr(p),

(here it should be understood that the model M is seen as a model of L on the left
and as a model of L' on the right, and that we use in each case the appropriate
semantic relation |=r or =g as required).

7U064-05-FPR

RSL10 1 November 2010 17:20

10 ARECES, FIGUEIRA, FIGUEIRA AND MERA

We say that L' is strictly more expressive than L (notation L < L') if L < L’
but not L' < L. And we say that L and L' are equally expressive (notation L = L')
if L L and L' < L.

To improve the presentation of this section, sometimes we are going to present
theorems that are later subsumed by stronger results (e.g. Theorem 4.10. is sub-
sumed by Theorem 4.13., and later by Corollary 4.21.). The reasons for doing this
are in some cases just for the sake of clarity. In others it is because we believe that
the proofs of some results are interesting by themselves.

4.1. Logics with an initially empty memory We will compare the logics
MLy with the basic modal logic K and the hybrid logic HL(]). We are going to
establish that IC < MLy ({r)) < MLy({r)) < HL).

First we are going to show that the freedom to decide when to remember a state
gives MLy({r)) more expressive power when compared to MLy ({r)).

THEOREM 4.8. MLy({(r))) < MLy({r)).

Proof. [MLy({(r)) < MLy({r))]: Tt is easy to see that there is a translation Tr
from MLy({r)) to MLy({r))-formulas which maps {r)¢ to @(r)¢ and verifies
M = ¢ if and only if M |= Tr(y).

[MLy((r)) £ MLy((r))]: Let My = {w,v,2},13,0) and My = {w,v,2},1,0)
such that 11(7") = {(w7 U)v (Uv IL‘), (:ZZ, w)}7 I2(r) = {(wv ’U), (Ua :L‘), (’1}, ’U)}, and Il(p) =
Z>(p) = 0 for p € PROP as shown below:

F——E) @O—=0)

We claim (M1, w) Effﬁ(«T») (Mg, w). As every state in both models has a unique
successor, Duplicator has only one way of playing, which is actually a winning
strategy. Hence (M1, w) =pnery) (Ma,w). But My, w = (r)@(r)(r)®, while
M, w = (r)@©(r) (r)®. O

We will now compare the expressive power of memory logics with the basic modal
logic K. It is not difficult to see intuitively that @ and ® do bring additional
expressive power into the language of K: with their help we can detect cycles in a
given model, while formulas of K are invariant under unraveling.

THEOREM 4.9. KK < MLy({r)).

Proof. As K is a sub-language of MLy ({r)), K < MLy({r)) taking Tr to be the
identity function. To see that MLy ({(r)) £ K, let My = ({w}, Z;,0) with Z;(r) =
{(w,w)}, Ms = ({u,v},Zs, 0) with Zy = {(u,v), (v,u)}, and Z;(p) = Zo(p) = 0 for
p € props be two models as shown below:

® G

Ml MQ

7ZU064-05-FPR RSL10 1 November 2010 17:20

THE EXPRESSIVE POWER OF MEMORY LOGICS 11

The models are K bisimilar (Blackburn et al., 2001). However, they can be
distinguished by the ML({(r)))-formula () ®. O

We will now compare the expressive power of memory logics with respect to
hybrid logics. The most natural choice for the comparison is the hybrid logic HL(]).
We will prove that HL(]) is strictly more expressive than MLy ((r)). Intuitively,
J can easily simulate @), but ® does not distinguish between different memorized
states (while nominals bound by | do).

THEOREM 4.10. MLy((r)) < HL().

Proof. We first prove that MLy((r)) < HL(). We define the translation Tr,
taking MLy ({r))-formulas over the signature (PROP, REL) to HL(]) sentences over
the signature (PROP, REL, NOM). Tr is defined for any finite set N C NOM as follows:

Trnv(p) = p p€PROP
Trv(®) = Vien'd
Tryv(mp) = —Trn(p)
Trnv(pr Awe) = Tra(e1) A Tra(p2)
Trn((r)e) = (M)Tra(p)
Trv(@p) = Ji.Tryugy(p) wherei ¢ N.

Induction then shows that M, w = ¢ iff M, g,w = Try(p), for any g.
Now we prove that HL(]) is strictly more expressive than MLy ((r)). Let
Ml = <{IU0,’U}1,U)2,...},11,®>
M2 = <{U)O7U}1,w2,...},1-2,®>

Zi(r) = A{(n,m)|n#m}U{(wo, wo)}
Io(r) = Ti(r)U{(wi,wi)}
Z,(p) =Zo(p) = O for p € PROP.

Graphically,

P
(o)

=

My

We prove that (M, wo) Efjﬁ@((?’)) (Mo, wo) showing a winning strategy for
Duplicator. Intuitively, the strategy is as follows: whenever one player is in (M, wg)
the other will be in (Ma, wp) or (Mg, w1), and conversely whenever a player is in
(My,wy), n > 0, the other will be in (Ma, w,,), m > 1. This is maintained until
Spoiler (if ever) decides to remember a state. Once this is done, then any move
leads to a win of Duplicator. Formally, the winning strategy will have two stages:

7U064-05-FPR

RSL10 1 November 2010 17:20

12 ARECES, FIGUEIRA, FIGUEIRA AND MERA

1. While Spoiler does not remember any reflexive state, Duplicator plays as
follows: if Spoiler chooses wy in any model, Duplicator chooses wg in the
other; if Spoiler chooses wy,,n > 0 in M1, Duplicator plays w,y; in Moy; if
Spoiler chooses w,,,n > 0 in My, Duplicator plays w,_1 in M;. Notice that
with this strategy Spoiler chooses a reflexive state if and only if Duplicator
answers with a reflexive one. This is clearly a winning strategy.

2. If ever Spoiler decides to remember a reflexive state, Duplicator starts using
the following strategy: if Spoiler selects a state w,,, Duplicator answers with
an agreeing state w,, of the opposite model. Notice that this is always possible
since both w,, and w,, see infinitely many non remembered states and at least
one remembered state.

On the other hand, let ¢ be the formula li.{r)(i A (r)(—i A Ji.(r)i)). It is easy to
see that M1, wq £ ¢ but Mo, wg = . O

We have shown that MLy({r)) < HL(]) but the proof seems to intrinsically
use infinite models, in contrast with the proofs for Theorems 4.8., 4.9. and 4.10. in
which finite models are used. Actually, MLy ((r)) < HL(]) even on finite models.
For this purpose we will first introduce a version of the Ehrenfeucht-Fraissé game
presented in Definition 3.3. where the number of turns is bounded.

DEFINITION 4.11. The n-moves Ehrenfeucht-Fraissé game for a given logic L,
denoted EF: (M, Mo, w1, wa), is the game in which Spoiler can only make n moves
in the game to beat Duplicator. If Duplicator has a strategy to remain undefeated
for n moves, he wins the game and we write (My,w;) =EF" (Mg, ws).

We will state without a proof the following easy theorem.

THEOREM 4.12. Let £ € {ML((r)), MLy((r)), ML{r)), MLy({r))}. For any
pair of pointed models, (M1, w1) EEFn (Mo, ws) if and only if for every formula

@ of L with modal depth n, My, w1 |= ¢ iff Ma,ws = ¢.
Now we can prove the desired result for finite models:
THEOREM 4.13. MLy((r)) < HL(]) over the class of finite models.

