
A

Capturing Continuous Data and Answering Aggregate Queries
in Probabilistic XML

SERGE ABITEBOUL, INRIA Saclay – Île-de-France & LSV, ENS Cachan
T.-H. HUBERT CHAN, The University of Hong Kong
EVGENY KHARLAMOV, Free University of Bozen-Bolzano & INRIA Saclay – Île-de-France
WERNER NUTT, Free University of Bozen-Bolzano
PIERRE SENELLART, Institut Télécom; Télécom ParisTech; CNRS LTCI

Sources of data uncertainty and imprecision are numerous. A way to handle this uncertainty is to associate
probabilistic annotations to data. Many such probabilistic database models have been proposed, both in
the relational and in the semi-structured setting. The latter is particularly well adapted to the management
of uncertain data coming from a variety of automatic processes. An important problem, in the context
of probabilistic XML databases, is that of answering aggregate queries (count, sum, avg, etc.), which has
received limited attention so far. In a model unifying the various (discrete) semi-structured probabilistic
models studied up to now, we present algorithms to compute the distribution of the aggregation values
(exploiting some regularity properties of the aggregate functions) and probabilistic moments (especially,
expectation and variance) of this distribution. We also prove the intractability of some of these problems
and investigate approximation techniques. We finally extend the discrete model to a continuous one, in
order to take into account continuous data values, such as measurements from sensor networks, and extend
our algorithms and complexity results to the continuous case.

Categories and Subject Descriptors: H.2.3 [Database Management]: Logical Design, Languages—data
models, query languages; F.2.0 [Analysis of Algorithms and Problem Complexity]: General

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Aggregate queries, aggregation, continuous distributions, probabilistic
databases, probabilistic XML, XML

1. INTRODUCTION
The (HTML or XML) Web is an important source of uncertain data, for instance generated
by imprecise automatic tasks such as information extraction. A natural way to model this
uncertainty is to annotate semistructured data with probabilities. A number of studies
consider queries over such imprecise hierarchical information [Nierman and Jagadish 2002;
Hung et al. 2003; 2007; van Keulen et al. 2005; Abiteboul and Senellart 2006; Senellart and
Abiteboul 2007; Kimelfeld and Sagiv 2007; Kimelfeld et al. 2008]. An essential aspect of
query processing has been ignored in all these studies, namely, aggregate queries. This is the

This work has been partially funded by the European Research Council under the European Community’s
Seventh Framework Programme (FP7/2007–2013) / ERC grant Webdam, agreement 226513, http://webdam.
inria.fr/, and by the Dataring project of the French ANR.
Author’s addresses: Serge Abiteboul, INRIA Saclay, 4 rue J. Monod, 91893 Orsay Cedex, France. T.-H.
Hubert Chan, Dept. of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong.
Evgeny Kharlamov and Werner Nutt, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano,
Italy. Pierre Senellart, Télécom ParisTech (INFRES), 46 rue Barrault, 75634 Paris, France.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0362-5915/YYYY/01-ARTA $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2 Serge Abiteboul et al.

problem we consider in this paper. We provide a comprehensive study of query processing
for a general model of imprecise data and a large class of aggregate queries.
We consider probabilistic XML documents and the unifying representation model of p-

documents [Kimelfeld et al. 2008; Abiteboul et al. 2009]. A p-document can be viewed
as a probabilistic process that randomly generates XML documents. Some nodes, namely
distributional nodes, specify how to perform this random generation. We consider three
kinds of distributional operators: cie, mux, det, respectively for conjunction of independent
events (a node is selected if a conjunction of some probabilistic conditional events holds),
mutually exclusive (at most one node selected from a set of a nodes), and deterministic (all
nodes selected). This model, introduced by Kimelfeld et al. [2008], captures a large class
of models for probabilistic trees that had been previously studied. For queries, we consider
tree-pattern queries possibly with value joins and the restricted case of single-path queries.
For aggregate functions, we consider the standard ones, namely, sum, count, min, max, countd
(count distinct) and avg (average).

A p-document is a (possibly exponentially compact) representation of a probability space
of (ordinary) documents, i.e., a finite set of possible documents, each with a particular
probability. In the absence of a grouping operation à la SQL (GROUP BY), the result of an
aggregate query is a single value for each possible document. Therefore, an aggregate query
over a p-document is a random variable and the result is a distribution, that is, the set of
possible values, each with its probability. It is also interesting to consider summaries of the
distribution of the result random variable (that is possibly very large), in particular, its
expected value and other probabilistic moments. When grouping is considered, a single value
(again a random variable) is obtained for each match of the grouping part of the query. We
investigate the computation of the distributions of random variables (in presence of grouping
or not) and of their moments.

Our results highlight an (expectable) aspect of the different operators in p-documents: the
use of cie (a much richer means of capturing complex situations) leads to a high complexity.
For documents with cie nodes, we show the problems are hard (typically NP- or FP#P-
complete). For count and sum, in the restricted setting of single-path queries, we show
how to obtain moments in P. We also present Monte-Carlo methods that allow tractable
approximations of probabilities and moments. On the other hand, with the milder forms of
imprecision, namely mux and det, the complexity is lower. Computing the distribution for
tree-pattern queries involving count, min and max is in P. The result distribution of sum
may be exponentially large, but the computation is still in P in both input and output. On
the other hand, computing avg or countd is FP#P-complete. On the positive side, we can
compute expected values (and moments) for most aggregate tree-pattern queries in P. When
we move to queries involving joins, the complexity of moment and distribution computation
becomes FP#P-complete.

A main novelty of this work is that we also consider probabilistic XML documents involving
continuous probability distributions, which capture a very frequent situation occurring in
practice. We formally extend the probabilistic XML model by introducing leaves representing
continuous value distributions. We explain how the techniques for the discrete case can be
adapted to the continuous case and illustrate the approach on several classes of probability
distributions.

The paper is organized as follows. In Section 2 we present preliminaries on deterministic
data. In Section 3 we introduce the probabilistic data model, in terms both of discrete and
continuous probability distributions. In Section 4 we define the three aggregation problems
that are studied in the paper and in Section 5 we discuss general principles we use to prove
our results. The remaining sections are devoted to complexity analysis and algorithms for
aggregation of probabilistic XML. Section 6 studies aggregation for the model with event
variables. In Section 7, we investigate the particular case of monoid aggregate functions in

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:3

[1] IT- personnel

[8] Rick

[4] name [5] bonus

[2] person [3] person

[6] name [7] bonus

[51] pda[41] Mary[24] laptop [31] pda

[32] 50[25] 44 [26] 50 [54] 15 [55] 44

XMLdPER ∈

Fig. 1. Document dPER: personnel in an IT department

the mux-det model, that is studied in full in Section 8. Since we show that many of the
aggregation problems are intractable, we turn to approximation algorithms in Section 9.
The related work is presented in Section 10. Because of space constraints, some of the proofs
are regrouped in an appendix.
A preliminary version of some of this work appeared in [Abiteboul et al. 2010]. New

material includes in particular proofs, formalization of the results for the continuous case,
examples, and insights into the semantics of aggregate queries over p-documents. Proofs of
the most technical results are not included because of space constraints; they can be found
in [Kharlamov 2011].

2. DETERMINISTIC DATA AND QUERIES
We present here the data model and query languages we use.

Documents. We assume a countable set of identifiers I and a set of labels L, such that
I ∩ L = ∅. The set of labels includes a set of data values (e.g., the rationals), on which the
aggregate functions will be defined. A document is a pair d = (t, θ) of a finite, unordered1

tree t, where each node has a unique identifier v and a label θ(v). We use the standard
notions child and parent, descendant and ancestor, root and leaf in the usual way. To simplify
the presentation, we assume that the leaves of documents are labeled with data values and
the other nodes by non-data labels, that are called tags. The sets of nodes and edges of d
are denoted, respectively, by I(d) and E(d), where E(d) ⊆ I(d)× I(d). We denote the root
of d by root(d).

Example 2.1. Consider the document dPER in Figure 1, where PER stands for personnel.
Identifiers appear inside square brackets before labels. The document describes the personnel
of an IT department and the bonuses distributed for different projects. The document dPER
indicates Rick worked under two projects (laptop and pda) and got bonuses of 44 and 50 in
the former project and 50 in the latter one.

Aggregate Functions. An aggregate function maps a finite bag of values (e.g., rationals)
into some domain. In particular, we assume that any aggregate function is defined on the
empty bag. In the paper we study the common functions: sum, count, min, countd (count
distinct), and avg (average) under the usual semantics. All results for min easily extend to
max and topK .
More precisely,

— count and countd return the number of elements and the number of distinct elements in
a bag, respectively; count({||}) = countd({||}) = 0.

1Ignoring the ordering of the children of nodes is a common simplification over the XML model that does
not significantly change the results of this paper.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 Serge Abiteboul et al.

— min returns the minimal element in the bag, and max returns the maximal element.
min({||}) returns the special value +∞, and max({||}) returns −∞.

— sum and avg over bags of rational numbers compute their sum and average, respectively;
by convention sum({||}) = avg({||}) = 0.
Aggregate functions can be naturally extended to work on documents d: the result α(d) is

α(B) where B is the bag of the labels of all leaves in d. This makes the assumption that all
leaves are of the type required by the aggregate function, e.g., rational numbers for sum.
Again to simplify, we ignore this issue here and assume they all have the proper type, say,
rational numbers. It is straightforward to extend our models and results with a more refined
treatment of typing.
As we will see some particular aggregate functions, the so-called monoid ones [Cohen

et al. 2006], play a particular role in our investigation, because they can be handled by a
divide-and-conquer strategy. Formally, a structure (M,⊕,⊥) is called an Abelian monoid
if ⊕ is an associative and commutative binary operation with ⊥ as identity element. If no
confusion arises, we speak of the monoid M . An aggregate function is a monoid one if for
some monoid M and any a1, . . . , an ∈M :

α({|a1, . . . , an|}) = α({|a1|})⊕ · · · ⊕ α({|an|}).
It turns out that sum, count, min, max, and topK are monoid aggregate functions. For sum,
min, max: α({|a|}) = a and ⊕ is the corresponding obvious operation. For count: α({|a|}) = 1
and ⊕ is +. On the other hand, it is easy to check that neither avg nor countd are monoid
aggregate functions.
Aggregate Queries over Documents. Finally, we introduce tree-pattern queries with joins,

join-free queries and single-path queries as special cases. We then extend them to aggregate
queries.
We assume a countable set of variables Var. A tree pattern (with joins), denoted Q, is a

tree with two types of edges: child edges, denoted E/, and descendant edges, denoted E//.
The nodes of the tree are labeled by a labeling function2 λ with either labels from L or
with variables from Var. Variables that occur more than once are called join variables. We
refer to nodes of Q as n, m, etc., in order to distinguish them from the nodes of documents,
referred to as u, v, etc.
A tree-pattern query with joins has the form Q[n̄], where Q is a tree pattern with joins

and n̄ is a tuple of nodes of Q (defining its output). We sometimes identify the query with
the pattern and write Q instead of Q[n̄] if n̄ is not important or clear from the context. If n̄
is the empty tuple, we say that the query is Boolean. A query is join-free if every variable
in its pattern occurs only once. If the set of edges E/ ∪ E// in a join-free query is a linear
order, the query is a single-path query. We denote the set of all tree-pattern queries, which
may have joins, as TPJ. The subclasses of join-free and single-path queries are denoted as
TP and SP, respectively.

Example 2.2. Figure 2 shows three example of tree-pattern queries for the document of
Figure 1. Descendant edges are denoted with a double line. All three queries use a single
variable, x, and have a single output node, marked with [n]. Disregard for now the line
on the top with references to aggregate functions. The leftmost query, QJoinBonus, has a
join variable; the query in the middle, QRickBonus, is a join-free query; the rightmost query,
QBonus, is single-path.

A valuation ν maps query nodes to document nodes. A document satisfies a TPJ query if
there exists a satisfying valuation, which maps query nodes to the document nodes in a way

2We denote the labeling function for queries as λ in order to distinguish it from the labeling function θ for
documents.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:5

IT- personnel

person

bonusRick

person

bonusMary

x x

IT- personnel

person

bonusRick

x

IT- personnel

bonus

x

[n]

QJoinBonus
avg

[n]

[n]

Q RickBonus
sum Q Bonus

min
∈TPJ

avg
∈TP

sum
∈SP

min

Fig. 2. Example aggregate queries over the document dPER of Figure 1

that is consistent with the edge types, the labeling, and the variable occurrences. That is,
(1) the root of the query is mapped to the root of the document; (2) nodes connected by
child/descendant edges are mapped to nodes that are children/descendants of each other;
(3) query nodes with label a are mapped to document nodes with label a; and (4) two query
nodes with the same variable are mapped to document nodes with the same label.

Slightly differently from other work, we define that applying a query Q[n̄] to a document d
returns a set of tuples of nodes: Q(d) := {ν(n̄) | ν satisfies Q}. One obtains the more
common semantics, according to which a query returns a bag of tuples of labels, by applying
the labeling function of d to the tuples in Q(d).

Example 2.3. We now show the results of applying the queries of Figure 2 to the document
of Figure 1. We denote ui the node of dPER with node identifier i. Query QJoinBonus asks for
bonuses of Rick that have the same value as one of Mary. Here, QJoinBonus(dPER) = {u25}.
The second query retrieves all bonuses of Rick, i.e., {u25, u26, u32}. Finally, QBonus retrieves
all bonuses in the document and QBonus(dPER) = {u25, u26, u32, u54, u55}.

An aggregate TPJ query has the form Q[α(n)], where Q is a tree pattern, n is a leaf node
of Q and α is an aggregate function. We evaluate such Q[α(n)] in three steps:

(1) First, we evaluate the non-aggregate component Q′ := Q[n] of Q[α(n)] over d in the
following way:

Q′(d) = {ν(n) | ν satisfies Q and ν(n) is a leaf of d}.
Note that evaluation of non-aggregate components of Q[α(n)] is defined differently from
evaluation of TPJ queries: we have an extra requirement that ν(n) is a leaf of d. We do it
because we want to aggregate values stored in the leaves of documents but not tags of
the internal nodes.

(2) We then compute the bag B of labels of Q′(d), that is
B := {|θ(n) | n ∈ Q′(d)|}.

(3) Finally we apply α to B and
Q[α(n)](d) = α(B).

Identifying the aggregate query with its pattern, we denote the value resulting from evaluating
Q over d as Q(d).

If Q[n] is a non-aggregate query and α an aggregate function, we use the shorthand Qα[n]
to denote the aggregate query Q[α(n)]. Similarly, we denote the set of aggregate queries
obtained from queries in TPJ, TP, SP and some function α, as TPJα, TPα, SPα, respectively.
The syntax and semantics above can be generalized in a straightforward fashion to

aggregate queries with SQL-like GROUP BY. Such queries are written Q[n̄, α(n)] and return
an aggregate value for every binding of n̄ to a tuple of document nodes. Since we can reduce

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 Serge Abiteboul et al.

the evaluation of such queries to the evaluation of several simpler queries of the kind defined
before, while increasing the data complexity by no more than a polynomial factor, we restrict
ourselves to that simpler case.

Example 2.4. Continuing with Example 2.2, we compute here the results of the ag-
gregate queries of Figure 2 over dPER. The aggregate function used is given on the line
above each query. Let us start with Qavg

JoinBonus: since the corresponding non-aggregate
query has a single result, Qavg

JoinBonus(dPER) = θ(QJoinBonus(dPER)) = 44. Consider now
Qsum

RickBonus. We have: Qsum
RickBonus(dPER) = sum({|44, 50, 50|}) = 144. Finally, Qmin

Bonus(dPER) =
min({|44, 50, 50, 15, 44|}) = 15.

3. PROBABILISTIC DATA
We now introduce our uncertainty model. We first introduce the discrete probabilistic XML
model from [Kimelfeld et al. 2008; Abiteboul et al. 2009] and then extend it to support
continuous probability distributions.

3.1. Discrete Probabilistic Data
A finite probability space over documents, px-space for short, is a pair S = (D,Pr), where D
is a finite set of documents and Pr maps each document to a probability Pr(d), such that
Σ{Pr(d) | d ∈ D} = 1.

p-Documents: Syntax. Following Abiteboul et al. [2009], we now introduce a very general
syntax for compactly representing px-spaces, called p-documents. p-Documents are similar to
documents, with the difference that they have two types of nodes: ordinary and distributional.
Distributional nodes are only used for defining the probabilistic process that generates random
documents (but they do not actually occur in these ones). Ordinary nodes have labels and
they may appear in random documents. We require the leaves and the root to be ordinary
nodes.

More precisely, we assume given a set X of Boolean random variables with some specified
probability distribution ∆ over them. A p-document, denoted by P̂ , is an unranked, unordered,
labeled tree. Each node has a unique identifier v and a label µ(v) in L ∪ {cie(E)}E ∪
{mux(Pr)}Pr ∪ {det} where L are labels of ordinary nodes, and the others are labels of
distributional nodes. We consider three kinds of the latter labels: cie(E) (for conjunction
of independent events), mux(Pr) (for mutually exclusive), and det (for deterministic). We
will refer to distributional nodes labeled with these labels, respectively, as cie, mux , and det
nodes. If a node v is labeled with cie(E), then E is a function that assigns to each child of
v a conjunction e1 ∧ · · · ∧ ek of literals (x or ¬x, for x ∈ X ). If v is labeled with mux(Pr),
then Pr assigns to each child of v a probability with the sum across all children less than or
equal to 1.

Example 3.1. Two p-documents are shown in Figures 3 and 4. The former, P̂PER-G has
only cie distributional nodes. For example, node n21 has label cie(E) and two children n22
and n24, such that E(n22) = ¬x and E(n24) = x. The p-document from Figure 4, P̂PER-L
has only mux and det distributional nodes. Node n52 has label mux(Pr) and two children
n53 and n56, where Pr(n53) = 0.7 and Pr(n56) = 0.3. The letters G and L in the name of
these p-documents stand for global and local, which describes the probabilistic dependencies
captured by PrXMLcie and PrXMLmux,det .

