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Abstract. The design and verification of cryptographic protocols is a notoriously difficult
task, even in symbolic models which take an abstract view of cryptography. This is mainly
due to the fact that protocols may interact with an arbitrary attacker which yields a
verification problem that has several sources of unboundedness (size of messages, number
of sessions, etc.).

In this paper, we characterize a class of protocols for which deciding security for an
unbounded number of sessions is decidable. More precisely, we present a simple transfor-
mation which maps a protocol that is secure for a bounded number of protocol sessions (a
decidable problem) to a protocol that is secure for an unbounded number of sessions. The
precise number of sessions that need to be considered is a function of the security prop-
erty and we show that for several classical security properties a single session is sufficient.
Therefore, in many cases our results yields a design strategy for security protocols: (i) de-
sign a protocol intended to be secure for a single session; and (ii) apply our transformation
to obtain a protocol which is secure for an unbounded number of sessions.

1. Introduction

Security protocols are distributed programs which aim at guaranteeing properties such as
confidentiality of data, authentication of participants, etc. The security of these protocols
relies on the one hand on the security of cryptographic primitives, e.g. encryption and
digital signatures, and on the other hand on the concurrency-related aspects of the protocols
themselves. History has shown that even if cryptography is supposed to be perfect, such as
in the classical Dolev-Yao model [20], the correct design of security protocols is notoriously
error-prone. See for instance [13] for an early survey on attacks. These difficulties come
mainly from two sources of unboundedness: a protocol may be executed several times (we
need to consider several protocol sessions) and the attacker is allowed to build messages of
unbounded size. Indeed, secrecy is known to be undecidable when an unbounded number
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of sessions is allowed, even if the message size is bounded [21]. However, when the number
of sessions is bounded, and even without assuming a bounded message size, the problem
becomes co-NP-complete [30]. Moreover, special purpose verification tools (e.g. [4]) exist
which are highly efficient when the number of sessions is small.

In this paper we propose a protocol transformation which maps a protocol that is secure
for a bounded number of sessions to a protocol that is secure for an unbounded number of
sessions. The exact number of sessions that need to be considered depends on the security
property under study. We express security properties in a temporal logic with past similar
to the logics of [16, 17]. This logic is expressive enough to model security properties such
as secrecy and several flavors of non-injective authentication properties. As we will see for
these classical security properties verifying a single session will be sufficient and our result
provides a strategy to design secure protocols: (i) design a protocol intended to be secure
for a single session; and (ii) apply our transformation and obtain a protocol which is secure
for an unbounded number of sessions.

Our transformation. Suppose that Π is a protocol between k participants A1, . . . , Ak. Our
transformation adds to Π a preamble in which each participant sends a freshly generated
nonce Ni together with his identity to all other participants. This allows each participant
to compute a dynamic, session-dependent tag 〈A1, N1〉, . . . , 〈Ak, Nk〉 that will be used to
tag each encryption and signature in Π. Our transformation is surprisingly simple and does
not require any cryptographic protection of the preamble, i.e., an active attacker is allowed
to interfere with this preliminary phase. Intuitively, the security relies on the fact that the
participant Ai decides on a given tag for a given session which is ensured to be fresh as it
contains his own freshly generated nonce Ni. The transformation is computationally light
as it does not add any cryptographic application; it may merely increase the size of messages
to be encrypted or signed. The transformation applies to a large class of protocols, which
may use symmetric and asymmetric encryption, digital signature and hash functions.

We may note that, en passant, we identify a class of tagged protocols for which security
is decidable for an unbounded number of sessions. This directly follows from our main
result as it stipulates that verifying security for a bounded number of protocol sessions is
sufficient to conclude security for an unbounded number of sessions.

Related Work. The kind of compiler we propose here has also been investigated in the
area of cryptographic design in computational models, especially for the design of group key
exchange protocols. For example, Katz and Yung [23] proposed a compiler which transforms
a key exchange protocol secure against a passive eavesdropper into an authenticated protocol
which is secure against an active attacker. Earlier work includes compilers for 2-party
protocols (e.g. [7]). In the symbolic model, recent works [18, 6] allow one to transform
a protocol which is secure in a weak sense (roughly no attacker [18] or just a passive
one [6] and a single session) into a protocol secure in the presence of an active attacker and
for an unbounded number of sessions. All of these prior works share however a common
drawback: the proposed transformations make heavy use of cryptography. This is mainly
due to the fact that the security assumptions made on the input protocol are rather weak.
As already mentioned in [18], it is important, from an efficiency perspective to lighten
the use of cryptographic primitives. In this work, we succeed in doing so at the price of
requiring stronger security guarantees on the input protocol. However, we argue that this
is acceptable since efficient automatic tools exist to decide this security criterion on the
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input protocols. Recently, our transformation has also been adapted to the case of offline
guessing attacks in password-based protocols [11]. On the one hand the result presented
in [11] is more complicated as it considers a more complex security property but, on the
other hand, the proof is simplified by the fact that the password is the only secret shared
between different sessions.

We can also compare our work with existing decidable protocol classes for an unbounded
number of sessions. An early result is the PTIME complexity result by Dolev et al. [19]
for a restricted class, called ping-pong protocols. Other classes have been proposed by
Ramanujam and Suresh [28, 29], and Lowe [26]. However, in both cases, temporary secrets,
composed keys and ciphertext forwarding are not allowed which discards protocols (even
their tagged version), such as the Yahalom protocol [13].

Different kinds of tags have also been considered in [12, 3, 17, 9, 28]. However these tags
are static and have a different aim. While our dynamic tagging scheme avoids confusing
messages from different sessions, these static tags avoid confusing different messages inside
the same session and do not prevent that the same message is reused in two different sessions.
Under some additional assumptions (e.g. no temporary secret, no ciphertext forwarding),
several decidability results [29, 26] have been obtained by showing that it is sufficient to
consider one session per role. But those results cannot deal with protocols which rely on
ciphertext forwarding and/or temporary secrets. In the framework we consider here, the
question whether such static tags would be sufficient to obtain decidability is still an open
question (see [3]). In a similar way, static tags have also been used by Heather et al. [22] to
avoid type confusion attacks.

Finally, we may note that our tags are reminiscent of session tags in the UC frame-
work [10] and in particular the method proposed by Barak et al. [5] for computing them.
However, in addition to the important differences in the models, these works do not propose
a general, systematic transformation which guarantees (joint state) composition between
sessions.

This paper can be seen as an extended and enriched version of [2]. In [2], our reduction
result was only established for the secrecy property whereas we consider here a larger class
of security properties that includes several levels of authentication. Moreover, the proof of
our main result is now self-contained and does not rely anymore on the constraint solving
procedure presented in [15].

Outline of the paper. Our paper is organized in two parts: Part I presents our result
and all the necessary background for the result to be formally stated and Part II is devoted
to giving an overview of the proof of the result (for readability some of the more technical
proofs are only given in an appendix).

In Part I we first introduce our abstract representation of protocol messages (Section 2)
and our formal models for security protocols (Section 3) and properties (Section 4). Next,
in Section 5, we formally define our protocol transformation and state our main result which
guarantees that attacks only require a bounded number of sessions.

In Part II we give an overview of our proof. In Section 6 we define a transformation on
protocol executions and show that a transformed execution

(i) has several good properties (it is both valid and well-formed), and
(ii) preserves the satisfaction of attack formulas.
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In Section 7 we show that we can restrict the sessions that are involved in a valid, well-
formed execution while preserving

(i) validity and well-formedness, and
(ii) satisfaction of attack formulas.

Finally, in Section 8, we use the results from the previous two sections to prove our main
result.

— PART I: Presentation of our reduction result —

2. Messages and intruder capabilities

2.1. Messages. We use an abstract term algebra to model the messages of a protocol.
For this we fix several disjoint sets. We consider an infinite set of agents A = {ǫ, a, b . . .}
with the special agent ǫ standing for the attacker and an infinite set of agent variables
X = {xA, xB , . . .}. We also need to consider an infinite set of names N = {n,m . . .} and an
infinite set of variables Y = {y, z, . . .}. Among this set of names, we consider the infinite
set of names Nǫ = {nǫ, . . .} that corresponds to names known initially by the attacker. We
consider the following signature F = {encs/2, enca/2, sign/2, 〈 〉/2, h/1, pub/1, priv/1, shk/2}.
These function symbols model cryptographic primitives. The symbol 〈 〉 represents pairing.
The term encs(m,k) (resp. enca(m,k)) represents the message m encrypted with the sym-
metric (resp. asymmetric) key k whereas the term sign(m,k) represents the message m
signed by the key k. The function h models a hash function whereas pub(a) and priv(a) are
used to model the public and the private key respectively of an agent a, and shk(a, b) (=
shk(b, a)) is used to model the long-term symmetric key shared by agents a and b. Names
are used to model atomic data such as nonces. The set of terms is defined inductively by
the following grammar:

t, t1, t2, . . . ::= term
| x agent variable x ∈ X
| a agent a ∈ A
| y variable y ∈ Y
| n name n ∈ N
| pub(u) application of the symbol pub on u ∈ A ∪ X
| priv(u) application of the symbol priv on u ∈ A ∪ X
| shk(u1, u2) application of the symbol shk on u1, u2 ∈ A ∪ X
| h(t) application of h
| f(t1, t2) application of symbol f ∈ {encs, enca, sign, 〈 〉}

We sometimes write 〈t1, . . . , tn〉 instead of writing 〈t1, 〈. . . , 〈tn−1, tn〉 . . .〉〉. We say that
a term is ground if it has no variable. We consider the usual notations for manipulating
terms. A position p in a term t is a sequence of integers. The empty sequence ε denotes
the top-most position. The subterm of t at position p is written t|p. We write vars(t) (resp.
names(t), agents(t)) for the set of variables (resp. names, agents) occurring in t. We write
St(t) for the set of syntactic subterms of a term t and define the set of cryptographic subterms
of a term t as CryptSt(t) = {f(t1, . . . , tn) ∈ St(t) | f ∈ {encs, enca, sign, h}}. Moreover, we
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Figure 1: Intruder deduction system.

define the set of long-term keys as lgKeys = {priv(a) | a ∈ A} ∪ {shk(a, b) | a, b ∈ A} and
the set of long-term keys of a term t as

lgKeys(t) = {priv(u) |pub(u) ∈ St(t) or priv(u) ∈ St(t)} ∪ {shk(u1, u2) ∈ St(t)}.

and we define Kǫ = {priv(ǫ)} ∪ {shk(a, ǫ) | a ∈ A}. Intuitively Kǫ represents the set of
long-term keys of the attacker. An atom is a long-term key, a name or a variable.

We define the set of plaintexts of a term t as the set of atoms that occur in plaintext
position, i.e.

• plaintext(h(u)) = plaintext(f(u, v)) = plaintext (u) for f ∈ {encs, enca, sign},
• plaintext(〈u, v〉) = plaintext(u) ∪ plaintext (v), and
• plaintext(u) = {u} otherwise.

All these notions are extended to sets of terms and to other kinds of term contain-
ers as expected. We denote by #S the cardinality of a set S. Substitutions are written
σ = {x1 7→ t1, . . . , xn 7→ tn} where its domain is dom(σ) = {x1, . . . , xn}. The substitution σ
is ground if all the ti are ground. The application of a substitution σ to a term t is written
σ(t) or tσ. Two terms t1 and t2 are unifiable if t1σ = t2σ for some substitution σ, that is
called a unifier. We denote by mgu(t1, t2) the most general unifier of t1 and t2.

Example 2.1. Let t = encs(〈n, a〉, shk(a, b)). We have that vars(t) = ∅, i.e. t is ground,
names(t) = {n}, agents(t) = {a, b}, lgKeys(t) = {shk(a, b)}, plaintext (t) = {n, a}, and
St(t) = {t, 〈n, a〉, shk(a, b), n, a}. The terms shk(a, b), a, n and priv(a) are atoms.

2.2. Intruder capabilities. We model the intruder’s abilities to construct new messages
by the deduction system given in Figure 1. The first line describes the composition rules.
The second line describes the decomposition rules. The intuitive meaning of these rules is
that an intruder can compose new messages by pairing, encrypting, signing and hashing
previously known messages provided he has the corresponding keys. Conversely, he can
decompose messages by projecting or decrypting provided he has the decryption keys. Our
optional rule expresses that an intruder can retrieve the whole message from its signature.
Whether this property holds depends on the actual signature scheme. Therefore we consider
this rule to be optional. Our results hold in both cases.
Definition 2.2 (deducible). We say that a term u is deducible from a set of terms T ,
denoted T ⊢ u, if there exists a tree such that its root is labeled by u, its leaves are labeled
with v ∈ T ∪A∪Nǫ ∪Kǫ ∪ {pub(a) | a ∈ A} and for every node labeled by v having n sons

labeled by v1, . . . , vn we have that
v1 . . . vn

v
is an instance of one of the inference rules

given in Figure 1.

Example 2.3. The term 〈n, shk(a, b)〉 is deducible from {encs(n, shk(a, b)), shk(a, b)}.
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We are now able to state the following lemma that can be easily proved by induction
on the proof tree witnessing T ⊢ t.

Lemma 2.4. Let T be a set of terms and t be a term such that T ⊢ t. We have that:

plaintext(t) ⊆ plaintext(T ) ∪A ∪Nǫ ∪Kǫ ∪ {pub(a) | a ∈ A}.

3. Model for security protocols

In this section, we give a language for specifying protocols and define their execution in the
presence of an active attacker. Our model is similar to existing ones (see e.g. [30, 17]).

3.1. Syntax. We consider protocols specified in a language allowing parties to exchange
messages built from identities and randomly generated nonces using pairing, public key,
symmetric encryption, hashing and digital signatures. The individual behavior of each
protocol participant is defined by a role describing a sequence of events. The main events
we consider are communication events (i.e. message receptions and message transmissions)
and status events to mark different stages reached by the protocol. These status events will
help us specify a large class of security properties (a logic of properties is given in Section 4).
These are issued by participants to denote their current state in the execution of a protocol
role.

Definition 3.1 (event). An event is either

• a communication event, i.e. a message reception, denoted by rcv(m) or a message trans-
mission, denoted by snd(m), where m is a term; or

• a status event of the form P(t1, . . . , tn) where each ti is a term (not necessarily ground)
and P ∈ P is a predicate symbol of arity n.

Typically, status events give information about the state of the principal. For instance, we
will consider a status event that indicates that the principal has started or finished a session.
The set of variables of an event is defined as expected, considering all the terms occurring
in the event’s specification.

Definition 3.2 (roles). A role is of the form λx1. . . . λxk.νy1. . . . νyp. seq, where:

• X = {x1, . . . , xk} is a set of agent variables, i.e. the parameters of the role corresponding
to the k participants of the protocol,

• Y = {y1, . . . , yp} is a set of variables: the nonces generated by the role,
• seq = e1; e2; . . . ; eℓ is a sequence of events such that (vars(seq)rX) ⊆ Y, i.e. all agent
variables are parameters.

Moreover, we have that:

(1) seq satisfies the origination property, that is for any send or status event ei, for any
variable x ∈ vars(ei) r (X ∪ Y ), we have that x ∈ vars(ej) for some receive event ej
where j < i; and

(2) seq satisfies the plaintext origination property, that is for any send or status event ei,
for any variable x ∈ plaintext(ei) r (X ∪ Y ), we have that x ∈ plaintext(ej) for some
receive event ej where j < i.

The set of roles is denoted by Roles. The length of a role is the number of elements in its se-
quence of events. A k-party protocol is a mapping Π : [k] → Roles, where [k] = {1, 2, . . . , k}.
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The condition (1) above ensures that each variable which appears in a send or status
event is a nonce, a parameter, or a variable that has been introduced in a previously received
message. Condition (2) ensures that a key used for encrypting or signing cannot be extracted
and used as plaintext, e.g. forbidding a sequence rcv(encs(y, z)); snd(z).

Example 3.3. We illustrate our protocol syntax on the familiar Needham-Schroeder public-
key protocol [27]. In our syntax this protocol is modeled as follows.

Π(1) = λxA.λxB .νy.
snd(enca(〈y, xA〉, pub(xB)));
rcv(enca(〈y, z〉, pub(xA)));
snd(enca(z, pub(xB)))

Π(2) = λxA.λxB .νy
′.

rcv(enca(〈z′, xA〉, pub(xB)));
snd(enca(〈z′, y′〉, pub(xA)));
rcv(enca(y′, pub(xB)))

The initiator, role Π(1) played by xA, sends to the responder, role Π(2) played by xB , his
identity together with a freshly generated nonce y, encrypted with the responder’s public key.
The responder replies by copying the initiator’s nonce and adds a fresh nonce y′, encrypted
by the initiator’s public key. The initiator acknowledges by forwarding the responder’s
nonce encrypted by his public key.

Clearly, not all protocols written using the syntax above are meaningful. In particular,
some of them might not be executable. For instance, a k-party protocol where Π(1) :=
rcv(h(x)); snd(x) is not executable since an agent is not able to extract the content of a
hash. A precise definition of executability is not relevant for our result. We only need to
consider the weaker plaintext origination hypothesis (Condition 2 stated in Definition 3.2).
In particular, our result also holds for non-executable protocols such as the one given above.

3.2. Semantics. In our model, a session corresponds to the instantiation of one role. This
means in particular that one “normal execution” of a k-party protocol requires k sessions,
one per role1. We may want to consider several sessions corresponding to different instanti-
ations of a same role. Since the adversary may block, redirect and send new messages, all
the sessions might be interleaved in many ways. Such an interleaving is captured by the
notion of a scenario.

Definition 3.4 (scenario). A scenario for a protocol Π : [k] → Roles is a sequence sc =
(r1, sid1) · · · (rn, sidn) where ri is a role and sid i a session identifier such that 1 ≤ ri ≤ k,
sid i ∈ N r {0}, the number of identical occurrences of a pair (r, sid) is smaller than the
length of the role r, and sid i = sid j implies ri = rj.

The condition on identical occurrences ensures that a role cannot execute more events
than it contains. The last condition ensures that a session number is not reused by other
roles. We say that (r, s) ∈ sc if (r, s) is an element of the sequence sc.

Given a scenario and an instantiation for the parameters, we define a symbolic trace,
that is a sequence of events that corresponds to the interleaving of the scenario, for which the
parameters have been instantiated, fresh nonces are generated and variables are renamed
to avoid name collisions between different sessions.

Definition 3.5 (symbolic trace). Let Π be a k-party protocol with

Π(j) = λxj1. . . . λx
j
k.νy

j
1. . . . νy

j
pj .e

j
1; . . . ; e

j
ℓj

for 1 ≤ j ≤ k.

1In the literature, the word session is often used in an abusive way to represent an execution of the
protocol, i.e. one session per role, whereas we use it for the execution of a role.
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Given a scenario sc = (r1, sid1) · · · (rn, sidn) and a function α : N → Ak, the symbolic trace

tr = esid1
1 ; . . . ; esidn

n associated to sc and α is defined as follows.
Let qi = #{j | j ≤ i, (rj , sid j) ∈ sc, and sid j = sid i}, i.e. the number of occurrences

up to this point in sc of the session sid i. We have that qi ≤ ℓri and ei = (eriqi)σri,sidi
, where

dom(σr,sid ) = vars(Π(r)) and

• σr,sid (y) = nsidy if y ∈ {yr1, . . . , y
r
pr}, where n

sid
y is a fresh name from N ;

• σr,sid (x
r
i ) = ai when α(sid) = (a1, . . . , ak);

• σr,sid (z) = zsid otherwise, where zsid is a fresh variable.

A session sid is said to be dishonest w.r.t. α and a set of ground atoms T0 when α(sid) =
(a1, . . . , ak) and T0 ⊢ priv(ai) or T0 ⊢ shk(ai, v) for some v 6= ǫ and 1 ≤ i ≤ k.

Intuitively, a session sid is honest if all of its participants, from the point of view of the
agent playing the session sid , are honest (i.e. they are neither the attacker ǫ nor did they
disclose their long-term keys). Note that since all agent variables occurring in a role, occur
as parameters of this role (see Definition 3.2), a symbolic trace does not contain agent
variables.

The notational conventions we use for names and variables occurring in a symbolic
trace (e.g. nsidy and zsid ) are not really relevant to state our main result. However, we will
rely on this notation in Part II when we prove our reduction result.