Proof. We will prove that there is a property ¢ expressible in HL({) that cannot
be expressed in MLy({r)) over finite models. To do this, for every n we will
exhibit two finite models M7, M% such that M7, wy = ¢, M5, wy ¥ ¢ but
(MT, wo) Effgmw)) (M5B, wp). This implies that there is no MLy({r))-formula
1 capable of expressing this property.

Let ¢ = li.(r)(i A {r)(—=i A Li.(r)i)) as in the proof of Theorem 4.10., and let, for
n>1, M} = (D" 17 0) and M4 = (D", Z%,() where

Dn = {wo,...7wn+1},
Ii(r) = {(a,b) |a,b€ D", a# b} U{(wo,wo)},
8 (r) = I9(r)U{(wi,wi)}, and

¢ for p € PROP

Zi(p) = Z3(p)

As an example, M? and M3 would be

7ZU064-05-FPR RSL10 1 November 2010 17:20

THE EXPRESSIVE POWER OF MEMORY LOGICS 13

Clsarly, for every n > 1, M¥, wq £ ¢ and M%, wy = . To prove that (M7, wq)
EﬁFlwW)) {(M?Z,wg), we will describe Duplicator’s winning strategy:

1. While Spoiler does not remember any reflexive state, Duplicator plays with
the following strategy: whenever Spoiler is in wg, 2 < k < n+1 in one model,
Duplicator is in an agreeing state wyg/, 2 < ¥’ < n + 1 in the other one. If
one player is in wg in M7 then the other is in wg or wy in M%. Finally, if
Spoiler plays wy in MY, Duplicator plays in an agreeing wy, 2 < k <n+1
in M%. With this strategy, Spoiler chooses a reflexive state if and only if
Duplicator answers with a reflexive one, and Duplicator is always able to
choose an agreeing state.

2. If ever Spoiler decides to remember a reflexive state, then for every state
w; chosen by Spoiler, Duplicator will always have an agreeing state w; in
the other model. This happens because the models have n 4+ 2 states, and
therefore there is always at least two non-remembered states. At each round
the number of unremembered states can only be decremented by one, and then
up to round n both players will always see remembered and unremembered
states from w; and well as from wj;.

Because Duplicator wins the game for any n, any candidate ¢» € MLy({r))
expressing ¢ will fail for a sufficiently large n. g

The HL(])-sentence we use in the proofs of Theorem 4.10. and 4.13. has only
one nominal. Hence, we have actually proved that HLq(]) € MLy((r)), where
HL1({) is HL(]) restricted to only one nominal. But actually, it is also the case
that MLy((r)) £ HL1(}). More generally, for any fixed number & of nominals, the
logics HL()) and MLy({r)) are incomparable.

THEOREM 4.14. For any fized k, the logics HLy(]) and MLy((r)) are incompa-
rable in terms of expressive power.

Proof. We will show the proof for k = 1, the general case being similar. HL;({) £
MLy((r)) is a direct consequence of the proof of Theorem 4.10..

To prove MLy((r)) £ HLi(l), let My = ({w1,we, w3}, Zy,0) with Zy(r) =
{(ws,w;) | 1 <1i,j <3} and Zy(p) = 0 for p € PROP, and My = ({wq,ws},Zs,0)
with Zo(r) = {(ws,w;) | 1 < i,j < 2} Iy(p) = 0 for p € PrOP. That is, M,
is a clique of size 3 while My is a clique of size 2. It is easy to check that
(M, w1) =xe, 1) (Mo, wr) because they are HL;(])-bisimilar as defined in (Are-
ces & ten Cate, 2006). However, the formula ¢ = @(r) (~®A@)(r)—®) distinguishes
the models: My, w; = ¢ but Mo, wy [~ .

The proof for HLy(]) is similar, taking cliques of the appropriate size. O

7U064-05-FPR

RSL10 1 November 2010 17:20

14 ARECES, FIGUEIRA, FIGUEIRA AND MERA

4.2. Erase and forget As it is natural to define operators that store states
in the memory, we can also introduce operators that delete states from it. In this
section we will investigate their behavior. We extend the memory logics we have
been discussing with two new operators that remove states from the memory. We
define both a global operator (e) that completely wipes out the memory, and a local
version (), which deletes the current evaluation state.

We extend the syntax of the memory languages to include (¢ and @):

FORMS =T [p | =¢ [p1 Apa [(Mo [(Me | ®] @p | @ | @,

were ¢ € FORMS (see Definition 2.1. for details). We also extend the semantics
(Definition 2.2.) with the following two conditions:

<D7I7M>’w):@(p iﬁ <D7I7®>’w':<)0
(D, T, M),w = ®p iff (D,Z,M\{w}),w |=¢p.

As we intuitively discussed above, the (e) operator replaces the current memory
with the empty set, while) only removes the current state.

In this section we are only going to consider (g) and @) for classes of models where
the original memory is empty, and with the usual interpretation for the diamond
operator. Hence, following our naming convention, we will refer to these logics
adding the new operators to the prefix ML. For example, MLy((r),©,®) is the
memory logic augmented with both (e) and &) operators.

Clearly, the notions of Ehrenfeucht-Fraissé game and bisimulation need to be
extended to include these new operators, given that we want model equivalence to
preserve the truth value of formulas.

DEFINITION 4.15. The definition of Ehrenfeucht-Fraissé game for logics with ()
and @) extends Definition 3.3. adding two new possible moves. Remember that the
current move is EF(My, Ma, w1, ws), that the turn starts by Spoiler choosing one
of the two models, and that we set s = 1 and d = 2 in case Spoiler chooses My,
and that s = 2 and d = 1 otherwise.

1. Erase: Spoiler wipes out the memory, setting My = My = (). The next turn
starts with EF ({D1,Z1,0), (D2, s, 0), w1, w3).

2. Forget: Spoiler deletes ws from My setting My = Mg \ {ws}. The next turn
starts with EF(<D1,Il, M1 \ {w1}>, <D2,IQ, M2 \ {w2}>,w1,w2),

In a similar way we can extend the notion of bisimulation we introduced before.

DEFINITION 4.16. The notion of bisimulation extend the one described in Defi-
nition 3.4. with the rules:

(erase) If (M,m) ~ (N,n), then (B, m) ~ (B, n).
(forget) If (M,m) ~ (N,n), then (M \ {m},m) ~ (N \ {n},n).

Once more, the definitions are modular, each new type of move in the Ehrenfeucht-
Fraissé, and each new rule for the bisimulation definition corresponds, respectively
to the (@ and @) operators. If one of these operators is added to the language,
the corresponding rule or type of move needs to be added to the corresponding
definition of bisimulation or game in order to preserve the extended language.

Now we can establish the first result regarding these new operators: independently
adding (e and @) does increase the expressive power.

7ZU064-05-FPR RSL10 1 November 2010 17:20

THE EXPRESSIVE POWER OF MEMORY LOGICS 15

THEOREM 4.17. MLy((r)) < MLy((r),®) and MLy({r)) < MLy({r},®).

Proof. It is trivial to see that both MLy((r)) < MLy({r),®) and MLy({r)) <
MLy((r), ®) hold using the identity translation. To verify MLy({r)) # MLy({r), ®)
and MLy((r)) # MLy((r),®), let My and My be the models described in the
proof of Theorem 4.10. Recall that (M1, 0) is MLy((r))-bisimilar to (Mo, 0).

To see that MLy((r)) # MLy({r),), we show that these two pointed models
are distinguishable with a MLy({r), ®)-formula. Let

¥ = [rlO(r/(® A (r)®)).

