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Abstract

Distributed data management systems consist of peers that store, exchange and
process data in order to collaboratively achieve a common goal, such as eval-
uating some query. We study the equivalence of such systems. We model a
distributed system by a collection of Active XML documents, i.e., trees aug-
mented with function calls for performing tasks such as sending, receiving and
querying data. As our model is quite general, the equivalence problem turns
out to be undecidable. However, we exhibit several restrictions of the model,
for which equivalence can be effectively decided. We also study the computa-
tional complexity of the equivalence problem, and present an axiomatization of
equivalence, in the form of a set of equivalence-preserving rewrite rules allowing
us to optimize a system by rewriting it into an equivalent, but possibly more
efficient system.

1. Introduction

Distributed data management has been an important domain of research
almost since the early days of databases [14]. With the development of the
Web and the emergence of universal standards for data exchange, this problem
arguably became a most essential challenge to the database community. We
consider systems that store, exchange and apply queries over data, typically to
collaborate towards a common goal such as answering a query. A major ques-
tion in such systems is optimization: How can one rewrite a system into another
equivalent system (i.e., a system that computes the same result) that is more
efficient? In order to answer this question, we have first to study equivalence:
When are two systems equivalent and how can we decide equivalence? This is

IThis work has been partially funded by the FP7 European Research Council grant agree-
ments Webdam number 226513 and FOX number FP7-ICT-233599. The second and third
authors have also been partially supported by the NSF grants IIS-0905276 and IIS-1117527,
respectively. We thank Diego Figueira for his help with Proposition 5.

Email addresses: firstname.lastname@inria.fr (Serge Abiteboul), btencate@ucsc.edu
(Balder ten Cate), firstname.lastname@inria.fr (Yannis Katsis)

Preprint submitted to Elsevier August 9, 2012



the topic of this paper. In this work, we define the equivalence of distributed sys-
tems and present equivalence decidability results for different classes of systems.
Moreover, as a first step towards optimization, we also present a complete set of
equivalence-preserving rewrite rules (a.k.a. axioms), that allows us to optimize
AXML systems and to prove equivalence for a limited class of such systems.

To model these systems we consider an abstraction of the Active XML al-
gebra of [3] that we call AXML system. An AXML system (a system for short)
is a labeled, unordered, unranked tree, which, apart from extensional data (i.e.,
regular tree-structured data) may also contain active nodes capturing commu-
nication and query evaluation. Communication is modelled through send and
receive nodes attached to communication channels. Send nodes send data to a
channel and all receive nodes attached to that channel receive this data. This
captures m-to-n point communications and in particular the exchange of data
involved in making function calls. We distinguish between two types of chan-
nels: internal channels and external input (or simply input) channels. Internal
channels model communication happening within the system (in which case it is
known what data is sent into the channel). On the other hand, input channels
model communication arriving from inputs external to the system (in which
case the data sent into the channel has to be treated as a black box). Finally,
a system may also include query nodes that capture query evaluation over the
data. Following [1], we consider positive AXML systems, in which all queries
are monotone. These have been identified as an important and well-behaved
special case in previous literature.

The systems we consider are by design very general to capture many use
cases. They are distributed, recursive (since the send and receive nodes break
the hierarchical structure of the data trees), essentially asynchronous (since
send/query operations may happen in arbitrary order while the trees evolve
during the computation) and operate on data streams (since queries are acti-
vated in a continuous manner producing streams of results). Finally, they may
also receive external data, such as user inputs, data from other systems, sensors,
etc. (which are modelled through external input channels).

Equivalence Decidability Results. Unsurprisingly (due to the generality
of our model), we can show that equivalence is undecidable in general, even if the
queries used inside the system are from quite basic query languages. However,
we are able to establish positive decidability results for several restrictions of the
model. First, we prove that equivalence is in ptime in the absence of queries.
The limit of a system (i.e., intuitively, the result of exhaustively activating all
send and query nodes) is in general infinite, even in the absence of query nodes,
but we show that in this context, one can find a finite graph-based representation
of a limit and decide system equivalence by comparing these representations.

When queries are introduced, the problem depends on the query language
considered, as well as on the presence of external input channels. We provide
a ptime decision procedure for testing equivalence of input-free systems (i.e.,
systems without input channels) containing tree pattern queries (without value-
based joins). Joins and input channels further complicate the problem: Joins
allow expressing a much richer class of queries. With input channels, on the
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other hand, the difficulty lies in that for two systems with input channels to be
equivalent, they must have similar limits for all possible inputs. Nevertheless,
we provide decision procedures for testing equivalence of input-free systems con-
taining tree pattern queries with joins, and of systems with input and with tree
pattern queries but without joins. The problem remains open when both exten-
sions are considered simultaneously. However, we show decidability for the case
of tree pattern queries with XPath-joins (i.e., the tree pattern queries with joins
that are expressible in downward XPath with path equalities, cf. the definition
of FOXPath in [7]). Finally, the equivalence problem becomes undecidable in
the case of tree pattern queries with constructors (even in the absence of joins
and input).