Example 3.6. Consider again the Needham-Schroeder protocol. Let Π(1) and Π(2) be
the two roles introduced in Example 3.3. Let s1 and s2 be two sessions numbers (s1 6=
s2), sc = (1, s1)(2, s2)(2, s2)(1, s1)(1, s1) and α the function such that dom(α) = {s1, s2},
α(s1) = (a, c), and α(s2) = (a, b). This is the scenario allowing us to retrieve the famous
attack due to Lowe [24]. The symbolic trace associated to Π, sc, and α is given below:

tr = snd(enca(〈ns1y , a〉, pub(c)));
rcv(enca(〈z′s2 , a〉, pub(b))); snd(enca(〈z′s2 , ns2y′ 〉, pub(a)));

rcv(enca(〈ns1y , z
s1〉, pub(a))); snd(enca(zs1 , pub(c)))

An execution trace is an instance of such a symbolic trace. Appending an event e

to an execution trace exec is written exec; e. The function length has the usual meaning:
length([ ]) = 0 and length(exec; e) = 1 + length(exec). The prefix of an execution trace
consisting of the first i events is denoted as execi, with exec0 = [ ] and execn = exec when
n ≥ length(exec).

Definition 3.7 (knowledge of an execution trace exec). Let exec be an execution trace.
The knowledge of exec is the set of terms given by K(exec) = {u | snd(u) ∈ exec}.

As usual, we are only interested in valid execution traces - those traces where the at-
tacker only sends messages that he can compute from his initial knowledge and the messages
he has seen on the network.

Definition 3.8 (valid execution trace). Let T0 be a set of ground terms (intuitively T0 repre-

sents the initial knowledge of the attacker). A ground execution trace exec = esid1
1 ; . . . ; esidℓ

ℓ

is valid w.r.t. T0 if for all 1 ≤ i ≤ ℓ, whenever ei = rcv(m), we have that T0 ∪ K(execi) ⊢ m.

Example 3.9. Let T0 = {a, b, c, priv(c)}. Let tr be the symbolic trace described in Exam-
ple 3.6 and σ = {zs1 7→ ns2y′ , z

′s2 7→ ns1y }. The execution trace trσ is valid w.r.t. T0. Indeed,

we have that
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• T1
def
= T0 ∪ {enca(〈ns1y , a〉, pub(c))} ⊢ enca(〈ns1y , a〉, pub(b)), and

• T1 ∪ {enca(〈ns1y , n
s2
y′ 〉, pub(a))} ⊢ enca(〈ns1y , n

s2
y′ 〉, pub(a)).

The purpose of the following lemma is to characterize the terms that occur in plaintext
position in a valid execution. Intuitively, the lemma states that any plaintext occurring in a
valid execution either occurs as a plaintext in the underlying symbolic trace, or was known
by the attacker since the beginning, i.e., is part of the attacker’s initial knowledge.

Lemma 3.10. Let Π be a k-party protocol and tr = [eesid1
1 ; . . . ; eesidℓ

ℓ ] be a symbolic trace

associated to it. Let T0 be a set of ground atoms, and exec = [esid1
1 ; . . . ; esidℓ

ℓ ] be a valid
execution trace associated to tr (w.r.t. T0). We have that:

plaintext (exec) ⊆ plaintext(tr) ∪ T0 ∪Nǫ ∪ Kǫ ∪ A ∪ {pub(a) | a ∈ A}.

This lemma can be shown by induction on the length of the underlying symbolic trace.
We rely on Lemma 2.4 to deal with the case of a receive event, and on the plaintext
origination property (Condition (2) in Definition 3.2) to deal with the case of a status or a
send event.

4. Security properties

In this section, we propose a logic for specifying security properties. Our logic is similar to
existing ones (see e.g [16, 17]). In particular, it is expressive enough to specify security prop-
erties like secrecy and different forms of authentication including aliveness, weak agreement
and non-injective agreement. Its semantics is defined as usual on execution traces.

4.1. A logic for security properties. As in [17], status events are used to specify security
properties while the other events describe the execution of the protocol. We only consider
one temporal operator and this operator should only concern status events. That is why
we divide the logic into two layers.

Definition 4.1. A formula of L is an expression φ defined by the following grammar:

φ, φi := learn(u0) | ¬φ | ∃x.φ | φ1 ∨ φ2 | C(u) | ♦ψ | ψ

ψ,ψi := true | P(u1, . . . , un) | ¬ψ | ψ1 ∨ ψ2

where u0, u1, . . . , un are terms and u ∈ A ∪ X .

Standard formulas true, ¬φ, and φ1∨φ2 carry the usual meaning. The formula learn(u0)
states that the attacker knows the term u0, whereas P(u1, . . . , un) is a status event. The
formula C(u) states that the agent u is compromised (his secret keys are known to the
attacker). The formula ♦ψ means that ‘ψ held in the past’. When x is a variable, we write
∃x.φ to bind x in φ, with the quantifier carrying the usual meaning. Other operators can
be represented using the above defined operators. For instance, the abbreviations NC(u),

false, ∧, ∀, and ⇒ are defined by NC(u)
def
= ¬C(u), false

def
= ¬true, φ1 ∧ φ2

def
= ¬(¬φ1 ∨ ¬φ2),

∀x.φ
def
= ¬∃x.¬φ, and φ1 ⇒ φ2

def
= ¬φ1 ∨ φ2.

In the sequel, we assume that formulas are closed, i.e. they contain no free variables, and
that each variable is quantified at most once (this can be easily ensured by using renaming).
We also assume that the variables occurring in a formula φ are disjoint from the variables
occurring in the considered symbolic trace.
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Formulas are interpreted at some position along an execution trace as stated in Defini-
tion 4.2.

Definition 4.2 (concrete validity). Let φ be a closed formula in L, exec be a ground
execution trace and T0 be a set of ground terms. We define 〈exec, T0〉 |= φ as:

〈exec, T0〉 |= true

〈exec, T0〉 |= learn(m) iff T0 ∪ K(exec) ⊢ m
〈exec, T0〉 |= ¬φ iff 〈exec, T0〉 6|= φ
〈exec, T0〉 |= φ1 ∨ φ2 iff 〈exec, T0〉 |= φ1 or else 〈exec, T0〉 |= φ2
〈exec, T0〉 |= ∃x.φ iff there exists a ground term t s.t. 〈exec, T0〉 |= φ{x 7→ t}
〈exec, T0〉 |= P(t1, . . . , tn) iff exec = exec′; P(t1, . . . , tn)
〈exec, T0〉 |= C(u) iff T0 ⊢ priv(u) or T0 ⊢ shk(u, v) for some v 6= ǫ
〈exec, T0〉 |= ♦ψ iff ∃i ∈ [0, length(exec)] such that 〈execi, T0〉 |= ψ

Given a protocol Π and a set of ground terms T0, we say that Π |= φ w.r.t. T0, if 〈exec, T0〉 |=
φ for all valid execution traces exec of Π w.r.t. T0.

We now define the subset of L for which our result holds. We say a formula in L
is quantifier-free if it does not contain any ∃. A formula is modality-free if it does not
contain any ♦. We will only consider attack formulas of the form ∃x1. . . . .∃xn.φ

′ where
φ′ is quantifier-free, and we consider also some additional syntactic restrictions. Therefore,
the security formulas we consider are of the form ∀x1, . . . ,∀xn.¬φ

′, i.e. the negation of an
attack formula.

Definition 4.3 (attack formula). An attack formula is an expression of the form

∃x1. . . . .∃xn.φ

where all the variables xi are distinct and φ is a quantifier-free formula of L satisfying the
following conditions:

(1) all subterms of φ are atomic terms with no names, i.e. St(φ) ⊆ A ∪ X ∪ Y,
(2) for any term t, learn(t) can only occur positively in φ, i.e. under an even number of

negations,
(3) any variable occurs at most once in a positive status event,
(4) if ♦ψ is a subformula of φ that occurs negatively in φ, then a status event can only

occur positively in ψ.

As we will see next this fragment is expressive enough to model classical security properties.

4.2. Some security properties. We now show how classical security properties like se-
crecy and several flavors of non-injective authentication properties can be expressed in our
logic.

4.2.1. Secrecy. The secrecy property is the inability of the intruder to learn a message (e.g.
a nonce, a key, or a compound term) that is specified (using a status event) as confidential.
We will show how to specify the secrecy property for a nonce for example with a formula
in L. Let Π be a k-party protocol with

Π(j) = λxj1. . . . λx
j
k.νy

j
1. . . . νy

j
pj
.ej1; . . . ; e

j
ℓj

for 1 ≤ j ≤ k.
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and let yjh (1 ≤ j ≤ k and 1 ≤ h ≤ pj) be the nonce variable whose instantiations should

remain confidential. In order to specify that all the instances of yjh must remain secret we
build from Π, a protocol ΠS as follows. Let Secret be a predicate not occurring in Π, then

ΠS(n) =

{
Π(n) for 1 ≤ n ≤ k and n 6= j

λxj1. . . . λx
j
k.νy

j
1. . . . νy

j
pj .Secret(x

j
1, . . . , x

j
k, y

j
h); e

j
1; . . . ; e

j
ℓj

for n = j

During an execution, the predicate Secret will link each instance nsid
y
j
h

of yjh to the partic-

ipants of the corresponding session sid . The following property expresses that the non-

compromised instances of yjh should remain confidential

φS = ∀x1. . . . .∀xk.∀y. [((♦Secret(x1, . . . , xk, y)) ∧ NC(x1) ∧ . . . ∧ NC(xk)) ⇒ ¬learn(y)].

And the following formula is the corresponding attack formula

φS = ∃x1. . . . .∃xk.∃y. [(♦Secret(x1, . . . , xk, y)) ∧ NC(x1) ∧ . . . ∧ NC(xk) ∧ learn(y)].

which satisfies the 4 conditions of the definition of an attack formula (Definition 4.3). Note
that the same construction can be used to model the secrecy of a compound term t as seen by

the agent executing the role Π(j). For this, we simply add a status event Secret(xj1, . . . , x
j
k, t)

in Π(j), and keep the attack formula unchanged. The 4 conditions stated in Definition 4.3
are still satisfied.

Example 4.4. Let us come back to the Needham-Schroeder protocol as presented in Ex-
ample 3.3 to illustrate this property, and let’s specify that the nonce y′ generated by the
responder is confidential. In order to do so, we build the 2-party protocol ΠS following the
above mentioned construction, i.e. such that ΠS(1) = Π(1), and

ΠS(2) = λxA.λxB .νy
′.

Secret(xA, xB , y
′)

rcv(enca(〈z′, xA〉, pub(xB)));
snd(enca(〈z′, y′〉, pub(xA)));
rcv(enca(y′, pub(xB)))

An attack on the secrecy of y′, is any valid execution trace of ΠS that reveals to the intruder
an honest instance of y′ (i.e. generated by an honest session of ΠS(2)). Formally, an attack
on the secrecy of y′ is a valid execution trace of ΠS that satisfies the following attack formula

φS = ∃yA.∃yB.∃x. [(♦Secret(yA, . . . , yB, x)) ∧ NC(yA) ∧ NC(yB) ∧ learn(x)].

Let us consider as initial intruder knowledge T0 = {a, b, c, priv(c)}, the scenario sc =
(1, s1)(2, s2)(2, s2)(2, s2)(1, s1)(1, s1), and the function α such that dom(α) = {s1, s2},
α(s1) = (a, c), and α(s2) = (a, b). We denote by tr the symbolic trace associated to
ΠS, sc, and α. Let σ be the substitution such that σ = {zs1 7→ ns2y′ , z

′s2 7→ ns1y }. The

execution trace trσ is valid w.r.t. T0. This execution corresponds to the famous attack due
to Lowe [24], and formally satisfies φS, i.e. 〈T0, trσ〉 |= φS, and thus ΠS 6|= φS w.r.t. T0.

We are now going to look at how to formally express authentication properties.
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4.2.2. Aliveness. We start with the weakest notion of authentication in the hierarchy of
Lowe [25], namely aliveness. Informally, a protocol Π satisfies aliveness if and only if each
time a participant a finishes an honest session involving participant b (of any of the roles
of Π), b has at least partially executed one session (of any of the roles of Π), and in that
sense b is alive.

In order to express this property, we need to detect in the executions of Π, each time a
session starts and ends. This can be achieved by adding status events at the beginning and
the end of each role. More precisely, if we consider the k-party protocol Π with

Π(j) = λxj1. . . . λx
j
k.νy

j
1. . . . νy

j
pj
.ej1; . . . ; e

j
ℓj

for 1 ≤ j ≤ k.

We build the protocol ΠA by inserting new status events as follows:

ΠA(j) = λxj1. . . . λx
j
k.νy

j
1. . . . νy

j
pj
.Start(xjj); e

j
1; . . . ; e

j
ℓj
;End(xj1, . . . , x

j
k) for 1 ≤ j ≤ k.

where the predicates Start and End will mark in an execution the beginning and the end of
each session, and will link together the effective participants of each session. Aliveness can
then be modelled by the following formula

φA =

{
∀y1. . . . ∀yk.

[
End(y1, . . . , yk) ∧ NC(y1) ∧ . . . ∧ NC(yk)

⇒ ♦Start(y1) ∧ . . . ∧ ♦Start(yk)
]

An attack on protocol Π w.r.t. aliveness is thus a trace of ΠA satisfying the following attack
formula

φA =

{
∃y1. . . . ∃yk.

[
End(y1, . . . , yk) ∧ NC(y1) ∧ . . . ∧ NC(yk)

∧
(
¬♦Start(y1) ∨ . . . ∨ ¬♦Start(yk)

)]

Example 4.5. Let us come back to the Needham-Schroeder protocol as presented in Ex-
ample 3.3 to illustrate this property. In order to do so, we build the 2-party protocol ΠA

following the above mentioned construction, i.e. such that

ΠA(1) = λxA.λxB .νy.
Start(xA)
snd(enca(〈y, xA〉, pub(xB)));
rcv(enca(〈y, z〉, pub(xA)));
snd(enca(z, pub(xB)))
End(xA, xB)

ΠA(2) = λxA.λxB .νy
′.

Start(xB)
rcv(enca(〈z′, xA〉, pub(xB)));
snd(enca(〈z′, y′〉, pub(xA)));
rcv(enca(y′, pub(xB)))
End(xA, xB)

Now this protocol satisfies aliveness, if in every valid execution trace of ΠA during which
an agent a executing an honest session of role ΠA(1) (resp. ΠA(2)) with agent b, b has also
initiated a session of the protocol. Formally, Π satisfies aliveness if every valid execution
trace of ΠA satisfies the following formula;

φA = ∀xA.∀xB . End(xA, xB) ∧ NC(xA) ∧ NC(xB) ⇒ [♦Start(xA) ∧ ♦Start(xB)]

Consider the symbolic trace tr associated to the scenario

scA = (1, s1)(1, s1)(2, s2)(2, s2)(2, s2)(1, s1)(1, s1)(1, s1)(2, s2)(2, s2)

and the function α as defined in Example 4.4. Actually, we have that 〈T0, trσ〉 |= φA using
the set T0 and the substitution σ as defined in Example 4.4. More generally, using an
automatic tool such as ProVerif [8], one can prove that the Needham-Schroeder protocol
satisfies aliveness w.r.t. the initial intruder knowledge T0 = {a, b, c, priv(c)}, i.e. ΠA |= φA
w.r.t. T0.
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4.2.3. Weak agreement. Weak agreement is slightly stronger than aliveness. Informally, a
protocol Π satisfies weak agreement, if and only if each time a participant a finishes an
honest session involving participant b (of any of the roles of Π), b has at least initiated a
session involving a (of any of the roles of Π).

Again, in order to express this property, we need to detect in the executions of Π, each
time a session starts and ends, but also which participants are involved in each session that
is initiated. This can be achieved by adding status events at the beginning and the end of
each role. More precisely, if we consider the k-party protocol Π with

Π(j) = λxj1. . . . λx
j
k.νy

j
1. . . . νy

j
pj
.ej1; . . . ; e

j
ℓj

for 1 ≤ j ≤ k.

We build the protocol ΠWA by inserting new status events as follows:

ΠWA(j) = λxj1. . . . λx
j
k.νy

j
1. . . . νy

j
pj .Start(x

j
j , x

j
1); . . . ;Startj,k(x

j
j , x

j
k);

e
j
1; . . . ; e

j
ℓj
;Endj(x

j
1, . . . , x

j
k) for 1 ≤ j ≤ k.

where the predicates Start and End will mark in an execution the beginning and the end
of each session, and will link together the effective participants of each session both at
the beginning and the end of the session. Weak agreement can then be modelled by the
following formula

φWA = ∀y11. . . . ∀y
1
k. . . . ∀y

k
1 . . . . ∀y

k
k .

∧
j∈{1,...,k}

[
Endj(y

j
1, . . . , y

j
k) ∧ NC(yj1) ∧ . . . ∧ NC(yjk) ⇒

∧
i∈{1,...,k},i 6=j

♦Start(yji , y
j
j )
]

An attack on protocol Π w.r.t. aliveness is thus a trace of ΠWA satisfying the following
attack formula

φWA ≡ ∃y1. . . . ∃yk. Endj(y1, . . . , yk) ∧ NC(y1) ∧ . . . ∧ NC(yk) ∧ ¬♦Start(yi, yj)

for some j, i ∈ {1, . . . , k} with i 6= j.

Example 4.6. Let us come back to the Needham-Schroeder protocol as presented in Ex-
ample 3.3 to illustrate this property. In order to do so, we build the 2-party protocol ΠWA

following the above mentioned construction, i.e. such that:

ΠWA(1) = λxA.λxB .νy.
Start(xA, xA)
Start(xA, xB)
snd(enca(〈y, xA〉, pub(xB)));
rcv(enca(〈y, z〉, pub(xA)));
snd(enca(z, pub(xB)))
End1(xA, xB)

ΠWA(2) = λxA.λxB .νy
′.

Start(xB , xA)
Start(xB , xB)
rcv(enca(〈z′, xA〉, pub(xB)));
snd(enca(〈z′, y′〉, pub(xA)));
rcv(enca(y′, pub(xB)))
End2(xA, xB)

Now this protocol satisfies weak agreement, if in every valid execution trace of ΠWA

during which an agent a executing an honest session of role ΠWA(1) (resp. ΠWA(2)) with
agent b, b has also initiated a session of the protocol involving agent a. In other words, Π
admits an attack w.r.t. weak agreement if there exists a valid execution trace of ΠWA that
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satisfies the following formula:

φWA ≡ ∃x1A.∃x
1
B.∃x

2
A.∃x

2
B .


End1(x

1
A, x

1
B) ∧ NC(x1A) ∧ NC(x1B) ∧ ¬♦Start(x1B , x

1
A)

∨
End2(x

2
A, x

2
B) ∧ NC(x2A) ∧ NC(x2B) ∧ ¬♦Start(x2A, x

2
B)




Let’s consider as initial intruder knowledge T0 = {a, b, c, priv(c)}, the scenario

sc = (1, s1)(1, s1)(1, s1)(2, s2)(2, s2)(2, s2)(2, s2)(1, s1)(1, s1)(1, s1)(2, s2)(2, s2)(2, s2),

the function α such that dom(α) = {s1, s2}, α(s1) = (a, c), and α(s2) = (a, b), and the
substitution σ = {zs1 7→ ns2y′ , z

′s2 7→ ns1y }. The execution trace trσ is valid w.r.t. T0 with tr

the symbolic trace associated to sc and α. This execution corresponds to the famous attack
due to Lowe [24], and formally satisfies φWA, i.e. 〈T0, trσ〉 |= φWA, and thus ΠWA 6|= φWA

w.r.t. T0.

5. Transformation of protocols

In Section 5.1 we define our transformation before we state our main result in Section 5.2
whose proof is postponed to Part II.

5.1. Our transformation. Given an input protocol Π, our transformation will compute

a new protocol Π̃ which consists in two phases. During the first phase, the protocol par-
ticipants try to agree on some common, dynamically generated, session identifier τ . For
this, each participant sends a freshly generated nonce Ni together with his identity Ai

to all other participants. (Note that if broadcast is not practical or if not all identities
are known to each participant, the message can be sent to some of the participants who
forwards the message.) At the end of this preamble, each participant computes a session
identifier: τ = 〈〈A1, N1〉, . . . , 〈Ak, Nk〉〉. Note that an active attacker may interfere with this
initialization phase and may intercept and replace some of the nonces. Hence, the protocol
participants do not necessarily agree on the same session identifier τ after this preamble.
In fact, each participant computes his own session identifier, say τj. During the second
phase, each participant j executes the original protocol in which the dynamically computed
identifier is used for tagging each application of a cryptographic primitive. In this phase,
when a participant opens an encryption, he checks that the tag is in accordance with the
nonces he received during the initialization phase. In particular, he can test the presence
of his own nonce.