Intuitively, 1 states that no matter which accessible state we choose, we can move
to it, eliminate it from the memory, and move to an already remembered state
which is connected to some (possibly different) remembered state. Now let

¢ = @) (~® AN DY)

It is clear that My, 0 |= ¢, since one can remember the state 0, then move to state 1
(which is not remembered), and remember it leaving the model in the state M5|0, 1]
and the evaluation state in 1. Then it is easy to see that M5[0,1],1 |= 1. However,
one can verify that M1, 0 £ ¢. Indeed, suppose that, after remembering the state
0, we move to state n > 0 and we remember it. By the definition of M7, the state n
will not be reflexive. Now, M1[0, n],n = 1 because M1[0,7n],0 F= ®((r)(®A(r)®)),
., My[n],0 b (1) (® A (1)®).

Showing that MLy((r)) # MLy({r), @) is easier. Let ¢ = @(r)(~®A@D{r)®).
It is not difficult to see that My, 0 = ¢ but My,0 F ¢. O

On the other hand, we are still below the expressive power of HL({):
THEOREM 4.18. MLy((r),®,®) < HL().

Proof. In line with the proof of Theorem 4.10., we define a truth-preserving
translation from formulas of MLy({r),®,®) into formulas of HL(]}). To define
our translation we use a finite sequence S of nominals in NOM, where each nominal
i in the sequence is tagged with a superscript r (representing a remember) or with
a superscript f (representing a forget). We use the operation S o i to denote the
operation of inserting the element ¢ at the end of the sequence S. A stands for the
empty sequence.

Trs(p) = p pEPROP
Trs(mp) = —Trs(p)
Trs(% A 902) = Trg ((,01) A\ Trs(QOQ)
Trs((r)e) = () Trs(e)
Trs(@¢) = iTrsopiry(¢) wherei ¢ S.
Trs(®p) = \Li-TrSo{if}(QO) where i ¢ S.
Trs(@p) = Tra(p)

Trs(®) = T(9),

where T is a translation from sequences of nominals to MLy ((r), @, ®)-formulas
defined in the following way:

T = L
T(Soi") = ivT(S)
T(Soif) = =i AT(S).

7U064-05-FPR

RSL10 1 November 2010 17:20

16 ARECES, FIGUEIRA, FIGUEIRA AND MERA
A simple induction shows that M, w | ¢ ifft M, g, w |E Trx(p), for any g. O

COROLLARY 4.19. MLy((r),®) < HL() and MLy((r),®) < HL().

Now we show that MLy ({r), @) is not more expressive than MLy ((r), ®) using
a game argument as we did for MLy ((r)).

THEOREM 4.20. MLy({r), ®) £ MLy((r), ®).

Proof. Let M = ({s} UwoUwy U...,Z,0), where each w; is a different copy of
w,and Z(r) = {(n,m) | n € w;,m € w;,i < j}U{(n,s),(s,n) | for all n # s}, and
Z(p) = 0 for p € PROP. Intuitively, the model is as follows

wWo w1 w2 w3

Each w; is a total relation on the natural numbers and, in addition, all elements
of w; are related to all elements of w; if 7 < j.

We prove that (M, wo) =FF (M, w;) for MLy((r),®), where wy € wp and w; €
w1 . Given a state w, we define the neighborhood of w as N(w) = {v | (w,v) € Z(r)},
and we say that the neighborhood of a state w is remembered when N(w)NM # 0,
where M is the current memory. The strategy we are going to define observes the
following invariant:

1. Every time Spoiler has moved to a state w, then Duplicator has answered with
an agreeing state v such that N(w) was not remembered if and only if N(v)
was not remembered.

2. Every time Spoiler has moved to a state w € w;, Duplicator has answered
with a state v € w;. And every time Spoilers has moved to s, Duplicator has
moved to s.

It is clear that this invariant holds at the beginning of the game. We will prove
that each step of the strategy preserves the invariant. Remember that at any stage
of the game, the number of remembered states is always finite. Assume that Spoiler
is in a state w € ws and Duplicator in v € wy. The strategy for Duplicator is the
following:

1. If Spoiler decides to remember w, then the game continues with both w and v
remembered. So both N(w) and N (v) become remembered, and the invariant
is preserved.

2. If Spoiler decides to forget all the states in the model, then both N(w) and
N (v) become not remembered, and the game continues with the invariant
preserved.

3. If Spoiler moves to s in one model, Duplicator moves to s in the other model.
Since every state of every w; is connected to s, this is always a possible move
for Duplicator. Given the invariant and the fact that s is connected with every
other state in the model, it is easy to see that N(s) is not remembered in one
model iff N(s) is not remembered in the other model.

7ZU064-05-FPR RSL10 1 November 2010 17:20

THE EXPRESSIVE POWER OF MEMORY LOGICS 17

4. If Spoiler plays in a state w’ € wy such that N(w’) is not remembered,
then Duplicator chooses wy and a state v/ € wy such that N(v') is not
remembered. Note that by definition of neighborhood and the fact that the
accessibility relation is reflexive on w;, w’ and v’ are not in the current memory
M. Furthermore, this is always a valid move for Duplicator, given that there
are infinitely many w; connected with wy and the fact that the number of
remembered states is finite. So Duplicator can always choose a sufficiently
large d’ and a state v' € wy such that N(v') is not remembered.

5. If Spoiler plays in a state w’ € wgy such that N(w’) is remembered, then
Spoiler moves to an agreeing state v’ € wy . Let us see that there is always
such v’ and that the invariant is preserved. If N(w) is not remembered, given
the shape of the model, the only possibility is that w’ = s. Therefore v’ = s,
and we have already seen that the neighborhoods match in this case. The
remaining case is when N(w) is remembered. Given the invariant, we know
that N(v) is remembered, so if Spoiler chooses w’ € M, we know that there
is a v/ € M that Spoiler can move to. In this case it is trivial to see that
N (v') is not remembered. On the other hand, if Spoiler chooses w’ ¢ M, then
a safe choice for Duplicator is a non remembered v’ € wy, that is, a state in
the same cluster as v. Since each w; is infinite, there is always such a v’, and
also this choice guarantees that N(v’) is not remembered.

On the other hand, let ¢ = @(r){r)(~® A (r)® AN @(r)(® A ®[r]—®)) be a
formula of MLy ({r),®). It is easy to see that M, w; = ¢ but M, wq £ ¢. O

COROLLARY 4.21. MLy({r),®) < HL({) and MLy({r),®) < MLy({r),®, D)
Proof. Trivial given Theorems 4.20. and 4.18. |

To end this subsection we want to observe that there are still some interest-
ing questions that remain open. For example, the relation between HL(]) and

MLy((r), ®, ®):
Question 1 HL(]) # MLy((r),®, D)7

We conjecture that the answer is positive, but we have not found yet a pair of
models (similarly to the proofs of Theorems 4.20. and 4.10.) in which the difference
can be shown. The other natural question is the relation between MLy ((r), @) and

ME(Z)“T)»@):
Question 2 MLy((r),®) £ MLy({r),®)?

Again we conjecture that the answer is positive, and the proof should follow the
style of the proof of Theorem 4.20.

4.3. Memory Logics with a Stack In this subsection we want to analyze
other memory containers different than a set. A priori, any kind of data structure
could be a suitable alternative, but it should be clear that certain choices immedi-
ately gives back the full expressive power of HL(]). For example, suppose we use
an unbounded array to store elements of the domain, and that we combine it with
suitable operators that can store and retrieve elements to and from a given index.
The results is nothing other than a different formulation of assignments and the
combination of the | operator and nominals.