We denote classes of p-documents by PrXML with a superscript denoting the types
of distributional nodes that are allowed for the documents in the class. For instance,
PrXMLmux,det is the class of p-documents with only mux and det distributional nodes, like
P̂PER-L.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:7

[1] IT- personnel

[8] Rick

cie

[13] John 

[4] name [5] bonus

[2] person [3] person

cie

[6] name [7] bonus

[51] pda

cie

[56] 15

[22] pda

[41] Mary

¬ x

[24] laptop

[31] pda

[32] 50

[23] 25 [25] 44 [26] 50 [54] 15 [55] 44

x, z

xx ¬ x

[11] [21]

[52]

PrXML
cie

z ¬ z, x

Pr(x)  = 0.85

Pr(z)  = 0.55

�PPER-G ∈

Fig. 3. PrXMLcie p-document: IT department

In the sequel, we will sometimes refer to p-documents from PrXMLmux,det,cie as discrete
p-documents, to distinguish them from the continuous p-documents to be defined further.

p-Documents: Semantics. The semantics of a p-document P̂ , denoted by JP̂K, is a px-space
over random documents, where the documents are obtainable from P̂ by a randomized
three-step process.

(1) We choose a valuation ν of the variables in X . The probability of the choice, according
to the distribution ∆, is

pν =
∏
x in X
ν(x)=true

∆(x) ·
∏
x in X

ν(x)=false

(1−∆(x)).

(2) For each cie node labeled cie(E), we delete its children v where ν(E(v)) is false, and
their descendants. Then, independently for each mux node v labeled mux(Pr), we choose
one of its children v′ (with probability Pr) or none at all (with probability 1−

∑
v Pr(v))

and delete the other children and their descendants. We do not delete any of the children of
det nodes.3
(3) We then remove in turn each distributional node, connecting each ordinary child v of

a deleted distributional node with its lowest ordinary ancestor v′.

The result of this third step is a random document P . The probability Pr(P) is defined as
the product of pν with all probabilities of choices we made in the second step for the mux
nodes.

Example 3.2. One can obtain the document dPER in Figure 1 by applying the randomized
process to the p-document in Figure 4. Then the probability of d is Pr(d) = 0.75×0.9×0.7 =
0.4725. One can also obtain d from the p-document in Figure 3, by assigning {x/true, z/true}.
In this case the probability of d is Pr(d) = 0.85× 0.55 = 0.4675.

As shown in [Abiteboul et al. 2009], both PrXMLmux,det and PrXMLcie have full expressive
power with respect to discrete px-spaces: every discrete probability space over documents can
be obtained as the semantics of a p-document of PrXMLmux,det or of PrXMLcie. Furthermore,
PrXMLcie is exponentially more concise than PrXMLmux,det : all PrXMLmux,det p-documents
can be transformed into equivalent PrXMLcie in polynomial time, but some PrXMLcie have
only exponential-size equivalent PrXMLmux,det p-documents. This exponential concision

3It may seem that det nodes are redundant, but they actually increase expressive power when used together
with mux and other types of distributional nodes [Abiteboul et al. 2009].

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 Serge Abiteboul et al.

[1] IT- personnel

[8] Rick

mux

[13] John

[4] name [5] bonus

[2] person [3] person

mux

[6] name [7] bonus

[51] pda

mux

det [56] 15

[22] pda

[41] Mary

0.1

[24] laptop

[31] pda

[32] 50

[23] 25 [25] 44 [26] 50

[54] 15 [55] 44

0.7 0.3

0.90.75 0.25

[11] [21]

[52]

[53]

PrXML
mux, det�PPER-L ∈

Fig. 4. PrXMLmux,det p-document: IT department

comes at a cost: it was shown in [Kimelfeld et al. 2008; 2009] that the data complexity of
answering TP-queries is FP#P-complete for PrXMLcie whereas it is in P for PrXMLmux,det,
see details on query answering in Section 4.1.
In our analysis, we only consider distributional nodes of the types cie, mux, and det. In

[Abiteboul et al. 2009] two more types of distributional nodes (ind and exp) are considered.
As shown there, the first kind can be captured by mux and det, while the second is a
generalization of mux and det; most results for PrXMLmux,det can be extended to PrXMLexp.

3.2. Continuous Probabilistic Data
We generalize p-documents to documents whose leaves are labeled with (representations of)
probability distributions over the reals, instead of single values. We give semantics to such
documents in terms of continuous distributions over documents with real numbers on their
leaves.
In the discrete case, a p-document defines a finite set of trees and probabilities assigned

to them. In the continuous case, a p-document defines a continuous px-space consisting of
an uncountably infinite set of trees D with a σ-algebra A and a probability measure Pr
on A. Thus, a continuous px-space is a probability space (D,A,Pr) over an infinite set of
trees. Not that in this setting, it is possible that the probability of any single document
P ∈ D is zero. We refer to a textbook on measure and probability theory such as [Ash and
Doléans-Dade 2000] for the definitions of the concepts used in this section.

Continuous p-Documents: Syntax. To support continuous distributions on leaves, we
extend the syntax of p-documents by an additional type of distributional nodes, the cont
nodes. A cont node has the form cont(D), where D is a representation of a probability
distribution over the real numbers. In contrast to the distribution nodes introduced earlier,
a cont node can only appear as a leaf. Given a cont leaf l, we denote with fl the probability
density function (pdf for short) of the distribution attached to l.
We denote classes of p-documents where cont nodes can appear with a cont subscript,

e.g., PrXMLmux,det
cont or PrXMLcie

cont .

Example 3.3. Consider the PrXMLmux,det
cont p-document in Figure 5. The document collects

results of heat consumption monitoring in two rooms. Since the measurements are imprecise
(with an imprecision that grows the higher the heat consumption is), they are given as normal
distributions N(µ, σ2) (i.e., Gaussians), centered around the mean µ and with variance σ2.
The actual temperature is unknown, but this distribution gives its probability distribution,
for instance as specified by the sensor manufacturer. Additionally, there is a discrete source

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:9

[1] heat-consumption

[4] measurement [5] measurement

[2] room-1 [3] room-2

mux

[31] N(50,5)

0.1

[33] N(52,5)

[13] date

[26] Sept 4

0.9

PrXML
mux, det

[11] date [12] value

[23] Sept 3 [25] N(15, 3)

[14] value

[27] 

[7] measurement

mux

[35] Jan 1 

0.7

[36] Jan 2

[17] date

[29] N(200,8)

0.3

[18] value

[28] 

�PCONS ∈ cont

Fig. 5. PrXMLmux,det
cont p-document: monitoring

of uncertainty because records are ambiguous whether the measurement in the second room
was done on January 1st or 2nd.

Any finitely representable distribution can appear in a cont node. As an example, we
consider in the following piecewise polynomial distributions. A function f : R→ R is piecewise
polynomial if there are points −∞ = x0 < x1 < . . . < xm = ∞ such that for each open
interval Ii := ]xi−1, xi[, 1 6 i 6 m, the restriction f|Ii

of f to Ii is a polynomial. (The points
x1, . . . , xn−1 are the partition points and the intervals I1, . . . , Im are the partition intervals
of f .) Every piecewise polynomial function f > 1 with

∫∞
−∞ f = 1 is the density function of

a probability. Clearly, in this case f|I1 and f|Im
are identical to 0. Note that distributions

defined by piecewise polynomial densities are a generalization of uniform distributions.
Piecewise polynomials are an example of a class of functions stable under convex sum,
(classical) convolution, product, and integration. We shall use this stability property later
on to compute the distribution of aggregate query answers. We shall refer to the class of
piecewise polynomials of degree bounded by an integer K as PP(K); PP(0) is thus the class
of piecewise uniform distributions.

Continuous p-Documents: Semantics. A continuous p-document P̂ is interpreted as a
continuous px-space JP̂K = (D,A,Pr), where D is an infinite set of documents, A is a
σ-algebra over D, and Pr is a probability measure over A. We construct this triple by a
sequence of steps.
We begin by non-deterministically expanding the distributional nodes of type cie, mux,

and det in P̂ in the way described in Section 3.1. This results in a finite collection of
p-documents P̂1, . . . , P̂n ∈ PrXMLcont , called the skeletons of P̂, each with a probability pi.
Given the skeletons, we will define (1) the elements of the final continuous space D; (2)

the σ-algebra A; (3) the probability measure Pr. We will do this by first defining for each
P̂i a document set Di, a σ-algebra Ai on Di, and a probability measure Pri on Ai, from
which we construct the final D, A, and Pr. The intuition behind our approach is that a
skeleton with k cont leaves labeled with distributions resembles a k-dimensional Euclidean
space Rk and that we can transfer the σ-algebra and the probability measure resulting from
distributions from Rk to a space of documents with real numbers on the leaves.
We now consider a fixed skeleton P̂i. We define Di as the set of trees obtained by

substituting the cont nodes of P̂i with real numbers in all possible ways. From the Di’s we
construct the final space as D :=

⋃n
i=1Di.

Next we define on each Di a σ-algebra Ai and a probability measure Pri, from which we
construct in a second step A and Pr. Let (l1, . . . , lk) be the cont leaves of P̂i, where lj is
labeled with the distribution Dj . (Note that this includes the case where k = 0.) There

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 Serge Abiteboul et al.

is a natural bijection between the space Rk of k-tuples of real numbers and the space Di,
consisting of all documents resulting from P̂i by labeling the leaf nodes lj with real numbers.
In fact, let Pi be the function that maps the tuple (x1, . . . , xk) ∈ Rk to the document
obtained by labeling each lj with xj . Clearly, Pi : Rk → Di is bijective. By means of Pi, we
can now transfer the σ-algebra of Borel sets in Rk to Di. We thus define that Ai consists of
those sets D′ ⊆ Di such that the preimage P−1(D′) is a Borel set in Rk. Since the Borel sets
constitute a σ-algebra, Ai is also a σ-algebra. From the Ai’s we construct the final algebra
A as the collection of sets A := {D′1 ∪ · · · ∪D′n | D′i ∈ Ai}, that is, a set in A is the (disjoint)
union of sets taken from the Ai.
To define Pri, let D1, . . . , Dk be the k probability distributions represented in the cont

nodes of P̂i. We then define the measure P̂ri over Rk as the product measure [Ash and Doléans-
Dade 2000] induced by the Dj , that is, the unique measure such that P̂ri(X1 × · · · ×Xk) =
D1(X1)× · · · ×Dk(Xk) for all Xj ⊆ R. The measure P̂ri is a probability measure, since all
Dj ’s induce a probability measure. We note that with respect to the product measure, the
values in different dimensions of Rk are independent. Using again the inverse of the bijection
Pj introduced earlier, we translate P̂ri into a probability measure Pri over Ai by defining
Pri(D′i) = P̂ri(P−1

i (D′i)) for all D′i ∈ Ai. Since Ai consists exactly of translations of Borel
sets over the real numbers under Pi, this defines a probability measure over Ai. Thus, for
each skeleton P̂i we have defined a probability space JP̂iK = (Di,Ai,Pri).

We now combine the spaces of the skeletons and define the probability space represented
by P̂ as JP̂K = (D,A,Pr), where D, as defined above, is the disjoint union of the Di’s, A, as
already defined, consists of unions of sets from the Ai’s, and Pr is the convex sum of the
Pri’s, that is,

Pr(D′) =
n∑
i=1

pi · Pri(D′ ∩ Di)

for every D′ ∈ A. Intuitively, this means that a set D′ ∈ A is decomposed into subsets that
are in the Ai’s, then the Pri’s are applied to each subset, and the results are combined
as a weighted sum where the weight of the i-th component is the probability of the i-th
skeleton P̂i. Since the Pri’s are probability measures and p1 + · · ·+pn = 1, Pr is a probability
measure.

We summarize the construction by saying that JP̂K is a convex sum of the JP̂iK’s and write

JP̂K = p1 · JP̂1K + · · ·+ pn · JP̂nK. (1)

A p-document of PrXMLcie,mux,det
cont can have (leaf) nodes annotated with discrete values

as well as with continuous distributions. To simplify the presentation, however, we will
assume that all nodes of a PrXMLcie,mux,det

cont p-document returned by a non-aggregate query
or aggregated by an aggregate query (see the following section for definitions) are cont
nodes. Adding support for aggregating both discrete and continuous nodes in the same
query boils down to representing discrete values with Dirac distributions and manipulating
these Dirac distributions (through convolutions, convex sums, etc.) in the same way as
continuous probability distributions, using the tools of distribution theory [Friedlander and
Joshi 1999]. All our complexity upper bounds can be extended this way to the case of
documents combining continuous and discrete probability distributions of values.

4. AGGREGATION OF PROBABILISTIC DATA
We briefly review the semantics of non-aggregate queries over px-spaces. We define the result
of an aggregate query over a p-document as a distribution over the answer values. In the
continuous case we discuss the mathematical relation between the answer distribution and the

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:11

Table I. Data complexity of non-aggregate query evaluation over discrete
p-documents

Non-aggregate query language

SP and TP TPJ

cie FP#P-complete [Kimelfeld et al. 2009] FP#P-complete

mux, det in P [Kimelfeld et al. 2009] FP#P-complete

distributions on the cont-nodes of the input document. Finally, we define the computational
problems that we want to study, both for discrete and continuous data.

4.1. Non-Aggregate Queries over Probabilistic Data
When studying non-aggregate queries over probabilistic documents, researchers have mainly
studied Boolean queries because answering queries with output variables can be reduced to
this case with polynomial-time data complexity.

Consider a Boolean TPJ query Q. Clearly, when evaluated over a deterministic document d,
either d satisfies Q or does not, thus, the result is either “true” or “false”. Now, let S =
(D,A,Pr) be a px-space of documents. Then Q is satisfied by some documents d ∈ D, but
not by others. Consequently, one defines the result of evaluating Q over S as the number
Q(S) = Pr({d ∈ S | d |= Q}), the probability that a document satisfies Q.4 So far, researchers
have investigated query evaluation over spaces represented by discrete p-documents P̂.
Then JP̂K contains finitely many documents d1, . . . , dn, each with a probability Pr(di),
and evaluating Q over P̂ results in Q(P̂) =

∑
d∈P̂
d|=Q

Pr(d). Table I summarizes the data

complexity of computing Q(P̂) over discrete p-documents. Results for SP and TP queries
come from [Kimelfeld et al. 2009] while FP#P-completeness for TPJ queries is shown in
Section 5.

Over a discrete space S, where every document has a nonnegative probability, a document
satisfying Q contributes a non-negative fragment to the result Q(S). Over a continuous space
it is possible that Q(S) > 0, but Pr({d}) = 0 for every single document that satisfies Q.

4.2. Aggregate Queries over Probabilistic Data: Semantics
For the sake of simplicity, we assume that aggregate functions take real numbers as values.
Let S = (D,A,Pr) be an arbitrary px-space and Qα be an aggregate query.
Aggregate Queries over Discrete Documents. If D is finite, D = {d1, . . . , dn}, then there

are finitely many real numbers c1, . . . , cm, m 6 n, that occur as values of Qα. The probability
that cj is the value of Qα is

∑
{Pr(di) | Qα(di) = cj}, the sum of the probabilities of the

documents over which Qα returns the aggregate value cj .
Accordingly, we define the discrete distribution Qα(S) as the function R→ [0, 1], satisfying

Qα(S)(c) =
∑{

Pr(d) | d ∈ D, Qα(d) = c
}
.

Clearly, Qα(S)(c) = 0 iff c /∈ {c1, . . . , cm}. We call the set of values of Qα over D that have
non-zero probability the carrier of the distribution Qα(S).

Example 4.1. Evaluation of the query Qmin
Bonus from Figure 2 over the cie p-document

P̂PER-G in Figure 3 gives the distribution {(15, 0.85), (25, 0.15)}, since in two out of
four worlds corresponding to the assignments {x/false, z/false} and {x/false, z/true}, with

4Technically, the definition assumes that the set of documents satisfying Q is an element of A, which trivially
holds in our setting.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 Serge Abiteboul et al.

probabilities 0.0675 and 0.0825, respectively, the minimum bonus is 25 and in the remaining
two worlds the minimum is 15. Evaluation of the query over the mux-det p-document
P̂PER-L in Figure 4 gives the distribution {(15, 1)}, since in every world of the p-document
Mary receives a bonus of 15 which is the smallest value across all bonuses occurring in the
p-document.

Aggregate Queries over Continuous Documents. In the general case, Qα maps the elements
of the probability space S to real numbers, and therefore can be seen as a functionQα : D → R.
An aggregate query Qα is a total function on D because we require that aggregate functions
are also defined for the empty bag (see Section 2) and thus Qα produces a value for every
d ∈ D even if the underlying non-aggregate query is not satisfied by d. A real-valued function
defined on a probability space is a random variable.5
The random variable Qα induces a probability measure Pr′ on the reals, defined for

measurable sets A ⊆ R and satisfying Pr′(A) = Pr({d ∈ D | Qα(d) ∈ A}). Less formally, Pr′
answers the question, “what is the probability that the value of Qα is an element of A?”

The probability Pr′ can be captured by two functions, the cumulative distribution F : R→
R where F (x) = Pr(Qα(d) 6 x) = Pr′(]−∞, x]), and the distribution function

Qα(S)(x) = d

dx
Pr(Qα(d) 6 x),

which is the first derivative of F and is also sometimes called the probability density function
of Pr′. (We study only continuous probabilities, where F is differentiable.) We define the
distribution function Qα(S) as the result of evaluating Qα over S.

If S is represented by the p-document P̂, we write Qα(P̂) instead of Qα(JP̂K). Moreover,
when we refer to Qα as a random variable and want to stress that the arguments of Qα are
random documents obtained from P̂, we write Qα(P).
Following the notation α(d) introduced to denote the aggregation of all leaves of a

document, we denote α(S) or α(P̂) the aggregation of all leaves of a px-space or of a
p-document, that is, α(S) := Qα0 (S) and α(P̂) := Qα0 (P̂) for Q0 the SP query “//*” that
returns all nodes of a document (remember that, in the semantics of aggregate queries, only
leaf values are aggregated).