The transformation, using the informal Alice-Bob notation, is described below and
relies on the tagging operation that is formally defined in Definition 5.1.

Π =





Ai1 → Aj1 : m1
...

Aiℓ → Ajℓ : mℓ

Π̃ =





Phase 1 Phase 2

A1 → All : 〈A1, N1〉 Ai1 → Aj1 : [m1]τ
...

...
Ak → All : 〈Ak, Nk〉 Aiℓ → Ajℓ : [mℓ]τ

where τ = 〈tag1, . . . , tagk〉 with tagi = 〈Ai, Ni〉
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Note that, the Alice-Bob notation only represents what happens in a normal execution,
i.e. with no intervention of the attacker. Of course, in such a situation, the participants
agree on the same session identifier τ used in the second phase.

Definition 5.1 (k-tag, k-tagging). A k-tag is a term 〈〈a1, v1〉, . . . , 〈ak, vk〉〉 where each
ai ∈ A and each vi is a term. Let u be a term and tag be a k-tag. The k-tagging of u
with tag, denoted [u]tag, is inductively defined as follows:

[〈u1, u2〉]tag = 〈[u1]tag, [u2]tag〉
[f(u1, u2)]tag = f(〈tag, [u1]tag〉, [u2]tag) for f ∈ {encs, enca, sign}
[h(u1)]tag = h(〈tag, [u1]tag〉)
[u]tag = u otherwise

We say that a term t is k-tagged if u|1.1 is a k-tag for any u ∈ CryptSt(t).

These notions are extended to events and sequences of events as expected. We are now
able to formally define our transformation.

Definition 5.2 (protocol transformation). Let Π be a k-party protocol such that

Π(j) = λxj1 . . . λx
j
k.νy

j
1 . . . νy

j
pj
.seqj for 1 ≤ j ≤ k.

and the variables zji (1 ≤ i, j ≤ k) do not appear in Π (which can always be ensured by

renaming variables in Π). The transformed protocol Π̃ is a k-party protocol defined as
follows:

Π̃(j) = λxj1 . . . λx
j
k.νy

j
1 . . . νy

j
pj
.νzjj .Π̃

init(j); [seqj]τj for 1 ≤ j ≤ k

where
Π̃init(j) = rcv(uj1); . . . ; rcv(u

j
j−1); snd(u

j
j); rcv(u

j
j+1); . . . ; rcv(u

j
k)

and τj = 〈uj1, . . . , u
j
k〉 with u

j
i = 〈xji , z

j
i 〉.

In the above definition, the protocol Π̃init models the initialization phase and the vari-

ables zji correspond to the nonces that are generated and exchanged during this phase. In

particular for the role j, the variable zjj is a freshly generated nonce while the other vari-

ables zji , i 6= j, are expected to be bound to the other participant’s nonces in the receive

events. Remember also that the variables xji are the role parameters which correspond to

the agents. The tag computed by the jth role in our transformation consists in the con-
catenation of the k names of the agents involved in the protocol, together with the k − 1
terms received during the initialization phase as well as the fresh nonce generated by the

role j itself, i.e. zjj . We illustrate this transformation on the Needham-Schroeder protocol
introduced in Section 2.

Example 5.3. Consider the Needham-Schroeder protocol described in Example 3.3. Ap-

plying our transformation we obtain a 2-party protocol Π̃. The role Π̃(2) is described below.

The role Π̃(1) can be obtained in a similar way.

Π̃(2) = λxAλxB .νy
′.νzB .rcv(〈xA, zA〉); snd(〈xB , zB〉);

rcv(enca(〈τ, 〈z′, xA〉〉, pub(xB)));
snd(enca(〈τ, 〈z′, y′〉〉, pub(xA)));
rcv(enca(〈τ, y′〉, pub(xB)))
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where τ = 〈〈xA, zA〉, 〈xB , zB〉〉. Note that Lowe’s famous man-in-the-middle attack [24]

described in Example 4.6 does not exist anymore on Π̃.

5.2. Main theorem. Roughly, our result states that if the compiled protocol admits an
attack that may involve several sessions, then there exists an attack which only requires
a bounded number of sessions of each role, and the bound only depends on the security
formula under study. More formally, we define the size of a formula as follows:

Definition 5.4 (size of a formula). Let φ be a formula. The size of φ, denoted ‖φ‖, is
defined as follows:

‖true‖
def
= 0 ‖true‖−

def
= 0

‖P(t1, . . . , tn)‖
def
= 1 ‖P(t1, . . . , tn)‖

− def
= 1

‖learn(t)‖
def
= 0 ‖learn(t)‖−

def
= 0

‖C(t)‖
def
= 0 ‖C(t)‖−

def
= 0

‖¬φ‖
def
= ‖φ‖− ‖¬φ‖−

def
= ‖φ‖

‖φ1 ∨ φ2‖
def
= max{‖φ1‖, ‖φ2‖} ‖φ1 ∨ φ2‖

− def
= ‖φ1‖

− + ‖φ2‖
−

‖∃x. φ‖
def
= ‖φ‖ ‖∃x. φ‖−

def
= ‖φ‖−

‖♦φ‖
def
= ‖φ‖ ‖♦φ‖−

def
= 0

Intuitively, when an attack trace involves several sessions of each role, not all the sessions
are necessary to mount the attack. We only need to keep those sessions that witness the
satisfiability of the attack formula φ. By definition of an attack formula (see Definition 4.3),
we know that each variable occurring in φ also occurs in a positive status events. Thus,
there is no need to take into account the number of occurrences of learn(t) in the previous
definition.

Example 5.5. Note that ‖φ1 ∧ φ2‖ = ‖φ1‖ + ‖φ2‖. Considering the attack formulas φS,
φA, and φWA as defined in Section 4.2, we have that ‖φS‖ = ‖φA‖ = ‖φWA‖ = 1.

We are now able to state our main transference result.

Theorem 5.6. Let Π be a k-party protocol, Π̃ be its corresponding transformed protocol
and T0 be a set of ground atoms such that lgKeys(Π)∩ plaintext(Π) ⊆ T0 ∪Kǫ. Let φ be an

attack formula such that Π̃ |= φ w.r.t. T0. There exists a valid execution trace exec of Π̃
such that:

〈exec, T0〉 |= φ and exec involves at most ‖φ‖ sessions of each role.

Applying our result, we can now establish that if a protocol built according to our
transformation admits an attack on secrecy (resp. aliveness, weak agreement), then it
admits an attack that involves at most one session of each role. The situation is however
slightly more complicated than it may seem at first sight. As we have an infinite number
of agent names there is an infinite number of sessions, which one would need to verify
separately. Actually we can avoid this combinatorial explosion thanks to the following
well-known result [14]: when verifying secrecy properties it is sufficient to consider two
agents (an honest agent and a dishonest one). Hence, using this result, we can instantiate
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all the parameters using only two agent names. Similar reduction results also exist for
authentication properties (see [14]).

Note that we only consider protocols whose long-term secret keys do not occur in
plaintext position. This assumption is required to ensure that the “small scenario”, (i.e.,
the one that involves only ‖φ‖ sessions of each role) will violate the same security property φ.
We may actually relax this assumption if we consider an execution trace that reveals such
a long-term key as a violation of the security property as well. The result is stated in this
way in [1].

Actually, for the security properties presented in the previous section, we can go even
further and only consider one honest session of each role.

Corollary 1. Let Π be a k-party protocol, ΠS (respectively, ΠA, ΠWA) be the annotated
protocol for modeling secrecy (respectively aliveness and weak agreement) as defined in

Section 4.2.1, and Π̃S (respectively, Π̃A, Π̃WA) the corresponding transformed protocol. Let
T0 be a set of ground atoms such that lgKeys(Π)∩plaintext (Π) ⊆ T0∪Kǫ and φS (respectively
φA, φWA) an attack formula against secrecy (respectively aliveness and weak agreement) as

defined in Section 4.2.1. For X ∈ {S,A,WA} we have that if Π̃X |= φX w.r.t. T0 then there

exists a valid execution trace exec of Π̃X such that:

〈exec, T0〉 |= φX and exec involves at most one honest session of each role.

5.3. Alternative ways of tagging protocols. Our transformation is computationally
light as it does not add any cryptographic application. However, it increases significantly
the size of messages to be encrypted and signed. As an alternative, we may choose to hash
the tags. Our results still hold in this setting.

We have also considered an alternative, slightly different transformation that does not
include the identities in the tag, i.e., the tag is simply the sequence of nonces. Our main
result, Theorem 5.6, still holds as the proof does not use the presence of the identities.
However, the stronger results presented on particular properties stated in Corollary 1, do
not hold anymore, as the proof crucially relies on the presence of the agent names in the
tag. When omitting identities, even for secrecy, we need to additionally check for attacks
that involve a session engaged with the attacker. Indeed, on the example of the Needham-
Schroeder protocol the man-in-the-middle attack is not prevented by this weaker tagging
scheme. However, the result requires one to also consider one dishonest session for each
role, hence including the attack scenario. In both cases, it is important for the tags to be
collaborative, i.e. all participants do contribute by adding a fresh nonce.
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— PART II: Proof of our reduction result —

In this part, we give an overview of the proof of our reduction result stated in Theo-

rem 5.6. Assume that our protocol Π̃ admits an attack.

(1) We first show that there is an attack on a well-formed execution trace (Section 6). In
a well-formed execution trace (see Definition 6.4), terms are necessarily tagged with
the expected tag, i.e. the tag computed during the initialization phase. Moreover,
only names coming from sessions tagged in the same way can be used in the events of
those sessions. In order to prove this, we define a transformation · that transforms
an execution trace to a well-formed one by abstracting some subterms (those that
are not tagged properly using the expected tag) by fresh nonces. We show that this
transformation preserves the validity of the trace (Proposition 6.13) as well as the
satisfiability of the attack formula under study (Proposition 6.14).

(2) Then, given a set of sessions S and a valid and well-formed execution exec that satisfies
the attack formula, we show that exec|S , i.e. the restriction of exec to the events coming
from a session in S is still an execution satisfying the attack formula. Since messages
coming from one session can be used to build a message for another session, this can
only be achieved by requiring some conditions on S. Basically, to ensure the validity of
the execution exec|S , we have to ensure that sessions that share the same tag are either
all in S or none of them is in S (see Proposition 7.4). Then, to ensure the satisfiability
of the attack formula, we have to keep enough sessions but we can bound a priori the
number of sessions that is needed to mount an attack (see Proposition 7.7).

6. First step: towards a well-formed execution trace

In this section, we formally define our notion of well-formedness and we propose a transfor-
mation that allows us to transform a trace exec into a well-formed one exec (Section 6.2)
preserving its validity (Section 6.3) and the satisfiability of the attack formula (Section 6.4).

6.1. Well-formed. The idea behind our notion of well-formedness is to ensure that each
term will be properly tagged. Basically, this means that each term has to be tagged with
its expected tag, i.e. the one computed during the initialization phase of the protocol

(phase 1). From now on, when we consider a trace exec issued from a protocol Π̃, we
assume that the events occurring in exec are annotated with their session identifier, and we

write exec = [esid1
1 ; . . . ; esidℓ

ℓ ] when we want to refer to these annotations explicitly.
The transformation that we consider will abstract some subterms by fresh names from

the intruder’s knowledge (i.e. names in Nǫ). Those names will be denoted by nǫ,St where S
is set of session identifiers, and t is a term. Intuitively, such a name will be used to abstract
the subterm t when used in an event from a session sid ∈ S. We assume that those names
(which constitute an infinite subset of Nǫ) are not used anywhere else. In particular, they
do not occur in the execution trace before applying our transformation.

Definition 6.1 (ExpectedTag(exec, sid)). Let Π be a k-party protocol and let exec =

[esid1
1 ; . . . ; esidℓ

ℓ ] be an execution trace of Π̃. Let sid be a session identifier and [esidi1
; . . . ; esidih

]

(with 1 ≤ i1 < . . . < ih ≤ ℓ) be the sequence of communication events in exec that are
annotated with sid . We define the expected tag of a session sid in exec as
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• ExpectedTag(exec, sid) = ⊥ when h < k,
• ExpectedTag(exec, sid) = 〈m1, . . . ,mk〉 otherwise, where for all j ∈ {1, . . . , k}, mj is such

that esidij
= rcv(mj) or e

sid

ij
= snd(mj).

Roughly, the expected tag associated to a session sid is the one obtained by putting
together the messages that occur in the k first communication events annotated with sid
that occur in exec. When those events do not exist, the expected tag of sid is undefined.
We define ExpectedTags(exec) to denote the set of expected tags that occur in the trace exec.
More formally, we have that:

ExpectedTags(exec) =
⋃

sid

{ExpectedTag(exec, sid)}.

Since a session is the execution of one role, it is likely that several sessions will have
the same expected tag. However, note that sessions that correspond to the execution of the
same role (e.g. the jth role) cannot have the same expected tag since the tag will contain
a fresh nonce at its jth position.

Definition 6.2 (sameTagAs(exec, sid)). Let Π be a k-party protocol and let exec be an

execution trace (not necessarily valid) of Π̃. We define sameTagAs(exec, sid) to be the set
of sessions sharing the same expected tag with the session sid , i.e.

sameTagAs(exec, sid) =

{
{sid} if ExpectedTag(exec, sid) = ⊥
{sid′ | ExpectedTag(exec, sid′) = ExpectedTag(exec, sid)} otherwise

Our notion of well-formedness aims to ensure that each event that occurs in a trace is
tagged properly. For this, we first define Tags(exec, sid). This set corresponds to the tags
that actually occur in the events issued from the session sid in the execution trace exec.

Definition 6.3 (Tags(exec, sid)). Let Π be a k-party protocol and exec = [esid1
1 ; . . . ; esidℓ

ℓ ]

be an execution trace of Π̃ which is k-tagged. Let sid be a session identifier. We define the
tags of a session sid in exec as follows:

Tags(exec, sid) = {u|1.1 | u ∈ CryptSt(e
sidj

j ) for some j ∈ {1, . . . , ℓ} such that sid j = sid}.

We define Tags(exec) to denote the set of tags that occur in the trace exec. More
formally, we have that

Tags(exec) =
⋃

sid

Tags(exec, sid).

We are now able to define our notion of well-formed execution trace.

Definition 6.4 (well-formed execution trace). Let Π be a k-party protocol, and exec =

[esid1
1 ; . . . ; esidℓ

ℓ ] be an execution trace associated to Π̃. We say that exec is well-formed if:

(1) exec is k-tagged, i.e. for all t ∈ St(exec), t is k-tagged;
(2) Tags(exec, sid) ⊆ {ExpectedTag(exec, sid)} for every sid ;

(3) For every i, we have that names(esid i

i ) ⊆ {nǫ,St | t ∈ T} ∪ {nsidy | y ∈ Y and sid ∈ S}
where S = sameTagAs(exec, sid i).

Intuitively, in a well-formed trace, the events of a session sid are k-tagged with the expected
tag, i.e. the tag defined in the preamble of the session sid . Moreover, the nonces used in a
session sid are those that are generated in a session that used the same tag as sid (or they
come from the intruder).
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6.2. Our transformation of execution traces. A valid execution trace is not necessarily
well-formed. Our goal is to show that we can however always transform an execution trace
into a well-formed execution trace. The main idea is to replace each subterm that is not
tagged in the expected way with a nonce known by the attacker. The difficulty will be to
ensure that the resulting trace is still a valid one (see Section 6.3) and still a witness of the
existence of an attack (see Section 6.4).

We first define our transformation on a term. For this we need to introduce the notion
of HeadTag

Definition 6.5 (HeadTag(exec, t)). Let Π be a k-party protocol and exec be an execution

trace (not necessarily valid) of Π̃. We define the head tag of a term t w.r.t. the trace exec,
denoted HeadTag(exec, t).

HeadTag(exec, t) =





τ if t = f(〈τ, u〉, u2, . . . , un) ∈ CryptSt(t)
and τ ∈ ExpectedTags(exec)

⊥ otherwise

Roughly, our transformation of a term proceeds as follows. We replace each crypto-
graphic subterm which is not tagged properly with a nonce. We also perform the same kind
of replacement on nonces to ensure that sessions that are tagged differently will not share
any nonces.

Definition 6.6 (t
exec,sid

). Let Π be a k-party protocol, exec be an execution trace (not

necessarily valid) of Π̃, sid be a session identifier and τ = ExpectedTag(exec, sid).

• nexec,sid = nǫ,Sn if n ∈ N ǫ or if τ = ⊥, where S = sameTagAs(exec, sid);

• nsid
′

y

exec,sid
=





nsid
′

y if sid ′ ∈ sameTagAs(exec, sid)

nǫ,S
nsid′
y

where S = sameTagAs(exec, sid) otherwise ;

• aexec,sid = a if a is the name of an agent;

• f(a1, . . . , an)
exec,sid

= f(a1, . . . , an) for f ∈ {shk, pub, priv}

• 〈u, v〉
exec,sid

= 〈uexec,sid , vexec,sid 〉;

• f(u1, . . . , un)
exec,sid

=





f(u1
exec,sid , . . . , un

exec,sid )
if HeadTag(exec, f(u1, . . . , un)) = τ and τ 6= ⊥

nǫ,S
f(u1,...,un)

where S = sameTagAs(exec, sid) otherwise

for any f ∈ {encs, enca, sign, h}.

We extend our transformation on a trace in the expected way.

Definition 6.7 (exec). Let Π be a protocol and exec = [esid1
1 ; . . . ; esidℓ

ℓ ] an execution trace

(not necessarily valid) of Π̃. We define exec = e1
exec,sid1 ; . . . ; eℓ

exec,sidℓ , where

eexec,sid =





P(u1
exec,sid , . . . , un

exec,sid ) if e = P(u1, . . . , un)
snd(uexec,sid ) if e = snd(u)
rcv(uexec,sid ) if e = rcv(u)

With this transformation, we still get a trace associated to the protocol under study.
Moreover, the resulting execution trace is well-formed. This is formally proved in Appen-
dix A (Lemma A.1 and Lemma A.2).
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Proposition 6.8. Let Π be a k-party protocol, and exec be an execution trace associated

to Π̃ (not necessarily a valid one). We have that exec is a well-formed execution trace (not

necessarily a valid one) associated to the protocol Π̃.

6.3. Validity. Now, we show that the resulting execution trace, i.e. the one obtained by
applying our transformation · , is still a valid one. In particular, we have to show that each
term that occurs in a receive event is deducible from the initial knowledge of the attacker
and the messages that have been sent so far. For this, we rely on the notion of simple proofs
previously introduced in [17].

Definition 6.9 (simple proof). Let T1 ⊆ T2 ⊆ · · · ⊆ Tn. We say that a proof π of Ti ⊢ u is
left-minimal if, whenever there is a proof of Tj ⊢ u for some j < i, then π is also a proof of
Tj ⊢ u. Then, we say that a proof π is simple if

(1) any subproof of π is left-minimal,

(2) a composition rule of the form
u1 u2

u
is never followed by a decomposition rule leading

to u1 or u2, and
(3) any term of the form 〈u1, u2〉 obtained by application of a decomposition rule or labelling

a leaf is directly followed by a projection rule.

Example 6.10. Let T1 = {n1} and T2 = {n1, encs(〈n1, n2〉, k), k}. We have T2 ⊢ 〈n1, n2〉
with the proof tree π described below. However, π is not a simple proof of T2 ⊢ 〈n1, n2〉.
Indeed, the term 〈n1, n2〉 has been obtained by an application of a decomposition rule. Thus,
by Condition (3) of Definition 6.9 we have to decompose it. A simple proof of T2 ⊢ 〈n1, n2〉
is the proof tree π′ described below.

π =

{
encs(〈n1, n2〉, k) k

〈n1, n2〉
π′ =




n1

encs(〈n1, n2〉, k) k

〈n1, n2〉

n2

〈n1, n2〉

As it was done in [17] in a slightly different setting, we can show that it is always
possible to consider such a proof tree, i.e. if there is a proof of Ti ⊢ u, then there is a simple
proof of it (w.r.t. a sequence T1 ⊆ T2 ⊆ · · · ⊆ Tn). Given a simple proof π of Ti ⊢ u, we
can also show a locality lemma (by structural induction on π) allowing us to characterize
the terms that occur in such a proof tree.