7U064-05-FPR

RSL10 1 November 2010 17:20

18 ARECES, FIGUEIRA, FIGUEIRA AND MERA

In what follows we will discuss a more subtle case. Suppose that we use a stack
instead. L.e., our memory structure will still be unbounded, but we are only allowed
to store element at the top, and inspect and remove only the top element. We will
show that, even though the access to the memory structure is restricted, we still
have the full expressive power of HL(]). But let us start by formally introducing
this language. Its syntax is defined as follows:

FORMS ::= T | p | =¢ | o1 Az | (r)p | (push)y | (pop)e | (top)

where p € PROP, r € REL and ¢, @1, 2 € FORMS. The semantic rules for the new
operators are as follows. Assume that S is a stack represented as a list. The symbol
A represent the empty stack, and if S is a stack and w an element S - w represent
the stack obtained by adding w as top-most element.

(D,Z,S),w = (push)p it (D,Z,5 w),wkE¢p
(D,Z,8 -v),w = (pop)p iff (D,Z,S),wl=¢
(D, Z,\),w | (pop)¢ iff never

(D,Z,S -v),w = (top) iff v=w

(D,Z,)\),w = (top) iff never

Let us call MLj({r)) the logic obtained by adding these operators to the basic
modal logic, and when we restrict ourselves to the class where stacks are initially
empty. We will show that ML} ((r)) and HL(]) are equally expressive. Because we
are restricting ourselves to the class of models where the stack is initially empty,
models in ML’ ((r)) can be seen as models of HL(]) by ignoring the stack.

THEOREM 4.22. ML ({r)) = HL(]).

Proof. To prove ML ((r)) < HL(]), we define a translation mapping a formula
in ML ((r)) and a list of nominals N into a formula of HL({).

Try(p) = p p€EPROP
Trv(mp) = —Trn(p)
Trv((r)e) = (NTrv(e)
Trv(p1 Aw2) = Trn(e1) ATrn(p2)
Try((push)y) = Ji.Try. () wherei ¢ N
Try.i((pop)p) = Trn(p)
Tra((pop)yp) = L
Try.i((top)) = i
Tra((top)) = L

We can show by induction in ¢ that M, w = ¢ iff M, g, w | Try(p), for any g.

To prove HL(}) < ML ((r)) we define a translation mapping an HL(])-formula
and a list of nominals N into an ML ({r))-formula. The translation coincides with
the translation above for the propositional, negation, conjunction and modality
cases. We translate | and nominals as follows:

Try(li.@) (push)Try.i(p)
Trw (d) (pop)'"" (top)

where |N| represents the length of N and N[n] represents the n-th element of N.
It can be shown by induction in ¢ that if ¢ is an HL(]})-sentence, M, g, w = @ iff
M, w = Tra(p) for any g. O

i € NOM, N[n] =i,Ym >n: N[m] # i,

7ZU064-05-FPR RSL10 1 November 2010 17:20

THE EXPRESSIVE POWER OF MEMORY LOGICS 19

4.4. Non empty memory classes Comparing the expressive power between
the logics that start evaluating formulas in Cy and the ones that use an arbitrary
memory poses a complication because, strictly speaking, each of them uses a dif-
ferent class of models. In this case it is not as obvious how to define the mapping
between each type of models. The most natural option seems to involve a shift in
the signature of the language, in order to preserve the information stored in the
models.

Consider, for example, an arbitrary model M = (D,Z, M) for ML({r)). If we
want to consider it as a model of MLy({r)) we need to ‘make room’ for the non
empty memory M somehow. We will do that by considering M = (D,Z, M) as a
model over a signature with one additional propositional symbol which we will call
known and that will be interpreted as M.

THEOREM 4.23.

1. MLy((r)) over the signature (PROPU{known}, REL) is equivalent to ML({r))
over the signature (PROP, REL).

2. MLy({r)) over the signature (PROPU{known}, REL) is equivalent to ML({r)))
over the signature (PROP, REL).

Proof. The argument for 2 is exactly the same as the one for 1. Hence, let us prove
MLy((r)) = ML((r)) (over the appropriate signatures).

We start by associating every model M = (D,Z, M) of ML({(r)) over the
signature (PROP, REL) with the model M’ = (D, Z',0) of MLy({r)) over the sig-
nature (PROP U {known}, REL) where Z' is identical to Z over PROP and REL and
' (known) = M.

[MLy((r)) < ML((r))]: use the translation Tr that replaces occurrences of the
propositional symbol known by ® in any formula of MLy({r)). Clearly for any
formula ¢ € MLy((r)) we have that M’ w = ¢ iff M, w = Tr(p).

[ML((r)) < MLy((r))]: use the translation Tr that replaces occurrences of & by
(®V known) in any formula of ML((r)). Clearly for any formula ¢ € ML(({r)) we
have that M, w = ¢ iff M',w = Tr(y). O

Intuitively, the only thing we need to do is to store Z(known) in the starting
memory and vice versa. In the presence of (£) and (e) the memory does not grow
monotonically and hence we cannot simulate it using known V ®.

Now, the same expressivity hierarchy we proved for logics with empty memory
can be established for logics with arbitrary memory, that is £ < ML({r))) <
ME((r)) < HL():

THEOREM 4.24.

1. ML({r))) over the signature (PROP,REL) s strictly more expressive than K
over the signature (PROP U {known}, REL).

2. ML({r))) < ML((r)).

3. HL(]) over the signature (PROPU{known}, REL, NOM) is strictly more expres-
sive than ML((r)) over the signature (PROP, REL).

Proof. The proof for 1 is the same as the proof for Theorem 4.9. The proof for 2
is the same as the proof for Theorem 4.8. To prove 3 we adapt the translation Tr
defined in the proof of Theorem 4.10. with the following clause for &):

Trv(®) = (Vieni) V known.

7U064-05-FPR

RSL10 1 November 2010 17:20

20 ARECES, FIGUEIRA, FIGUEIRA AND MERA

HL() £ ML((r)) can then be shown using the following models. Let M; =
({w}, Iy, {w}) with Z1(r) = {(w,w)} and Z;(p) = @ for p € PROP; and My =
{u, v}, o, {u,v}) with Zo(r) = {(u,v), (v,u)} Za(p) = 0 for p € PROP.

Duplicator always wins on EF (M, Mo, w,u) and thus My, w Efjﬁ((ﬂ) Moy, u.
On the other hand, My, w = Ji.{r)i but Mo, u £ Li.(r)i.

§5. (Un)Decidability and the Finite Model Property In the previous
section we showed memory logics more expressive than K but less expressive than
HL(}) (the only exception is ML’ ((r)), which has the same expressive power than
HL(])). Given that K is decidable and HL(]) undecidable (Areces & ten Cate,
2006), exploring where the decidability line lies is an intriguing question. The main
goal of this section is to investigate this issue, together with the related question of
whether the logic is sufficiently expressive to force infinite models.

We start by investigating ML({r)) and MLy({(r)). We will show that even
though they are equivalent in terms of expressive power when we allow a shift in
the signature, the satisfiability problem for ML({(r))) is decidable (actually PSPACE-
complete) while MLy({(r))) is already undecidable. As we will show in the proof of
Theorem 5.27. the trick is to use a ‘dirty’ memory. In MLy ({(r))), we are restricted
to the class of models where the memory is always initialized to () and we can’t
play this trick anymore. Actually ML({(r))) is really standing on the decidability
line: adding a single nominal to ML({(r))) pushes the satisfiability problem over to
undecidability.