4.3. Continuous Aggregation
We now want to study the mathematical relationship between the distribution Qα(P̂) and
the leaf distributions of P̂.

We consider first aggregation over skeletons, that is, p-documents whose only distributional
nodes are of type cont. We assume that every leaf is labeled with a continuous distribution,
to avoid complications caused by the combination of continuous and discrete distributions.
Then we generalize the results to aggregate queries over skeletons, and finally to queries over
arbitrary p-documents.
Since we admit arbitrary continuous functions as distributions, provided they are non-

negative and have an integral of 1, we restrict the aggregate functions to those common in
data management. We first note that aggregation of count does not depend on labels and
therefore is the same in the discrete and the continuous case. We will see later on that, in the
continuous case, aggregation with countd is essentially the same as with count. Therefore,
we limit ourselves to aggregation with α ∈ {sum, min, max, avg}.

5This is not fully correct, since technically, the function has to be measurable, a condition that is always
fulfilled in our setting.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:13

Aggregation over Skeletons. Let P̂ be a skeleton whose leaves l1, . . . , ln are labeled by the
continuous distributions f1, . . . , fn, and let JP̂K = (D,A,Pr) be the px-space it generates.
Let P : Rn → D be the labeling function where P(x1, . . . , xn) is obtained from P̂ by
labeling the leaf li with the number xi: this defines a bijection. Both the algebra structure
A and the probability Pr on D are exactly the images of the Borel algebra and of the
probability P̂r on Rn, where P̂r is the product of the probability measures induced by the
distributions fi. This means, in more concrete terms, P̂r is the measure with density function
f(x1, . . . , xn) = f1(x1)× . . .× fn(xn).

The distribution of the aggregate values of α over P(x̄) ∈ D is therefore the same as the
one of applying α to all bags resulting from tuples x̄ ∈ Rn, taking into account the density
f(x̄).
We recall that the cumulative distribution of a distribution function g is defined as

G(x) =
∫ x
−∞ g(y) dy and thus g = G′. Moreover, the convolution of two distributions g, h is

defined as (g ∗ h)(x) =
∫∞
−∞ g(y) · h(x− y) dy.

Proposition 4.2. Let X, Y be independent real-valued random variables with distribu-
tion functions g, h and cumulative distributions G, H. Then:

(1 ) The density function of X + Y is g ∗ h.
(2 ) The cumulative distribution function of max(X,Y ) is G ·H.
(3 ) The cumulative distribution function of min(X,Y ) is G+H −G ·H.

Proof. Claim 1 is a classical result in probability theory [Ash and Doléans-Dade 2000].
To see Claim 2, note that max(X,Y ) 6 x if and only if X 6 x and Y 6 x. The probability for
the first condition is G(x), for the secondH(x). SinceX, Y are independent, the eventsX 6 x
and Y 6 x are independent. The probability for both of them being true is therefore the
product of the two probabilities. To see Claim 3, note that min(X,Y ) > x if and only if X > x
and Y > x. Therefore this condition has the probability p = (1−G(x))(1−H(x)) and the
complementary condition min(X,Y ) 6 x has probability 1−p = G(x)+H(x)−G(x)·H(x).

As seen in the proposition, classical convolution expresses the distribution of sum. In
analogy, we define max- and min-convolutions of distribution functions g, h as the derivatives
of the cumulative distributions of max and min appearing above: g ∗max h = g ·H + G · h
and g ∗min h = g + h − g · H − G · h, where G, H are the cumulative distributions of g,
h, respectively. Moreover, we will denote classical convolution also as g ∗sum h. Since all
α ∈ {sum, max, min} are based on associative and commutative binary operations, also the
corresponding convolution operations “∗α” are associative and commutative.

Proposition 4.3. Let P̂ be a skeleton with distributions f1, . . . , fn on the leaves.

(1 ) If α is one of sum, min, max, then the distribution α(P̂) is the n-fold α-convolution of
the fi’s, that is α(P̂) = f1 ∗α · · · ∗α fn.

(2 ) For avg, the distribution is avg(P̂)(x) = n · f(n ·x), where f is the n-fold sum-convolution
of the fi’s.

(3 ) For countd, the probability that all leaves have different labels is 1, that is, Pr(countd(P ) =
n) = 1.

Proof. As discussed earlier, instead of trees with real numbers as leaf labels, we can
immediately apply α to tuples in Rn. Then Claim 1 follows from Proposition 4.2 and the
definition of α-convolutions. For avg, the number of values aggregated is always n. Therefore,
avg(P(x̄)) = sum(P(x̄))/n. Then Claim 2 follows, since for a random variable X with
distribution g(x), the random variable X/n has the distribution n · g(n · x). A tuple x̄ has
less than n distinct entries if x̄ is an element of a hyperplane satisfying an equation “xi = xj”

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 Serge Abiteboul et al.

over Rn, for some 1 6 i < j 6 n. The Borel measure of a hyperplane is 0. Since P̂r is defined
by a continuous distribution, P̂r(xi = xj) = 0. Then Claim 3 follows, since there are only
finitely many such hyperplanes.

For the same reason that countd is not a useful aggregate function for continuous p-
documents, joins of leaves are not of much interest: the probability that two continuous
leaves are equal is zero. Future work could study more adapted query languages, e.g.,
tree-pattern queries with inequalities.

Aggregate Queries over Skeletons. In addition to the skeleton P̂, we now consider also a
TPJ aggregate query Qα. We drop the assumption that all leaves carry distributions, but
assume that if Q retrieves a node v over some Q(x̄), then v is a cont-node in P̂.
While before, when evaluating α directly over the documents P(x̄), we aggregated the

labels of all leaves, we now only aggregate the labels of leaf nodes returned by Q. A leaf v is
returned by Q if there is a satisfying valuation ν from Q to P(x̄) such that ν(n) = v, where
n is the output node of Q. Since all documents P(x̄) have the same nodes and the same tree
structure as P̂ we can view valuations also as mappings from Q to P̂. Clearly, we need not
consider leaf nodes that are only returned with probability 0. Intuitively, such nodes are
retrieved by valuations that satisfy Q because a leaf label of P(x̄) is equal to a label in Q or
two leaf labels P(x̄) are equal and thus satisfy a join condition.
A valuation ν from Q to P̂ is relevant to Q if the probability that Q is satisfied by ν

is not zero, that is, Pr(P, ν |= Q) > 0. We note that a relevant valuation satisfies Q with
probability 1.

Proposition 4.4. Let P̂ be a skeleton, Q a TP query, and ν a valuation from Q to P̂.
Then either Pr(P, ν |= Q) = 1 or Pr(P, ν |= Q) = 0.

Proof. We translate the problem into one of numbers. Let Sν = {x̄ | P(x̄), ν |= Q}. It
follows from the definition of satisfaction that Sν is an affine subspace of Rk. Then either
dimSν = k or dimSν < k. In the first case, P̂r(Sν) = 1, in the second, P̂r(Sν) = 0.

A leaf v of P̂ is relevant to Q, if ν(n) = v for some valuation ν that is relevant to Q.
Because of Proposition 4.4, with probability 1, Q returns exactly the leaves relevant to Q
and no others.

Due to the proposition, one can easily find the relevant nodes by replacing all cont-labels
of P̂ with fresh distinct constants x̄ from R that occur neither in P̂ nor in Q. Then a node
is relevant if it is retrieved by Q over P(x̄).

We define the p-subskeleton of P̂ relevant to Q, denoted P̂|Q, as the smallest subtree of P̂
that contains all leaves relevant to Q. Since only the relevant nodes contribute to the query
result, and all of them do so with probability 1, it follows that the problem of determining
the distribution of Qα(P̂) is the same as the one of determining the distribution of α being
evaluated over P̂|Q.

Proposition 4.5. For a skeleton P̂ and aggregate query Qα, we have Qα(P̂) = α(P̂|Q).

Since we assume that all relevant nodes are labeled with continuous distributions, we can
determine the distribution of query answers as in the first case.

Aggregate Queries over Arbitrary p-Documents. As before, we consider P̂ and Qα, but
now assume that P̂ is an arbitrary p-document P̂ ∈ PrXMLcie,mux,det

cont . We also assume that
over any document d ∈ D, the query Q retrieves only nodes that stem from cont-nodes in P̂ .

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:15

This seems natural, since in an application it is more likely that all the measurements one
aggregates are imprecise, instead of some being fully precise and others not.

Under this assumption, as shown above, the distribution of Qα over the space of a skeleton
P̂i can be obtained from the distributions on the leaves, essentially by convolution. The full
space, moreover, is the convex sum of the skeleton spaces (see Equation (1) in Section 3.2).
It follows that the distribution of Qα over P̂ is the convex sum of the distributions over the
skeletons P̂i.

Proposition 4.6. Let Qα be an aggregate query, let P̂ ∈ PrXMLcie,mux,det
cont and

P̂1, . . . , P̂n be the skeletons of P̂, each with probability pi. Then

Qα(P̂) = p1 ·Qα(P̂i) + · · ·+ pn ·Qα(P̂n).

Proof. Holds, since JP̂K = p1 · JP̂1K + · · ·+ pn · JP̂nK.

If, for instance, α = max, then each Qα(P̂i) is a max-convolution of some label distri-
butions fj . While each convolution can involve at most linearly many fj , there may be
exponentially many skeletons. This raises the question whether there are shorter representa-
tions of Qα(P̂), which avoid the exponential blowup. We will see in Section 7 that this is
indeed the case for p-documents in PrXMLmux,det .

4.4. Computational Problems
In the discrete case, we are interested in the following three problems for an aggregate query
Qα where the input parameters are a discrete p-document P̂ with corresponding random
document P and possibly a number c:

Membership: Given c ∈ R, is c in the carrier of Qα(P), i.e., is Pr(Qα(P) = c) > 0?
Probability: Given a number c, compute Pr(Qα(P) = c).
Moments: Compute the moment E(Qα(P)k), where E is the expected value.

Membership and probability computation can be used to return to a user the distribution
Qα(P̂) of an aggregate query. Computing the entire distribution may be too costly or the
user may prefer a summary of the distributions. For example, a user may want to know its
expected value E(Qα(P)) and the variance Var(Qα(P)). In general the summary can be an
arbitrary k-th moment E(Qα(P)k) and the moment computation problem addresses this
issue.6

In the continuous case, we are interested in the following three problems for an aggregate
query Qα, where the input parameters are a p-document P̂ with corresponding random
document P and possibly two rational numbers c1, c2:

Membership: Given c1 < c2, is there a non-zero probability that the aggregate value Qα(P)
falls into the interval ]c1, c2[? That is, is Pr(Qα(P) ∈ ]c1, c2[) > 0?

Probability: Given c1 < c2, compute the probability that Qα(P) ∈ ]c1, c2[.
Moments: Compute the moment E(Qα(P)k), where E is the expected value.

In the following, we investigate these problems for the classes of cie documents and
mux-det documents. For each class, we further distinguish between aggregate queries of the
types SP, TP, and TPJ (in the discrete case only) with the functions min, count, sum, countd
and avg. We do not discuss max and topK since they behave similarly as min. In the paper
we mainly speak about data complexity, when the input is a p-document and the query is

6The variance is the central moment of order 2; it is known that the central moment of order k can be
tractably computed from the regular moments of order 6 k.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 Serge Abiteboul et al.

fixed. Occasionally we also consider combined complexity, when both the p-document and
the query are inputs of the problem.

5. PRINCIPLES
This section presents a number of important principles and preliminaries that are used later
on to support the complexity results.

5.1. Functions in #P and FP#P

We recall here the definitions of some classical complexity classes (see, e.g., [Papadimitriou
1994]) that characterize the complexity of aggregate functions on PrXMLcie,mux,det

cont . An
N-valued function f is in #P if there is a non-deterministic polynomial-time Turing machine
T such that for every input w, the number of accepting runs of T is the same as f(w).
A function is in FP#P if it is computable in polynomial time using an oracle for some
function in #P. Following Cohen et al. [2009], we say that a function is FP#P-hard if there
is a polynomial-time Turing reduction (that is, a reduction with access to an oracle to the
problem reduced to) from every function in FP#P to it. Hardness for #P is defined in a
standard way using Karp (many-one) reductions. For example, the function that counts
for every propositional 2-DNF formula the number of satisfying assignments is in #P and
#P-hard [Provan and Ball 1983], hence #P-complete. We notice that the usage of Turing
reductions in the definition of FP#P-hardness implies that any #P-hard problem is also
FP#P-hard. Therefore, to prove FP#P-completeness it is enough to show FP#P-membership
and #P-hardness. Note also that #P-hardness clearly implies NP-hardness.

Membership in FP#P for PrXMLcie,mux,det. We show that the probability computation
and moment computation problems for PrXMLcie are in FP#P by proof techniques adopted
from Grädel et al. [1998], which will imply the same result for the less general PrXMLmux,det

model. Since our problems are different from the ones considered in [Grädel et al. 1998] and
the authors presented only a brief sketch of their techniques, we now give details on how we
prove FP#P membership.

We say that an aggregate function α is scalable if for every multiset of values B, one can
compute in polynomial time a natural number M such that for every sub-multiset B′ of B,
the product M · α(B′) is a natural number. The aggregate functions count and countd are
obviously scalable. On the other hand, min, sum, and avg are not scalable since they may
take negative values. In fact this is not a real issue for the bags of values labeling leaves of
p-documents, since one can always start by transforming the initial p-document to the one
where all leaves are nonnegative, and, therefore, one ensures scalability of min, sum and avg
for the transformed p-document.

Proposition 5.1. Let α be an aggregate function that is computable in polynomial
time and Qα an aggregate TPJα query. The following functions mapping p-documents from
PrXMLcie,mux,det to rational numbers are in FP#P:

(1 ) for every c ∈ Q the function P̂ 7→ Pr(Qα(P) = c);
(2 ) (provided α is scalable) for every k > 1, the function P̂ 7→ E(Qα(P)k).

We use generating Turing machines to prove Proposition 5.1. We say that a nondetermin-
istic Turing machine is a generating machine if (1) all runs produce an output; (2) all runs
terminate either in an accepting state or a non-accepting state. Let T be a generating Turing
machine with alphabet Σ and u ∈ Σ∗. Then we denote by T (u) the multiset of outputs of T
produced upon input u by an accepting run where the multiplicity of an output is equal to
the number of accepting runs.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:17

The proof of Proposition 5.1 is based on the following property of generating Turing
machines.

Lemma 5.2. Let T be a generating polynomial time Turing machine with alphabet Σ
and let g : Σ∗ → N be a function computable in polynomial time. Then

f(u) :=
∑

w∈T (u)

g(w), (2)

where g(w) is summed as often as w occurs in T (u), defines a function f : Σ∗ → N such
that f ∈#P.

Proof. We extend the machine T to a machine T ′ in such a way that the number of
accepting runs of T ′ for input u is exactly f(u) as follows. The machine T ′ first calls T on u.
When T reaches an accepting state with output w, then T ′ computes g(w) and creates g(w)
non-deterministic accepting branches, each of which corresponds to an accepting run.
We are now ready to prove the proposition.
Proof of Proposition 5.1. We show that both functions can be computed in polyno-

mial time using a #P-oracle.
Since mux and det nodes can be transformed into cie nodes in polynomial time, we can

restrict ourselves to p-documents of PrXMLcie. We assume that the p-document P̂ has event
variables x1, . . . , xn with probabilities ∆(xi), which are rational numbers. Let K be the
product of the denominators of the ∆(xi)’s. We note that K can be computed in polynomial
time and that K ·∆(xi) is a natural number for all 1 6 i 6 n.

Let us start with probability computation. Let c be an arbitrary rational value. We show
there is a #P-oracle that computes f(P̂) := Kn ·Pr(Qα(P) = c). Then the desired probability
is obtained by dividing f(P̂) by Kn, which can clearly be done in polynomial time. By
Lemma 5.2 it is sufficient to exhibit a generating Turing machine T and a polynomial-time
function g so that f can be represented as in (2). Now, T works as follows. For the input
P̂, it (1) computes K and writes it on the tape; (2) nondeterministically generates a truth
assignment ν for the event variables of P̂ and writes it on the tape; (3) computes Qα(d) for
the document d corresponding to the assignment ν (this can be done in polynomial-time);
and (4) if Qα(d) = c, then accepts, else does not accept. The function g computes the
probability of Pr(ν) and multiplies it by Kn, where n is the number of variables of the
truth assignment ν. By definition of T and g, K−n

∑
w∈T (P̂) g(w) = Pr(α(P) = c), which

concludes the proof for the first claim of the proposition.
Assume now α scalable. We modify the previous construction as follows. In step (1),

T also computes a proper M scalability factor for the multiset of values appearing in
P̂, step (3) writes Qα(d) on the tape, and in (4) all documents d are accepted. The
function g computes Kn · Pr(ν) ·Mk · Qα(d)k, which is a natural number. Then clearly,
K−nM−k

∑
w∈T (P̂) g(w) = E(α(P)k), which concludes the proof for the second claim of the

proposition.
We use Proposition 5.1 to show the following upper bound:
Theorem 5.3. The probability and moment computation problems for the class of

aggregate TPJ queries over p-documents of PrXMLcie,mux,det are in FP#P for aggregate
functions count, min, countd, sum, and avg.

Proof. As already noted, count and countd are scalable so we can apply Proposition 5.1
as is. Furthermore, since min, sum, avg are polynomial-time, the probability computation
problem is in FP#P.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 Serge Abiteboul et al.

Let Qα be an aggregate TPJα query. Suppose α = min or α = avg. Observe that the
proof of Proposition 5.1 still works when the aggregate function varies from p-document
to p-document, as long as it is polynomial-time and scalable for the values occurring in
the p-document that is being queried. For a p-document P̂, let CP be the lower negative
value labeling P̂ (or 0 if there is no such value). We define an aggregate function αP as
αP(B) = α(B)− CP . Observe that αP is scalable for the values of P̂. Therefore, one can
compute E(QαP (P)k) in FP#P. Now,

E(Qα(P)k) = E
(
(QαP (P) + CP)k

)
=

k∑
j=0

(
k

j

)
Ck−jP E(QαP(P)j).