Lemma 6.11 (locality). Let T1 ⊆ T2 ⊆ · · · ⊆ Tn be a set of terms and u be a term such
that Ti ⊢ u. Let π be a simple proof of Ti ⊢ u. We have that π only involves terms in
St(Ti ∪ {u}) ∪ Kǫ ∪ Nǫ ∪ A ∪ {pub(a) | a ∈ A}. Moreover, if π ends with an instance
of a decomposition rule (or is reduced to a leaf), we have that π only involves terms in
St(Ti) ∪Kǫ ∪Nǫ ∪ A ∪ {pub(a) | a ∈ A}.

Now, relying on this notion of simple proof, we can show that deducibility is preserved
by our transformation. This is the key lemma to ensure the validity of the resulting trace.

Lemma 6.12. Let Π be a k-party protocol and exec = [esid1
1 ; . . . ; esidℓ

ℓ ] be a valid execution

trace of Π̃, w.r.t. some set T0 of ground atoms. Let i ∈ {0, . . . , ℓ} and t be a term such that

K(execi) ∪ T0 ⊢ t. We have that K(execi) ∪ T0 ⊢ t
exec,sid

for any sid.
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Proof. (sketch) Let tr = [eesid1
1 ; . . . ; eesidℓ

ℓ ] be the symbolic trace associated to exec and σ
be the substitution such that dom(σ) = vars(tr) and exec = trσ. Let i ∈ {0, . . . , ℓ}. Let π

be a simple proof of K(execi) ∪ T0 ⊢ t. We prove that K(execi) ∪ T0 ⊢ t
exec,sid

by induction
on (i, π). If i = 0 and π is a simple proof reduced to a leaf (possibly followed by some
projection rules), then we have that T0 ⊢ t, and π is necessarily reduced to a leaf since T0
only contains atomic terms. Let sid be a session identifier, we have that t

exec,sid
∈ {t} ∪Nǫ

since t is an atomic term. This allows us to conclude that T0 ⊢ t
exec,sid

. Now, we distinguish
two cases depending on the last rule of π.

• The proof π ends with an instance of a composition rule, i.e. t = f(t1, . . . , tn) for some
f ∈ {〈, 〉, encs, enca, sign, h} and some terms t1, . . . , tn.

According to Definition 6.6, we have that t
exec,sid

∈ N ǫ ∪ {f(t1
exec,sid

, . . . , tn
exec,sid

)}.

If t
exec,sid

∈ Nǫ, we easily conclude that K(execi) ∪ T0 ⊢ t
exec,sid

. Otherwise, since π
ends with a composition rule, we have that K(execi) ∪ T0 ⊢ t1, . . . , K(execi) ∪ T0 ⊢ tn.
Moreover, the simple proofs witnessing these facts are strict subproofs of π that are also
simple. Hence, we can apply our induction hypothesis and conclude that K(execi) ∪ T0 ⊢

f(t1
exec,sid

, . . . , tn
exec,sid

).

• The proof ends with the application of a decomposition rule (but not a projection) possibly
followed by several applications of the projection rules until the resulting term is not a
pair.

We will here present the case of the symmetric decryption rule, but all the other
decomposition rules (including the case of a proof reduced to a leaf) can be handled in a
similar way. For some terms t1 and t2, the proof π is of the form

...

K(execi) ∪ T0 ⊢ encs(t1, t2)

...

K(execi) ∪ T0 ⊢ t2

K(execi) ∪ T0 ⊢ t1

...

K(execi) ∪ T0 ⊢ t

Let us first note that, by locality (Lemma 6.11) of π we know that encs(t1, t2) ∈
St(K(execi)) ∪ T0 ∪ Kǫ ∪ Nǫ ∪ {pub(a) | a ∈ A}, and by atomicity of T0, Nǫ, Kǫ and
{pub(a) | a ∈ A}, we know that encs(t1, t2) ∈ St(K(execi)). (In case of a proof reduced
to a leaf, and if there is no projection rule, we may have that t ∈ T0. In such a case, as

in the base case, we have that T0 ⊢ t
exec,sid

and we easily conclude.) Hence, there exists

k ≤ i such that esidk

k = snd(u) and encs(t1, t2) ∈ St(u). Let k0 be the smallest such k and

u0, u
′
0 be such that e

sidk0
k0

= snd(u0) and ee
sidk0
k0

= snd(u′0). Hence, we have that u0 = u′0σ.

In order to prove the result, we first establish the following claim (proved in Appendix C).

Claim: We have that encs(t1, t2)
exec,sidk0 = encs(t1

exec,sidk0 , t2
exec,sidk0 ).

Now, relying on this claim and applying the induction hypothesis, we have that:

– K(execi) ∪ T0 ⊢ encs(t1
exec,sidk0 , t2

exec,sidk0 ); and

– K(execi) ∪ T0 ⊢ t2
exec,sidk0 .
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This allows us to deduce that K(execi) ∪ T0 ⊢ t1
exec,sidk0 . In order to establish that

K(execi) ∪ T0 ⊢ t
exec,sid

, we need to distinguish two cases:

Case 1. t ∈ A, t = pub(a) or t = f(a1, . . . , an) for some f ∈ {shk, priv}. In such a case,

we have that t
exec,sid

= t
exec,sidk0 = t. Hence, we have that K(execi) ∪ T0 ⊢ t

exec,sid
by

applying some projection rules on the proof of K(execi) ∪ T0 ⊢ t1
exec,sidk0 .

Case 2. t ∈ N or t = f(t′1, . . . , t
′
m) for some f ∈ {encs, enca, h, sign}. First, if t

exec,sid
can be

obtained by application of some projection rules on the proof of K(execi)∪T0 ⊢ t1
exec,sidk0 ,

then we easily conclude. Otherwise, it means that the term t is not abstracted in the same

way in both cases. In such a case, we have that either t
exec,sid

∈ Nǫ or t
exec,sidk0 ∈ Nǫ. In

the first case, we easily conclude. In the second case, i.e. t
exec,sidk0 ∈ Nǫ but t

exec,sid
6∈ Nǫ,

we can show that t is a subterm of u0 that either occurs as a component of u0 or in
the term xσ for some x ∈ vars(u′0). Actually, the first case is not possible since we

have assumed that t
exec,sidk0 ∈ Nǫ. Thus, only the second case remains. Thanks to the

origination property, we know that t will occur in a previous receive event and we will
be able to show that t was deducible using a smaller prefix of the trace allowing us to
conclude by applying our induction hypothesis.

Since our transformation preserves the deducibility relation, we can now prove the validity
of the resulting trace by induction on the length of the original trace.

Proposition 6.13. Let Π be a k-party protocol and exec = [esid1
1 ; . . . ; esidℓ

ℓ ] be a valid

execution trace associated to Π̃, w.r.t. some initial intruder knowledge T0. We have that

exec is a well-formed and valid execution trace associated to Π̃ w.r.t T0.

Proof. First, according to Proposition 6.8, we know that exec is an execution trace associated

to Π̃ which is well-formed. It remains to establish its validity w.r.t. T0. We show by induction
on i that for all i ∈ {1, . . . , ℓ}, (exec)i is a valid execution trace. The base case, i.e. the
empty trace (exec)i = [], is trivially valid. For the inductive step, we assume that (exec)ℓ−1 is
valid and we have to establish the validity of exec = execℓ. We distinguish 2 cases according
to the nature of the last event in the trace.

Case e
sidℓ

ℓ = P(t1, . . . , tn) or e
sidℓ

ℓ = snd(t). By induction hypothesis, we know that (exec)ℓ−1

is a valid execution trace, and this is enough to conclude to the validity of exec.

Case e
sidℓ

ℓ = rcv(t). By induction hypothesis, we know that (exec)ℓ−1 is a valid execution
trace. To conclude to the validity of exec, we only need to establish that K((exec)ℓ−1)∪T0 ⊢

t
exec,sidℓ . Since we know that exec is a valid execution trace, we have that K(execℓ−1)∪T0 ⊢ t.

Applying Lemma 6.12, we conclude that K((exec)ℓ−1) ∪ T0 ⊢ t
exec,sidℓ . This allows us to

deduce that exec is valid.

6.4. Satisfiability. The goal of this section is to show that the trace exec resulting of the
application of our transformation will still satisfy the attack formula ∃x1. . . . .∃xn.φ under
study. To show the validity of such a formula on the trace exec, we have to exhibit a substitu-
tion σ′ for which 〈exec, T0〉 |= φσ′. By hypothesis, we know that 〈exec, T0〉 |= φσ for some σ.
Thus, the idea is to consider the substitution σ′ = {x1 7→ x1σ

exec,sid1 , . . . , xn 7→ xnσ
exec,sidn}

where sid1, . . . , sidn correspond to the sessions from which the terms x1σ, . . . , xnσ come
from.
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Proposition 6.14. Let Π be a protocol, exec be an execution trace of Π̃ w.r.t. some initial
intruder knowledge T0, and φ be an attack formula. We have that

〈exec, T0〉 |= φ ⇒ 〈exec, T0〉 |= φ.

The proof is done by structural induction on the formula and its details can be found in
Appendix D. The technically difficult part is to formally link each variable existentially
quantified in φ with the term it has been substituted with in order to satisfy the formula.

7. Second step: reducing the number of sessions

Now, our goal is to reduce the number of sessions that are involved in an execution trace
witnessing the existence of an attack in order to match the bound announced in Theorem 5.6:
the attack trace has to involved at most ‖φ‖ sessions of each role. The idea will be to identify
a set of sessions S and to remove all the events that do not originate from a session in S
according to the formal definition stated below.

Definition 7.1 (restriction of tr to S). Let Π be a protocol, exec = [esid1
1 ; . . . ; esidℓ

ℓ ] be an
execution of Π, w.r.t. some set T0 of ground atoms, and S be a set of session identifiers.

The restriction of exec to S is defined as the trace exec|S = [e
sid i1
i1

; . . . ; e
sid ih

ih
] satisfying the

following: i1 < . . . < ih and for all j ∈ {1, . . . , ℓ}, there exists k ∈ {1, . . . , h} such that
j = ik if and only if sid j ∈ S.

Given a valid and well-formed execution exec and a set of sessions S, the goal of this
section is to show that the restriction exec|S is a valid and well-formed execution. Since
messages coming from one session can be used to build a message for another session, to
prove such a result, it is important to require some conditions on S. Basically, we will
consider a set S that satisfies the following requirement:

for all sid1 and sid2 such that sameTagAs(exec, sid1) = sameTagAs(exec, sid2),
we have that sid1 ∈ S if and only if sid2 ∈ S.

This means that sessions using the same tag should have the same status w.r.t. the set S.
In the following of this section we will first show that

(i) such a restricted execution is still a valid execution, and
(ii) that the restriction preserves satisfiability of attack formulas.

7.1. Validity of the restriction. First, we show that in a well-formed and valid execution
trace, terms that occur in sessions that are tagged differently do not share any name.

Lemma 7.2. Let Π be a k-party protocol, and exec = [esid1
1 ; . . . ; esidℓ

ℓ ] be a well-formed valid

execution of Π̃ w.r.t. some set T0 of ground atoms. Let sess1 and sess2 be two session
identifiers. We have that:

sameTagAs(exec, sess1) 6= sameTagAs(exec, sess2)
implies

names(exec, sess1) ∩ names(exec, sess2) = ∅

where names(exec, sess) = {u | u ∈ names(e
sidj

j ) for some 1 ≤ j ≤ ℓ such that sid j = sess}.
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The goal of the next lemma is to show that deducibility is preserved when we consider
the trace exec|S . Note that the previous lemma allows us to ensure that the terms we
removed from the trace are “sufficiently disjoint” from the ones we keep. This is important
to ensure that deducibility is preserved in the trace exec|S .

Lemma 7.3. Let Π be a k-party protocol, and exec = [esid1
1 ; . . . ; esidℓ

ℓ ] a well-formed valid

execution of Π̃ w.r.t. some set T0 of ground atoms, and such that T0 ∪ K(exec) 6⊢ k for any
k ∈ lgKeys r (Kǫ ∪T0) (exec does not reveal any long term keys). Let S be a set of sessions
such that:

for all session identifiers sess1 and sess2 such that sameTagAs(exec, sess1) =
sameTagAs(exec, sess2), we have that sess1 ∈ S if and only if sess2 ∈ S.

For all term t ∈ St(exec|S) such that T0 ∪ K(exec) ⊢ t, we have that T0 ∪ K(exec|S) ⊢ t.

Now, relying on Lemma 7.3, we are able to show that the trace exec|S is valid.

Proposition 7.4. Let Π be a k-party protocol, and exec = [esid1
1 ; . . . ; esidℓ

ℓ ] a well-formed

valid execution of Π̃ w.r.t. some set T0 of ground atoms, and such that T0 ∪ K(exec) 6⊢ k
for any k ∈ lgKeys r (Kǫ ∪ T0) (exec does not reveal any long term keys). Let S be a set of
sessions such that:

for all session identifiers sess1 and sess2 such that sameTagAs(exec, sess1) =
sameTagAs(exec, sess2), we have that sess1 ∈ S if and only if sess2 ∈ S.

We have that exec|S is also a well-formed and valid execution of Π̃ w.r.t. T0.

Proof. Let 1 ≤ i1 < · · · < in ≤ ℓ such that exec|S = [e
sid i1
i1

; . . . ; e
sid in

in
]. We prove by

induction on the length n of exec|S , that exec|S is a valid execution of Π̃, w.r.t T0.

Base case: If n = 0 we have that exec|S = [], and thus exec|S is a valid execution of Π̃
w.r.t. T0.

Inductive case: By induction hypothesis, we know that

[e
sid i1
i1

; . . . ; e
sid in−1

in−1
]

is a valid execution of Π̃ w.r.t. T0. If e
sidn
n is a send or a status event, then

exec|S = [e
sid i1
i1

; . . . ; e
sid in−1

in−1
; e

sid in

in
]

is a valid execution of Π̃ w.r.t. T0 (see Definition 3.8). On the other hand, if esidn
n is a

receive event, i.e. esidn
n = rcv(t), we need to show

T0 ∪ K([e
sid i1
i1

; . . . ; e
sid in−1

in−1
]) ⊢ t

knowing that

T0 ∪ K([esid1
1 ; . . . ; e

sid (in)−1

(in)−1 ]) ⊢ t

which because ein is a reception event implies that T0∪K(exec) ⊢ t. But then, according
to Lemma 7.3 we know that T0∪K(exec|S) ⊢ t. It suffices now to notice that by definition
of K(), because ein is a reception event, we have that:

K([e
sid i1
i1

; . . . ; e
sid in−1

in−1
]) = K([e

sid i1
i1

; . . . ; e
sid in

in
]) = K(exec|S).
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This concludes the proof that exec|S is a valid execution of Π̃ w.r.t. the initial intruder
knowledge T0. Finally, it is obvious that exec|S satisfies the 3 conditions of well-formedness
(Definition 6.4), from the hypothesis that exec does.

7.2. Satisfiability of the formula. The way the set S of sessions is chosen depends on the
sessions that are needed to satisfy the attack formula under study. We therefore introduce
the notion of witness sessions which for a given formula φ can be used to witness that φ
holds.

Definition 7.5 (witness sessions, Ws). Let Π be a protocol, φ a closed quantifier-free

formula of L, and T0 be a set of ground atoms. Let exec = [esid1
1 ; . . . ; esidℓ

ℓ ] be a valid
execution of Π (w.r.t. T0) satisfying φ, i.e. 〈exec, T0〉 |= φ. We define the set of sessions
Ws(exec, φ) witnessing that 〈exec, T0〉 |= φ by structural induction on φ as follows:

• Ws(exec,¬φ) = Ws−(exec, φ);
• Ws(exec, true) = Ws(exec, learn(t)) = Ws(exec,C(t)) = ∅;
• Ws(Q(t1, . . . , tn)) = {sid ℓ};
• Ws(exec,♦φ) = Ws(execi, φ) where i is such that 〈execi, T0〉 |= φ;
• Ws(exec, φ1 ∨ φ2) = Ws(exec, φ1) if 〈exec, T0〉 |= φ1 and Ws(exec, φ2) otherwise;

where

• Ws−(exec,¬φ) = Ws(exec, φ);
• Ws−(exec, true) = Ws−(exec, learn(t)) = Ws−(exec,C(t)) = Ws−(exec,♦φ) = ∅;
• Ws−(Q(t1, . . . , tn)) = {sid ℓ} when length(exec) > 0 and ∅ otherwise;
• Ws−(exec, φ1 ∨ φ2) = Ws−(exec, φ1) ∪Ws−(exec, φ2).

Intuitively, we keep in the trace the sessions that are needed to satisfy the formula
under study. Essentially, we have to keep those that are used to satisfy the status events
occurring in the formula.

Lemma 7.6. Let Π be a k-party protocol, and exec = [esid1
1 ; . . . ; esidℓ

ℓ ] be a valid and well-

formed execution of Π̃ w.r.t. some set T0 of ground atoms such that T0 ∪ K(exec) 6⊢ k for
any k ∈ lgKeys r (Kǫ ∪ T0). Let φ = ∃x1. . . . .∃xn.ψ be an attack formula of L, and σ be
a ground substitution such that 〈exec, T0〉 |= ψσ. Let S be a set of session identifiers such
that:

(1) Ws(exec, ψσ) ⊆ S, and
(2) ∀sess1, sess2 with ExpectedTag(exec, sess1) = ExpectedTag(exec, sess2), we have that

sess1 ∈ S if and only if sess2 ∈ S.

We have that exec|S is an execution of Π̃ that satisfies φ, i.e. 〈exec|S , T0〉 |= φ.

Proof. (sketch) The idea is to show that 〈exec|S , T0〉 |= ψσ. However, this result is wrong in
general since the substitution σ witnessing the fact that the attack formula φ is satisfiable
can use some terms that only occur in events coming from sessions that are not in S. Thus,
the first step of the proof consists in showing that we can consider a substitution σ that only
involves subterms that occur in St(exec|S). For instance, consider the formula ∃x.learn(x).
Since, the variable x does not occur in any status event, we cannot ensure that x will be
bound to a term coming from a session in S. However, intuitively, we can replace such a term
xσ by a nonce in Nǫ still preserving the satisfiability of the attack formula. Now, we can
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assume w.l.o.g. that that for all j ∈ {1, . . . , n}, σ(xj) ∈ St(exec, S)∪A∪ lgKeys∪Nǫ. Then,
we proceed by induction on the length of the execution trace and the size of the formula,
and we show that 〈exec|S , T0〉 |= ψσ. In other words, the attack formula is satisfiable and
σ is a witness of this fact.

Proposition 7.7. Let Π be a k-party protocol and T0 be a finite set of ground atoms such
that lgKeys(Π) ∩ plaintext(Π) ⊆ T0 ∪ Kǫ. Let exec be a valid and well-formed execution

of Π̃ w.r.t. T0, and φ = ∃x1. . . . .∃xn.ψ be an attack formula such that 〈exec, T0〉 |= ψσ
for some ground substitution σ. We have that 〈exec|S , T0〉 |= φ where S = {sid | ∃sid ′ ∈
Ws(exec, ψσ) and sid ∈ sameTagAs(exec, sid ′)}.

Proof. Let exec be a valid and well-formed execution of Π̃ w.r.t. T0 such that 〈exec, T0〉 |= φ.

Claim: T0∪K(exec) 6⊢ k for any k ∈ lgKeysr(Kǫ∪T0). Assume that there exists k ∈ lgKeys
such that T0 ∪K(exec) ⊢ k. Using Lemma 2.4, we obtain that k ∈ plaintext(exec)∪ T0 ∪Kǫ,
and relying on Lemma 3.10, we conclude that k ∈ plaintext(tr) ∪ T0 ∪ Kǫ where tr is the
symbolic trace underlying exec. Now, by construction of tr, if k ∈ plaintext(tr), then there
exists k′ ∈ plaintext(Π) such that k = k′σ for some σ : X → A. Hence, we have that
k′ ∈ lgKeys(Π) ∪ plaintext(Π). Thanks to our hypothesis, we conclude that k′ ∈ T0 ∪ Kǫ,
and thus k′ = k ∈ T0 ∪Kǫ, which concludes the proof of the claim.

By hypothesis, we have that 〈exec, T0〉 |= ψσ for some ground substitution σ. Moreover,
by hypothesis, we have that:

(1) Ws(exec, ψσ) ⊆ S, and
(2) ∀sess1, sess2 with ExpectedTag(exec, sess1) = ExpectedTag(exec, sess2), we have that

sess1 ∈ S if and only if sess2 ∈ S.