5.1. The Decidability of ML({(r))) We will first prove that X and ML({r))
are expressively equivalent over the class of tree models. We will then prove that
ML({r)) has a tree model property. With those results at hand, decidability and
PSPACE-completeness of ML({(r))) easily follows.

THEOREM 5.25. Restricted to the class of tree models, the logic KC over the signa-
ture (PROPU{ known}, REL) is equivalent to ML({(r))) over the signature (PROP, REL).

Proof. [IC < ML({r))]: This is a direct corollary of Theorem 4.9.

[ML({r)) < K]: We start by noticing that in ML({r))) we can eliminate & at
modal depth 0 from a formula like @p.

Claim: Let ¢f be the result of replacing all the occurrences of ®) that are in ¢ €
ML({(r)) at modal depth zero by T. Then M, w = @ if and only if M, w = ¢F.

Proof of Claim. We proceed by induction on ¢. The case for &), the propositional
symbols and booleans are straightforward. We analyze the other cases:

e v =00y MwkE @@y iff M,w = @y iff (by inductive hypothesis) M, w =
Pt iffu./\/l,w = (")* iff (by inductive hypothesis) M,w = @(¥*) iff M, w =
(@v)".

oo = (). Myw = ©r)y iff (by definition) M(w],w = (r)y iff (by
definition of #) M[w],w = ({(r))* iff (by definition) M,w = ({r)e)t.

7ZU064-05-FPR RSL10 1 November 2010 17:20

THE EXPRESSIVE POWER OF MEMORY LOGICS 21

Define now the following translation taking ML({(r)))-formulas over the signature
(PROP, REL) to K-formulas over the signature (PROP U {known}, REL):

Tr(p) = p pEPROP
Tr(®) = known
Tr(np) = —Tr(p)
Tr(pr Ap2) = Tr(p1) ATr(pz)
Tr({(rhe) = (NTr(e)
Tr(©@p) = Tr(¥h.

Let ¢ € ML({r)), and let M = (D,Z, M) be an arbitrary tree model. Let
M’ = (D,T') where T’ is identical to Z except that Z'(known) = M. We can prove
that M, w = ¢ if and only if M’ w = Tr(yp).

We proceed by induction on ¢. The propositional and boolean cases are trivial.
The ®) case is also easy given the definitions. Let us consider ¢ = ((r))v. Because
M is a tree, the remember operator has no effect beyond modal operators, so
M, w = {r)¢ if and only if there exists v such that (w,v) € Z(r) and M, v = .
By inductive hypothesis, M’,v = ¢ iff M’,v | Tr(¢), and by definition M, w |=
(r)Tr(¢). Finally, let us see the case for remember. By the previous Claim, M, w |=
@ iff M, w = ¢*. By inductive hypothesis, M, w |= Tr(?). O

We now prove that ML(({(r))) has the tree model property (Blackburn et al.,
2001), that is, every satisfiable formula in ML({(r))) is satisfied in a tree model.

THEOREM 5.26. (Tree model property) Let (M, w) be a ML({(r)))-model. Then
there is a tree M’ such that (M, w) = (M’ w).

Proof. We prove the result for the unimodal case, the generalization to the mul-
timodal case is straightforward. Let M = (D,Z, M), define M’ = (D',7', M")
as follows. Its domain D’ consists of all finite sequences @ = (ug,...,u,) such
that up = w, n > 0 and (u;,uiy1) € Z(r) for 0 < i < n. Let @ = (ug, ..., uUn)
and ¥ = (vg,...,Un), then define Z'(r) as follows, (@,v) € Z'(r) if and only if
m=n+1 u = v for i =0,...,n and (up,v,) € Z(r). Z'(p) is defined by
setting (ug,...,un) € I'(p) iff u, € Z(p). Finally, (ug,...,Un—1,un) € M’ iff

Up € {Ugy ..., Up_1} O Uy € M.

Let s; be the sequence (vp,...,v;). We show that Duplicator has a winning
strategy in the game EF(M, M’ w,w). It is sufficient to see that in the game
EF(M]uvo, ..., vn], M'[s0,. .., Sn], Unt1, Snt1), Duplicator can always answer suc-

cessfully to Spoiler’s moves.

e If Spoiler chooses M|vy, ..., v,] and some v,1, a successor of v,,, Duplicator
chooses the sequence s,4+1 = SpUp+1-
e If Spoiler chooses M'[sq,...,$n] and sp41 = Spvny1 (for some vy,41), a

successor of s, Duplicator chooses the state v, 1.

By definition s,,4+1 and v,11 agree. Observe that the memory of M|uvg, ..., v,] is
M U {vg,...,v,} and the memory of M'[so,..., S| is M U{so,...,sn}. It is also
clear that v,11 € M if and only if s,,41 € M'. Formally, v,+1 € M U {vg,...,v,}
implies s,41 € M’ by definition. And s, € S’ U{sg,...,s,}, then s,.1 € 5’
(since there are no cycles in M’) and by definition v,41 € M U {vp,...,v,}. O

THEOREM 5.27. The satisfiability problem of ML({(r))) is PSPACE-complete.

7U064-05-FPR

RSL10 1 November 2010 17:20

22 ARECES, FIGUEIRA, FIGUEIRA AND MERA
Proof. We first show decidability of the satisfiability problem of ML({(r))) proving
that any satisfiable formula of ML({(r))) is satisfiable in a recursively bounded
model. Let ¢ be a ML({r)))-formula of modal depth k, and suppose M7, w = .
By Theorem 5.26., there is a tree My such that Mo, w = ¢. Using Theorem 5.25.,
we know that My, w = Tr(p) (here, My is taken as a IC model over the appropriate
signature). Now we can use the bounded tree model property for basic modal
logic (Blackburn et al., 2001), so there must be a recursively bounded tree M3 =
(D3,Z3) and v € D3 such that M3,v = Tr(p). Finally, we can use Theorem 5.25.
again, and conclude (D3, Z4, T3 (known)), v |= ¢, where 7} is the restriction of Z5 to
the signature that does not contain known.

The psPACE-completeness follows from the fact that the translation Tr is linear,
and that the satisfiability problem for the basic modal logic is PSPACE (Blackburn
et al., 2001). O

Now we show that adding @ to ML({r)) keeps the logic decidable. In fact,
ML({r)), ®) can be encoded into ML({r))) using a linear translation. In other
words, ML({(r),®) < ML({r)) and hence @ does not add expressivity when
added to ML({r))). At the end of this section we are going to see that this is not
the case for (g).

THEOREM 5.28. The satisfiability problem for ML({(r)), ®) is PSPACE-complete.

Proof. We show that there is a linear translation from ML({r),®) to ML({r)).
Let Tr, be the following translation from ML({(r)), ®) formulas to ML({r)))
formulas, where a ranges over {r, f}:

Tra(p) = p p€PROP

T.(®) = ®

Tri(®) = -T

Tra(ﬁ@) = ﬁTra(gp)

Tro(p1 Aw2) = Tra(p1) A Tra(p2)
Tra((Me) = (r)Tr(e)

Tro(@p) = ©Tr(p)
Tra(®p) = Trp(e).

Given a model M = (D, T, M) and a state w € D, we define M[-w] =
{w}). We prove by mutual induction on ¢ these two properties:

(1) Myw = @ iff M,w = Tr.(p).
(2) Mwl,w b o iff M,w E Try ().