Axiomatization. As explained above, an important application for equiva-
lence testing (and one of the main motivations for this work) is the optimization
of distributed systems. Since optimizations have to preserve equivalence, a com-
mon approach is to use equivalence-preserving rewrite rules (a.k.a. axioms). In
[4], several such axioms were presented for AXML systems. We go a step further,
by presenting a very general set of axioms that furthermore can be shown to be
complete for proving equivalence of query-free systems. In other words, given
two equivalent query-free systems, it is guaranteed that one can be transformed
to the other through a finite number of applications of our axioms.

This article is the full version of the conference article [5]. The most signif-
icant difference between the two is that the current article provides the proofs
missing from [5].

Organization. In Section 2 we start by defining AXML systems. In Section 3
we present an overview of our results, followed by the actual equivalence results
in Sections 4 and 5 (for systems without and with queries, respectively) and our
axiomatization in Section 6. Finally in Section 7 we discuss related work and
conclude.

2. Framework

In this section, we introduce the model studied in the article, which is an
abstraction of the AXML algebra of [3].

2.1. AXML Systems

Active XML systems are finite node-labeled trees, that, apart from regular
nodes, may also include (i) query nodes to model query evaluation and (ii) send
and receive nodes to capture communication. To distinguish between regular
nodes (which describe data extensionally) and send, receive, and query nodes
(which describe data intensionally), we refer to the former as passive and to the
latter as active nodes.

More formally, consider the following disjoint alphabets: L an infinite set of
(passive) labels and C = Cint∪Cinp an infinite set of channel names, partitioned
into internal channels and input channels. Finally, let Q be a query language for
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XML trees. We will soon make precise what we mean by a query language, but,
for the moment, one may think of Q as an infinite set of abstract expressions.
We denote by A the set {rcvc | c ∈ C} ∪ {sendc | c ∈ Cint} ∪ Q. The elements
of A are the “active” node labels that may appear in an Active XML system.
Note that A does not contain a label of the form sendc with c being an input
channel. The reason is that, in contrast to internal channels, data sent to input
channels is not created by the system itself but instead given to it as input by
external sources.

Definition 1 (AXML System). An AXML system (a system for short) I is
a pair (T, λ), where T = (N,E) is a finite, unordered, unranked tree with nodes
N and edges E and λ : N → L ∪A is a labeling function over the nodes of the
tree, such that (a) only leaf nodes are assigned labels of the form rcvc and (b)
the label of the root is in L.

A system without any active nodes (i.e., a system in which all node labels
come from L) is called an XML document or XML tree. Note that we do not
consider any sibling order in this paper.

The query languages Q that we consider in this paper will consist of queries
that, given a set of XML trees as input, return a set of XML trees. Furthermore,
all queries q will be monotone, meaning that, whenever I homomorphically em-
beds into J (where I and J are XML trees, or, more generally, sets of XML
trees) then every XML tree in q(I) homomorphically embeds into a XML tree
in q(J) (see below for a formal definition of homomorphisms). The same as-
sumption of monotonicity was made in [1]1. A typical example of a monotone
query language for XML trees is the language of tree pattern queries [6]. The
monotonicity of tree pattern queries follows directly from the fact that they are
conjunctive queries, and the latter are well known to be preserved by homomor-
phisms [8].

In practice, a system may consist of more than one tree. Moreover, these
may be distributed over multiple peers. However, for the purposes of this work,
it suffices to model the entire system by a single tree (whose root can be seen as
a virtual element pointing to the roots of the individual trees). All results can
be trivially generalized to systems consisting of multiple trees distributed over
multiple peers.

Example 1. Figure 1 shows an example system. This example is meant to
simply demonstrate the structure of an AXML system. Its semantics as well
as the query language used will be formally defined in subsequent subsections.
The displayed system contains passive nodes, query nodes annotated with tree
pattern queries and send/receive nodes grouped into channels (for instance, the
two nodes labeled rcv1 are listening to the channel to which node send1 is sub-
mitting). Channels 1 is an internal channel as there exist labels of the form

1In [1], monotonicity is not defined in terms of homomorphisms, but in terms of set-
theoretic containment. However, this distinction is irrelevant given that, in [1] as well as here,
attention is restricted to reduced trees, as defined below.
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Figure 1: Example of an AXML system

both send1 and rcv1. Similarly for channel 2. On the other hand channel 3 is
an input channel as there is only a node label of the form rcv3 (and not one of
the form send3). Finally, although our example includes 3 peers, each with a
separate tree, we model the entire system, as explained above, as a single tree
with a virtual root.