Hence, we can apply Lemma 7.6 to conclude that 〈exec|S , T0〉 |= φ.

8. Main results

In this section, we put the pieces together and prove Theorem 5.6, the main result that was
stated in Section 5.2. We also prove Corollary 1 which allows us to obtain slightly stronger
results for particular security properties.

To prove our main result, we first need to bound the number of sessions that are needed
to witness the satisfiability of the attack formula under study. This is the purpose of the
following lemma that can be proved by induction on the structure of φ.

Lemma 8.1. Let Π be a protocol, φ a closed quantifier-free formula of L, and T0 be set of

ground atoms. Let exec = [esid1
1 ; . . . ; esidℓ

ℓ ] be a valid execution of Π (w.r.t. T0) satisfying φ,
i.e. 〈exec, T0〉 |= φ. We have that |Ws(exec, φ)| ≤ ‖φ‖.
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8.1. Proof of Theorem 5.6. Now, we prove our main theorem.

Theorem 5.6. Let Π be a k-party protocol, Π̃ be its corresponding transformed protocol
and T0 be a set of ground atoms such that lgKeys(Π)∩ plaintext(Π) ⊆ T0 ∪Kǫ. Let φ be an

attack formula such that Π̃ |= φ w.r.t. T0. There exists a valid execution trace exec of Π̃
such that:

〈exec, T0〉 |= φ and exec involves at most ‖φ‖ sessions of each role.

Proof. Let exec be a valid execution of Π̃ w.r.t. T0 such that 〈exec, T0〉 |= φ. By Proposi-

tion 6.13 we have that exec is a valid well-formed execution of Π̃ w.r.t. T0, and according to
Proposition 6.14, we have that 〈exec, T0〉 |= φ. By definition on an attack formula, we have
that φ = ∃x1. . . . .∃xn.ψ and we deduce that there exists σ such that 〈exec, T0〉 |= ψσ.

Let S = {sid | ∃sid ′ ∈ Ws(exec, ψσ) and sid ∈ sameTagAs(exec, sid ′)}. Now, by Propo-

sition 7.4, we have that exec|S is also a well-formed and valid execution of Π̃ w.r.t. T0; and
according to Proposition 7.7, we know that 〈exec|S , T0〉 |= φ. Finally, Lemma 8.1 tells us

that |Ws(exec, ψσ)| ≤ ‖φσ‖ = ‖φ‖. But because by construction of Π̃ (and hence of all of its

symbolic traces), in every execution of Π̃ all sessions of the same role are tagged differently
(each session introduces its own nonce making them different), S must contain at most ‖φ‖
sessions of each role. This allows us to conclude that exec|S is an attack that involves at
most ‖φ‖ sessions of each role.

8.2. Secrecy, aliveness and weak agreement. For several classical security properties
we are actually able to obtain a slightly stronger result and only consider one honest session
of each role. As we will see below this is a direct corollary from the proof of the main
theorem.

Corollary 1. Let Π be a k-party protocol, ΠS (respectively, ΠA, ΠWA) be the annotated
protocol for modeling secrecy (respectively aliveness and weak agreement) as defined in

Section 4.2.1, and Π̃S (respectively, Π̃A, Π̃WA) the corresponding transformed protocol. Let
T0 be a set of ground atoms such that lgKeys(Π)∩plaintext (Π) ⊆ T0∪Kǫ and φS (respectively
φA, φWA) an attack formula against secrecy (respectively aliveness and weak agreement) as

defined in Section 4.2.1. For X ∈ {S,A,WA} we have that if Π̃X |= φX w.r.t. T0 then there

exists a valid execution trace exec of Π̃X such that:

〈exec, T0〉 |= φX and exec involves at most one honest session of each role.

Proof. We only detail the proof in the case of secrecy. The case of aliveness and weak
agreement are treated similarly. Let φS = ∃x1. . . . .∃xn.∃y.ψS. Following the proof of
Theorem 5.6, we can show that 〈exec, T0〉 |= ψSσ for some substitution σ.

Let S = {sid | ∃sid ′ ∈ Ws(exec, ψSσ) and sid ∈ sameTagAs(exec, sid ′)}. We have that
Ws(exec, ψSσ) = 1, and thus the set S contains at most one session of each role. To conclude,
we have to show that S only contains honest sessions. By definition of Ws, we know that
Ws(exec, ψSσ) = {sid0} for some sid0 such that the status event Secret(x1σ, . . . , xkσ, yσ) is
issued from the session sid0 and we have that 〈exec, T0〉 |= NC(x1σ)∧ . . .∧NC(xkσ). Hence,
we have that sid0 is an honest session.

We have that S = {sid | ∃sid ′ ∈ Ws(exec, ψSσ) and sid ∈ sameTagAs(exec, sid ′)} which
means that S = {sid | sid ∈ sameTagAs(exec, sid0)}. Since the names of the agents that are
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involved in a session occur in the tag, we know that all the sessions in S are honest. This
allows us to conclude.

9. Conclusion

In this paper we present a transformation which guarantees that attacks on transformed
protocols only require a number of sessions which is a function of the security property
under study. We prove this result for a class of security properties that includes secrecy
and several flavors of authentication. Our logic for specifying security properties does not
allow one to express injective authentication properties (e.g. injective agreement, matching
conversations, etc.) but we believe that both the logic and our reduction result could be
extended to this setting.

A challenging topic for future research is to obtain more fine-grained characterizations
of decidable classes of protocols for an unbounded number of sessions. The new insights
gained by our work seem to be a good starting point to extract the conditions needed to
reduce the security for an unbounded number of sessions to a finite number of sessions.
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Appendix A. Proofs of Section 6.2

In this section, we show that our transformation maps an execution trace exec to a well-
formed execution trace exec. The resulting execution trace exec is still a trace associated to

the protocol Π̃ under study.

Lemma A.1. Let Π be a k-party protocol, and exec be an execution trace associated to Π̃
(not necessarily a valid one). We have that exec is an execution trace (not necessarily a

valid one) associated to the protocol Π̃

Proof. (sketch) Let tr = [esid1
1 ; . . . ; esidℓ

ℓ ] be the symbolic trace of Π̃, and σ be the ground
substitution such that dom(σ) = vars(tr) and exec = trσ. Let σ be such that:

• dom(σ) = dom(σ), and
• σ(x) = xσexec,sid , where x ∈ vars(tr, sid).

Clearly, we have that σ is a ground substitution. It remains to establish that exec = trσ so
that the execution exec will rely on the same scenario than exec.

By definition exec = [esid1
1 σ

exec,sid1

; . . . ; esidℓ

ℓ σ
exec,sidℓ

]. Let i ∈ {1, . . . , ℓ}, then we have

that esidi

i = rcv(u) (or esid i

i = snd(u), or esidi

i = Q(u1, . . . , un)). Since the three cases can be

handled in a similar way, we consider here the case where e
sidi

i = rcv(u). By definition, we

have that esidi

i σ
exec,sidi

= rcv(uσexec,sidi), and we prove by structural induction on u′ ∈ St(u)

that u′σ
exec,sidi = u′σ. Finally, from this we conclude that uσexec,sidi = uσ, and thus

that e
sidi

i σ
exec,sidi

= rcv(uσexec,sidi) = rcv(uσ) = e
sidi

i σ. By definition, this brings us to
exec = trσ.

Lemma A.2. Let Π be a k-party protocol, and exec be an execution trace associated to Π̃
(not necessarily a valid one). We have that exec is well-formed.

Proof. (sketch) Let exec = esid1
1 , . . . , esidℓ

ℓ . Let i ∈ {1, . . . , ℓ}, we show that:

(1) esidi

i

exec,sidi

is k-tagged;

(2) Tags(esid i

i

exec,sidi

) ⊆ {ExpectedTag(exec, sid i)};

(3) names(esid i

i

exec,sidi

) ⊆ {nǫ,St | t ∈ T} ∪ {nsidy | sid ∈ S and y ∈ Y},
where S = sameTagAs(exec, sid i).

Let esidi

i = rcv(u) for some term u. The cases where e
sid i

i = snd(u) or esidi

i = Q(u1, . . . , un)

can be done in a similar way. We have that e
sidi

i

exec,sidi

= rcv(uexec,sidi) and we prove by
structural induction on u′ ∈ St(u) that:

(1) u′
exec,sidi is k-tagged;

(2) Tags(u′
exec,sidi) ⊆ {ExpectedTag(exec, sid i)};

(3) names(u′
exec,sidi) ⊆ {nǫ,St | t ∈ T} ∪ {nsidy | sid ∈ S and y ∈ Y},

where S = sameTagAs(exec, sid i).
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And from this we derive that uexec,sidi satisfies the three conditions of well-formedness, and

thus so is esid i

i

exec,sidi

for all i ∈ {1, . . . , ℓ}, which in turn implies by definition that exec

satisfies the three conditions of well-formedness and is thus well-formed.

Appendix B. Technical proofs about alien subterms

We introduce the notion of alien subterms and we show that they satisfy some good prop-
erties. Later on, we will see that those alien subterms correspond to the subterms that are
abstracted by our transformation · and we will use the properties established on them to
prove the validity of the trace obtained after transformation.

Definition B.1 (Stalien(exec, τ, t)). Let Π be a k-party protocol and exec = [esid1
1 ; . . . ; esidℓ

ℓ ]

be an execution trace (not necessarily valid) of Π̃. We define the alien subterms of a term t
w.r.t. the execution exec and the active tag τ , denoted Stalien(exec, τ, t), as follows:

• Stalien(exec, τ, n) = {n} if n ∈ Nǫ

• Stalien(exec, τ, n
sid
y ) =

{
∅ if ExpectedTag(exec, sid) = τ and τ 6= ⊥
{nsidy } otherwise

• Stalien(exec, τ, a) = ∅ if a is an agent name
• Stalien(exec, τ, f(a1, . . . , an)) = ∅ if f ∈ {shk, pub, priv}
• Stalien(exec, τ, 〈u, v〉) = Stalien(exec, τ, u) ∪ Stalien(exec, τ, v)

• Stalien(exec, τ, f(u1, . . . , un)) =





Stalien(exec, τ, u1) ∪ · · · ∪ Stalien(exec, τ, un)
if HeadTag(exec, f(u1, . . . , un)) = τ and τ 6= ⊥

{f(u1, . . . , un)} ∪
⋃

i∈{1,...,n}

Stalien(exec, τ
′, ui)

otherwise where τ ′ = HeadTag(exec, f(u1, . . . , un))

if

f ∈ {encs, enca, sign, h}.

We define Stalien(exec, t) = Stalien(exec,⊥, t), and extend this notion to sets of terms in
the obvious way, i.e. Stalien(exec, T ) =

⋃
t∈T

Stalien(exec, t).

Definition B.2 (vars(exec, sid), St(exec, sid), names(exec, sid)). Let Π be a k-party proto-

col and exec be an execution trace of Π̃. Let sid be a session identifier, and [esid1 ; . . . ; esidh ]
def
=

exec|{sid}. We define the variables, subterms, and names in exec of a session sid as follows:

vars(exec, sid) = {x | x ∈ vars(esidj ) for some j ∈ {1, . . . , h}}

St(exec, sid) = {u | u ∈ St(esidj ) for some j ∈ {1, . . . , h}}

names(exec, sid) = {u | u ∈ names(esidj ) for some j ∈ {1, . . . , h}}.

Since we do not tag the pairing function symbol, this function symbol has a special
status. We denote by comp(t) the components of a term t. This notion is formally defined
as follows:

Definition B.3 (comp(t)). Let t be a term, the set of components of t is:

comp(t) =

{
comp(u) ∪ comp(v) if t = 〈u, v〉
{t} otherwise.
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Lemma B.4. Let Π be a k-party protocol, exec be an execution trace of Π̃, and t be a term.
For all k-tags τ , we have that:

(1) Stalien(exec, τ, t) =
⋃

t′∈comp(t)

Stalien(exec, τ, t
′);

(2) Stalien(exec, τ, t) ⊆ Stalien(exec, t);
(3) Stalien(exec, t) ⊆ comp(t) ∪ Stalien(exec, τ, t).

Proof. We prove each statement separately by induction on the depth of t.

Lemma B.5. Let Π be a k-party protocol, exec be an execution trace of Π̃, and u be a term.
For any v ∈ St(u), we have that Stalien(exec, v) ⊆ Stalien(exec, u) ∪ comp(v).

Proof. We first need to establish the following result:

∀τ ′ ∃ τ Stalien(exec, τ, v) ⊆ Stalien(exec, τ
′, u).

If v = u then we can choose τ = τ ′ to prove what we want. Otherwise, we have that
v 6= u, and we prove the result by induction on the depth of u, and for this we distinguish
three cases:

Case u = f(u1, . . . , un) for some f ∈ {pub, priv, shk}. Then we have that Stalien(v) = ∅ for
any v ∈ St(u). This allows us to easily conclude.

Case u = 〈u1, u2〉. In that case v ∈ St(u1) or v ∈ St(u2). Suppose v ∈ St(u1) and let τ ′ be
a tag. By induction hypothesis, we have that there exists τ such that Stalien(exec, τ, v) ⊆
Stalien(exec, τ

′, u1). By Definition B.1, we have that Stalien(exec, τ
′, u1) ⊆ Stalien(exec, τ

′, u).
Hence, we easily conclude. The case where v ∈ St(u2) can be handled in a similar way.

Case u = f(u1, . . . , un) for some f ∈ {encs, enca, sign, h}. In that case, we have that
v ∈ St(ui0) for some i0 ∈ {1, . . . , n}. Let τ ′ be a k-tag. According to Definition B.1,
we have that

⋃
i∈{1,...,n}

Stalien(exec, τ
′′, ui) ⊆ Stalien(exec, τ

′, u) where τ ′′ = HeadTag(exec, u).

Moreover, by induction hypothesis, we know that there exists τ such that Stalien(exec, τ, v) ⊆
Stalien(exec, τ

′′, ui0). Hence, we deduce that Stalien(exec, τ, v) ⊆ Stalien(exec, τ
′, u).

This allows us to conclude that ∀τ ′ ∃τ, Stalien(exec, τ, v) ⊆ Stalien(exec, τ
′, u). We have

shown that ∀τ ′ Stalien(exec, τ
′, u) ⊆ Stalien(exec, u) (see Lemma B.4 - Item 2). Hence, we can

infer that there exists τ such that Stalien(exec, τ, v) ⊆ Stalien(exec, u). Hence, we have that:
Stalien(exec, v) ⊆ Stalien(exec, τ, v) ∪ comp(v) (Lemma B.4 - Item 3)

⊆ Stalien(exec, u) ∪ comp(v)

Lemma B.6. Let Π be a k-party protocol and exec be an execution trace of Π̃. Let T be a
set of terms such that T ⊢ v for any v ∈ Stalien(exec, T ), and t be a term such that T ⊢ t.
We have T ⊢ u for any u ∈ Stalien(exec, t).

Proof. Let u ∈ Stalien(exec, t). We prove that T ⊢ u by induction on π, a prooftree witnessing
the fact that T ⊢ t. If π is reduced to a leaf then we have that t ∈ T ∪ A ∪ Kǫ ∪ Nǫ ∪
{pub(a) | a ∈ A}. Actually, if t ∈ A ∪ Kǫ ∪ Nǫ ∪ {pub(a) | a ∈ A}, then Stalien(exec, t) = ∅,
leading to a contradiction. Hence, we have that t ∈ T , and thus u ∈ Stalien(exec, T ). We
can thus conclude by hypothesis that T ⊢ u.
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Otherwise, we proceed by case analysis on the last rule used in the proof π.

Case 1: the last rule is a composition rule. Then t = f(t1, . . . , tn) for some terms t1, . . . , tn
and some f ∈ {〈, 〉, encs, enca, sign, h}. Let π1, . . . , πn be the direct subproofs of π. We have
that πi is a proof of T ⊢ ti for i ∈ {1, . . . , n}. According to Definition B.1 of alien subterms,
Stalien(exec, t) ⊆ {t} ∪

⋃
i∈{1,...,n}

Stalien(exec, τ, ti) for some τ , and by Lemma B.4 (Item 2) we

can thus infer that

Stalien(exec, t) ⊆ {t} ∪
⋃

i∈{1,...,n}

Stalien(exec, ti).

If u = t, then by hypothesis we know that T ⊢ u. On the other hand , if u ∈ Stalien(exec, ti)
for some i ∈ {1, . . . , n}, then we conclude by applying our induction hypothesis on πi. In
both cases, we have that T ⊢ u.

Case 2: the last rule is a projection rule. Then t = ti0 for some terms t1, t2, and some
i0 ∈ {1, 2}. Let π′ be the direct subproof of π. We have that π is a proof of T ⊢ 〈t1, t2〉.
According to Definition B.1 of alien subterms, Stalien(exec, t) ⊆ Stalien(exec, 〈t1, t2〉), i.e.
u ∈ Stalien(exec, 〈t1, t2〉). We can thus conclude by applying our induction hypothesis on π′

that T ⊢ u.

Case 3: the last rule is another decomposition rule. In such a case, there exists t′ such that
one of the direct subproofs of π is labeled with f(t, t′). Let π′ be such a proof. Thanks to
Lemma B.5 we know that either u ∈ Stalien(exec, f(t, t

′)) or u ∈ comp(t). In the first case,
we can conclude by applying our induction hypothesis on π′ that T ⊢ u. In the second case,
we know that by application of the projection rules one can derive u from t, hence T ⊢ u.

Lemma B.7. Let Π be a k-party protocol and exec be an execution trace of Π̃ associated to

the symbolic trace tr = [esid1
1 ; . . . ; esidℓ

ℓ ]. Let σ be the substitution such that dom(σ) = vars(tr)
and exec = trσ.

∀t ∈ St(tr, sid) Stalien(exec, tσ) ⊆ comp(tσ) ∪
⋃

x∈vars(t)

Stalien(exec, τ, xσ)

where τ = ExpectedTag(exec, sid).

Proof. Let t ∈ St(tr, sid) and τ = ExpectedTag(exec, sid). We show by structural induction
on t that

Stalien(exec, tσ) ⊆ comp(tσ) ∪
⋃

x∈vars(t)

Stalien(exec, τ, xσ)

We distinguish several cases.

Case t ∈ Y. In such a case, we can easily conclude thanks to Lemma B.4 (Item 3). Indeed,
we have that:

Stalien(exec, tσ) ⊆ comp(tσ) ∪ Stalien(exec, τ, tσ) = comp(tσ) ∪
⋃

x∈vars(t)

Stalien(exec, τ, xσ)

Case t ∈ N . Then tσ = t, Stalien(exec, tσ) = {tσ}, and comp(tσ) = {tσ}. Thus, we have
that:

Stalien(exec, tσ) = {tσ} ⊆ comp(tσ) ∪
⋃

x∈vars(t)

Stalien(exec, τ, xσ)
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Case t ∈ A or t = f(a1, . . . , an) for some f ∈ {shk, pub, priv}. In such a case, vars(t) = ∅
and thus Stalien(exec, tσ) = ∅. This allows us to conclude.

Case t = 〈t1, t2〉. Then we have that Stalien(exec, tσ) = Stalien(exec, t1σ) ∪ Stalien(exec, t2σ).
Applying our induction hypothesis, we deduce that

Stalien(exec, tiσ) ⊆ comp(tiσ) ∪
⋃

x∈vars(ti)

Stalien(exec, τ, xσ) for i ∈ {1, 2}.

Hence, we conclude that Stalien(exec, tσ) ⊆ comp(tσ) ∪
⋃

x∈vars(t)

Stalien(exec, τ, xσ)

Case t = f(t1, . . . , tn) for some f ∈ {encs, enca, sign, h}. Let τ ′ = HeadTag(exec, tσ). We
have that Stalien(exec, tσ) = {tσ} ∪

⋃
i∈{1,...,n}

Stalien(exec, τ
′, tiσ). By construction of tr, for all

subterms u ∈ CryptSt(tr, sid), HeadTag(exec, uσ) = τ , thus τ ′ = τ . Thanks to Lemma B.4
(Item 2), we have that Stalien(exec, tσ) ⊆ {tσ} ∪

⋃
i∈{1,...,n}

Stalien(exec, tiσ). We have that

comp(tσ) = {tσ} and thanks to our induction hypothesis we have for each i ∈ {1, . . . , n}
the following inclusion

Stalien(exec, tiσ) ⊆ comp(tiσ) ∪
⋃

x∈vars(ti)

Stalien(exec, τ, xσ)

Thus, Stalien(exec, tσ) ⊆ comp(tσ) ∪
⋃

i∈{1,...,n}

comp(tiσ) ∪
⋃

x∈vars(t)

Stalien(exec, τ, xσ).