Notice that (1) in fact shows that ML({r)), ®) < ML({r))). The only interesting
cases for both properties are {(r)), @ and @. For the property (1), let ¢ = {r)e.
M,w = (r)¢ iff (by definition) there is a w’ € D, such that (w,w") € IZ(r)
and Mlw],w’ | ¢ iff (by inductive hypothesis on (1)) Mw],w" = Tr.(¢) iff (by
definition) M,w = {(r)Tr.(v) iff (by definition) M,w = Tr.({ >>). The next

(D, T, M\

case is ¢ = @y. M,w | @y iff (by definition) Mw],w = ¢ iff (by inductive
hypothesis on (1)) M[w],w = Tr.(¢) iff (by definition) M,w = @Tr,.(¢) iff (by
definition) M, w = Tr.(@). Finally, let ¢ = ®y. M, w E @ iff (by definition)

M-w],w = ¢ iff (by inductive hypothesis on (2)) M, w = Try(¢) iff (by definition)
M, w | Tr.(®).

7ZU064-05-FPR RSL10 1 November 2010 17:20

THE EXPRESSIVE POWER OF MEMORY LOGICS 23

For the property (2), let ¢ = (r). M[-w],w = {(r)¢ iff (by definition) there is
aw’ € D, such that (w,w’) € Z(r) and M[w],w" = ¢ iff (by inductive hypothesis
on (1)) Mlw],w" = Tr.(¢) iff (by definition) M, w = {(r))Tr,.(¢) iff (by definition)
M, w = Trp({r)e). The next case is ¢ = @y. M[-w],w = @ iff (by definition)
M{w],w = ¢ (by inductive hypothesis on (1)) M[w],w = Tr.(¢) iff (by definition)
M, w = @Tr,(¢) iff (by definition) M, w = Try(@). The last case is ¢ = @.
M-w],w = @ iff (by definition) M[-w],w = ¢ (by inductive hypothesis on (2))
M, w = Trg(v) iff (by definition) M, w = Trg(@n)).

Property (1) shows that we have defined a satisfiability preserving translation.
Observe that the linearity of the translation is trivial, and given Theorem 5.27. we
conclude the desired result. g

5.2. Undecidable Memory Logics While ML({(r))) is decidable, it seems to
be standing at the border of undecidability. The logic MLy({r))), obtained from
ML({r)) by restricting the class of models to those where S =) is undecidable.
Actually, the logic ML({(r)))+1i, obtained by adding a single nominal to ML({r})),
is already undecidable. We first prove failure of the finite model property for
MEL((r)) + .

THEOREM 5.29. ML({r))) + i lacks the finite model property.

Proof. Consider the following formulas:

(Back) i A[r]—i A {r)T Ar]{r)i

(Empty) - [r]-@ A [r][r](=i — -®)
(Spy) [r]lrl(=i = () (i A ()@ A ~(r)(® A i)
(Suce) [r]{r)—i
(No-3cye) —(r) (r) (=® A (r) (=® A (r)(® A i)
(Tran) [r]{r) @A [r](=® = (r) (@A rH(@ A () (B A i)

Let Infbe Back A Empty A Spy A Suce A No-3cyc A Tran. Let M = (D, T, M). We
claim that if M, w |= Inf, then D is infinite.

Suppose M, w = Inf. Let B={b€ D | (w,b) € Z(r)}. Because Back is satisfied,
w ¢ B, B# () and for all b € B, (b,w) € Z(r). Note that Empty says that the one
and two-step neighbors of w are not in M, and this also implies that every state in
B is irreflexive. Because Spy is satisfied, if a # w and «a is a successor of an element
of B then a is also an element of B. As Succ is satisfied at w, every point in B has a
successor distinct from w. No-3cyc disallow cycles of size 2 or 3 in B; and together
with Tran they force Z(r) to transitively order B.

It follows that B is an unbounded strict partial order as showed in the picture
below, hence infinite, and so is D.

7U064-05-FPR

RSL10 1 November 2010 17:20

24 ARECES, FIGUEIRA, FIGUEIRA AND MERA

We now show that ML({(r))) + ¢ is undecidable by encoding the w X w tiling
problem (see Borger et al. (1997)). Following ideas in (Blackburn & Seligman,
1995), we will use three modalities (s), (u) and (r). We construct a spy point over
the relation Z(s) (i.e., the point of evaluation will have access in one Z(s)-step to
any reachable state in the model). The relations Z(u) and Z(r) represent moving up
and to the right, respectively, from one tile to the other. We code each type of tile
with a fixed propositional symbol ;. With this encoding we define for each tiling
problem T, a formula 7 such that the set of tiles types T tiles w x w iff T has a
model.

THEOREM 5.30. The satisfiability problem for ML({(r))) + i is undecidable.

Proof. Let T = {T,...,T,} be a set of tile types. Given a tile type T;, u(T};),
r(T;), d(T;), 1(T;) will represent the colors of the up, right, down and left edges of
T; respectively. Define:

(Back) i A[s]—i A{sHT A [s]{she A [s][s]é
(Empty) [s][-® A [s][1]~® te{ru}
(Spy) [sIITILsN (@ A (s (® A =(1) ®)) te{ru}
(Grid) [s[(TH T te{ru}
(Func) [s][T1{sh {sH (@A ()® A [1]®) ted{ru}
(Conf) [s]{ud {r) {sNsH® A =(r)® A {u) ®A
(r)(® A (u)(® A =(r)®)))

(UR-no-Cycle

[u][r]-® A [s]r][u]-®
(URU-no-Cycle M7

|
I [u]-®
s] <V1§z§n ti AN Ni<icj<n(ti = _‘tj)>
I
I

1<i<n (ti = {(u)) \/1§j§n,u(Ti):d(Tj) tj)

Let the formula ¢? be the conjunction of all the above formulas. We show that
T tiles w x w if and only if ¢ is satisfiable.

Suppose M, w = ¢T. Observe that Back and Spy, together with Empty make
w a spy via Z(s) (and also force Z(u) and Z(r) to be irreflexive and asymmetric).
These Z(s)-accessible states will represent the tiles. We will have that [s]¢ holds
at w iff ¢ is true at every tile, and {(s)){(s)1> holds at tile v iff ¢ is true at some
(perhaps the same) tile. Now, Grid states that from every tile there is another
tile moving up (that is, following the Z(u)-relation). The same holds for the right
direction (following the Z(r)-relation). Func (together with Back and Spy) forces
Z(u) and Z(r) to be functional. Conf ensures that the tiles are arranged as a grid,
once we force Z(u)oZ(r), the composition of Z(u) and Z(r), to be irreflexive (UR-
No-Cycle), and we forbid the existence of cycles following successive steps in the
Z(u), Z(r) and Z(u) relations, in that order (URU-no-Cycle).

That completes the description of the grid. The last three formulas ensure that
every tile has a unique type t;, and that the colors of the tiles match properly. From
this, it easily follows that M is a tiling of w X w.

7ZU064-05-FPR RSL10 1 November 2010 17:20

THE EXPRESSIVE POWER OF MEMORY LOGICS 25

For the converse, suppose f : wxw — T is a tiling of w x w. We define the model
M = (wxwU{w},Z,0) where T is

Z(s) = {(w,v), (v,w) | v € w X w} (hence w will act as the spy point)
Z(u) = {((z,9), (z,y +1)) |,y € w}
I(T) = {((xv)’(+ Ly)) ‘ T,y € W}
Z(p) = {w}
It) ={z |z €ewxw, f(z) =T;}.
The reader may verify that, by construction, M, w = 7. O

We now turn to MLy({(r)). The ideas are similar to the case of ML({r))) + ¢
but this time we cannot use the nominal i to make the spy point. On the other
hand, we know that the memory is empty when we start evaluating a formula.