Since there are polynomially many terms that are each computable in polynomial time with
a #P oracle, the whole expression is computable in polynomial time with a #P oracle.
Now consider the last case α = sum. For a document P̂, we introduce the aggregate

function avgcountP defined by avgcountP(B) = avgP(B) · count(B), which is scalable for the
values of P̂. We conclude by noting that:

E(Qsum(P)k) = E
(
(Qavg(P) ·Qcount(P))k

)
= E

((
(QavgP (P) + CP) ·Qcount(P)

)k)
=

k∑
j=0

(
k

j

)
Ck−jP E(QavgcountP (P)j).

We now extend Proposition 5.1 from the discrete case to the continuous one.

Membership in FP#P for PrXMLcie,mux,det
cont . In the discrete case scalability of aggregate

functions guarantees the FP#P-membership, in the continuous case we need additional
constraints on the scalability of p-documents themselves.
A p-document P̂ ∈ PrXMLcie,mux,det

cont is p-scalable for α (where p stands for probability)
if for every two rational numbers c1 6 c2 one can compute in polynomial time a natural
number M , such that M · Pr(α(P) ∈ [c1, c2]) is a natural number. Moreover, P̂ is m-scalable
for α (where “m” stands for moments) if for every k ∈ N one can compute in polynomial
time a natural number M , such that M · Ek(α(P)) is a natural number.

One can easily check that PrXMLcie,mux,det
cont p-documents labeled with distributions from

PP(K) with nonnegative values are p-scalable and m-scalable for min, sum and avg. We con-
clude with a lemma that gives FP#P-membership for probability and moment computation.

Proposition 5.4. Let α be one of min, sum, avg and Qα an aggregate TPα query. Let
P̂ ∈ PrXMLcie,mux,det

cont be a p-document labeled with distributions from PP(K) for a fixed
natural number K.

(1 ) If P̂ is p-scalable for α, then the following function mapping p-documents to rational
numbers is in FP#P:

for every rational c1 < c2 the function P̂ 7→ Pr(Qα(P) ∈ [c1, c2]).

(2 ) If P̂ is m-scalable for α, then the following function mapping p-documents to rational
numbers is also in FP#P:

for every k > 1, the function P̂ 7→ E(Qα(P)k).

The proof is similar to the discrete case.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:19

Proof Sketch. Again we assume P̂ ∈ PrXMLcie
cont without loss of generality. We first

show the theorem for α ∈ {min, sum} and then discuss how the result can be extended to
α = avg.
We start with two preliminary observations. We assume that the p-document P̂ has

skeletons P̂i with probabilities pi for i = 1 . . . t, where every P̂i can be generated by some
truth assignment ν of the event variables occurring in P̂ and pi is the probability of this
ν. Let N be the product of the denominators of the pi. The number N can be computed
in polynomial time from the probabilities of the variables that occur in P̂ and N · pi is a
natural number for all i.

LetM1 andM2 be the constants for P̂ that are used to define p-scalability and m-scalability
of P̂, respectively. That is, the products M1 · Pr(Qα(Pi) ∈ [c1, c2]) and M2 · Ek(Qα(Pi))
are natural numbers. Note that both products are computable in polynomial time. Indeed,
by the definition of p-scalability, M1 can be computed in polynomial time. Moreover, the
probability Pr(Qα(Pi) ∈ [c1, c2]) can be computed in polynomial time for p-documents
labeled with distributions in PP(K) as follows: (a) Replace the continuous distributions that
label the leaves of P̂i with fresh constants (that do not occur in P̂i), assume this yields a
regular document d, and then query d with Q to retrieve cont nodes l1, . . . , lq. (b) Compute∫

[c1,c2](fl1 ∗α · · · ∗α flq ). One can see that Pr(Qα(Pi) ∈ [c1, c2]) is equal to the latter integral.
The steps (a) and (b) are obviously polynomial, while polynomiality of the step (c) holds
since the functions fli are from PP(K). Analogously, one can show that the computation of
M2 · Ek(Q(Pi)) is polynomial.
Now to prove the claim about probabilities, due to Lemma 5.2, it is sufficient

to show that for any two c1 < c2, there is a #P oracle that computes f(P̂) =∑t
i=1 ((N · pi) · (M1 · Pr(Qα(Pi) ∈ [c1, c2]))). For the claim about moments, the oracle should

compute f(P̂) =
∑t
i=1
(
(N · pi) ·

(
M2 · Ek(Qα(Pi))

))
. We proceed as in the proof of Propo-

sition 5.1.
Since avg is not a monoid function, we can not directly apply the reasoning above to

the case when α = avg. At the same time, the proof uses computation of probabilities and
moments only for skeletons, where the number of leaves in every document represented by a
skeleton is the same as in the skeleton. This allows us to adapt the proof above by using
convolutions with respect to sum for determining the probability that the sum of aggregated
nodes falls into [nc1, nc2], where n is the fixed count of selected nodes in the skeleton.
Similarly, to compute the moment of the avg query in a given skeleton, one computes the
moment for the sum query and divides the result by the number of selected nodes.

5.2. Single-Pattern Query Evaluation and Document Aggregation
In this section, we show that computing the answer to an aggregate SP query and aggregating
all leaves of a p-document are essentially the same operation.

We first show that for answering aggregate SP queries it is possible to isolate aggregation
from query processing.

Let P̂ be in PrXMLcie,mux,det . If Q is an SP query, we can apply it naïvely to P̂ , ignoring
the distributional nodes. The result P̂Q is the subtree of P̂ containing the original root and
as leaves the nodes satisfying Q (i.e., the nodes matched by the free variable of Q). It turns
out that for all aggregate functions α, evaluating Qα over P̂ is the same as applying α to P̂Q.
Therefore, answering an aggregate SP query Qα over P̂ in PrXMLcie,mux,det can be done in
two steps: first one queries P̂ with the non-aggregate part Q, which results in a p-document
P̂Q, and then one aggregates all the leaves of P̂Q. As an illustration, the p-document P̂BON-L

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 Serge Abiteboul et al.

[1] heat-consumption

[4] measurement [5] measurement

[2] room-1 [3] room-2

mux

[31] N(50,5)

0.1

[33] N(52,5)

0.9

PrXML
mux

[12] value

[25] N(15, 3)

[14] value

[27] 

[7] measurement

[29] N(200,8)

[18] value

�PMEAS ∈ cont

[1] IT- personnel

[5] bonus

[2] person [3] person

mux

[7] bonus

[51] pda

mux

det [56] 15

[22] pda

0.1

[24] laptop

[31] pda

[32] 50

[23] 25 [25] 44 [26] 50

[54] 15 [55] 44

0.7 0.3

0.9

[21]

[52]

[53]

PrXML
mux, det�PBON-L ∈

Fig. 6. p-Documents P̂BON-L (left) and P̂MEAS (right)

from Figure 6 (left), where BON stands for bonus, is obtained by naïvely matching the query
QBonus from Figure 2 on the p-document P̂PER-L from Figure 4.
For continuous p-documents P̂ ∈ PrXMLcie,mux,det

cont one first replaces each label that is a
continuous distribution with a fresh constant (that does not appear anywhere else in the
p-document), this yields a PrXMLcie,mux,det p-document P̂ ′. Then one applies the same
algorithm for computing P̂ ′Q as described above and restores in P̂ ′Q continuous labels on the
leaves that remained from P̂ ′, which results in a p-document P̂Q. Again, aggregation of all
leaves of P̂Q with α returns the same result as if the original p-document P̂ was queried with
Qα. The document P̂MEAS from Figure 6 (right), where MEAS stands for measurements, is
obtained from P̂CONS from Figure 5 and the single-path query that retrieves all children of
a value node (i.e., in XPath notation, //value/text()).
The previous discussion leads to the following result, that can be formally proved by

constructing the distributions Qα(P̂) and α(P̂Q).

Proposition 5.5. Let Q[n] be a non-aggregate SP query. Then for every p-document
P̂ ∈ PrXMLcie,mux,det

cont we can compute in time polynomial in |Q|+ |P̂| a p-subdocument P̂Q
of P̂ such that, for every aggregate function α:

Qα(P̂) = α(P̂Q).

In other words, evaluating an aggregate SP query is not harder than aggregating p-
documents. We actually have some form of reciprocal to this result. A single-path query is
said to be trivial if it is a root-only query. Evaluating any non-trivial aggregate query is as
hard as aggregating p-documents:

Proposition 5.6. Let P̂ be a p-document. Then for every non-trivial non-aggregate SP
query Q[n] we can compute in time polynomial in |Q|+ |P̂| a p-document P̂Q that uses the
same kinds of distributional nodes as P̂ and such that, for every aggregate function α:

α(P̂) = Qα(P̂Q).

Proof. We construct P̂Q as follows. Assume the k nodes of Q are n1 . . . nk in that order,
with nk the node to be aggregated. First, we construct a chain of nodes u1, u2 . . . uk−1 such

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:21

root

x

� r

x

Q : root

r

det det

mux mux

... ...

� r

C4C2 C3

v:

pos: neg:

C1

...

�Pϕ :

root

. .

v

. 0

w

root

�P � :

�P Q

Q�
α :

a

c

a

x [n]

#2DNF

1/2 1/2

Fig. 7. Left: p-Document P̂ ′ and query Q′α for reduction from query evaluation to probability and moments
computation (Lemma 5.7). Right: Query Q ∈ TPJ and p-document P̂#2DNF that show #P-hardness of TPJ
over PrXMLmux,det (Lemma 5.8).

that the label of each ui is compatible with that of ni. The node u1 is the root of P̂Q, and
for 1 6 i 6 k − 2, each ui has a single child ui+1. We add the whole P̂ tree as child of
uk−1. Then, we remove all non-leaf ordinary nodes that were in P̂, connecting leafs and
distributional nodes that were children of an ordinary node to the closest remaining ancestor
(possibly uk−1). Then the nodes matched by Q[n] in the resulting P̂Q are exactly the ones
that were leaves of P̂, and α(P̂) = Qα(P̂Q) for any aggregate function α.

5.3. Hardness Results for Branching Queries
We now show a number of hardness results for queries in TP and TPJ that will provide
general lower bounds.
With the next lemma, we can translate worst-case complexity results for non-aggregate

queries to lower bounds of the complexity of computing probabilities of aggregate values
and moments of distributions. An aggregate function α is faithful if there exists some value
c such that α({|c|}) 6= α({||}).

Lemma 5.7. Let Q be a TPJ query, P̂ a p-document in PrXMLcie,mux,det, and α a
faithful aggregate function, with c such that α({|c|}) 6= α({||}). Then one can construct in
linear time an aggregate TPJ query Q′α and a p-document P̂ ′ such that for any k > 1,

Pr(P |= Q) = Pr (Q′α(P ′) = α({|c|})) =
(
E(Q′α(P ′)k)− α({||})

)
/
(
α({|c|})− α({||})

)
.

Moreover,

(1 ) if Q ∈ TP, then Q′α ∈ TPα;
(2 ) if P̂ ∈ PrXMLcie, then P̂ ′ ∈ PrXMLcie;
(3 ) if P̂ ∈ PrXMLmux,det, then P̂ ′ ∈ PrXMLmux,det.

Proof. The construction of P̂ ′ and Q′α is illustrated on Figure 7 (left). If v is the root of
P̂ , then one extends P̂ with three extra nodes: a parent of v labeled root, a sibling labeled a,
where a is a fresh constant that does not occur in neither P̂ nor Q, and a child of the a
node labeled c. The query Q is extended analogously, with the difference that the child of a
is labeled with the aggregate variable x. The statement of the lemma immediately follows
from the observation that Q′α(P ′) = α({|c|}) holds if and only if P |= Q.

Obviously, all considered aggregate functions are faithful. Note that the expression of the
expected value makes this reduction useless if one allows ∞ as possible value for α({||}), such
as for min. However, it is easy to modify the construction of P̂ ′ to obtain a similar reduction
in the case of min also.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 Serge Abiteboul et al.

In [Kimelfeld et al. 2008] it was shown that for every non-trivial Boolean tree-pattern query,
computing the probability to match cie documents is #P-hard. By reducing #2-DNF, we
can show that for the more restricted case of mux-det documents, evaluation of tree-pattern
queries with joins can be #P-hard as well. We prove this here by giving an example of a
hard TPJ query; note that we extend this result in [Kharlamov et al. 2011] by showing that
every query with a single join that is not equivalent to a join-free query is #P-hard.

Lemma 5.8. There is a Boolean TPJ query with #P-hard data complexity over
PrXMLmux,det.

Proof. By reduction from propositional #2-DNF which is #P-hard. We illustrate
how to construct the p-document P̂ϕ#2DNF from a 2-DNF formula ϕ using the example:
ϕ = (w1 ∧ v) ∨ (¬v ∧ w2) ∨ (¬v ∧ w3) ∨ (w4 ∧ ¬v), where v is a propositional variable and
wi for i = 1 . . . 4 are some literals. For technical reasons we denote the clauses of ϕ as
C1 = (w1 ∧ v), C2 = (¬v ∧ w2), C3 = (¬v ∧ w3) and C4 = (w4 ∧ ¬v). The construction can
be easily extended to arbitrarily 2-DNF formulas.
Then P̂ϕ#2DNF has the root with one mux child for every variable occurring in ϕ. In

Figure 7 (right) we present a fragment of P̂ϕ#2DNF corresponding to v. Under the mux node
corresponding to v there are two uniformly distributed det children: one collects all positive
occurrences of v in ϕ and the other one all the negative occurrences. In Figure 7 these nodes
have pos and neg markers, respectively. The neg det child has two children l and r, under
which we, respectively, list the clauses where ¬v occurs on the left, that is, C2 and C3, and
on the right, that is, C4. Note that since every clause of ϕ is a conjunction of two literals,
each variable always occurs either on the left or on the right position in a clause.
The query Q is the same for every ϕ in 2-DNF and presented in Figure 7 (right). Since

every document of JP̂ϕ#2DNFK has the same probability, say p, one can see that the probability
Pr(P̂ϕ#2DNF |= Q) is the number of satisfying assignment for ϕ times p.

Indeed, the query has the same root as P̂ϕ#2DNF, with two children l and r, that both have
one child labeled with a join variable x. It is easy to see that every document d ∈ JP̂ϕ#2DNFK
that satisfies Q has at least two leaves labeled with the same clause, say C, and the parents
of the leaves are distinct labels from {l, r}. Hence, d corresponds to a satisfying assignment µ
of ϕ that makes C true. At the same time, for every such µ there is a document in JP̂ϕ#2DNFK
satisfying Q. This yields a bijection χ between the set M of satisfying assignments for ϕ
and the subset of JP̂ϕ#2DNFK whose documents satisfy Q. Since every document in JP̂ϕ#2DNFK
has the same probability, say p, we conclude,

Pr(P̂ϕ#2DNF |= Q) =
∑
µ∈M

Pr(χ(µ)) =
∑
µ∈M

p = p|M |.

The result in [Kimelfeld et al. 2008] and the previous lemma immediately yield the
following complexity lower bounds for probability and moment computation for TP and
TPJ.

Corollary 5.9. For every aggregate function α ∈ {count, countd,min, sum, avg}, there
exist an aggregate TPα query Qα1 and an aggregate TPJα query Qα2 , such that each of the
following computation problems is #P-hard:

(1 ) probability computation for Q1 over PrXMLcie;
(2 ) k-th moments of Q1 over PrXMLcie, for any k > 1;
(3 ) probability computation for Q2 over PrXMLmux,det;
(4 ) k-th moments of Q2 over PrXMLmux,det, for any k > 1.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:23

Table II. Data complexity of query evaluation over PrXMLcie

PrXMLcie Aggregate query language

SP TP TPJ

Membership NP-complete NP-complete NP-complete

Probability FP#P-complete FP#P-complete FP#P-complete

Moments count, sum in P
others FP#P-complete FP#P-complete FP#P-complete

This concludes the preliminaries. We are now ready to present our results on the complexity
of aggregating PrXMLcie p-documents.

6. AGGREGATING P-DOCUMENTS WITH EVENT VARIABLES
We now study the problems introduced in Section 3 for the most general class of discrete
p-documents, PrXMLcie, and then show how to extend these results to the continuous case
of PrXMLcie

cont. By definition, one approach to deal with PrXMLcie is to first construct the
entire px-space of a p-document P̂ , then to apply the aggregate query Qα to each document
in JP̂K separately, and finally combine the results to obtain the distribution Qα(P̂). This
approach is expensive, since the number of possible documents is exponential in the number
of variables occurring in P̂.
Our complexity results show that for practically all functions and all problems nothing

can be done that would be significantly more efficient. Decision problems are NP-complete
while computational problems are FP#P-complete. The only exception is the computation of
moments for aggregate single-path queries with sum and count. The intractability is due to
dependencies between nodes of p-documents expressed using variables. We note that these
intractability results hold for all non-trivial aggregate single-path queries.

Table II gives an overview of the data complexity results for the discrete PrXMLcie model,
which we prove next.

6.1. Membership and Probability Computation for PrXMLcie

We first show that the membership and probability computation problems are hard over
PrXMLcie for every non-trivial SPα query. We show this result for a general class of aggregate
functions that subsume all functions mentioned in this paper.
Let α be an aggregate function over A. We say that α distinguishes bags of a ∈ A from

the empty bag, or simply distinguishes bags of a, if for every natural number n,
α({||}) 6= α({|a1, . . . , an|}),

where the bag {|a1, . . . an|} contains n occurrences of the single element a. All aggregate
functions we considered in the paper, namely, sum, count, min, avg and countd distinguish
bags of a, for any non-zero rational a.

Lemma 6.1. Let α be an aggregate function that distinguishes bags of some element a
and Qα a non-trivial SPα query. Then for every propositional formula ϕ in DNF, one can
compute in polynomial time a p-document P̂ϕ,α ∈ PrXMLcie such that the following holds:

Pr
(
Qα(Pϕ,α) = α({||})

)
= 1− Pr(ϕ),

where Pr(ϕ) is the probability the formula ϕ holds given an independent probability distribution
over variables of ϕ.