Now, in order to conclude, it remains to show that for all u ∈ Stalien(exec, tσ), if u ∈⋃
i∈{1,...,n}

comp(tiσ) then there exists x ∈ vars(t) such that u ∈ Stalien(exec, τ, xσ). First, we

notice the following:

Stalien(exec, tσ) = {tσ} ∪
⋃

i∈{1,...,n}

Stalien(exec, τ
′, tiσ) (Definition B.1)

= {tσ} ∪
⋃

i∈{1,...,n}

⋃
w∈comp(tiσ)

Stalien(exec, τ
′, w) (Lemma B.4)

= {tσ} ∪
⋃

i∈{1,...,n}

⋃
v∈comp(ti)

⋃
w∈comp(vσ)

Stalien(exec, τ
′, w) (Definition B.3)

= {tσ} ∪
⋃

i∈{1,...,n}

⋃
v∈comp(ti)

Stalien(exec, τ
′, vσ) (Lemma B.4)

Let i ∈ {1, . . . , n} be such that u ∈ Stalien(exec, tσ) and u ∈ comp(tiσ). In that case,
according to the equation stated above, there exists j ∈ {1, . . . , n} such that v ∈ comp(tj)
and u ∈ Stalien(exec, τ

′, vσ). We now proceed by case analysis on v:

• Case v ∈ A or v = f(a1, . . . , an) for some f ∈ {pub, priv, shk}. In such a case, we have
that Stalien(exec, τ

′, vσ) = ∅. Thus, this case in not possible.
• Case v ∈ N . In such a case, we have that u = v and by construction of tr we have that
v = nsidy for some variable y. Since, τ = τ ′, we have that Stalien(exec, τ

′, vσ) = ∅. Thus,
this case is not possible.

• Case v = g(v1, . . . , vm) for some g ∈ {encs, enca, sign, h}. In such a case, we have that
u = vσ and by construction of tr we know that HeadTag(exec, vσ) = HeadTag(exec, tσ) =
τ(= τ ′). Hence, we deduce that vσ 6∈ Stalien(exec, τ

′, vσ), and thus u 6∈ Stalien(exec, τ
′, vσ)

leading again to a contradiction.
• Case v is a variable. In such a case, we have that v ∈ vars(tj) ⊆ vars(t). Hence, we have
the expected conclusion.

Altogether, this allows us to conclude that
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Stalien(exec, tσ) ⊆ comp(tσ) ∪
⋃

x∈vars(t)

Stalien(exec, τ, xσ).

Lemma B.8. Let Π be a k-party protocol and exec = [esid1
1 ; . . . ; esidℓ

ℓ ] be an execution

trace of Π̃, w.r.t. some set T0 of ground atoms, associated to the symbolic trace tr =

[eesid1
1 ; . . . ; eesid ℓ

ℓ ]. Let σ be the substitution such that dom(σ) = vars(tr) and exec = trσ.
Let sid be a session identifier, x be a variable in vars(tr, sid), τ = ExpectedTag(exec, sid),
and u ∈ St(tr) such that x ∈ vars(u). We have that Stalien(exec, τ, xσ) ⊆ Stalien(exec, τ, uσ).

Proof. Let u be a subterm of tr such that x ∈ vars(u). We prove the result by struc-
tural induction on u. First, note that by construction of tr, we have that vars(tr, sid ′) ∩

vars(tr, sid ′′) = ∅ when sid ′ 6= sid ′′. Hence, for all i ∈ {1, . . . , ℓ} if x ∈ vars(eesid i

i ), then

sid i = sid ; and thus, for all i ∈ {1, . . . , ℓ} such that u ∈ St(eesid i

i ), we know that sid i = sid .
Now, since x ∈ vars(u), we know that u is not ground, and we only need to consider the
three following cases:

Case u ∈ Y. In this case u = x, and the result trivially holds.

Case u = 〈u1, u2〉 for some terms u1 and u2. In that case, x ∈ vars(u1) or x ∈ vars(u2).
Assume that x ∈ vars(u1). The other case can be handled in a similar way. By induc-
tion hypothesis, we know that Stalien(exec, τ, xσ) ⊆ Stalien(exec, τ, u1σ) and we have that
Stalien(exec, τ, uiσ) ⊆ Stalien(exec, τ, uσ). Combining these two we easily conclude.

Case u = f(u1, . . . , un) for some f ∈ {encs, enca, sign, h} and some terms u1, . . . , un. In that
case x ∈ vars(ui) for some i ∈ {1, . . . , n}. Let j ∈ {1, . . . , n} such that x ∈ vars(uj). Now,
by construction of tr, we know that HeadTag(exec, uσ) = ExpectedTag(exec, sid), hence we
have that Stalien(exec, τ, ujσ) ⊆ Stalien(exec, τ, uσ). Applying our induction hypothesis on
uj , we deduce that Stalien(exec, τ, xσ) ⊆ Stalien(exec, τ, ujσ). This allows us to conclude.

Now, we can show that the alien subterms that occur in a valid trace are deducible.

Lemma B.9. Let Π be a k-party protocol and exec = [esid1
1 ; . . . ; esidℓ

ℓ ] be an execution trace

of Π̃ that is valid w.r.t. some set T0 of ground atoms. Let i ∈ {0, . . . , ℓ}. We have that
K(execi) ∪ T0 ⊢ u for any u ∈ Stalien(exec,K(execi) ∪ T0).

Proof. Let tr = [eesid1
1 ; . . . ; eesidℓ

ℓ ] be the symbolic trace associated to exec. Let σ be the
substitution such that dom(σ) = vars(tr) and exec = trσ. We prove the result by induction
on i. The base case, where i = 0 is obvious since K(execi) = ∅ and Stalien(exec, T0) ⊆ T0.
Now, to deal with the inductive case, we distinguish three cases depending on the nature
of the last event in execi.

Case e
sidi

i = P(t1, . . . , tn). Then, we have that K(execi) = K(execi−1) and thus that
Stalien(exec,K(execi) ∪ T0) = Stalien(exec,K(execi−1) ∪ T0). Thanks to our induction hypoth-
esis, we know that K(execi−1) ∪ T0 ⊢ Stalien(exec,K(execi−1) ∪ T0)), thus we easily conclude.

Case esidi

i = rcv(t). This case is similar to the previous one.

Case esidi

i = snd(t). In such a case, we have that eesid i

i = snd(t′) for some term t′ such that
t = t′σ. Let u ∈ Stalien(exec,K(execi) ∪ T0)). The only case for which we can not easily
conclude by applying our induction hypothesis is when u ∈ Stalien(exec, t). So, assume that



DYNAMIC TAGS FOR SECURITY PROTOCOLS 37

u ∈ Stalien(exec, t). According to Lemma B.7, u ∈ comp(t′σ) ∪
⋃

x∈vars(t′)

Stalien(exec, τ, xσ)

where τ = ExpectedTag(exec, sid i). We distinguish two cases:

(1) u ∈ comp(t′σ). We have that t′σ = t ∈ K(execi) and thus K(execi) ∪ T0 ⊢ u.
(2) u ∈ Stalien(exec, τ, xσ) for some x ∈ vars(t′) and u 6∈ comp(t′σ). By the origination

property we know that there exists j < i such that sid j = sid i, ee
sidj

j = rcv(v′)

with x ∈ vars(v′), and thus that xσ ∈ St(v′σ). By Lemma B.8, we deduce that u ∈
Stalien(exec, τ, v

′σ), and thanks to Lemma B.4 (Item 2), we have that u ∈ Stalien(exec, v
′σ).

We can then apply our induction hypothesis in order to deduce that K(execj−1) ∪ T0 ⊢
w for any w ∈ Stalien(exec,K(execj−1) ∪ T0), and because exec is a valid trace, we
have also that K(execj−1) ∪ T0 ⊢ v′σ. Thus, according Lemma B.6, we deduce that
K(execj−1) ∪ T0 ⊢ w for any w ∈ Stalien(exec, v

′σ). In particular, we conclude that
K(execj−1) ∪ T0 ⊢ u.

Appendix C. Proofs of section 6.3

In order to show the validity of the resulting trace, we first characterize the subterms that
are abstracted by our transformation. Actually, we can show that those subterms are alien
subterms, and thus they enjoy the properties established in Appendix B.

Lemma C.1. Let Π be a k-party protocol, exec be an execution trace of Π̃, t be a term

and p be a position. If there exists sid such that (t
exec,sid

)|p ∈ Nǫ, then we have that
t|p ∈ Stalien(exec, t).

Proof. We will prove by induction on p that t|p ∈ Stalien(exec, t).

Base case p = ǫ. In that case, according to Definition 6.6, either t ∈ N , or t = f(t1, . . . , tn)
for some f ∈ {encs, enca, sign, h}. If t ∈ N , we have that Stalien(exec, t) = {t}, and thus
t|p = t|ǫ ∈ Stalien(exec, t). Otherwise, i.e. t = f(t1, . . . , tn) for some f ∈ {encs, enca, sign, h},
then we have that

Stalien(exec, t) = {t} ∪
⋃

i∈{1,...,n}

Stalien(exec, τ, ti)

where τ = HeadTag(exec, t). Hence, we have that t|p = t|ǫ ∈ Stalien(exec, t).

Inductive case p = i0 · q. First, note that t cannot be a long-term key, i.e. t is not a term of

the form pub(t′), priv(t′) or shk(t1, t2). Indeed, in such a case, (t
exec,sid

)|p 6∈ Nǫ for any sid .
This would contradict one of our hypothesis. Thus, two cases remain:

Case t = 〈t1, t2〉. By Definition 6.6, t
exec,sid

= 〈t1
exec,sid

, t2
exec,sid

〉. Suppose i0 = 1.

Then (t1
exec,sid

)|q ∈ Nǫ, and thanks to our induction hypothesis we can derive that t1|q ∈
Stalien(exec, t1). We have that Stalien(exec, t) = Stalien(exec, t1) ∪ Stalien(exec, t2), thus t1|q ∈
Stalien(exec, t). Finally, since t1|q = t|1·q = t|p we can conclude that t|p ∈ Stalien(exec, t). The
case where i0 = 2 can be done in a similar way.

Case t = f(t1, . . . , tn) for some f ∈ {encs, enca, sign, h}. Since (t
exec,sid

)|i0.q ∈ Nǫ, we know

that (t
exec,sid

)|ǫ 6∈ Nǫ. Hence, by Definition 6.6, we have that

• t
exec,sid

= f(t1
exec,sid

, . . . , tn
exec,sid

);
• HeadTag(exec, t) = ExpectedTag(exec, sid) 6= ⊥; and
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• (t
exec,sid

)|i0.q = (ti0
exec,sid

)|q.

Hence, we have that (ti0
exec,sid

)|q ∈ Nǫ. Thanks to our induction hypothesis, we deduce
that ti0 |q ∈ Stalien(exec, ti0). Applying Lemma B.5, we conclude that ti0 |q ∈ comp(ti0) ∪
Stalien(exec, t).

In order to conclude, it is sufficient to show that if ti0 |q ∈ comp(ti0), then we also have
that ti0 |q ∈ Stalien(exec, t). Assume that ti0 |q ∈ comp(ti0). First, let τ = HeadTag(exec, t),
thanks to Lemma B.4 (item 1), we have that:

Stalien(exec, t) = {t} ∪
⋃

j∈{1,...,n}

Stalien(exec, τ, tj) = {t} ∪
n⋃

i=1

⋃

t′j∈comp(tj )

Stalien(exec, τ, t
′
j)

Hence, we have that Stalien(exec, τ, (ti0)|q) ⊆ Stalien(exec, t). To conclude, it is hence enough

to show that ti0 |q ∈ Stalien(exec, τ, ti0 |q). Since (t
exec,sid

)|p = (t
exec,sid

)|i0.q = (ti0
exec,sid

)|q ∈
Nǫ, we need to distinguish three cases:

• Case (ti0)|q ∈ Nǫ. In such a case, we have that Stalien(exec, τ, (ti0)|q) = {(ti0)|q)}.

• Case (ti0)|q ∈ N r Nǫ. In such a case, we have that (ti0)|q = nsid
′

y for some sid′ 6∈
sameTagAs(exec, sid), thus Stalien(exec, τ, (ti0)|q) = {(ti0)|q)}.

• Case (ti0)|q = g(u1, . . . , um) for some g ∈ {encs, enca, sign, h}. In such a case, we have
that HeadTag(ti0 |q) 6= τ , and thus

Stalien(exec, τ, (ti0)|q) = {(ti0)|q)} ∪
⋃

j∈{1,...,m}

Stalien(exec,HeadTag(ti0 |q), uj).

We show that our transformation preserves disequalities even if terms are not abstracted
using the same session identifier. This result can be proved by structural induction on
mexec,sid .

Lemma C.2. Let Π be a k-party protocol and exec = [esid1
1 ; . . . ; esidℓ

ℓ ] be a valid execution

trace of Π̃, w.r.t. some initial intruder knowledge T0. Let m and m′ be two terms such that

m 6= m′, and sid, sid ′ be two session identifiers. We have that mexec,sid 6= m′exec,sid
′

.

Lemma 6.12. Let Π be a k-party protocol and exec = [esid1
1 ; . . . ; esidℓ

ℓ ] be a valid execution

trace of Π̃, w.r.t. some set T0 of ground atoms. Let i ∈ {0, . . . , ℓ} and t be a term such that

K(execi) ∪ T0 ⊢ t. We have that K(execi) ∪ T0 ⊢ t
exec,sid

for any sid.

Proof. Let tr = [eesid1
1 ; . . . ; eesid ℓ

ℓ ] be the symbolic trace associated to exec and σ be the
substitution such that dom(σ) = vars(tr) and exec = trσ. Let i ∈ {0, . . . , ℓ}. Let π be

a simple proof of K(execi) ∪ T0 ⊢ t. We prove that K(execi) ∪ T0 ⊢ t
exec,sid

by induction
on (i, π). If i = 0 and π is a simple proof reduced to a leaf (possibly followed by some
projection rules), then we have that T0 ⊢ t, and π is necessarily reduced to a leaf since T0
only contains atomic terms. Let sid be a session identifier, we have that t

exec,sid
∈ {t} ∪Nǫ.

This allows us to conclude that T0 ⊢ t
exec,sid

Now, we distinguish several cases depending
on the last rule of π.

The proof π ends with an instance of a composition rule, i.e. t = f(t1, . . . , tn) for some
f ∈ {〈, 〉, encs, enca, sign, h} and some terms t1, . . . , tn.

According to Definition 6.6, we have that t
exec,sid

∈ Nǫ ∪ {f(t1
exec,sid

, . . . , tn
exec,sid

)}.

If t
exec,sid

∈ Nǫ, we easily conclude that K(execi) ∪ T0 ⊢ t
exec,sid

. Otherwise, since π
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ends with a composition rule, we have that K(execi) ∪ T0 ⊢ t1, . . . , K(execi) ∪ T0 ⊢
tn. Moreover, the simple proofs witnessing these facts are strict subproofs of π that are
also simple. Hence, we can apply our induction hypothesis in order to conclude that

K(execi) ∪ T0 ⊢ t1
exec,sid

, . . . , K(execi) ∪ T0 ⊢ tn
exec,sid

. This allows us to conclude that

K(execi) ∪ T0 ⊢ f(t1
exec,sid

, . . . , tn
exec,sid

).

The proof ends with the application of a decomposition rule (but not a projection) possibly
followed by several applications of the projection rules until the resulting term is not a
pair. We will here present the case of the symmetric decryption rule, but all the other
decomposition rules (including the case where the proof is reduced to a leaf) can be handled
in a similar way. For some terms t1 and t2, the proof π is of the form

...

K(execi) ∪ T0 ⊢ encs(t1, t2)

...

K(execi) ∪ T0 ⊢ t2

K(execi) ∪ T0 ⊢ t1

...

K(execi) ∪ T0 ⊢ t

Let us first note that, by locality (Lemma 6.11) and by simplicity of π we know that
encs(t1, t2) ∈ St(K(execi))∪T0 ∪Kǫ ∪Nǫ ∪{pub(a) | a ∈ A}, and by atomicity of T0, Nǫ, Kǫ

and {pub(a) | a ∈ A}, we know that encs(t1, t2) ∈ St(K(exec)). (In case of a proof reduced
to a leaf, and if there is no projection rule, we may have that t ∈ T0. In such a case, as in

the base case, we have that T0 ⊢ t
exec,sid

and we easily conclude.) Hence, there exists k ≤ i

such that esidk

k = snd(u) and encs(t1, t2) ∈ St(u). Let k0 be the smallest such k and u0, u
′
0

be such that e
sidk0
k0

= snd(u0) and ee
sidk0
k0

= snd(u′0). Hence, we have that u0 = u′0σ.

In order to prove the result, we first establish the following claim.

Claim: We have that encs(t1, t2)
exec,sidk0 = encs(t1

exec,sidk0 , t2
exec,sidk0 ).

Assume by contradiction, that this equality does not hold.

First, we have that encs(t1
exec,sidk0 , t2

exec,sidk0 ) 6∈ St(u0
exec,sidk0 ). Indeed, for hav-

ing encs(t1
exec,sidk0 , t2

exec,sidk0 ) ∈ St(u0
exec,sidk0 ), there must exist v ∈ St(u0) such that

vexec,sidk0 = encs(t1
exec,sidk0 , t2

exec,sidk0 ). But this would imply that v = encs(t′1, t
′
2) for some

terms t′1, t
′
2 such that t′1

exec,sidk0 = t1
exec,sidk0 and t′2

exec,sidk0 = t2
exec,sidk0 . However this

would in turn imply according to Lemma C.2 that t′1 = t1 and t′2 = t2. In other words

we would have v = encs(t1, t2) ∈ St(u0) but with vexec,sidk0 = encs(t1
exec,sidk0 , t2

exec,sidk0 )

which would contradict our hypothesis. Hence, necessarily encs(t1
exec,sidk0 , t2

exec,sidk0 ) 6∈
St(u0

exec,sidk0 ).

Now since encs(t1
exec,sidk0 , t2

exec,sidk0 ) 6∈ St(u0
exec,sidk0 ), while encs(t1, t2) ∈ St(u0), there

must exist a position p (smaller or equal to the position where encs(t1, t2) occurs in u0)

such that (u0
exec,sidk0 )|p ∈ Nǫ and encs(t1, t2) = u0|p. Hence, Lemma C.1 tells us that

u0|p ∈ Stalien(exec, u0). Thanks to Lemma B.7 and Lemma B.4 (Item 2), we conclude that:

u0|p ∈ comp(u0) ∪
⋃

x∈vars(u′
0)

Stalien(exec, xσ)
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We now distinguish two cases and show that each case leads us to a contradiction.
Case 1: u0|p ∈ comp(u0) r

⋃
x∈vars(u′

0)

Stalien(exec, xσ). In such a case, there exists u′′0 ∈

comp(u′0) such that u0|p ∈ comp(u′′0σ). But because we are considering the case where
u0|p 6∈

⋃
x∈vars(u′

0)

Stalien(exec, xσ), it must be that u0|p = u′′0σ. Now, by construction of tr, it

must be that ExpectedTag(exec, sidk0) = HeadTag(exec, u′′0σ), and thus (u0)|p
exec,sidk0 6∈ Nǫ.

Finally, because (u0)|p ∈ comp(u0), we have that (u0
exec,sidk0 )|p = (u0)|p

exec,sidk0 . How-

ever, this equality is not possible since we have shown that (u0
exec,sidk0 )|p ∈ Nǫ whereas

(u0)|p
exec,sidk0 6∈ Nǫ. Hence, we obtain a contradiction.