THEOREM 5.31. MLy({(r))) lacks the finite model property.

Proof. Consider the following formulas:

(Back) pA[r]=p ALr) T Alr}(r)(® A p)
(Spy) [r]lrl(=p = {rH (@ Ap A (r)(® A =(r)(® A —p))))
) () e A () (mp A ®)))
) [r)(rh-p
(No-3eye) ~(r){r) (@A (r) (=® A (r)(® A —=p)))
) Irl=p = (P (@ Ap A [r](=p A ~® = (r)(® A pA
) (@® A =p A {r)(® A —p))))))-

Let Inf be Back A Spy A Irr A Succ A No-3cye A Tran, and let M = (D, Z, ().
The proof that M is infinite if M, w = Inf is similar to the proof of Theorem 5.29.
Instead of using ¢ to identify the spy point we now use p and &. &) is needed to
distinguish the spy point from other points where p might hold.

Notice that Back, Spy, Succ, and No-3cyc are very similar to the ones in the
proof of Theorem 5.29., Irr forces Z(r) to be irreflexive and Tran says that every
pair of successors u and v are related (either (u,v) € Z(r) or (v,u) € Z(r)), and
this together with the other formulas, implies that Z(r) is transitive. O

In a similar way, we can encode the w x w tiling problem to show that satisfiability
in MLy({(r))) is undecidable.

THEOREM 5.32. The satisfiability problem for MLy ({r)) is undecidable.

7U064-05-FPR

RSL10 1 November 2010 17:20

26 ARECES, FIGUEIRA, FIGUEIRA AND MERA

Proof. The formula ¢’ needed for the encoding of a tiling problem T in this case
is the conjunction of the following:

(Back) pA[sl=p A (s)T A [sl{sH(® A p) A [s][s[(® A p)
(Spy) [SIITI(=p A (sHB® AP A (sH® A (1) ®))) t€{ru}
(Grid) [s[(THT t€{ru}
(Func) [s][T]{s) (sH®A (I ® A [1]®) T € {ru}
(Conf) [s]{u) {r) {sh (sH@®A = {(r)® A (u) ®A
{(r) (u)(® A () ®))
(UR-no-Cycle) [s][u]lr]-® A [s][r][u]-®
(URU-no-Cycle) [s][u][r][u]-®
(Unique) [s] (Vicicn ti A Arcicyan(ti = 1))
(Vert) 8] Avcicn (1 = €D Vicjmuiryairy)
(Horiz) 5] Avcicn (1 = () Vi<ycnnirmiin)
O

From the undecidability of MLy({(r))), we can easily conclude the undecidability
of ML({r)) and MLy({r)).

THEOREM 5.33. MLy((r)) lacks the finite model property and it is undecidable.

Proof. Straightforward from Theorems 4.8., 5.31. and 5.32. 0

To prove failure of the finite model property for the case ML({r)) we first notice
that the following lemma is easy to establish (we only state it for the mono-modal
case; a similar result is true in the multimodal case). Failure of the finite model
property is then a direct consequence.

LEMMA 5.34. Let d be the modal depth of . If (D, T, M), w = (/\jzo[r]i—'(@) A
then (D,Z,0),w = ¢.

COROLLARY 5.35. ML({r)) lacks the finite model property.

Proof. Using Lemma 5.34. we can prove that the formula (/\?:O[r]iﬂ®) A Inf,
where Inf is the formula in the proof of Theorem 5.31., forces an infinite model. [J

COROLLARY 5.36. The satisfiability problem for ML({r)) is undecidable.

Proof. Using the idea of Lemma 5.34. and the formula ¢ in the proof of Theo-
rem 5.32., we can obtain a formula ¢ such that if M, w = ¢ then M is a tiling of
w X w. For the converse, we can build exactly the same model as in the proof of
Theorem 5.32. and check that it satisfies . O

Now we want to briefly mention the case of erase with respect to decidability.
Given that (¢) can be seen as an operator that internalizes the notion of starting
the evaluation of a formula with an empty memory, it is quite easy to establish the
following result:

THEOREM 5.37. The satisfiability problem for ML({(r)),®) is undecidable. Fur-
thermore, the logic lacks the finite model property.

7ZU064-05-FPR RSL10 1 November 2010 17:20

THE EXPRESSIVE POWER OF MEMORY LOGICS 27

Fig. 1. Different expressive power of memory logics

Proof. Theorems 5.31. and 5.32. show that the logic MLy({(r))) lacks the finite
model property and that its satisfiability problem is undecidable. It is straightfor-

ward to see that just adding (g in front of each encoding is enough to achieve the
same results for ML({r), ®). O

86. Conclusions and Further Work In this article we investigated several
memory logics. These logics were inspired by the hybrid logic HL(]) considering
the | operator as a storage command and the assignment function as a storage
structure. The aim of this article is to explore this idea, investigating different ways
in which information can be stored and retrieved, and the logics that result.

There are different dimensions in which the idea can be carried further, which we
inspect in this article. We can, for example, vary the type of storage structure. An
assignment function is a very sophisticated memory structure: it has unbounded
size, it provides direct access to all its memory cells, and each stored element can
be unequivocally retrieved. We discussed in detail the result of using a set (instead
of a function) as the information container, and show that this change results in
logics with strictly lower expressive power. We also show that if we replace the set
with a richer structure that allows the unique identification of the elements stored
(like is the case in a stack) we regain the full expressive power of HL({).

The second dimension we analyzed was the collection of memory operators in-
cluded in the language. We show that operators to add, test membership and
delete elements from the memory can be naturally defined, and we mapped out
the expressive power of the resulting logics.

Finally, the third dimension we investigated was the effect of imposing conditions
on the state of the initial memory of the model in which we evaluate a formula.
Requiring the initial memory to be empty (a natural requirement when working
with models with state) boost the expressive power of the logic.

In terms of expressive power, the memory logics we presented lie between the
basic modal logic K and the hybrid logic HL({). Figure 1 summarizes the results
established in this article. The solid unlabeled arrows represent the < relationship,
i.e., L — L' means that the logic £ is strictly less expressive than the logic £'. In
some cases we specifically indicate other relations (like < or £), and the dashed
arrows show the suspected answers to the open questions 1 and 2 we formulated.

We also discussed in detail complexity results. In most cases the satisfiabil-
ity problem of the languages we introduced is undecidable. We were able to pin
down only two logics, ML({(r))) and ML({r)), ®), which still have the bounded

7U064-05-FPR

RSL10 1 November 2010 17:20

28 ARECES, FIGUEIRA, FIGUEIRA AND MERA

tree model property, and established that their satisfiability problem is PSPACE-
complete. In other words, to regain decidability we had to allow models with a
potentially non empty memory and imposed (through the operator ((r))) a very
restricted policy to memorize states. To obtain these results we defined in Sec-
tion §5. different equivalence preserving translations which can be used to transfer
known results, for example, from HL(]) to ML((r)) and MLy((r)). For instance,
both logics are compact and their formulas are preserved by generated sub-models
(see Areces et al. (2001)).