Proof. Thanks to Proposition 5.6, we can restrict ourselves to the case of a query that
aggregates all leaves of the document. Let ϕ = ϕ1 ∨ · · · ∨ ϕn, where each ϕi is a conjunction

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 Serge Abiteboul et al.

1 1

cie

ϕ1 ϕn

...

root�Pϕ :

a a

cie

ϕ1 ϕn

...

root�Pϕ :

. .

cie

.

ϕ1 ϕn true
...

root�Pϕ :

U(a, b) U(a, b) U(c1, c2)

Fig. 8. Left: p-document P̂ϕ for reduction from probability computation for CNF formulas to probability
computation (Lemma 6.1). Center: p-document P̂ϕ for reduction from probability computation for DNF
formulas to moments computation (Lemma 6.4). Right: p-document P̂ϕ for reduction from DNF falsifiability
to membership for sum over continuous PrXMLcie

cont (Lemma 6.8).

of literals. Then P̂ϕ is constructed as follows: its root has a single cie child v, with in turn n
children v1, . . . , vn, where each vi is labeled with a. The edge from v to vi is labeled with ϕi.
Thus, the event variables of P̂ϕ are the variables of ϕ, with the same probability distribution.
See P̂ in Figure 8 (left).

The probability that Qα returns α({||}) (which is different from α(B) for any bag B of a’s)
is the probability that none of the ϕi’s are true, i.e., that ϕ is false.

We obtain therefore the following result:

Theorem 6.2. Let α be an aggregate function that distinguishes bags of elements (in
particular, α may be one of count, countd, min, sum, avg). Then, for every non-trivial query
in SPα:

(1 ) Membership over PrXMLcie is NP-hard.
(2 ) Probability computation over PrXMLcie is FP#P-hard.

Proof. This is a direct consequence of the reduction of Lemma 6.1 and of the following
two facts: (1) A formula has probability < 1 if and only if it is falsifiable, which is NP-hard to
check. (2) Computing the probability of a formula in CNF (¬ϕ) is FP#P-hard [Papadimitriou
1994; Grädel et al. 1998].

Furthermore, we have already shown in Theorem 5.3 that probability computation over
TPJ for all considered aggregate functions is in FP#P. Similarly, membership over TPJ is
in NP for all considered aggregate functions since, given a query, guessing a world and
evaluating the query takes no more than polynomial time.

6.2. Moments Computation for PrXMLcie

We show how to compute moments over PrXMLcie.

Theorem 6.3. Let α ∈ {sum, count,min, avg, countd}. Then computation of moments
of any degree over PrXMLcie is in FP#P for the class TPJα. Moreover, the problem is

(1 ) of polynomial combined complexity for the classes SPsum and SPcount;
(2 ) #P-hard for the classes TPsum and TPcount;
(3 ) #P-hard for any non-trivial query in the classes SPmin, SPavg and SPcountd.

Proof. Again, the FP#P upper bound follows from Theorem 5.3. Claim 2 follows from
Corollary 5.9. Claim 3 follows from Lemma 6.4, presented next, and from the fact that
probability computation for DNF formulas is FP]-hard [Grädel et al. 1998]. To prove Claim 1,
we rely on Proposition 5.5, which reduces answering aggregate SP queries to evaluating

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:25

aggregate functions, and the following two Lemmas 6.5 and 6.6. After we present the lemmas
we finish the proof of the theorem.

We start with a supporting lemma for Claim 3 of the theorem.
Lemma 6.4. Let α ∈ {min, avg, countd} and Qα a non-trivial SP query. Then for every

propositional DNF formula ϕ, one can compute in polynomial time a p-document P̂ϕ ∈
PrXMLcie such that E(Qα(Pϕ)k) = Pr(ϕ) for any k > 1.

Proof. Again, using Proposition 5.6, it it suffices to show that probability computation
of a DNF formula boils down to aggregating all leaves of a p-document.

Let ϕ = ϕ1 ∨ · · · ∨ϕn be a formula in DNF with n variables and m satisfying assignments.
Consider P̂ϕ (Figure 8, center) that has below its root a cie node v with children v1, . . . , vn
that are leaves of P̂ϕ and each vi is labeled with 1. If α is min, we add an extra child v′ to v,
labeled with 0. The edges from v to each vi are labeled with ϕi (the edge to v′ for min is
labeled with true).

The proof immediately follows from the observation that for every natural number m and
bag B = {|11, . . . , 1m|}, that contains the single element 1 occurring m times, α(B) = 1, and
for B = {||} it holds α(B) = 0.

The next lemma shows that the computation of the expected value for sum over a px-space,
regardless whether it can be represented by a p-document, can be polynomially reduced to
the computation of an auxiliary probability.

Lemma 6.5 (Regrouping Sums). Let S be a px-space and V the set of all leaves
occurring in the documents of S. Suppose that the function θ labels all leaves in V with
rational numbers and let sum(S) be the random variable defined by sum on S. Then

E(sum(S)k) =
∑

(v1,...,vk)∈V k

( k∏
i=1

θ(vi)
)
× Pr ({d ∈ S | v1, . . . , vk occur in d}) ,

where the last term denotes the probability that a random document d ∈ S contains all the
nodes v1, . . . , vk.

Proof. Intuitively, the proof exploits the fact that E(sum(S)) is a sum over documents
of sums over nodes, which can be rearranged as a sum over nodes of sums over documents.
Formally:

E(sum(S)k) =
∑
d∈S

(∑
v∈V
v∈d

θ(v)
)k

Pr(d) =
∑
d∈S

( ∑
v1∈V
v1∈d

θ(v1)
)( ∑

v′∈V
v′∈d

θ(v′)
)k−1

Pr(d)

=
∑
v1∈V

θ(v1)
∑
d∈S
v1∈d

( ∑
v′∈V
v′∈d

θ(v′)
)k−1

Pr(d) = . . .

=
∑
v1∈V

θ(v1) · · ·
∑
vk∈V

θ(vk)
∑
d∈S

v1,...,vk∈d

Pr(d)

=
∑

(v1,...,vk)∈V k

( k∏
i=1

θ(vi)
)

Pr ({d ∈ S | v1, . . . , vk occur in d}) .

The auxiliary probability introduced in the previous lemma can be in fact computed in
polynomial time for px-spaces represented by P̂ ∈ PrXMLcie.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:26 Serge Abiteboul et al.

Table III. Data complexity of query evaluation over PrXMLcie
cont

PrXMLcie
cont

Aggregate query language

SP TP

Membership NP-complete∗ NP-complete∗

Probability FP#P-complete† FP#P-complete†

Moments sum in P†
min, avg FP#P-complete† FP#P-complete†

∗ NP-membership holds for min-reasonable (for TPmin) and sum-
reasonable (for TPsum and TPavg) p-documents labeled with PC distri-
butions.
† The upper bound holds for p-documents labeled with PP(K) distri-
butions, for a fixed K.
In all cases lower bounds already hold for p-documents labeled with

PP(0) distributions.

Lemma 6.6. There is a linear-time algorithm that computes, given a p-document P̂ ∈
PrXMLcie and leaves v1, . . . , vk occurring in P̂, the probability

Pr
(
{d ∈ JP̂K | v1, . . . , vk occur in d}

)
.

Let ϕi be the conjunction of all formulas that label the path from the root of P̂ to vi for
1 6 i 6 k. Then the probability considered is equal to Pr(ϕ1 ∧ · · · ∧ ϕk) and computable in
linear time.
Now we are ready to conclude the proof of the theorem.

Proof of Theorem 6.3, Claim 1. By Lemma 6.5, the k-th moment of sum over P̂
is the sum of |V |k products, where V is the set of leaves of P̂. The first term of each
product,

∏k
i=1 θ(vi), can be computed in time at most |P̂|k. By Lemma 6.6, the second term

Pr
(
{d ∈ JP̂K | v1, . . . , vk occur in d}

)
can be computed in time linear in P̂ . This shows that

for every k > 1, the k-th moment of sum can be computed in polynomial time. The claim
for count follows as a special case, where all leaves carry the label 1.

6.3. Aggregating Continuous PrXMLcie
cont

We now investigate under which conditions the results for discrete p-documents PrXMLcie

extend to the continuous case. Table III gives an overview of the results that are proved
next.
A function is piecewise-continuous if it is a finite union of continuous functions f with

disjoint domains, where each f is defined over an interval over the reals, possibly right or
left-closed. We denote the set of all piecewise-continuous functions as PC.
Membership. We now define classes of p-documents for which we can guarantee that

membership can be checked in non-deterministic polynomial-time.
We start with p-documents for which membership of min is in NP. Given a p-document

P̂ ∈ PrXMLcont that is labeled with distributions in PC and two rational numbers c1 < c2,
one can test Pr(min(P̂) ∈ [c1, c2]) > 0 by examining the possible values of each leaf of P̂.
Intuitively, if for every leaf l of P̂ the probability that the value of l is greater than c1 is non-
zero and for at least one leaf l the probability that the value of l falls in the interval [c1, c2]
is non-zero, then the minimum of values across all the leaves of P̂ also falls in the interval
[c1, c2] with non-zero probability. A p-document P̂ ∈ PrXMLcont labeled with distributions in

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:27

PC is min-reasonable if this test can be performed in polynomial time. Formally, let l1, . . . , ln
be the leaves of P̂, then P̂ is min-reasonable if for all rational numbers c1 < c2 and integer
1 6 i 6 n, it can be decided in polynomial-time whether∫

[c1,∞[ fli(x)dx > 0; and
∫

[c1,c2] fli(x)dx > 0.

A p-document P̂ ∈ PrXMLcie,mux,det
cont is min-reasonable if all its skeletons are min-reasonable.

For example, p-documents that are labeled with distributions in PP are min-reasonable.
We now discuss p-documents for which membership of sum is in NP. Consider again a

p-document P̂ ∈ PrXMLcont labeled with distributions in PC. Since sum is a continuous
function one can again test Pr(sum(P̂) ∈ [c1, c2]) > 0 by examining the possible values of
each leaf of P̂ . Intuitively, if for every leaf l of P̂ there is a value vl such that the probability
of every small interval around vl is non-zero and the sum s =

∑
l vl across all these values

falls in [c1, c2], then every small enough interval around s falls into [c1, c2], which guarantees
that Pr(sum(P̂) ∈ [c1, c2]) > 0. A p-document P̂ ∈ PrXMLcont with leaves l1, . . . , ln labeled
with distributions in PC is sum-reasonable if this test can be performed in polynomial time,
formally, if for all rational numbers c1 < c2 it can be decided in polynomial-time whether
there is a vector of rationals v1, . . . , vn such that for all ε > 0,

∫
(vi−ε,vi+ε) fli(x)dx > 0 for

1 6 i 6 n and
∑n
i=1 vi ∈ [c1, c2]. Observe that p-documents labeled with distributions in PP

are sum-reasonable.

Theorem 6.7. Let α ∈ {min, sum, avg}. Then membership over PrXMLcie
cont for p-

documents that are labeled with distributions in PC is in NP for the class

(1 ) TPmin over min-reasonable PrXMLcie
cont p-documents;

(2 ) TPsum and TPavg over sum-reasonable PrXMLcie
cont p-documents.

Moreover, membership is NP-hard for every non-trivial aggregate query in SPα, for p-
documents labeled with distributions in PP(0).

In order to prove the NP-hardness result, we present now a lemma whose proof will be
later used as a general principle for extending hardness results from discrete models to
continuous ones.

Lemma 6.8. For every propositional DNF formula ϕ, and any two rational numbers
c1 < c2, one can compute in polynomial time a p-document P̂ϕ ∈ PrXMLcie labeled with
distributions in PP(0) such that the following are equivalent:

(1 ) ϕ is falsifiable,
(2 ) Pr(sum(Pϕ) ∈ [c1, c2]) > 0.

Proof. Let ϕ = ϕ1 ∨ · · · ∨ ϕn, where each ϕi is a conjunction of literals. If c1 < 0, then
we pose [a, b] = [2c1 − c2, c1 − c2]. Otherwise, we pose [a, b] = [c2 − c1, 2c2 − c1]. Then P̂ϕ is
as in Figure 8, right. Each leaf that has an incident edge labeled with ϕi has for label the
uniform distribution U(a, b) over [a, b]. The label of the last child, v, with edge annotated
with true is U(c1, c2).

If in some world, v is the only leaf (i.e., if ϕ is falsifiable), then Pr(sum(Pϕ) ∈ [c1, c2]) = 1.
Conversely, if ϕ is a tautology, either Pr(sum(Pϕ) < c1) = 1 or Pr(sum(Pϕ) > c2) = 1.

Proof Sketch of Theorem 6.7. An NP decision procedure for TPmin and TPsum

starts by guessing one skeleton P̂i of P̂, then evaluates the query regarding cont nodes as
constants, then substitutes the constant with the original cont nodes and finally uses the
min-reasonable or sum-reasonable character of P̂ (and therefore of P̂i) to decide whether the
aggregate query result falls into [c1, c2] with positive probability. For TPavg, NP-membership

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:28 Serge Abiteboul et al.

can be proved as for TPsum, since in every document represented by a skeleton of a p-document
the number of leaves is the same as in the skeleton.

NP-hardness can be shown for any non-trivial SP query over PP(0) documents, by first
applying Lemma 6.8 and then Proposition 5.6 to reduce aggregation to the evaluation of an
arbitrary non-trivial SP query.
Probability Computation. We now discuss probability computation over PrXMLcie

cont .
Theorem 6.9. Let α ∈ {min, sum, avg} and K be a natural number. Then probability

computation over PrXMLcie
cont for p-documents that are labeled with distributions in PP(0) is

#P-hard for every aggregate query in SPα. Moreover, probability computation is in FP#P

for TPα and the class of p-documents that are labeled with distributions in PP(K).
Proof Sketch. #P-hardness of probability computation can be shown by combining

Proposition 5.6 with the same reduction as in the discrete case (see Lemma 6.1) using
uniform probability distributions on leaves. For every DNF ϕ we construct a p-document
P̂ and an SPα query Qα such that Pr(Qα(P̂) ∈ (−ε,+ε)) = 1 − Pr(ϕ) for some ε > 0.
FP#P-membership follows from Proposition 5.4.
Moment Computation. We finally discuss moments over PrXMLcie

cont .
Theorem 6.10. Let α ∈ {min, sum, avg} and K be a natural number. Then computation

of moments of any degree over PrXMLcie
cont is in FP#P for the class TPα and the class of

p-documents that are labeled with distributions in PP(K). Moreover the problem is
(1 ) of polynomial combined complexity for the class SPsum and p-documents labeled with

distributions in PP(K);
(2 ) #P-hard for the class TPsum;
(3 ) #P-hard for any query in the classes SPmin and SPavg.

Proof Sketch. FP#P-membership and Claims 2 and 3 are shown as in the discrete
case, similarly to Theorem 6.9. Claim 1 follows from the following Lemma 6.11 and the fact
that both the integral and the probability that occur in the formula of the lemma can be
computed in polynomial time for p-documents labeled with PP(K) distributions.
We now present a continuous version of the lemma on regrouping sums.
Lemma 6.11. Let S ′ =

∑n
i=1 Pr(Si) · Si be a continuous px-space, where each Si is a

continuous px-space in which all documents have one skeleton with set of leaves L(Si). Let
L(S) be the set of all leaf nodes occurring in S. Suppose that the function v labels all leaves
in L with real numbers according to the distribution attached to the leaf and let sumS′ be the
random variable defined by sum on S ′. Then

E(sumk
S′) =

∑
(lt1 ,...,ltk

)∈Lk

( ∫
v(l1),...,v(ln)
{l1,...,ln}=L(S)

k∏
i=1

v(lti)
n∏
j=1

flj (v(lj)) dv(l1) · · · dv(ln)× P
)
,

where P = Pr({S ∈ {S1, . . . ,Sn} | lt1 , . . . , ltk occur in S}) and denotes the probability that
one of the structural worlds S of S ′ contains all nodes l1, . . . , lk.
The proof is an extension of the one for Lemma 6.5.

7. AGGREGATION WITH MONOID FUNCTIONS
The previous section highlighted the inherent difficulty of computing aggregate queries
over cie documents. The intuitive reason for this difficulty is that the event variables used

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:29

.

mux

. .

mux

...

. 0

mux
.

pn

�Pv :
p1

v:

�P1 �Pn

.

l�

. .

mux

...

. 0

mux

.

�Pv :

�P1 �Pn

v:

α( �Pv) = p1α( �P1) + · · · + pnα( �Pn) α( �Pv) = α( �P1) ∗M · · · ∗M α( �Pn)

Fig. 9. Distribution of monoid functions over composed PrXMLmux,det documents

in a p-document can impose constraints between the structure of subdocuments in very
different locations. In contrast, mux-det documents only express “local” dependencies. As
a consequence, for the special case of single-path queries and monoid aggregate functions,
mux-det documents allow for a conceptually simpler computation of distributions, which in
a number of cases is also computationally efficient.

7.1. Monoid Aggregates over Discrete Probabilistic Data
The key to developing methods in this setting is Proposition 5.5, which reduces the evaluation
of a single-path aggregate query Qα over P̂ to the evaluation of the function α over the
document P̂Q. Note that P̂Q is again a mux-det document if P̂ is one. Therefore, we can
concentrate on the question of evaluating α over mux-det p-documents.

We are going to show how a mux-det p-document P̂ can be seen as a recipe for constructing
the px-space JP̂K in a bottom-up fashion, starting from elementary spaces represented by
the leaves and using essentially two kinds of operations, convex union and product. Convex
union corresponds to mux nodes and product corresponds to det nodes and regular nodes.
(To be formally correct, we would need to distinguish between two slightly different versions
of product for det and regular nodes. However, to simplify our exposition, we only discuss
the case of regular nodes and briefly indicate below the changes necessary to deal with det
nodes.)