Remark. In reality, nodes in XML documents and AXML systems have
not only a label but also associated atomic data in the form of text and attribute
values. To simplify exposition, we do not take the atomic data into account
explicitly. Instead, we identify them with node labels. In particular, we work
with an infinite set of node labels L and consider query languages that perform
joins on these labels. This choice is not essential, and we could have equivalently
worked with other representations, such as data trees (as in [10]).

Given a system, we are sometimes interested only in its extensional data (i.e.
in its passive part). The subset of a system containing only the extensional data
is called its snapshot and it can be derived from the original system by removing
all active nodes and their descendants (which intuitively form the arguments of
the active nodes). Formally:

Definition 2 (System Snapshot). The snapshot of an AXML system I, de-
noted I↓, is the XML document obtained by removing from I all subtrees rooted
at active nodes.

Given two systems we can define homomorphisms between them in the stan-
dard way (cf. [1], where homomorphisms are called subsumptions).

Definition 3 (Homomorphism and Isomorphism). An AXML system I

maps homomorphically into a system I ′, denoted by I
hom−−−→ I ′, if there ex-

ists a homomorphism from I to I ′, that is, a map from nodes of I to nodes of
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I ′ sending the root of I to the root of I ′ and preserving child-edges and node-
labels. Two AXML systems I, I ′ are homomorphically equivalent, denoted by

I
hom←−−→ I ′, if I

hom−−−→ I ′ and I ′
hom−−−→ I. Finally, I, I ′ are isomorphic, denoted

I ∼= I ′, if there is a homomorphism from I to I ′ that is a bijection.

In this article, the considered monotone queries will essentially see homo-
morphically equivalent trees as identical, i.e., undistinguishable. So, we can
restrict our attention to reduced systems. We borrow the following notion of
reduced systems from [1]:

Definition 4 (Reduced System). A system I is said to be reduced if there
does not exist a homomorphism h from I into itself, such that the range of h is
a strict subset of I.

In graph theory and finite model theory, reduced trees, and more generally,
reduced finite structures, are known as cores [13]. It is known that for every
system I there is a unique (up to isomorphism) reduced system I ′ to which it is
homomorphically equivalent, and that I ′ is in fact the smallest system that is
homomorphically equivalent to I. Moreover, due to the fact that I is a tree, I ′

can be computed from I in ptime (by successively removing nodes and checking
homomorphism, since the homomorphism problem for trees is known to be in
ptime [11]).

In the rest of this document, whenever we speak of systems, we will assume
that they are reduced, unless we explicitly say so otherwise.

2.2. Semantics of AXML Systems

Since a system may contain active nodes, it may evolve over time as these
nodes are invoked. In this section, we describe this evolution and use it to define
the notion of equivalence between two systems.

The evolution of a system may happen in three ways. First, one can invoke
a send node attached to an internal channel. A snapshot of the children of this
send node is taken and this data is sent over the channel to all the corresponding
receive nodes, where it is appended as siblings of the receive node. Secondly,
one can invoke a query node. The query is evaluated over the snapshot of
the children of this query node. The resulting XML trees are appended as
siblings of the query node. Finally, one can invoke the receive nodes of an input
channel. This results in some finite forest of finite XML trees (i.e., an input)
being received over this channel.

Observe that only XML documents (i.e., passive trees) are sent over channels.
In general in AXML, active trees may also be exchanged (which is useful as it
enables call by name evaluation strategies, as opposed to call by value). For ease
of exposition, however, we limit our attention here to the exchange of passive
trees only. However, it can be shown that all our results would continue to hold
if we were to also allow exchange of active trees.

In this intuitive definition, the snapshots of the children of a node (query or
send) play an important role. This motivates the following formal definition: For
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Figure 2: Consecutive transformations of an AXML system I0

each system I, the content of a node n in I, denoted content(n, I) or content(n)
when I is understood, is defined by:

• if n is passive, content(n) is the snapshot of the system rooted in n. (In
particular, the snapshot of a system is the content of its root.)

• if n is active, content(n) = {content(m) | m is a passive child of n}.

The following definition formalizes one step of the evolution of a system:

Definition 5. Let I = (T, λ) be a system. We say that I can be transformed
to a system I ′ in a single step, denoted I → I ′ iff for some active node n of I,
one of the following holds:

• (Send) λ(n) = sendc and I ′ is the (reduced) system derived from I by
appending the XML trees in content(n) as siblings of all nodes n′ s.t.
λ(n′) = rcvc.