The study we carried out in this paper draws a more detailed picture of the
properties of of memory logics. We have investigated these logics in a number
of recent papers (Areces, 2007; Areces, Figueira, & Mera, 2009; Areces, Figueira,
Gorin, & Mera, 2009; Mera, 2009) in which we present complete axiomatizations,
tableaux calculi, complexity analisys for model checking, and preliminary results
on the Beth and the interpolation properties for different fragments of this family.
But there is still work to be done.

Even though we obtained logics less expressive than HL(]), most of the logics
we analyzed are undecidable. One of the motivations behind memory logics was to
find decidable but yet useful logics to model scenarios with state. With this goal in
mind several directions for future research suggest themselves. One possibility is to
study memory logics as temporal logics, restricting the class of models to linear or
tree structures which has shown to reduce complexity for hybrid logics (see (Areces
et al., 2000)). The complexity of hybrid logics over restricted frame classes was
investigated in detail by Schneider (2007), and a similar approach can be pursued
for memory logics. In a related line, the freeze operator of Henzinger (1990) (a
binding operator weaker than | that bind wvalues associated to the states instead
of the states themselves) can also be further weakened using the ideas presented
in this article. Finally decidable memory logics could also be obtained by following
the approach of Meier et al. (2009) which instead of restricting the class of frames,
imposed restrictions on the Boolean operators allowed in the language.

Acknowledgements: S. Figueira is partially supported by CONICET (grant PIP
370).

BIBLIOGRAPHY

Alur, R., Courcoubetis, C., & Dill, D. (1993). Model-checking in dense real-time.
Information and Computation 104(1), 2-34.

Alur, R., Feder, T., & Henzinger, T. (1996). The benefits of relaxing punctuality.
Journal of the ACM 43(1), 116-146.

Alur, R., & Henzinger, T. (1989). A really temporal logic. In Journal of the ACM,
pp- 164-169. IEEE Computer Society Press.

Areces, C. (2007). Hybrid logics: The old and the new. In Arrazola, X. & Larrazabal,
J., editors, Proceedings of LogKCA-07, San Sebastian, Spain, pp. 15-29.

Areces, C., Blackburn, P., & Marx, M. (2000). The computational complexity of
hybrid temporal logics. Logic Journal of the IGPL 8(5), 653-679.

Areces, C., Blackburn, P., & Marx, M. (2001). Hybrid logics: characterization,
interpolation and complexity. The Journal of Symbolic Logic 66(3), 977-1010.
Areces, C., Figueira, D., Figueira, S., & Mera, S. (2008). Expressive power

and decidability for memory logics. In Logic, Language, Information and

7ZU064-05-FPR RSL10 1 November 2010 17:20

THE EXPRESSIVE POWER OF MEMORY LOGICS 29

Computation, Volume 5110 of Lecture Notes in Computer Science, pp. 56—68.
Springer Berlin / Heidelberg. Proceedings of WoLLIC 2008.

Areces, C., Figueira, D., Gorin, D., & Mera, S. (2009). Tableaux and model checking
for memory logics. In Automated Reasoning with Analytic Tableaux and Related
Methods, Volume 5607 of LNAI Oslo, Norway, pp. 47-61. Springer Berling /
Heidelberg. Proceedings of Tableaux09.

Areces, C., Figueira, S., & Mera, S. (2009). Completeness results for memory logics.
In Proceedings of LFECS 2009, Volume 5407 of LNCS, pp. 16-30. Springer.

Areces, C., & ten Cate, B. (2006). Hybrid logics. In Blackburn, P., Wolter, F., &
van Benthem, J., editors, Handbook of Modal Logics, pp. 821-868. Elsevier.

Berman, F., & Paterson, M. (1981). Propositional dynamic logic is weaker without
tests. Theoretical Computer Science 16, 321-328.

Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal Logic. Cambridge
University Press.

Blackburn, P., & Seligman, J. (1995). Hybrid languages. Journal of Logic, Language
and Information 4, 251-272.

Blackburn, P., Wolter, F., & van Benthem, J., editors (2006). Handbook of Modal
Logics. Elsevier.

Borger, E., Gridel, E., & Gurevich, Y. (1997). The classical decision problem.
Springer Verlag.

Ebbinghaus, H., Flum, J., & Thomas, W. (1984). Mathematical Logic. Springer-
Verlag.

Floyd, R. (1967). Assigning meanings to programs. In Proceedings of the American
Mathematical Society Symposia on Applied Mathematics, Volume 19, pp. 19-31.

Gerbrandy, J. (1999). Bisimulations on Planet Kripke. Ph. D. thesis, University of
Amsterdam. ILLC Dissertation series DS-1999-01.

Groenendijk, J., & Stokhof, M. (1991a). Dynamic predicate logic. Linguistics and
Philosophy 14, 39-100.

Groenendijk, J., & Stokhof, M. (1991b). Two theories of dynamic semantics. In van
Eijck, J., editor, Logics in Al — FEuropean Workshop JELIA’90, Lecture Notes
in Artificial Intelligence, pp. 55—-64. Springer-Verlag.

Harel, D. (1984). Dynamic logic. In Gabbay, D. & Guenthner, F., editors, Handbook
of Philosophical Logic. Vol. II, Volume 165 of Synthese Library, pp. 497-604.
Dordrecht: D. Reidel Publishing Co. Extensions of classical logic.

Harel, E., Lichtenstein, O., & Pnueli, A. (1990). Explicit clock temporal logic. In
Proceedings of LICS’90, pp. 402-413.

Henzinger, T. (1990). Half-order modal logic: How to prove real-time properties.
In Proceedings of the Ninth Annual Symposium on Principles of Distributed
Computing, pp. 281-296. ACM Press.

Hoare, C. (1969). An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576-583.

Koymans, R. (1990). Specifying real-time properties with metric temporal logic.
Real-Time Systems 2(4), 255-299.

Meier, A., Mundhenk, M., Schneider, T., Thomas, M., Weber, V., & Weiss, F.
(2009). The complexity of satisfiability for fragments of hybrid logic—Part I.
In Proceedings 34th International Symposium on Mathematical Foundations of
Computer Science (MFCS), Volume 5734 of LNCS, pp. 587-599.

Mera, S. (2009). Modal Memory Logics. Ph. D. thesis, Universidad de Buenos Aires
and Université Henri Poincaré.

7U064-05-FPR

RSL10 1 November 2010 17:20

30 ARECES, FIGUEIRA, FIGUEIRA AND MERA

Ouaknine, J., & Worrell, J. (2005). On the decidability of metric temporal logic.
In Proceedings of the 20th IEEE Symposium of Logic in Computer Science (LICS
2005), Chicago, IL, USA, pp. 188-197. IEEE Comp. Soc. Press.

Plaza, J. (1989). Logics of public communications. In 4th International Symposium
on Methodologies for Intelligent Systems, pp. 201-216.

Schneider, T. (2007). The Complezity of Hybrid Logics over Restricted Classes of
Frames. Ph. D. thesis, University of Jena.

van Benthem, J. (2001). Logics for information update. In TARK’01: Proceedings
of the 8th Conference on Theoretical Aspects of Rationality and Knowledge, pp.
51-67. Morgan Kaufmann Publishers Inc.

van Benthem, J. (2005). An essay on sabotage and obstruction. In Mechanizing
Mathematical Reasoning, pp. 268-276.

van Benthem, J., van Eijck, J., & Kooi, B. (2006). Logics of communication and
change. Information and Computation 204(11), 1620-1662.

van Ditmarsch, H., van der Hoek, W., & Kooi, B. (2007). Dynamic Epistemic Logic.
Kluwer academic publishers.