For any α, the distribution over the space described by a leaf of P̂ is a Dirac distribution,
that is, a distribution of the form δa, where δa(b) = 1 if and only if a = b. For monoid
functions α, the two operations on spaces, convex union and product, have as counterparts
two operations on distributions, convex sum and convolution, by which one can construct the
distribution α(P̂) from the Dirac distributions of the leaves of P̂ . We sketch in the following
both the operations on spaces and on distributions, and the way in which they are related.
As the base case, consider a leaf node v with label l. This is the simplest p-document

possible, which constitutes an elementary px-space that contains one document, namely node
v with label l, and assigns the probability 1 to that document. Over this space, α evaluates
with probability 1 to α({|l|}), hence, the probability distribution is δα({|l|}). As a special case,
if α is a monoid aggregation function over M , the distribution of α over the space containing
only the empty document is δ⊥, where ⊥ is the identity of M .

Inductively, suppose that v is a mux-node in P̂ , the subtrees below v are P̂1, . . . , P̂n, and
the probability of the i-th subtree P̂i is pi (see Figure 9, left). Without loss of generality we
can assume that the pi are convex coefficients, that is, p1 + · · ·+ pn = 1, since we admit the
empty tree as a special p-document.

Let P̂v denote the subtree rooted at v. Then the semantics of mux-nodes implies that the
px-space JP̂vK = (Dv,Prv) is the convex union of the spaces JP̂iK = (Di,Pri). Indeed, (1) Dv
is the disjoint union of the Di (in other words, for any d ∈ Dv, there is exactly one Di such
that d ∈ Di); (2) for any document d ∈ Dv, we have that Prv(d) = pi · Pri(d), where d ∈ Di.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:30 Serge Abiteboul et al.

As a consequence, α(P̂v)(c), the probability that α has the value c over P̂v, equals
the weighted sum p1 · α(P̂1)(c) + · · · + pn · α(P̂n)(c) of the probabilities α(P̂i)(c) that
α has the value c over P̂1, . . . , P̂n. In a more compact notation we can write this as
α(P̂v) = p1 · α(P̂1) + · · ·+ pn · α(P̂n), which means that the distribution α(P̂v) is a convex
sum of the α(P̂i).
For the second induction step, suppose that v is a regular non-leaf node in P̂, with the

label l (see Figure 9, right). Similar to the previous case, suppose that the subtrees below v

are P̂1, . . . , P̂n, that JP̂vK = (Dv,Prv) and that JP̂iK = (Di,Pri) for 1 6 i 6 n. Moreover, the
Di are mutually disjoint.
Every document d ∈ Dv has as root the node v, which carries the label l, and subtrees

d1, . . . , dn, where di ∈ Di. We denote such a document as d = vl(d1, . . . , dn). Conversely,
according to the semantics of regular nodes in mux-det documents, every combination
{d1, . . . , dn} of documents di ∈ Di gives rise to an element vl(d1, . . . , dn) ∈ Dv. (Note that,
due to the mutual disjointness of the Di, the elements of Dv are in bijection with the tuples
in the Cartesian product D1 × · · · × Dn.)
Consider a collection of documents di ∈ Di, 1 6 i 6 n, with probabilities qi := Pri(di).

Each di is the result of dropping some children of mux nodes in P̂i and qi is the product of
the probabilities of the surviving children. Then d := vl(d1, . . . , dn) is the result of dropping
simultaneously the same children of those mux nodes, this time within P̂v. The set of
surviving children in P̂v is exactly the union of the sets of children having survived in each
P̂i and, consequently, for the probability q := Prv(d) we have that q = q1 · · · qn. In summary,
this shows that the probability space (Dv,Prv) is structurally the same as the product of
the spaces (Di,Pri).

Suppose now that, in addition, α is a monoid aggregate function taking values in (M,⊕,⊥).
Then for any document d = vl(d1, . . . , dn) ∈ P̂v we have that α(d) = α(d1) ⊕ · · · ⊕
α(dn). Hence, the probability that α(Pv) = c is the sum of all the products Pr(α(P1) =
c1) · · ·Pr(α(Pn) = cn) such that c = c1 ⊕ · · · ⊕ cn. Therefore, the distribution α(P̂v) is the
convolution of the distributions α(P̂i) with respect to ⊕, that is,

α(P̂v) = α(P̂1) ∗⊕ · · · ∗⊕ α(P̂n), (3)

where the convolution with respect to ⊕ is defined as (f ∗⊕ g)(c) =
∑
c1⊕c2=c f(c1) · g(c2)

for any two functions f , g : M → R.
For det nodes v, the same equation applies, although the supporting arguments are a bit

more complicated. The crucial difference is that for det nodes, JP̂vK is a space of forests,
not trees, since the trees (or forests) in the JP̂iK are combined without attaching them to a
new root. For a fully formalized argument, one would have to generalize the syntax to trees
with distributional roots and the semantics to one where p-documents are interpreted by
px-spaces over labeled forests, which is tedious, but not difficult.

We summarize how one can use the operations introduced to obtain the distribution of a
monoid aggregate function over a mux-det document.

Theorem 7.1. Let α be a monoid aggregation function and P̂ ∈ PrXMLmux,det. Then
α(P̂) can be obtained in a bottom-up fashion by

(1 ) attaching a Dirac distribution to every leaf and for every occurrence of the empty document;
(2 ) taking convex sums at every mux node; and
(3 ) taking convolutions with respect to α at each det and each regular non-leaf node.

We now illustrate how to apply Theorem 7.1 on an example.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:31

Example 7.2. We compute the distribution Qmin
Bonus(P̂PER-L). Since Qmin

Bonus is an SPmin

query, due to Lemma 5.5, we can compute a p-subdocument of P̂PER-L, denoted P̂BON-L,
such that Qmin

Bonus(P̂PER-L) = min(P̂BON-L). The document P̂BON-L can be obtained from
P̂PER-L by removing all the leaves that are not bonuses and the paths leading to them from
the root, see Figure 6, left. Since we are computing a distribution of min, the operation
⊕ is min itself, that we will use in infix notation. Using Theorem 7.1 we obtain that the
distribution min(P̂BON-L) is((

0.1 δ25 + 0.9 (δ44 min δ50)
)

min δ50

)
min

(
0.7 (δ15 min δ44) + 0.3 δ15

)
Since for every a 6 b we have (δa min δb) = δa the expression for min(P̂BON-L) can be
simplified to

(
(0.1 δ25 + 0.9 δ44) min δ50

)
min δ15. Moreover, since 25 < 50 and 44 < 50 we

can further simplify the expression to (0.1 δ25 + 0.9 δ44) min δ15. This expression represents
the distribution min(P̂BON-L).

Since for any P̂ the carrier of min(P̂) and of count(P̂) has at most as many elements as
there are leaves in P̂, we can draw some immediate conclusions from Theorem 7.1.

Corollary 7.3. For any P̂ ∈ PrXMLmux,det,

(1 ) the distributions count(P̂), min(P̂) can be computed in time polynomial in |P̂|;
(2 ) the distribution sum(P̂) can be computed in time polynomial in |P̂|+ |sum(P̂)|.

Proof Sketch. Claim 1 holds because computing a convex sum and convolutions with
respect to “+” and min of two distributions is polynomial and all distributions involved in
computing count(P̂) and min(P̂) have size O(|P̂|). Claim 2 holds because, in addition, a
convex sum and the convolution with respect to “+” of two distributions have at least the
size of the largest of the two arguments.

Remark. Equation (3) is in fact a special case of a general principle: If X and Y are
two M -valued random variables on the probability spaces X , Y, with distributions f , g,
respectively, then the distribution of X⊕Y : X ×Y →M is the convolution f ∗M g of f and g.
This principle has also been applied by Ré and Suciu [2007] for queries with aggregation
constraints over probabilistic relational databases.

7.2. Monoid Aggregates over Continuous Probabilistic Data
We now discuss how the results for single-path aggregate queries with monoid functions
obtained in the discrete case can be lifted to the continuous case PrXMLmux,det

cont .
As discussed in Section 4, one can compute distributions Qα(P̂) of aggregate queries by first

computing (possibly exponentially many) skeletons of P̂, evaluating Qα over the skeletons,
which can be done using convolutions, and then combining the resulting distributions with
convex sums. It turns out that the computation of the skeletons is not needed for mux-det
p-documents. One can apply the same bottom-up evaluation technique for SPα queries with
monoid functions as discussed in Theorem 7.1, with the difference that one skips Step 1,
because the distributions are already attached to the leaves of continuous p-documents.
Obviously, there is no hope of computing probabilities of aggregate query answers if it

is not possible to somehow combine (either symbolically or numerically) the probability
distributions of the leaves. Proposition 4.2 hints that if we are able to efficiently apply a
number of basic operations on our probability distribution functions, we are able to compute
the distribution of the min, max, or sum. The following operations are required: convex

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:32 Serge Abiteboul et al.

sums (for mux nodes); convolution (for sum, in conjunction with det nodes); integration and
multiplication (for min and max, in conjunction with det nodes).

One simple case where we can perform these operations efficiently is when cont leaves are
piecewise polynomials of a bounded degree, that is, for PP(K). It is reasonable to assume
that such a bound K exists for every application. This bound ensures that the piecewise
polynomial representing the distribution of the query answer has degree polynomial in the
size of the document. Formally:

Proposition 7.4. For a p-document in PrXMLmux,det with l leaves, where the leaves are
labeled with distributions in PP(K), the polynomials in the distributions of max and min
have degree at most K · l.

This proposition combined with Proposition 4.2 gives the following result.

Theorem 7.5. For p-documents in PrXMLmux,det
cont that are labeled with distributions in

PP(K), for a fixed natural number K, we have:

(1 ) The distribution of results of queries in SPsum can be computed in polynomial time in the
combined size of the input and the output.

(2 ) The distribution of results of queries in SPmax and SPmin can be computed in polynomial
time.

(3 ) All moments of results of queries in SPsum, SPmax and SPmin can be computed in polynomial
time.

Proof. Proofs for both Claims 1 and 2 are based the following observation. During the
convolution of pdfs, the size of the larger one never decreases. This holds clearly in the
discrete case. It also works for the continuous case, if, for example, pdfs are PP(K) functions,
for a fixed K.
Indeed, suppose f is a pdf in PP(K), with interval endpoints x0, . . . , xn, where the

restriction to the interval (xi−1, xi) is a polynomial fi. If we convolve f with a polynomial g,
this amounts to multiplying (and integrating) f and g. Multiplying fi, fi+1 by another
function cannot make the results fi · g and fi+1 · g equal if fi, fi+1 were not equal, and
integration cannot make them equal either. Hence the size of the larger pdf never decreases.

Observe that for Q ∈ SP the resulting distributions Qmin(P̂) and Qmax(P̂) for a P̂ labeled
with distributions from PP(K) can be computed (due to Proposition 5.5) on a p-subdocument
P̂Q of P̂ as min(P̂Q) and max(P̂Q) and, therefore, are limited by P̂, while sum(P̂Q) and
consequently Qsum(P̂) can be of exponential size (see Theorem 8.16, Claim 2). Combining
this with the observation that convolution never decreases, we conclude the proof of Claims 1
and 2.
Claim 3 for SPmax and SPmin follows from Claim 2 and the fact that moments of any

degree can be computed from the distributions in polynomial time. Claim 3 for SPsum follows
from Theorem 6.10.

Another class of distributions for which we can compute (representations of) distributions
for sum is the class of convex sums of Gaussian distributions. It is well known [Ash and
Doléans-Dade 2000] that Gaussians are closed under convolution ∗ for sum, that is,N(µ1, σ

2
1)∗

N(µ2, σ
2
2) = N(µ1 + µ2, σ

2
1 + σ2

2), and hence convex sums of Gaussians are closed under
convex sum and convolution. Thus, we obtain the following result.

Theorem 7.6. For p-documents in PrXMLmux,det
cont that are labeled with convex sums

of Gaussian distributions, the distribution of results of SPsum queries is a convex sum of
Gaussian distributions and can be computed in polynomial time in the combined size of the
input and the output.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:33

Table IV. Data complexity of query evaluation over PrXMLmux,det

PrXMLmux,det Aggregate query language

SP, TP TPJ

Membership sum, avg, countd NP-complete
count,min in P

sum, avg, countd NP-complete
count,min in NP

Probability sum∗, avg, countd FP#P-complete
count,min in P FP#P-complete

SP TP

Moments in P avg in FP#P

others in P FP#P-complete

∗ SPsum query evaluation is in P when the complexity is measured in the size of the input plus the
resulting distribution.

We now illustrate how to apply Theorem 7.6 on an example.

Example 7.7. For P̂CONS (Figure 5) we want to know the total heat consumption,
which can be computed by the following query Qsum ∈ SPsum expressed in XPath:
sum(//value/text()). Using Lemma 5.5, we can compute a p-subdocument P̂MEAS of
P̂CONS, that is presented on Figure 6 (right), such that Qsum(P̂CONS) = sum(P̂MEAS). Now
using Theorem 7.1 we obtain the distribution sum(P̂MEAS):

N(15, 3) ∗ (0.1N(50, 5) + 0.9N(52, 5)) ∗N(200, 8).

We finally distribute the convolutions with N(15, 3) and N(200, 8) over the convex sum. Since
N(15, 3)∗N(50, 5)∗N(200, 8) = N(265, 16) and N(15, 3)∗N(52, 5)∗N(200, 8) = N(267, 16),
we obtain Qsum(P̂CONS) = 0.1N(265, 16) + 0.9N(267, 16).

Other results from the discrete case can be generalized to the continuous case, too. For
example, it can be shown that moments of queries in TPsum can be computed in polynomial
time over PrXMLmux,det

cont (and similarly for SPsum and PrXMLcie
cont), by replacing the cont

nodes by the expected value of the represented distribution.

8. AGGREGATING P-DOCUMENTS WITH LOCAL DISTRIBUTIONAL NODES
We investigate the three computational problems for aggregate queries for the restricted class
of PrXMLmux,det , drawing upon the principles developed in the preceding section. Table IV
gives an overview of the data complexity results obtained in this section.

8.1. Membership
Theorem 8.1. Let α ∈ {sum, count,min, avg, countd}. Then membership over

PrXMLmux,det is in NP for the class TPJα. Moreover, the problem is

(1 ) NP-hard for every query in SPsum, SPavg, SPcountd;
(2 ) of polynomial combined complexity for the classes SPmin and SPcount;
(3 ) of polynomial data complexity for any query in TPmin and TPcount.

Proof. The NP upper bound is inherited from the cie case (Theorem 6.2). Claims 2
and 3 follow from their counterparts (Claims 1 and 2, respectively) in Theorem 8.7 further.
Claim 1 can be shown by a reduction of Subset-Sum and Exact-Cover-By-3-Sets, as presented
in the following Lemmas 8.2 and 8.3, respectively.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:34 Serge Abiteboul et al.

det

root

s1 sm. 0

mux ...

. 0

mux

0.50.50.50.5

.

root

. .

mux

...

. 0

mux

.a1 an

1/tn1/tn1/t1 1/t1

S1
1 S1

t1
Sn

1 Sn
tn

det

root

(1/2)1

mux ...

(1/2)n

mux

0.50.5

�PA,s : �PA,C : �P :

Fig. 10. Left: p-document P̂A,s for reduction of the Subset-Sum problem to the membership problem for
sum and avg (Lemma 8.2). Center: p-document P̂A,C for reduction of the Exact-Cover-By-3-Sets problem to
the membership problem for countd (Lemma 8.3). Right: p-document for exhibiting an exponential explosion
of sum(P̂) distribution for P̂ ∈ PrXMLmux,det (Lemma 8.6).

The next lemma highlights why membership is difficult for sum and avg. The Subset-Sum
problem [Garey and Johnson 1979] is, given a finite set A, an N-valued function s on A, and
c ∈ N, to decide whether there is some A′ ⊆ A such that

∑
a∈A′ s(a) = c.

Lemma 8.2. For every set A, N-valued (weight) function s on A, and c ∈ N one can
compute in time polynomial in |A|+

∑
a∈A |s(a)| a p-document P̂A,s ∈ PrXMLmux,det such

that the following are equivalent:

(1 ) there is A′ ⊆ A such that
∑
a∈A′ s(a) = c,

(2 ) Pr(sum(PA,s) = c) > 0,
(3 ) Pr(avg(PA,s) = c · |A|) > 0.

Proof. Let A := {a1, . . . , am}. Then P̂A,s (Figure 10, left) has one det child under the
root, which has m children v1, . . . , vm that are mux nodes. Each vi has two children: ai
labeled with si := s(ai) and bi labeled with 0. The edges to both ai and bi are labeled
with 0.5. Clearly, P̂A,s can be constructed in polynomial time in the size of A. Observe that
c is a possible value for sum if and only if in some world the only children of the root are
ai’s with labels summing-up to c, that is, if and only if there is A′ ⊆ A consisting of these
ai’s with the weights summing-up to c.

Furthermore, in every world of the p-document P̂A,s the number of leaves is the same and
equal to m. Therefore, c is a possible value for sum if and only if c ·m is a possible value
for avg.

The next lemma highlights why membership is difficult for countd. Recall that Exact-
Cover-By-3-Sets is, given a finite set A, such that |A| = 3q and a collection C of 3-element
subsets of A, to decide whether there is some C ′ ⊆ C such that every element of A occurs
in exactly one member of C ′. This problem is NP-hard [Garey and Johnson 1979].

Lemma 8.3. For every set A, where |A| = 3q and every collection C of 3-element subsets
of A, one can compute in polynomial time a p-document P̂A,C ∈ PrXMLmux,det such that
the following are equivalent:

(1 ) there is C ′ ⊆ C such that every a ∈ A occurs in exactly one member of C ′;
(2 ) Pr(countd(PA,C) = q) > 0.

Proof. Let A = {a1, . . . , an}, and C = {S1, . . . , Sm}. Assume for each i that Si1, . . . , Siti
are all the members of C that contain ai. Then P̂A,C (Figure 10, center) has n children
a1, . . . , an below the root. Each ai has exactly one child that is a mux node with ti children,
namely Si1, . . . , Siti . Each S

i
j is a leaf and the edge to it is labeled with 1/ti. Intuitively, each

node Sij indicates that an element ai in A is “covered” with a set Sij in C ′.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:35

The probability Pr(countd(PA,C) = q) is more than zero if and only if there is a world in
JP̂A,CK such that it has exactly q distinct leaves Sij , namely, Si1j1

, . . . , S
iq
jq
, if and only if, the

set C ′ = {Si1j1
, . . . , S

iq
jq
} covers A and, since the cardinality of C ′ is q, every element of A

occurs in exactly one member of C ′.