Case 2: u0|p ∈
⋃

x∈vars(u′
0)

Stalien(exec, xσ). In such a case, there exists x ∈ vars(u′0) such that

u0|p ∈ Stalien(exec, xσ) and encs(t1, t2) ∈ St(xσ). Thanks to the origination property (see

Definition 3.2 - Condition 1), we know that there exists j < k0 such that ee
sidj

j = rcv(v′)

and x ∈ vars(v′). Hence, we have that encs(t1, t2) ∈ St(v′σ). Since exec is a valid trace, we
have that K(execj−1) ∪ T0 ⊢ v

′σ.
Let π′ be a simple proof of K(execj−1) ∪ T0 ⊢ v′σ, and π′′ be a minimal subproof of

π′ whose root is labeled with a term t′ such that encs(t1, t2) ∈ St(t′). By locality of π′

(Lemma 6.11), and because encs(t1, t2) 6∈ St(K(execj−1)) (remember here that we choose
k0 such that for all j < k0, we have that encs(t1, t2) 6∈ St(K(execj−1))), we know that π′′

ends with a composition rule. Unless t′ = encs(t1, t2), this contradicts the minimality of
π′′. Hence, we have that t′ = encs(t1, t2) and π

′′ is a simple proof of encs(t1, t2) whose last
rule is a composition. Actually, since encs(t1, t2) 6∈ St(K(execj−1)∪ T0), any simple proof of
encs(t1, t2) ends with a composition. This will contradict the fact that π is a simple proof
of t.

This allows us to conclude the proof of the claim.

Now, by relying on our claim and by applying our induction hypothesis, we have that:

• K(execi) ∪ T0 ⊢ encs(t1
exec,sidk0 , t2

exec,sidk0 ); and

• K(execi) ∪ T0 ⊢ t2
exec,sidk0 .

This allows us to deduce that K(execi) ∪ T0 ⊢ t1
exec,sidk0 .

In order to establish that K(execi) ∪ T0 ⊢ t
exec,sid

, we need to distinguish several cases:

Case t ∈ A, t = pub(a) or t = f(a1, . . . , an) for some f ∈ {shk, priv}:

In such a case, we have that t
exec,sid

= t
exec,sidk0 = t. Hence, we have that K(execi)∪T0 ⊢

t
exec,sid

by applying some projection rules on the proof of K(execi) ∪ T0 ⊢ t1
exec,sidk0 .

Case t ∈ N or t = f(t′1, . . . , t
′
m) for some f ∈ {encs, enca, h, sign}:

If t
exec,sid

∈ comp(t1
exec,sidk0 ), then we easily conclude that K(execi) ∪ T0 ⊢ t

exec,sid

since we have established that K(execi) ∪ T0 ⊢ t1
exec,sidk0 . Otherwise, we have that

t
exec,sid

6∈ comp(t1
exec,sidk0 ). In that case, and according to Definition 6.6 and Lemma B.4

(item 1), either t
exec,sid

∈ Nǫ or t
exec,sidk0 ∈ Nǫ. In the first case, we trivially con-

clude. In the second case, i.e. t
exec,sid

6∈ Nǫ but t
exec,sidk0 ∈ Nǫ, we have that t ∈

Stalien(exec, encs(t1, t2)) (thanks to Lemma C.1. Since encs(t1, t2) ∈ St(u0), we de-
duce that t ∈ Stalien(exec, u0) ∪ comp(encs(t1, t2)) by applying Lemma B.5. Now, since
t 6= encs(t1, t2), we deduce that t ∈ Stalien(exec, u0). Thus, applying Lemma B.7, we have
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that
t ∈ Stalien(exec, u0) ⊆ comp(u0) ∪

⋃

x∈vars(u′
0)

Stalien(exec, τ, xσ)

where τ = ExpectedTag(exec, sidk0).
Assume that t ∈ comp(u0) and t 6∈ Stalien(exec, τ, xσ) for any x ∈ vars(u′0). In such a

case, we have that there exists t′ ∈ comp(u′0) such that t ∈ comp(t′σ) and we know that
t′ 6∈ vars(u′0). Hence t is either a nonce and we have that t = t′. Moreover, we know that

t′ = ny
sidk0 for some y (by construction of tr. In such a case, t

exec,sidk0 6∈ Nǫ. This leads
us to a contradiction. Otherwise t is an encrypted term and we have that t = t′σ and

again by construction of tr, we have that t′σ
exec,sidk0 6∈ Nǫ, leading us to a contradiction.

Hence, we know that this case is not possible.
Hence, we have that t ∈ Stalien(exec, τ, xσ) for some x ∈ vars(u′0). Thanks to the

origination property, we know that there exists j < k0 such that sid j = sidk0 , ee
sidj

j =

rcv(v′) with x ∈ vars(v′). Hence, we have that xσ ∈ St(v′σ). Then, applying Lemma B.8,
we deduce that t ∈ Stalien(exec, τ, v

′σ), and thanks to Lemma B.4 (item 2), we have that
t ∈ Stalien(exec, v

′σ).
Now, according to Lemma B.9, we know that K(execj−1) ∪ T0 ⊢ w for any w ∈

Stalien(exec,K(execj−1) ∪ T0). Since exec is a valid trace, we have that K(execj−1)∪ T0 ⊢
v′σ. Applying Lemma B.6, we deduce that K(execj−1)∪T0 ⊢ w for any w ∈ Stalien(exec, v).
In particular, we have that K(execj−1) ∪ T0 ⊢ t and we conclude by relying on our
induction hypothesis.

Appendix D. Proofs of Section 6.4

In order to prove Proposition 6.14 we will annotate formulas. For the sake of homogeneity,
we chose to annotate each term that occurs in the formula even though it would have been
sufficient to only annotate variables. Moreover, we state the definition for a general formula,
but in our setting, terms that occur in a formula are either names or variables.

Definition D.1. (annotated formula) Given a formula φ, we define its annotated version
annotate(φ) as follows:

annotate(true) = true

annotate(¬φ) = ¬annotate(φ)
annotate(learn(t)) = learn(tt)
annotate(C(u)) = C(uu)

annotate(Q(t1, . . . , tn)) = Q(tt11 , . . . , t
tn
n )

annotate(φ1 ∨ φ2) = annotate(φ1) ∨ annotate(φ2)
annotate(♦φ) = ♦annotate(φ)
annotate(∃x.φ) = ∃x.annotate(φ)

We emphasize that those annotations are syntactic decorations that do not interfere in
the semantics of the formulas. We also suppose that these annotations are not affected by
substitutions, i.e., when x is a variable annotated with a, (xa)σ = (xσ)a. Relying on this
notion of annotated formulas, we are now able to link each variable that occurs in φ with
the term it has been substituted with in order to satisfy the formula. More precisely, we
only need to know the session identifiers from which those terms are issued. The idea is
that these sessions are important to satisfy the attack formula whereas the other ones could
be discarded from the execution trace.
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Definition D.2. Let φ be an attack formula and ψ its annotated version, i.e. ψ =

annotate(φ). Let Π be a protocol, and exec = [esid1
1 ; . . . ; esidℓ

ℓ ] be an execution trace (not nec-
essarily valid) of Π w.r.t. some initial intruder knowledge T0 and such that 〈exec, T0〉 |= ψ.
Let π be a proof tree witnessing the fact that 〈exec, T0〉 |= ψ. We define µ(π) as described
in Figure 2.

Intuitively, µ(π) maps variables occurring positively in a status event in the attack
formula φ to session identifiers. Note also that since by definition of an attack formula each
variable occurs at most once in a positive status event and by Condition 4 of Definition 4.3,
we have that µ(π) is actually a function.

Proposition 6.14. Let Π be a protocol, exec be an execution trace of Π̃ w.r.t. some initial
intruder knowledge T0, and φ be an attack formula. We have that

〈exec, T0〉 |= φ ⇒ 〈exec, T0〉 |= φ.

Proof. Let exec = [esid1
1 , . . . , esidℓ

ℓ ] for some ℓ, and some session identifiers sid1, . . . , sid ℓ. By
definition of an attack formula, φ is of the form

φ = ∃x1. . . . .∃xn.ψ

for some quantifier-free formula ψ. Now, according to the semantics of L, 〈exec, T0〉 |= φ
implies that there exists n ground terms m1, . . . , mn such that there exists a proof π of
〈exec, T0〉 |= φ of the form:

π =

. . .

〈exec, T0〉 |= ψaσ

〈exec, T0〉 |= φa

where σ = {x1 7→ m1, . . . , xn 7→ mn} and φa = ∃x1. . . . .∃xn.ψ
a = annotate(φ). Let σ =

{x1 7→ m1
exec,sid ′

1 , . . . , xn 7→ mn
exec,sid ′

n} where sid ′
j = µ(π)(xj) when xj ∈ dom(µ(π)) and

0 otherwise.
Note that all except the last two nodes of π are labeled with 〈execi, T0〉 |= ψ′σ where

i ≤ length(exec) and ψ′ is smaller than ψ. Thus, the proof tree is finite. Moreover, by
definition of µ, we have that any leaf of π of the form 〈execi, T0〉 |= Q(u1, . . . , uk)σ is such
that µ(π)(x) = sid i for any x ∈ vars({u1, . . . , uk}). We prove that the proof tree obtained
from π by replacing each node labeled with 〈execi, T0〉 |= ψ′σ by 〈execi, T0〉 |= ψ′σ is a
(valid) proof tree witnessing the fact that 〈exec, T0〉 |= ψaσ.

Base cases: the leaves of the proof tree π. In such a case, we have 〈execi, T0〉 |= ψ0σ for a
formula ψ0 of the form true, C(x), ¬C(x), learn(u0), Q(u1, . . . , uk), or ¬Q(u1, . . . , uk).

• ψ0 = true: in such a case, we easily conclude.
• ψ0 = C(x) (resp. ¬C(x)): in such a case, we have that C(xσ) = C(xσ) since aexec,sid = a
for any agent name a and any sid , and since the semantics of C does not rely on the
execution trace, we can also easily conclude in this case.

• ψ0 = learn(u0): in such a case, by definition of an attack formula, we know that u0 is
either an agent name (in such a case, we easily conclude) or a variable in {x1, . . . , xn}.
Let j be such that u0 = xj. By hypothesis, we have that T0 ∪K(execi) ⊢ u0σ. According
to Lemma 6.12, we know that T0∪K(execi) ⊢ u0σ

exec,sid for any sid , and thus in particular

for sid ′
j . Actually, we have that xjσ

exec,sid ′
j = xjσ(= mj

exec,sid ′
j), and this allows us to

conclude that 〈execi, T0〉 |= learn(u0)σ.
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µ
(
〈execi, T0〉 |= true

)
= ∅ µ

(
〈execi, T0〉 |= learn(tu)

)
= ∅

µ
(
〈execi, T0〉 |= C(uv)

)
= ∅ µ

(
〈execi, T0〉 |= ¬C(uv)

)
= ∅

µ

(

〈execi, T0〉 |= ¬Q(tu1
1 , . . . , t

un
n )

)
= ∅

µ

(

〈execi, T0〉 |= Q(tu1
1 , . . . , t

un
n )

)
= {(u′1, sid i); ..., (u

′
m; sid i)}

where vars({u1, . . . , un}) = {u′1, . . . , u
′
m}

µ




π′

〈execi, T0〉 |= ψj

〈execi, T0〉 |= ψ1 ∨ ψ2


 = µ

(
π′

〈execi, T0〉 |= ψj

)
with j ∈ {1, 2}

µ




π1

〈execi, T0〉 |= ¬ψ1

π2

〈execi, T0〉 |= ¬ψ2

〈execi, T0〉 |= ¬(ψ1 ∨ ψ2)


 =

⋃
j∈{1,2} µ

( πj

〈execi, T0〉 |= ¬ψj

)

µ




π′

〈execj , T0〉 |= ψ

〈execi, T0〉 |= ♦ψ


 = µ

(
π′

〈execj , T0〉 |= ψ

)
where j ≤ i

µ




π1

〈exec1, T0〉 |= ¬ψ . . .

πi

〈execi, T0〉 |= ¬ψ

〈execi, T0〉 |= ¬(♦ψ)


 =

⋃
i∈{1,...,i}

µ

( πi

〈execi, T0〉 |= ¬ψ

)

µ




π′

〈execi, T0〉 |= ψ{t/x}

〈execi, T0〉 |= ∃x.ψ


 = µ

(
π′

〈execi, T0〉 |= ψ{t/x}

)

µ




π′

〈execi, T0〉 |= ψ

〈execi, T0〉 |= ¬¬ψ


 = µ

(
π′

〈execi, T0〉 |= ψ

)

Figure 2: Definition of the function µ

• ψ0 = Q(u1, . . . , uk): in such a case, we know that each uj is either an agent name or a

variable, and we have that ujσ = tj for any j ∈ {1, . . . , k} where esidi

i = Q(t1, . . . , tk).
By definition of µ, we have that either uj is an agent name or uj is a variable and
µ(π)(uj) = sid i. In order to conclude that 〈execi, T0〉 |= Q(u1, . . . , uk)σ, we have to show

that tj
exec,sidi = ujσ. Let j ∈ {1, . . . , k}. By hypothesis, we have that ujσ = tj , and
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thus ujσ
exec,sidi = tj

exec,sidi . We distinguish two cases. Either uj is an agent name, and

we have that ujσ
exec,sidi = uj = ujσ. Otherwise, uj is a variable, and we also have that

ujσ
exec,sidi = ujσ since by definition of µ, we have that µ(π)(uj) = sid i.

• ψ0 = ¬Q(u1, . . . , uk): in such a case, we know that each uj is either an agent name

or a variable, and we have that either execi = [] or Q(u1, . . . , un)σ 6= e
sidi

i . In the
first case, we have that execi = [] and we easily conclude. From now on, assume that

Q(u1, . . . , un)σ 6= esid i

i . If esid i

i 6= Q(t1, . . . , tk) for any terms t1, . . . , tk, then it is easy to

see that esid i

i

exec,sidi

6= Q(u1, . . . , uk)σ and this allows us to conclude. Now, assume that

esidi

i = Q(t1, . . . , tk) for some terms t1, . . . , tk. In such a case, there exists j ∈ {1, . . . , k}

such that ujσ 6= tj . Using Lemma C.2, we deduce that ujσ
exec,µ(uj) 6= tj

exec,sidi , and

by definition of µ we have that ujσ = ujσ
exec,µ(uj). This allows us to conclude that

Q(u1, . . . , uk)σ 6= Q(t1, . . . , tk)
exec,sidi

, and thus 〈execi, T0〉 |= ψ0σ.

Inductive cases. In such a case, we have that 〈execi, T0〉 |= ψ0σ for a formula ψ0 of the form
¬¬ψ′

0, ψ1 ∨ ψ2, ¬(ψ1 ∨ ψ2), ♦ψ
′
0, or ¬♦ψ

′
0.

• ψ0 = ¬¬ψ′
0: in such a case, we have that 〈execi, T0〉 |= ψ′

0σ, and using our induction
hypothesis we conclude that 〈execi, T0〉 |= ψ′

0σ, and thus 〈execi, T0〉 |= ¬¬ψ′
0σ = ψ0σ.

• ψ0 = ψ1 ∨ ψ2: in such a case, we have that 〈execi, T0〉 |= ψjσ for some j ∈ {1, 2}, and
using our induction hypothesis we conclude that 〈execi, T0〉 |= ψjσ, and thus 〈execi, T0〉 |=
(ψ1 ∨ ψ2)σ = ψ0σ.

• ψ0 = ¬(ψ1 ∨ ψ2): in such a case, we have that 〈execi, T0〉 |= ¬ψ′
jσ with j ∈ {1, 2}, and

using our induction hypothesis we conclude that 〈execi, T0〉 |= ¬ψjσ with j ∈ {1, 2}, and
thus 〈execi, T0〉 |= ¬(ψ1 ∨ ψ2)σ = ψ0σ.

• ψ0 = ♦ψ′
0: in such a case, we have that 〈execj , T0〉 |= ψ′

0σ for some j ≤ i, and using our
induction hypothesis, we conclude that 〈execj, T0〉 |= ψ′

0σ, and thus 〈execi, T0〉 |= ♦ψ′
0σ =

ψ0σ.
• ψ0 = ¬♦ψ′

0: in such a case, we have that 〈execj , T0〉 |= ¬ψ′
0σ for any j ∈ {1, . . . , j},

and using our induction hypothesis, we conclude that 〈execj , T0〉 |= ¬ψ′
0σ, and thus

〈execi, T0〉 |= ¬♦ψ′
0σ = ψ0σ.

Appendix E. Proofs of Section 7

This appendix contains the proofs of Section 7. Actually, Section E.1 contains the proofs
related to the validity of the resulting trace exec|S whereas Section E.2 contains those related
to the satisfiability of the attack formula.

E.1. Validity of the resulting trace. In order to preserve the validity of the resulting
trace, it is important to show that sessions that are not tagged in the same way cannot
share any name. This is the purpose of the following lemma.
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Lemma 7.2. Let Π be a k-party protocol, and exec = [esid1
1 ; . . . ; esidℓ

ℓ ] be a well-formed valid

execution of Π̃ w.r.t. some set T0 of ground atoms. Let sess1 and sess2 be two session
identifiers. We have that:

sameTagAs(exec, sess1) 6= sameTagAs(exec, sess2)
implies

names(exec, sess1) ∩ names(exec, sess2) = ∅

where names(exec, sess) = {u | u ∈ names(e
sidj

j ) for some 1 ≤ j ≤ ℓ such that sid j = sess}.

Proof. Let sess1 and sess2 be two sessions and n be a name such that:

• sameTagAs(exec, sess1) 6= sameTagAs(exec, sess2); and
• n ∈ names(exec, sess1) ∩ names(exec, sess2).

Let S = sameTagAs(exec, sess1). According to Condition 3 of well-formedness (Defini-

tion 6.4), n ∈ names(exec, sess1) implies that either n is of the form nǫ,St or of the form
nsidt for some term t and session identifier sid ∈ S. We treat these two cases separately:

Case n = nǫ,St : According to Condition 3 of well-formedness (Definition 6.4), we obtain

nǫ,St ∈ names(exec, sess2) implies that S = sameTagAs(exec, sess2). But this contradicts
the hypothesis sameTagAs(exec, sess1) 6= sameTagAs(exec, sess2).

Case n = nsidt : In that case, sid ∈ S and sameTagAs(exec, sid) = sameTagAs(exec, sess1).
Now, according to Condition 3 of well-formedness (Definition 6.4), we have that nsidt ∈
names(exec, sess2) implies that sid ∈ sameTagAs(exec, sess2). However, this means that
sameTagAs(exec, sid) = sameTagAs(exec, sess2) which contradicts our hypothesis.

By contradiction we conclude that names(exec, sess1) ∩ names(exec, sess2) = ∅.

Now, provided that S and t satisfy some conditions, we show that a term t that was
deducible from exec will still be deducible from exec|S .

Lemma 7.3. Let Π be a k-party protocol, and exec = [esid1
1 ; . . . ; esidℓ

ℓ ] a well-formed valid

execution of Π̃ w.r.t. some set T0 of ground atoms, and such that T0 ∪ K(exec) 6⊢ k for any
k ∈ lgKeys r (Kǫ ∪T0) (exec does not reveal any long term keys). Let S be a set of sessions
such that:

for all session identifiers sess1 and sess2 such that sameTagAs(exec, sess1) =
sameTagAs(exec, sess2), we have that sess1 ∈ S if and only if sess2 ∈ S.

For all term t ∈ St(exec|S) such that T0 ∪ K(exec) ⊢ t, we have that T0 ∪ K(exec|S) ⊢ t.

Proof. Let sid ∈ S, t ∈ St(exec, sid), and π be a simple proof of T0 ∪ K(exec) ⊢ t. We
prove this result by structural induction on π. But, we first need to establish the following
preliminary result (still under the hypotheses stated in Lemma 7.3).

Claim. If names(t) ⊆ Nǫ then T0 ⊢ t.

Proof of the claim. Let us suppose that there exists u ∈ CryptSt(t). Because exec is well-
formed, we know by Conditions 1 and 2 of well-formedness (Definition 6.4) that t is k-tagged
and thus that u = f(〈τ, u1〉, . . . , un) with τ = ExpectedTag(exec, sid) 6= ⊥. Now, according
to the definition of a symbolic trace (Definition 3.5) and of our protocol transformation
(Definition 5.2), we know that there exists nsidv ∈ names(τ) ⊆ names(u) ⊆ names(t), which
contradicts the hypothesis that names(t) ⊆ Nǫ. Thus it must be that CryptSt(t) = ∅, and
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hence, t must be a tuple of atoms, i.e. a tuple of terms in A ∪ T0 ∪ Nǫ ∪ Kǫ ∪ {pub(a) |
a ∈ A} ∪ {priv(a), shk(a, b) | a, b ∈ A}. Now, because we only consider executions that do
not reveal any long-term decryption keys, we necessarily have that the atomic subterms of
t are in A∪ T0 ∪Nǫ ∪Kǫ ∪ {pub(a) | a ∈ A}. This implies according to Definition 2.2, that
any atomic subterm of t is deducible from T0. Finally, since t is a tuple of deducible terms,
t can be deduced by application of the pairing rule, and thus T0 ⊢ t.

We now proceed with our induction

Base case: π is reduced to a leaf: In that case, t ∈ A ∪ T0 ∪ Nǫ ∪ Kǫ ∪ {pub(a) | a ∈
A} ∪K(exec). If names(t) ⊆ Nǫ, then by the above claim we have that T0 ⊢ t, and thus

T0 ∪K(exec|S) ⊢ t. Let us now suppose that there exists nsid
′

v 6∈ Nǫ. In that case, nsid
′

v ∈

names(exec, sid) and t ∈ K(exec), i.e. there exists i ∈ {1, . . . , ℓ}, such that esidi

i = snd(t).

Thus, nsid
′

v ∈ names(exec, sid i) and hence names(exec, sid)∩names(exec, sid i) 6= ∅. This,
according to Lemma 7.2, implies that

sameTagAs(exec, sidi) = sameTagAs(exec, sid)

By hypothesis on S, we have sidi ∈ S, and by definition we have esid i

i ∈ exec|S , which
implies that t ∈ K(exec|S). We can thus conclude that T0 ∪ K(exec|S) ⊢ t.

Inductive case: In that case we need to distinguish two cases according to the last rule
applied in the proof π.
Case 1 – the last rule is a composition rule: We have that the term t is of the

form f(t1, . . . , tn), and the derivation T0 ∪ K(exec) ⊢ t is of the form

T0 ∪ K(exec) ⊢ t1 . . . T0 ∪ K(exec) ⊢ tn

T0 ∪ K(exec) ⊢ f(t1, . . . , tn)

For all i ∈ {1, . . . , n}, ti ∈ St(t) ⊆ St(exec, sid), and by induction hypothesis T0 ∪
K(exec|S) ⊢ ti. We can thus conclude that by application of the corresponding
composition rule. We have that:

T0 ∪ K(exec|S) ⊢ t1 . . . T0 ∪ K(exec|S) ⊢ tn

T0 ∪ K(exec|S) ⊢ f(t1, . . . , tn)

Case 2 – the last rule is a decomposition rule: We have that the proof tree wit-
nessing T0 ∪ K(exec) ⊢ t is of the form

T0 ∪ K(exec) ⊢ t1 . . . T0 ∪ K(exec) ⊢ tn

T0 ∪ K(exec) ⊢ t

If names(t) ⊆ Nǫ, then we have seen that T0 ⊢ t, and thus we conclude. Now, assume

that there exists nsid
′

v ∈ (names(t) r Nǫ) ⊆ names(exec, sid). By Definition of a

symbolic trace and of an execution trace (see Definition 3.5), nsid
′

v ∈ names(exec, sid ′).
Thus names(exec, sid) ∩ names(exec, sid ′) 6= ∅, and thanks to Lemma 7.2, we have
that: sameTagAs(exec, sid) = sameTagAs(exec, sid ′).

We need to prove that for all i ∈ {1, . . . , n}, T0∪K(exec|S) ⊢ ti. Since π is minimal, we
know by locality (Lemma 6.11) that ti ∈ St(T0∪Nǫ∪Kǫ∪K(exec))∪A∪{pub(a) | a ∈
A}. We consider two cases:
If names(ti) ⊆ Nǫ, then we have already established that T0 ⊢ ti, and thus T0 ∪
K(exec|S) ⊢ ti.
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Otherwise, there exists nsid
′′

w ∈ (names(ti) r Nǫ). In that case, ti ∈ St(K(exec)),

i.e. there exists k ∈ {1, . . . , ℓ} such that ti ∈ St(esidk

k ) ⊆ St(exec, sidk); and thus

nsid
′′

w ∈ names(exec, sidk). Moreover, by Definition of a symbolic trace and of an

execution trace (see Definition 3.5), nsid
′′

w ∈ names(exec, sid ′′). Hence, we have that
names(exec, sid ′′) ∩ names(exec, sidk) 6= ∅, which according to Lemma 7.2 implies
that

sameTagAs(exec, sid ′′) = sameTagAs(exec, sidk).

By inspection of the decomposition rules, we note that there must exist j ∈ {1, . . . , n},
such that for all i ∈ {1, . . . , n}, names(t) ∪ names(ti) ⊆ names(tj), and therefore

nsid
′

v , nsid
′′

w ∈ (names(tj) r Nǫ). Moreover, we have that tj ∈ St(K(exec)), i.e. there

exists h ∈ {1, . . . , ℓ} such that tj ∈ St(esidh

j ) ⊆ St(exec, sidh). Hence, nsid
′

v , nsid
′′

w ∈
names(exec, sidh), which according to Lemma 7.2 implies

sameTagAs(exec, sid ′) = sameTagAs(exec, sidh)
sameTagAs(exec, sid ′′) = sameTagAs(exec, sidh)

We therefore can infer that

sameTagAs(exec, sid) = sameTagAs(exec, sidk).

and by hypothesis on S that sidk ∈ S. We have thus demonstrated that ti ∈
St(exec, sidk) with sidk ∈ S, which according to our induction hypothesis implies
T0 ∪ K(exec|S) ⊢ ti.
Since for all i ∈ {1, . . . , n}, T0∪K(exec|S) ⊢ ti, we can conclude by application of the
corresponding decomposition rule that:

T0 ∪ K(exec|S) ⊢ t1 . . . T0 ∪ K(exec|S) ⊢ tn

T0 ∪ K(exec|S) ⊢ t

E.2. Satisfiability of the formula.

Lemma E.1. Let Π be a k-party protocol, φ a closed quantifier-free formula in L, and

exec = [esid1
1 ; . . . ; esidℓ

ℓ ] be a well-formed valid execution of Π̃ that satisfies φ, w.r.t. some set
T0 of ground atoms. Moreover, we assume that T0∪K(exec) 6⊢ k for any k ∈ lgKeysr(Kǫ∪T0)
(exec does not reveal any long term keys). Let S be a set of session identifiers such that:

(1) for all learn(t) that occurs positively in φ such that t 6∈ A ∪ lgKeys, there exists sid ∈ S
such that t ∈ St(exec, sid),

(2) Ws(exec, φ) ⊆ S, and
(3) ∀sess1, sess2 with ExpectedTag(exec, sess1) = ExpectedTag(exec, sess2), we have that

sess1 ∈ S if and only if sess2 ∈ S.

We have that exec|S is an execution of Π̃ that satisfies φ, i.e. 〈exec|S , T0〉 |= φ.

Proof. We prove this by induction on (ℓ, size(φ)) using the lexicographic ordering. Here, ℓ
denotes the length (i.e. number of events) of the trace exec and size(φ) is the size of φ (i.e.
number of symbols that occur in φ without counting the symbol ¬ and after elimination of
double negation, i.e., ¬¬ψ is rewritten in ψ).

We need to distinguish several base cases.
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Case |exec| = 0: In that case exec|S = exec, and thus by hypothesis if 〈exec, T0〉 |= φ, then
also 〈exec|S , T0〉 |= φ.

Case φ = true (resp. φ = ¬true): In such a case, we have that 〈exec|S , T0〉 |= φ. The case
where φ = ¬true is impossible.

Case φ = Q(t1, . . . , tn): If 〈exec, T0〉 |= φ, then e
sidℓ

ℓ = Q(t1, . . . , tn), and Ws(exec, φ) =
{sid ℓ} ⊆ S. By Definition 7.1, exec|S ends with the event Q(t1, . . . , tn). We can thus
conclude that 〈exec|S , T0〉 |= φ.

Case φ = ¬Q(t1, . . . , tn): If 〈exec, T0〉 |= ¬Q(t1, . . . , tn), we have that esidℓ

ℓ 6= Q(t1, . . . , tn),
and Ws(exec, φ) = {sid ℓ} ⊆ S (note that we have already considered the case where
exec = [], and thus now we assume that exec 6= []). We have that exec|S does not
end with Q(t1, . . . , tn). We can thus conclude that 〈exec|S , T0〉 |= ¬Q(t1, . . . , tn), i.e.
〈exec|S , T0〉 |= φ.

Case φ = learn(t): If 〈exec, T0〉 |= φ, then T0 ∪ K(exec) ⊢ t. If t ∈ A ∪ lgKeys, since exec

doesn’t reveal any long-term decryption key, T0 ⊢ t, and thus T0 ∪ K(exec|S) ⊢ t. If t 6∈
A ∪ lgKeys , then by hypothesis we know there exists sid ∈ S such that t ∈ St(exec, sid).
According to Lemma 7.3, since by hypothesis sid ∈ S, T0∪K(exec|S) ⊢ t. Hence, we can
conclude that 〈exec|S , T0〉 |= φ.

Case φ = ¬learn(t): If 〈exec, T0〉 |= ¬learn(t), then T0 ∪ K(exec) 6⊢ t. But since T0 ∪
K(exec|S) ⊆ T0 ∪ K(exec), it is also the case that T0 ∪ K(exec|S) 6⊢ t, and thus that
〈exec|S , T0〉 |= ¬learn(t).

Case φ = C(u): If 〈exec, T0〉 |= C(u), then we have that T0 ⊢ priv(u) or T0 ⊢ shk(u, v) for
some v 6= ǫ. Hence, we also have that 〈exec|S , T0〉 |= C(t).

Case φ = ¬C(u): If 〈exec, T0〉 |= ¬C(u), then we have that T0 6⊢ priv(u) and T0 6⊢ shk(u, v)
for all v 6= ǫ. Hence, we also have that 〈exec|S , T0〉 |= ¬C(t).

We distinguish several inductive cases (|exec| > 1 and size(φ) > 1).

Case φ = φ1 ∨ φ2: If 〈exec, T0〉 |= φ then 〈exec, T0〉 |= φ1 or else 〈exec, T0〉 |= φ2. Assume
that 〈exec, T0〉 |= φ1 (the other case can be done in a similar way). It is easy to see that
the three conditions needed to apply our inductive hypothesis are fulfilled. We can thus
apply our inductive hypothesis on φ1 to conclude that 〈exec|S , T0〉 |= φ1, and thus that
〈exec|S , T0〉 |= φ1 ∨ φ2.

Case φ = ¬(φ1 ∨ φ2): If 〈exec, T0〉 |= ¬(φ1 ∨ φ2), then 〈exec, T0〉 |= ¬φ1 and 〈exec, T0〉 |=
¬φ2. Again, the three conditions needed to apply our inductive hypothesis are full-filled.
We can thus apply our inductive hypothesis to conclude that 〈exec|S , T0〉 |= ¬φ1 and
〈exec|S , T0〉 |= ¬φ2, and thus 〈exec|S , T0〉 |= ¬(φ1 ∨ φ2).

Case φ = ♦ψ: If 〈exec, T0〉 |= φ, then we know that there exists i ∈ {1, . . . , ℓ} such that
〈execi, T0〉 |= ψ and Ws(exec, φ) = Ws(execi, ψ).
• Let learn(t) be a subformula that occurs positively in ψ such that t 6∈ A ∪ lgKeys.
Then, by definition, learn(t) also occurs positively in φ, and thus by hypothesis, there
exists sid ∈ S such that t ∈ St(exec, sid).

• We have that Ws(exec, φ) = Ws(execi, ψ), and by hypothesis Ws(exec, φ) ⊆ S. Thus
Ws(execi, ψ) ⊆ S.

• By hypothesis, S satisfies: for all sess1 and sess2 with ExpectedTag(exec, sess1) =
ExpectedTag(exec, sess2), sess1 ∈ S if and only if sess2 ∈ S.

The three conditions are fulfilled, we can thus apply our inductive hypothesis to conclude
that execi|S also satisfies ψ, i.e. 〈execi|S , T0〉 |= ψ. But then there exists j such that



DYNAMIC TAGS FOR SECURITY PROTOCOLS 49

execi|S = (exec|S)j , and thus such that 〈(exec|S)j, T0〉 |= ψ, which according to the
semantics of L gives us exec|S satisfies ♦ψ, i.e. 〈exec|S , T0〉 |= ♦ψ.

Case φ = ¬♦ψ: If 〈exec, T0〉 |= ¬♦ψ, then according to the semantics of L, we have that
〈execℓ−1, T0〉 |= ¬♦ψ and 〈exec, T0〉 |= ¬ψ.
• In the syntax of L, see Definition 4.1, learn(t) must not occur under a modality, so the
first condition is trivially fulfilled.

• By definition, Ws(exec, φ) = ∅ ⊆ S.
• By hypothesis, S satisfies: for all sess1 and sess2 with ExpectedTag(exec, sess1) =
ExpectedTag(exec, sess2), sess1 ∈ S if and only if sess2 ∈ S.

We apply our inductive hypothesis and conclude that 〈(execℓ−1)|S , T0〉 |= ¬♦ψ. Now,
we distinguish two cases: either sid ℓ ∈ S or sid ℓ 6∈ S. In the first case, we can also
apply our inductive hypothesis on 〈exec, T0〉 |= ¬ψ (note that Ws(exec, ψ) ⊆ {sid ℓ} ⊆ S
since ψ is from the restricted syntax according to Definition 4.1) and conclude that
〈exec|S , T0〉 |= ¬ψ. This allows us to conclude that 〈exec|S , T0〉 |= ¬♦ψ. In the second
case, we have that exec|S = execℓ−1|S , and thus conclude that 〈exec|S , T0〉 |= ¬♦ψ.

Lemma E.2. Let Π be a k-party protocol, exec = [esid1
1 ; . . . ; esidℓ

ℓ ] be a valid execution of

Π̃ w.r.t. some set T0 of ground atoms, φ = ∃x1. . . . .∃xn.ψ be an attack formula of L (see
Definition 4.3), σ = {x1 7→ m1, . . . , xn 7→ mn} be a ground substitution, S be a set of session
identifiers such that Ws(exec, ψσ) ⊆ S, and nǫǫ ∈ Nǫ be an intruder nonce not appearing in
exec. If 〈exec, T0〉 |= ψσ then we have that 〈exec, T0〉 |= ψσ′ where for all j ∈ {1, . . . , n}

σ′(xj) =





nǫǫ if σ(xj) 6∈ St(exec, S) ∪ A ∪ lgKeys ∪ Nǫ ∪Kǫ

σ(xj) otherwise

Proof. We prove this result by induction on (ℓ, size(ψ)) using the lexicographic ordering
where ℓ denotes the length of the trace exec, and size(ψ) the size of ψ (i.e. number of
symbols that occur in ψ without counting the symbol ¬ and after elimination of double
negation, i.e., ¬¬ψ is rewritten in ψ). Actually, we strengthen the induction hypothesis by
only requiring the hypothesis Ws(execp, ψσ) ⊆ S when some status event occurs positively
in ψσ.

Base case (size(ψ) = 1): We distinguish several base cases.

• Case ψ′ = true. In that case ψσ = ψσ′ = true and we easily conclude.
• Case ψ′ = ¬true. This case is impossible since such a formula is not satisfiable.

• Case ψ = Q(t1, . . . , th). In that case, we have that ψσ = Q(t1σ, . . . , thσ), and e
sidp
p =

Q(t1σ, . . . , thσ) with sidp ∈ S. But then, by Definition of σ′, we have that e
sidp
p =

Q(t1σ, . . . , thσ) = Q(t1σ
′, . . . , thσ

′), and we conclude that 〈execp, To〉 |= ψσ′.
• Case ψ = ¬Q(t1, . . . , th). In that case, ψσ = Q(t1σ, . . . , thσ), and either execp = []

or e
sidp
p 6= Q(t1σ, . . . , thσ). In the first case, according to the semantics of our logic

L, we conclude that 〈execp, T0〉 |= ψσ′ (= ¬Q(t1σ
′, . . . , thσ

′)). In the second case, i.e.

e
sidp
p 6= Q(t1σ, . . . , thσ), by Definition of σ′, we have that tkσ

′ ∈ {tkσ, n
ǫ
ǫ} for any k ∈

{1, . . . , h}. Hence, we have that e
sidp
p 6= Q(t1σ

′, . . . , thσ
′), and thus 〈execp, T0〉 |= ψσ′ (=

¬Q(t1σ
′, . . . , thσ

′)).
• Case ψ = learn(t). In that case tσ′ ∈ {tσ, nǫǫ} (thanks to Condition 1 of Definition 4.3),
then we know by hypothesis that K(execp) ∪ T0 ⊢ tσ

′ and thus, we conclude.
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• Case ψ = ¬learn(t). This case cannot occur because ψ satisfies the conditions of an attack
formula (see Definition 4.3), and in particular no learn(u) appears negatively in ψ.

• Case ψ = C(t) or ¬C(t). In that case, we have that tσ ∈ A. By construction, we have
that tσ = tσ′, and this allows us to conclude.

We now distinguish several inductive cases.

• Case ψ = ψ1 ∨ ψ2. Assume that 〈execp, T0〉 |= ψ1σ. The case where 〈execp, T0〉 6|= ψ1σ
but 〈execp, T0〉 |= ψ2σ can be proved in a similar way. By definition, we have that
Ws(execp, ψ1σ) = Ws(execp, ψσ) ⊆ S. We can thus apply our inductive hypothesis to
conclude that 〈execp, T0〉 |= ψ1σ

′ and thus 〈execp, T0〉 |= ψσ′ (= ψ1σ
′ ∨ ψ2σ

′).
• Case ψ = ¬(ψ1 ∨ ψ2). In that case, 〈execp, T0〉 |= ¬ψ1σ and 〈execp, T0〉 |= ¬ψ2σ. By
definition, we have that:

Ws(execp,¬ψ1σ) ∪Ws(execp,¬ψ2σ) = Ws(execp, ψσ) ⊆ S.

By applying our inductive hypothesis, we obtain that 〈execp, T0〉 |= ¬ψjσ
′ for j ∈ {1, 2}.

This allows us to conclude that 〈execp, T0〉 |= ψσ′ (= ¬(ψ1σ
′ ∨ ψ2σ

′)).
• Case ψ = ♦ψ′. In that case, according to the semantics of our logic L, there exists j ≤ i
such that 〈execj, T0〉 |= ψ′σ, and thus by inductive hypothesis we know that 〈execj , T0〉 |=
ψ′σ′. Hence, we have that 〈execp, T0〉 |= ψσ′ (= ♦ψ′σ′).

• Case ψ = ¬♦ψ′. In that case, according to the semantics of our logic, we have that
〈execp−1, T0〉 |= ψσ and 〈execp, T0〉 |= ¬ψ′σ. By inductive hypothesis we know that
〈execp−1, T0〉 |= ψσ′. Note that, by definition of an attack formula (see Definition 4.3),
there is no positive status event in ψσ. Moreover, using our inductive hypothesis, we
obtain that 〈execp, T0〉 |= ¬ψ′σ′ (note that, again, by definition of an attack formula, we
know that there is no positive status event in ¬ψ′σ). This allows us to conclude that
〈execp, T0〉 |= ψσ′ = (¬♦ψ′σ′).

Lemma 7.6. Let Π be a k-party protocol, and exec = [esid1
1 ; . . . ; esidℓ

ℓ ] be a valid and well-

formed execution of Π̃ w.r.t. some set T0 of ground atoms such that T0 ∪ K(exec) 6⊢ k for
any k ∈ lgKeys r (Kǫ ∪ T0). Let φ = ∃x1. . . . .∃xn.ψ be an attack formula of L, and σ be
a ground substitution such that 〈exec, T0〉 |= ψσ. Let S be a set of session identifiers such
that:

(1) Ws(exec, ψσ) ⊆ S, and
(2) ∀sess1, sess2 with ExpectedTag(exec, sess1) = ExpectedTag(exec, sess2), we have that

sess1 ∈ S if and only if sess2 ∈ S.

We have that exec|S is an execution of Π̃ that satisfies φ, i.e. 〈exec|S , T0〉 |= φ.

Proof. First, we apply Lemma E.2 to ensure that the substitution σ witnessing the fact
that the attack formula φ is satisfiable only uses atomic terms and subterms that occur in
St(exec, S). Hence, thanks to this lemma, we can assume w.l.o.g. that for all j ∈ {1, . . . , n},
σ(xj) ∈ St(exec, S)∪A∪ lgKeys ∪Nǫ∪Kǫ. Then, we apply Lemma E.1 in order to conclude.
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