8.2. Probability Computation
We start with the case of sum queries for which probability computation over PrXMLmux,det

is tractable in terms of the size of the output distribution.

Theorem 8.4. Probability computation over PrXMLmux,det is in FP#P for the class
TPJsum. Moreover,

(1 ) the problem is polynomial in the size of the input and overall distribution for every
Q ∈ SPsum;

(2 ) the problem is FP#P-complete in the size of the input p-document for SPsum;
(3 ) there is a p-document for which the distribution of every query in SPsum is exponentially

large in the size of the p-document.

Proof. The upper bound is inherited from the cie case (Theorem 6.2). Claim 1 follows
from Corollary 7.3. Finally, Proposition 5.6 together with the following Lemma 8.5 yields
Claim 2 and together with Lemma 8.6 it yields Claim 3.

We now show why probability computation is difficult for sum. The #Subset-Sum problem
is the counting counterpart of Subset-Sum, and counts the number of all A′ ⊆ A such that∑
a∈A′ s(a) = c; #Subset-Sum is a #P-hard problem.

Lemma 8.5. For every set A, N-valued (weight) function s on A, and c ∈ N one can
compute in polynomial time a p-document P̂A,s ∈ PrXMLmux,det and a number c′ ∈ Q such
that the following are equivalent:

(1 ) the number of A′ ⊆ A such that
∑
a∈A′ s(a) = c is k,

(2 ) the probability Pr(sum(PA,s) = c) is k · c′.

Proof. Consider the document P̂A,s from 8.2 (Figure 10, left) and let c′ = 1/2m. Then

Pr(sum(PA,s) = c) =
∑
P∈W

Pr(P) = |W |/2m = k/2m = k · c′,

where W is the set of all documents P in JP̂A,sK such that sum(P) = c.

We now see a p-document with an exponentially large distribution of sum.

Lemma 8.6. There exists a p-document P̂ in PrXMLmux,det such that the distribution
of sum(P) is exponential in |P̂|, that is, |sum(P̂)| = 2|P̂|.

Proof. Consider P̂ (Figure 10, right), that has a root with one det child that in turn
has n mux children the i-th of which has one child vi labeled with the number (1/2)i, and
the edges to vi are labeled with 0.5. Then it is easy to see that |sum(P̂)| = 2n, where n is
the number of leaves in P̂.

We conclude with probability computation for count, min, avg, and countd.

Theorem 8.7. Let α ∈ {count,min, avg, countd}. Then probability computation over
PrXMLmux,det is in FP#P for the class TPJα. Moreover, the problem is

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:36 Serge Abiteboul et al.

(1 ) of polynomial combined complexity for the classes SPmin and SPcount;
(2 ) of polynomial data complexity for any query in TPmin and TPcount;
(3 ) #P-hard for any query in SPavg and SPcountd;
(4 ) #P-hard for some query in TPJcount and TPJmin.

Proof. The FP#P upper bound is inherited from the cie case (Theorem 6.2). Claim 1
follows from Corollary 7.3, since, due to Proposition 5.5, for an aggregate SP query Qα we
have that Qα(P̂) = α(P̂Q).
Regarding Claim 2, algorithms for count and min can be developed in a straightforward

way, applying the techniques from Cohen et al. [2008] to evaluate TP-queries with aggregate
constraints. For a given p-document, there are only linearly many possible values for min
and count, the probability of which can be computed in polynomial time by incorporating
them in constraints. Consequently, the entire distribution of min or count can be computed
in polynomial time.

Claim 3 for countd can be shown by a reduction of the #K-cover problem, that is known
to be #P-complete [Ré and Suciu 2007]. Claim 3 for avg can be shown by a straightforward
reduction from the #P-complete problem #Non-Negative-Subset-Average introduced in [Ré
and Suciu 2007].7

Claim 4 follows from Corollary 5.9.

8.3. Moment Computation
Theorem 8.8. Let α ∈ {sum, count,min, avg, countd}. Then computation of moments

of any degree over PrXMLmux,det is in FP#P for the class TPJα. Moreover, the problem is

(1 ) of polynomial combined complexity for the class SPα;
(2 ) of polynomial data complexity for the class TPα, if α 6= avg;
(3 ) #P-hard for some query in TPJα.

Proof. The FP#P upper bound is inherited from the cie case (Theorem 6.3).
Claim 3 follows from Corollary 5.9. Proofs of Claim 1 and Claim 2 will be presented after

the following supporting lemmas.

The next lemma shows that computation of an auxiliary probability, that will be used in
the proof of Claim 1 of the preceding theorem, is tractable.

Lemma 8.9. There is a polynomial-time algorithm that computes, given a p-document
P̂ ∈ PrXMLmux,det and leaves v1, . . . , vk occurring in P̂, the probability

Pr
(
{d ∈ JP̂K | v1, . . . , vk occur in d}

)
. (4)

One way to see the algorithm is to convert the PrXMLmux,det p-document into a PrXMLcie

p-document, then gather all variables from the root to each leaf in a single conjunction, and
compute the probability of this conjunction.

We show that computation of moments of any degree for countd over a px-space, regardless
whether it can be represented by a p-document, can be polynomially reduced to computation
of an auxiliary probability.

Lemma 8.10. Let S be a px-space. For every document d ∈ S, let L(d) be the set of all
leaf labels of d and L =

⋃
d∈S L(d). Let countdS be the random variable defined by countd

7The same problems has been used earlier by Ré and Suciu [2007] to show #P-hardness of evaluating
relational queries with countd and avg HAVING constraints.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:37

on S. Then
E(countdSk) =

∑
(l1,...,lk)∈Lk

Pr ({d ∈ S | l1, . . . , lk occur in L(d)}) ,

where the last term denotes the probability that the set of leaf labels of a random document
d ∈ S contains all distinct labels l1, . . . , lk.
The proof is similar to the one of regrouping sums for sum, see Lemma 6.5.
The auxiliary probability introduced in the previous lemma can be in fact computed in

polynomial time for px-spaces represented by P̂ ∈ PrXMLmux,det .

Proposition 8.11. There is a polynomial time algorithm that computes, given P̂ ∈
PrXMLmux,det and leaf labels l1, . . . , lk occurring in P̂, the probability

Pr
(
{d ∈ JP̂K | l1, . . . , lk occur in L(d)}

)
.

Proof. We reduce computation of this probability to evaluation of a TP query over
PrXMLmux,det p-documents. Since the latter evaluation is polynomial [Kimelfeld et al. 2009],
the probability computation is polynomial as well. Following XPath notation, the TP query
that we use to compute the probability is the following:
//text()="l_1" and ... and //text()="l_k".

Polynomiality of moment computation for avg is more involved. In order to show it we
present three lemmas. The first lemma shows that for every p-document there is an equivalent
p-document where each mux and det node has at most two children and this equivalent
p-document can be computed in polynomial time. The second lemma shows that moment
computation for avg is reducible to conditional moment computation for sum. The third
lemma shows that conditional moments computation for sum is polynomial for p-documents
with bounded branching of det nodes.

Lemma 8.12. Let P̂ be a p-document in PrXMLmux,det. Then one can compute in
polynomial time a p-document Q̂ ∈ PrXMLmux,det such that every det and mux node of Q̂
has at most two children and JP̂K = JQ̂K.
Consider now an analogue of the Regrouping Sums Lemma (6.5) for avg.

Lemma 8.13. Let P̂ ∈ PrXMLmux,det be a p-document. Then

E(avg(P)n) =
∑
j∈N+

( 1
jn
× Pr(count(P) = j)× E(sum(P)n | count(P) = j)

)
.

The next lemma shows that the conditional moments for sum occurring in the previous
lemma can be computed in polynomial time.

Lemma 8.14. There is an algorithm that computes the conditional expected value
E(sum(P)n | count(P) = j) in time polynomial in j and linear in |P̂|.
Now we are ready to complete the proof of Theorem 8.8

Proof of Theorem 8.8, Claim 1 and Claim 2.
Claim 1. All our algorithms for computing moments for SPα first reduce aggregate query

answering to function evaluation (see Proposition 5.5). Now we show polynomiality of
function evaluation for all the five functions.
Case of count, sum: The algorithm for count and sum is a refinement of the one for the

cie case (Theorem 6.3) and follows from Lemma 6.5 and Lemma 8.9.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:38 Serge Abiteboul et al.

Case of min: The algorithm for min computes the moments exploiting the entire distribution
min(P̂), which can be computed in polynomial time (Corollary 7.3).
Case of countd: Intuitively, for countd we apply similar techniques of regrouping sums

to those that we used for sum in Lemma 6.5. In doing so, we exploit the fact that the
probability for a value (or sets of values of fixed cardinality) to occur in a query result over
a mux-det p-document can be computed in polynomial time, which follows from [Kimelfeld
et al. 2008]. More precisely, by Lemma 8.10, the k-th moment of countd over P̂ is the sum
of |L|k elements, where L is the set of leaf labels in P̂. Each element in the sum can be
computed in polynomial time by Proposition 8.11.
Case of avg: Intuitively, the algorithm for avg traverses p-documents in a bottom-up

fashion. It maintains conditional moments of sum for each possible value of count and
combines them in two possible ways, according to the node types.8
More precisely, by Lemma 8.13, the k-th moment of avg over P̂ is an infinite sum of

products. In fact only finitely many of these products are non-zero. Let t be the number
of the leaves in P̂, then the second component of the product Pr(count(P) = j) is zero if
j > t. Hence, there are at most t, that is, linearly many non-zero products. What about the
components of the products? The first component 1/jn can be computed in polynomial time
since j is bounded by the size of P̂ . The second component of the product Pr(count(P) = j)
can be computed in polynomial time due to Theorem 8.7. The third component of the
product E(sum(P)n | count(P) = j) can be computed in polynomial time due to Lemma
8.14 and the fact the j 6 |P̂|. Therefore, the k-th moment for avg can be computed in time
polynomial in |P̂|.

Claim 2. Moments for count and min can be computed from the distributions, which can
be constructed in polynomial time as in the proof of Theorem 8.7 (2).
Algorithms for sum and countd can be based on a generalization of the principle of

regrouping sums (see Lemma 6.5) for tree-pattern queries.
Analogously as for the case of single-path queries, the crucial element for the complexity of

the sum algorithm is the difficulty of computing the probability that a node (or sets of nodes
of fixed cardinality) occurs in a query result. For tree-pattern queries without joins, these
probabilities can be computed in polynomial time adapting the techniques from Kimelfeld
et al. [2008]. A variation of this principle, where the probability of a given set of values to
occur in a query result is computed, gives an algorithm for countd.

8.4. Aggregating Continuous PrXMLmux,det

We now investigate under which conditions the results for discrete p-documents PrXMLcie

extend to the continuous case. Table V gives an overview of the results that are proved next.

Membership. We start with hardness of membership for sum and avg.

Theorem 8.15. The membership problem is NP-hard for every query in SPsum and
SPavg over p-documents labeled with PP(0) distributions.

Proof Sketch. NP-hardness for sum and avg can be shown by first applying Proposi-
tion 5.6 and then using the same reduction as for the discrete case (see Lemma 8.2) and
narrow PP(0) characteristic functions as discussed in Lemma 6.8. More precisely, the proof of
Lemma 8.2 should be modified by taking the probability Pr(sum(PA,s) ∈ [c− 1/2, c+ 1/2]),
while the ai leaves of P̂A,s should be labeled with [si − ε, si + ε], for ε < 1/2m, where m is
the cardinality |A|.

8A technique that is similar in spirit has been presented by Jayram et al. [2007] for probabilistic streams.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:39

Table V. Data complexity of query evaluation over PrXMLmux,det
cont

PrXMLmux,det
cont

Aggregate query language

SP TP

Membership sum, avg NP-complete∗
min in P†

sum, avg NP-complete∗
min in NP∗

Probability sum‡, avg FP#P-complete†
min in P†

sum, avg FP#P-complete†

min in FP#P†

Moments
min, sum in P†

avg in FP#P† in FP#P†

∗ NP membership holds for min-reasonable (for TPmin) and sum-reasonable (for TPsum

and TPavg) p-documents.
† The upper bound holds for p-documents labeled with distributions in PP(K), for a
fixed K.
‡ SPsum query evaluation over p-documents with distributions in PP (K), for a fixed
K, is in P when the complexity is measured in the size of the input plus the resulting
distribution.
In all cases the hardness already holds for p-documents labeled with PP(0) distributions.

We now summarize complexity results for different aggregate functions and distributions
labeling p-documents that directly follow from previous results.
Membership is in NP for the class (1) TPmin over min-reasonable PrXMLmux,det

cont p-
documents; (2) TPsum over TPavg and sum-reasonable PrXMLmux,det

cont p-documents. Moreover,
the problem is (3) of polynomial data complexity for the class SPmin over p-documents
labeled with distributions in PP(K); (4) of polynomial complexity in the size of both input
document and output distribution for the class SPsum over p-documents labeled with dis-
tributions in PP(K), for a fixed K. Claims 1 and 2 follow from Theorem 6.7 and Claims 3
and 4 follow from Theorem 7.5.

Probability Computation. Let us now look at probability computation for sum.

Theorem 8.16. Probability computation over PrXMLmux,det
cont is in FP#P for the class

TPsum. Moreover,

(1 ) the problem is FP#P-complete in the size of the input p-document for the class SPsum

over p-documents labeled with distributions from PP(0);
(2 ) there is a p-document labeled with distributions from PP(0) for which the support of the

distribution (with respect to the support of the original p-document) of every query in
SPsum has exponentially many distinct and not bordering intervals.

Proof. Both claims are continuous counterparts of Theorem 8.4, and the hardness can
be proved analogously to the hardness for the discrete case, using narrow PP(0) characteristic
functions on the leaves as discussed in Lemma 6.8.
Claim 1 can be proved using a reduction from #Subset-Sum as in Lemma 8.5 extended

with PP(0) functions as in the proof of hardness for Theorem 8.15.
Claim 2 can be proved using the p-document from the proof of Lemma 8.6 extended

with continuous labels from PP(0). The support of each distribution labeling the leaves
is defined using a similar construction as in Cantor’s diagonal argument. Each leaf i is
labeled with a function that has the support [ai, bi] where ai and bi are numbers with 2n+ 1
digits, starting with 1 and with 2n− 1 zeros on all remaining 2n digits, but the 2i-th and
(2i+ 1)-th, respectively. The distribution of sum over such a document is the convolution
of all the distributions on the leaves and one can easily see that its support is the union

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:40 Serge Abiteboul et al.

of (exponentially many in n) disjoint intervals obtained by all possible combinations of the
borders of each [ai, bi].

FP#P-membership for Claim 1 is inherited form the the PrXMLcie
cont case.

A corollary of Theorem 8.16 is that probability computation is #P-hard for any query in
SPavg and p-documents labeled with distributions from PP(0). A proof uses the fact that
the number of leaves in each world of a skeleton is the same as in the skeleton.
Summing up complexity for different aggregate functions and distributions labeling p-

documents, we have that, due to Theorem 7.5, probability computation is polynomial in
the size of the input and the overall distribution for every query in SPsum over p-documents
labeled with distributions from PP(K), for a fixed K. An upper bound on probability
computation for TPmin and TPavg over PrXMLmux,det

cont p-documents that are labeled with
distributions in PP(K) is FP#P, since it is inherited from the PrXMLcie

cont case. Moreover,
probability computation is of polynomial combined complexity for the class SPmin and
p-documents labeled with distributions from PP(K), as follows from Theorem 7.5.

Moments Computation. For TPα where α ∈ {min, sum, avg} over m-scalable p-documents
the computations is in FP#P as follows from Theorem 6.10. For SPmin and SPsum over
p-documents labeled with distributions in PP(K) we have polynomial-time combined com-
plexity of moment computation as follows from Theorem 7.5.

9. APPROXIMATE COMPUTATION
As discussed in Sections 6 and 8, for several aggregate functions on PrXMLcie and
PrXMLmux,det p-documents, membership, probability computation and moment compu-
tation are hard. Fortunately, there are general sampling techniques which give randomized
approximation algorithms for tackling intractability of computing the above quantities. We
now discuss these techniques for discrete p-documents.

For instance, suppose we wish to consider the aggregate function countd on a p-document P̂ .
In particular, say we are interested in approximating the probability Pr(countd(P) 6 100).
This probability can be estimated by drawing independent random samples of the document,
and using the ratio of samples for which countd is at most 100 as an estimator. Similarly,
if we wish to approximate E(countd(P)), we can draw independent random samples and
return the average of countd on the drawn samples.

The first important question is: is it possible at all to have a reasonably small number of
samples to get a good estimation? It would not be helpful if an enormous number of samples
is necessary. The good news is that the answer to the above question is “yes.” The second
question is: how many samples do we need? The following classical result helps us to answer
both questions.

Proposition 9.1 ([Hoeffding 1963]). Assume U1, . . . , UT are T independent identi-
cally distributed random variables, each of which takes values in an interval of width R and
has mean µ. Let Ū := 1

T

∑T
i=1 Ui be the empirical average. Then, for each ε > 0, we have

Pr(|Ū − µ| > ε) 6 2 exp
(
− 2ε2T

R2

)
.

Additive vs. Multiplicative Error. Our task essentially reduces to the estimation of some
quantity Q. Our goal is to return a number Q̃ that is “close” to Q. There are two notions of
measuring the error of estimation: multiplicative and additive.
For ε > 0, the estimation has multiplicative error ε if |Q − Q̃| 6 ε|Q|. Such a notion

appears in the database literature [Grädel et al. 1998], and fully polynomial-time randomized
approximation schemes (FPTRAS) give guarantees based on this notion. Observe that in
order for an estimate Q̃ to achieve multiplicative error ε ∈ ]0, 1[, the quantity Q is non-zero

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:41

if and only if the estimate Q̃ is non-zero. From the first statement of Theorem 6.2, we see
that for p-documents P̂ ∈ PrXMLcie it is coNP-hard to decide whether Pr(α(P) = c) is zero,
for any aggregate function α that distinguishes bags of elements and some value c. Hence,
it follows that it is coNP-hard to give an estimation of Pr(α(P) = c) with multiplicative
error ε, for 0 < ε < 1.
In our applications, we consider the more tractable notion of additive error instead. For

ε > 0, the estimation Q̃ has additive error ε if |Q− Q̃| 6 ε.

Sampling under PrXMLcie and PrXMLmux,det. Under both models, sampling of a random
tree can be performed easily. Under the PrXMLcie model, variables are sampled according
to their probabilities and the corresponding tree is constructed. Under the PrXMLmux,det

model, sampling is done by keeping all det nodes and a child for each mux node is chosen
with the appropriate probability.

Approximating Membership. Suppose α is an aggregate function on some p-document P̂,
and we wish to know if the probability Pr(α(P) = x) is non-zero for some value x. The
sampling algorithm is simple: we draw a certain number of samples and if for at least one
sample, the event α(P) = x happens, the algorithm returns positive, and negative otherwise.
Proposition 9.1 gives a bound on the number of samples for which we can make a meaningful
estimation.

Corollary 9.2. For any aggregate function α, p-document P̂ ∈ PrXMLcie,mux,det, any
rational number x, and for any ε, δ > 0, it is sufficient to have O( 1

ε2 log 1
δ ) samples so that

the following happens.
(1 ) If Pr(α(P) = x) = 0, then negative is always returned.
(2 ) If Pr(α(P) = x) > ε, then with probability at least 1− δ, positive is returned.

Proof. The first part of the statement is trivial. For the second part, we let Ui be
the Bernoulli variable that takes value 1 when α(P) = x and 0 otherwise. It follows that
E(Ui) = Pr(α(P) = x). From Proposition 9.1, it is enough to have O( 1

ε2 log 1
δ ) samples to

estimate Pr(α(P) = x) with additive error at most ε and success probability at least 1− δ.
Since Pr(α(P) = x) > ε, this means with desirable probability we would see at least one
positive sample.

For example, suppose we would like to see if the aggregate function min on some p-document
P̂ ∈ PrXMLcie takes some specified value x with probability higher than ε. Then, for some
fixed success probability, the number of samples depends only on ε, and is independent of
the instance size. Note that if the probability is non-zero and below ε, the algorithm could
return negative.
Approximating Distribution Points. Suppose α is an aggregate function on some p-

document P̂, I is a subset of the real numbers and we wish to approximate the probability
Pr(α(P) ∈ I). For example, if I = {x} for some number x, we may want to estimate the
probability that the aggregate function evaluates to x; if I = ]−∞, x], we estimate the
probability that the aggregate function takes values at most x.

We sample instances of the p-document, and for each sample, let Xi be the corresponding
value of the aggregate function. We let Ui to be the Bernoulli variable that takes value 1 when
Xi ∈ I, and 0 otherwise. Then, it follows that E(Ui) = Pr(α(P) ∈ I), and Ū := 1

T

∑T
i=1 Ui

is an estimate of Pr(α(P) ∈ I). Hence, we immediately obtain the following result for
approximating a point for the cumulative distribution of an aggregate function.

Corollary 9.3. For any aggregate function α, p-document P̂ ∈ PrXMLcie,mux,det, any
subset I of the reals, and for any ε, δ > 0, it is sufficient to have O( 1

ε2 log 1
δ ) samples so that

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:42 Serge Abiteboul et al.

with probability at least 1− δ, the quantity Pr(α(P) ∈ I) can be estimated with an additive
error of ε.
Observe that the number of samples in Corollary 9.3 is independent of the instance size.

However, an additive error of ε would render the estimate useless if the probability to be
estimated is less than ε. Hence, if we only care about probabilities above some threshold p0,
then it is enough to have the number of samples proportional to 1/p2

0 (with additive error,
say, p0/10).
Approximating Moments. Suppose f is some function on an aggregate function α, and we

are interested in computing E(f(α(P))). For each sample, we let Ui := f(Xi), and compute
the estimator Ū := 1

T

∑T
i=1 Ui.

Corollary 9.4. Let P̂ ∈ PrXMLcie,mux,det be a p-document and f be a function on the
aggregate function α such that f(α(P)) takes values in an interval of width R. Then, for
any ε, δ > 0, it is sufficient to have O(R

2

ε2 log 1
δ ) samples so that, with probability at least

1− δ, the quantity E(f(α(P))) can be estimated with an additive error of ε. In particular, if
α takes values in [0, R] and f(α) := αk, then the k-th moment of α(P) around zero can be
estimated with O(R

2k

ε2 log 1
δ ) samples.

If the range R has magnitude polynomial in the problem size, then we have a polynomial-
time algorithm. In our example for approximating E(countd(P̂)), the range R can be at
most the size of the problem instance. Hence, to estimate the expectation, it is enough to
draw a quadratic number of random samples, and we have a polynomial time approximation
algorithm.

10. RELATED WORK
The literature about probabilistic relational databases is quite extensive. One of the early
and seminal works is [Barbará et al. 1992] where probabilities are associated with attribute
values. Among the number of models and systems that have been proposed for representing
and querying probabilistic data, one can distinguish between systems with limited expressive
power such as the block-independent model [Dalvi and Suciu 2007] (which can be seen as
a relational counterpart to PrXMLmux,det) and the more complex, lineage-oriented, proba-
bilistic database management systems like Trio [Widom 2005] and MayBMS [Koch 2009],
that are closer in spirit to PrXMLcie. The latter are inspired by Imieliński and Lipski’s
c-tables [Imieliński and Lipski 1984] (though these are models for incomplete information,
they can be applied to probabilistic information in a straightforward way [Green and Tannen
2006]).

The probabilistic XML models that have been proposed in the literature can be grouped
in two main categories, depending on the kind of supported probabilistic dependencies:
PrXMLmux,det-like local dependencies [Nierman and Jagadish 2002; Hung et al. 2003; van
Keulen et al. 2005; Hung et al. 2007], or PrXMLcie-like global dependencies [Abiteboul and
Senellart 2006; Senellart and Abiteboul 2007]. A unifying framework for all these models,
generalizing the distributional nodes introduced by Nierman and Jagadish [2002], has been
proposed in [Kimelfeld et al. 2008; Abiteboul et al. 2009]; which is the framework we use in
this paper. More recently [Benedikt et al. 2010], a more expressive probabilistic XML model
based on recursive probabilistic processes, has been introduced to allow representing possible
worlds of unbounded depth or width. That model is a generalization of PrXMLmux,det-like
models, and an interesting extension of this work would be to understand which of the
results presented in this paper can be extended to that framework.
The complexity of non-aggregate query answering over PrXMLmux,det and PrXMLcie has

been investigated in [Kimelfeld and Sagiv 2007; Senellart and Abiteboul 2007; Kimelfeld

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:43

et al. 2008; 2009]. Several results presented here either extend or use these works. The
dynamic-programming algorithm for computing the probability of a Boolean tree-pattern
query from [Kimelfeld and Sagiv 2007; Kimelfeld et al. 2008; 2009] is in particular used for
Claim 2 of Theorem 8.8. We study in more detail than in this work the case of non-aggregate
tree-pattern queries with joins in [Kharlamov et al. 2011]. The problem of tree-pattern
query answering over PrXMLmux,det documents with constraints expressed using aggregate
functions, i.e., similar to the HAVING queries of SQL, is studied by Cohen et al. [2008]. We
use the results of that article to prove Claim 2 of Theorem 8.7.

Only a few works have considered aggregate queries in a setting of incomplete data. In non-
probabilistic settings aggregate queries were studied for conditional tables [Lechtenbörger
et al. 2002], for data exchange [Afrati and Kolaitis 2008] and for ontologies [Calvanese
et al. 2008]. In probabilistic settings, to the best of our knowledge, in addition to the
aforementioned [Cohen et al. 2008], only Ré and Suciu [2007] study aggregate queries. Ré
and Suciu consider the problem of evaluating HAVING queries (using aggregate functions)
in “block-independent databases,” which are roughly PrXMLmux,det restricted to relations
(limited-depth trees). The complexity bounds of Claim 3 of Theorem 8.7 use similar arguments
to the corresponding results for block-independent databases presented in [Ré and Suciu
2007]. In both [Cohen et al. 2008] and [Ré and Suciu 2007], the authors discuss the filtering
of possible words that do not satisfy a condition expressed using aggregate functions, and
do not consider the problem of computing the distribution of the aggregation, or moments
thereof. Computation of the expected value of aggregate functions over a data stream of
probabilistically independent data items is considered by Jayram et al. [2007]. This is a
simpler setting than ours, but we use similar techniques in the proof of Theorem 8.8.
There is little earlier work on querying continuous probability distributions. Deshpande

et al. [2004] build a (continuous) probabilistic model of a sensor network to run subsequent
queries on the model instead of the original data. In [Cheng et al. 2003], algorithms are
proposed for answering simple classes of queries over uncertain information, typically given
by a sensor network. As noted in a recent survey on probabilistic relational databases [Dalvi
et al. 2009], “although probabilistic databases with continuous attributes are needed in some
applications, no formal semantics in terms of possible worlds has been proposed so far.” We
proposed in this paper such a formal semantics.

11. CONCLUSION
We provided algorithms for and a characterization of the complexity of computing aggregate
queries for both PrXMLmux,det and PrXMLcie models, i.e., very general probabilistic XML
models. We also considered the expected value and other moments, i.e., summaries of the
probability distribution of the results of aggregate functions. In the case of PrXMLmux,det,
we have identified a fundamental property of aggregate functions, that of being monoid,
that entails tractability. The complexity of aggregate computations in many cases has led us
to introduce polynomial-time randomized approximation schemes. Finally, a last original
contribution has been the definition of a formal continuous extension of probabilistic XML
models for which the results of the discrete case can be adapted.

In summary, and abstracting out the details, answering aggregate queries over probabilistic
XML is tractable in data complexity if and only if the four following conditions are satisfied:

— The query language does not involve joins;
— The probabilistic data model does not involve global dependencies (cie nodes);
— The aggregate functions used are monoid functions with a domain whose size is bounded

in the input size;
— Continuous distributions present in the data can be tractably convoluted, summed,

integrated, multiplied (e.g., this is the case for PP(K)).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:44 Serge Abiteboul et al.

Our work can be extended in a number of directions. First, we intend to implement a
system that manages imprecise data with aggregate functions. In particular, we want the
system to handle continuous probabilities, which are quite useful in practice. Second, it
should be possible to extend our results on aggregate queries to the wide and deep models
of probabilistic XML from Benedikt et al. [2010], which is conceptually a generalization of
the mux-det model. Third, note that the continuous distributions attached to leaves are
essentially independent one from the other. This means, for instance, that PrXMLcie,mux,det

cont
is not a strong representation system [Abiteboul et al. 1995] for the language of aggregate
tree-pattern queries, or even just for the language of tree-pattern queries with inequalities:
it is impossible to represent the output of a query (or the result of an update based on this
query language) in the same framework. It would be interesting to study extensions of the
model that are strong representation systems (for instance, by annotating the p-document
leaves with algebraic expressions over random variables with values in a continuous space).

REFERENCES
Abiteboul, S., Chan, T.-H. H., Kharlamov, E., Nutt, W., and Senellart, P. 2010. Aggregate queries

for discrete and continuous probabilistic XML. In Proc. International Conference on Database Theory
(ICDT). ACM, New York, NY, 50–61.

Abiteboul, S., Hull, R., and Vianu, V. 1995. Foundations of Databases. Addison-Wesley, Reading, PA.
Abiteboul, S., Kimelfeld, B., Sagiv, Y., and Senellart, P. 2009. On the expressiveness of probabilistic

XML models. VLDB Journal 18, 5, 1041–1064.
Abiteboul, S. and Senellart, P. 2006. Querying and updating probabilistic information in XML. In Proc.

International Conference on Extending Database Technology (EDBT). ACM, New York, NY.
Afrati, F. N. and Kolaitis, P. G. 2008. Answering aggregate queries in data exchange. In Proc. ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, (PODS). ACM, New York,
NY.

Ash, R. B. and Doléans-Dade, C. A. 2000. Probability & Measure Theory. Academic Press, San Diego,
CA.

Barbará, D., Garcia-Molina, H., and Porter, D. 1992. The management of probabilistic data. Transac-
tions on Knowledge and Data Engineering 4, 5, 487–502.

Benedikt, M., Kharlamov, E., Olteanu, D., and Senellart, P. 2010. Probabilistic XML via Markov
chains. Proceedings of the VLDB Endowment 3, 1, 770–781.

Calvanese, D., Kharlamov, E., Nutt, W., and Thorne, C. 2008. Aggregate queries over ontologies. In
Proc. International Workshop on Ontologies and Information Systems for the Semantic Web (ONISW).
ACM, New York, NY.

Cheng, R., Kalashnikov, D. V., and Prabhakar, S. 2003. Evaluating probabilistic queries over imprecise
data. In Proc. ACM SIGMOD International Conference on Management of Data. ACM, New York,
NY.

Cohen, S., Kimelfeld, B., and Sagiv, Y. 2008. Incorporating constraints in probabilistic XML. In Proc.
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, (PODS). ACM,
New York, NY.

Cohen, S., Kimelfeld, B., and Sagiv, Y. 2009. Running tree automata on probabilistic XML. In Proc.
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, (PODS). ACM,
New York, NY.

Cohen, S., Sagiv, Y., and Nutt, W. 2006. Rewriting queries with arbitrary aggregation functions using
views. Transactions on Database Systems 31, 2, 672–715.

Dalvi, N., Ré, C., and Suciu, D. 2009. Probabilistic databases: Diamonds in the dirt. Communications of
the ACM 52, 7, 86–94.

Dalvi, N. N. and Suciu, D. 2007. Management of probabilistic data: foundations and challenges. In Proc.
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, (PODS). ACM,
New York, NY.

Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J. M., and Hong, W. 2004. Model-driven data
acquisition in sensor networks. In Proc. International Conference on Very Large Data Bases (VLDB).
Morgan Kaufmann, San Fransisco, CA.

Friedlander, F. G. and Joshi, M. 1999. Introduction to the Theory of Distributions 2nd Ed. Cambridge
University Press, Cambridge, United Kingdom.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Capturing Continuous Data and Answering Aggregate Queries in Probabilistic XML A:45

Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, New York, NY.

Grädel, E., Gurevich, Y., and Hirsch, C. 1998. The complexity of query reliability. In Proc. ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, (PODS). ACM, New York,
NY, 227–234.

Green, T. J. and Tannen, V. 2006. Models for incomplete and probabilistic information. In Proc. Inter-
national Conference on Extending Database Technology (EDBT) Workshops, IIDB. ACM, New York,
NY.

Hoeffding, W. 1963. Probability inequalities for sums of bounded random variables. Journal of the American
Statistical Association 58, 301, 16–30.

Hung, E., Getoor, L., and Subrahmanian, V. S. 2003. PXML: A probabilistic semistructured data model
and algebra. In Proc. International Conference on Data Engineering. IEEE, Washington, DC.

Hung, E., Getoor, L., and Subrahmanian, V. S. 2007. Probabilistic interval XML. Transactions on
Computational Logic 8, 4.

Imieliński, T. and Lipski, W. 1984. Incomplete information in relational databases. Journal of the ACM 31, 4,
761–791.

Jayram, T. S., Kale, S., and Vee, E. 2007. Efficient aggregation algorithms for probabilistic data. In Proc.
SODA. SIAM, Philadelphia, PA.

Kharlamov, E. 2011. A probabilistic approach to XML data management. Ph.D. thesis, KRDB Research
Centre, Faculty of Computer Science, Free University of Bozen-Bolzano. Available at http://www.inf.
unibz.it/~kharlamov/.

Kharlamov, E., Nutt, W., and Senellart, P. 2011. Value joins are expensive over (probabilistic) XML.
In Proc. International Conference on Extending Database Technology (EDBT) Workshops, LID. ACM,
New York, NY.

Kimelfeld, B., Kosharovsky, Y., and Sagiv, Y. 2008. Query efficiency in probabilistic XML models. In
Proc. ACM SIGMOD International Conference on Management of Data. ACM, New York, NY.

Kimelfeld, B., Kosharovsky, Y., and Sagiv, Y. 2009. Query evaluation over probabilistic XML. VLDB
Journal 18, 5, 1117–1140.

Kimelfeld, B. and Sagiv, Y. 2007. Matching twigs in probabilistic XML. In Proc. International Conference
on Very Large Data Bases (VLDB). ACM, New York, NY.

Koch, C. 2009. MayBMS: A system for managing large uncertain and probabilistic databases. In Managing
and Mining Uncertain Data, C. Aggarwal, Ed. Springer, New York, NY.

Lechtenbörger, J., Shu, H., and Vossen, G. 2002. Aggregate queries over conditional tables. Journal of
Intelligent Information Systems 19, 3, 343–362.

Nierman, A. and Jagadish, H. V. 2002. ProTDB: Probabilistic data in XML. In Proc. International
Conference on Very Large Data Bases (VLDB). Morgan Kaufmann, San Fransisco, CA.

Papadimitriou, C. H. 1994. Computational Complexity. Addison Wesley, Reading, PA.
Provan, J. S. and Ball, M. O. 1983. The complexity of counting cuts and of computing the probability

that a graph is connected. SIAM Journal of Computing 12, 4, 777–788.
Ré, C. and Suciu, D. 2007. Efficient evaluation of HAVING queries on a probabilistic database. In Proc.

Database Programming Languages. Springer, New York, NY.
Senellart, P. and Abiteboul, S. 2007. On the complexity of managing probabilistic XML data. In Proc.

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, (PODS). ACM,
New York, NY.

van Keulen, M., de Keijzer, A., and Alink, W. 2005. A probabilistic XML approach to data integration.
In Proc. International Conference on Data Engineering. IEEE, Washington, DC.

Widom, J. 2005. Trio: A system for integrated management of data, accuracy, and lineage. In Proc. Conference
on Innovative Data Systems Research (CIDR). Online Proceedings.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.