• (Query) λ(n) = q ∈ Q and I ′ is the (reduced) system derived from I by
appending the XML trees in q(content(n)) as siblings of n.

• (External receive) λ(n) = rcvc for some input channel c and I ′ is the
(reduced) system derived from I by appending the XML trees in some finite
forest K as siblings of all nodes n′ s.t. λ(n′) = rcvc. The pair (c,K) of
the channel and the input received on it is called the type of the external
receive action.

Observe also that in all three cases, the snapshot evolves in a monotone
manner, in the sense that the old system always homomorphically maps into
the new system obtained as a result of the firing of active nodes.

Example 2. Figure 2 illustrates three consecutive transformations of a system
I0 → I10 → I20 → I30 , showcasing the three possible ways of transforming a
system. In each intermediate system Ii0, the node in bold indicates the active
node whose invocation led to the particular system. Moreover, circles indicate
the nodes that have been appended to the system due to this action. In particular,
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in the first step, I10 is generated from system I0 by an external receive from
channel 1. The received data is appended as a sibling of the activated rcv1 node.
In the next step, the received data (which now appear below the query node and
thus can be considered as its arguments) is queried through a tree pattern query.
Without explaining the exact semantics of the query, activating the query node
intuitively selects the subtree below an ‘a’ node and appends it as a sibling of the
corresponding query node, leading to system I20 . Finally, the result of this query
is sent via an internal channel (i.e., channel 2) and gets appended as a sibling
of the receive node listening on that channel, yielding I30 . Note that due to lack
of space, the query corresponding to the query node is only shown in system I0
but it is the same in all other systems as well.

Remark. For ease of exposition we modelled an internal send and receive
action (referred to simply as send in Definition 5 above) as a single atomic ac-
tion. In other words we assume that whenever a send node sends data to its
attached channel, this data is immediately and simultaneously received by all
receive nodes listening on that channel. However, in real systems this is often
split into a sequence of actions: a send action, that sends the data to a queue
attached to each receive node listening on the channel and one receive action
for each such node that removes the first item from its queue. It is important
to note that adopting this alternative semantics would not change any of our
equivalence decidability results. The reason is that, as we will see, in order to
decide the equivalence of two systems we look at their ”limits”, which will not
change under the alternative semantics, since our systems evolve in a monotone
manner and thus they are not affected by the order in which the actions are per-
formed.

A sequence of invocations transforms a system into a different system. We
call such a sequence a run of the system.

Definition 6 (System Run). Let I be a system and I = (ci1 , F1)...(cim , Fm)
with m ≥ 0 be a (possibly empty) sequence of finite XML forests Fj to be received
as inputs on the corresponding input channels cj occurring in I. Then, I is

transformed for input I to a system I ′ in multiple steps, denoted as I
∗−→I I ′,

iff there exists a sequence of systems I1, ..., In (n ≥ 1) such that I = I1 →
... → In = I ′ and I is the sequence of the types of the external receive actions
occurring in this sequence of transformations. Such a sequence is referred to as
a run of the system I.

When the input sequence is understood, we simply write I
∗−→ I ′. Clearly,

there may be several runs starting from the same instance I even for the same
inputs. Furthermore, even without inputs and without queries, an instance may
evolve in different manners and it may have arbitrarily long runs. However,
because of the monotonicity of the queries, all fair runs lead to systems whose
snapshots converge to the same infinite tree. The fairness condition involved
here is that any action that can be fired, eventually is. This is illustrated next
in an example.
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Before presenting the example, let us formally introduce the notation that we
will employ to represent trees: A tree t rooted at a is denoted as a{t1, . . . , tn},
where ti, i = 1, . . . , n are the trees rooted at children of a. If a has no children,
then t is represented simply as a.

Example 3. Consider the system I1 of Figure 3a. It is easy to see that this
system allows for arbitrarily long runs, since the node send1 supplies the content
of send2 with data, which in turn it receives back in an augmented form, due to
the presence of rcv2 in the subtree of send1. This allows creating progressively
deeper trees by iteratively activating send1 and send2. One can see that all such
fair runs lead to systems whose snapshots “converge” to the first tree depicted
in Figure 3b:

J1 : root{b{c, a{b{c, a{b{...}}}}}}.
An unfair run may instead lead to systems whose snapshots converge to the
second tree in Figure 3b:

J2 : root{b{a{b{a{b{...}}}}}}.
by never activating send3.

While following the example, recall that each transformation step of a system
leads to a reduced system. This is the reason why for example neither J1 nor J2
contain multiple a nodes as siblings. Moreover, note that we are interested in
the tree towards which the snapshots of a system converge and not the system
itself (i.e., we ignore the active nodes of a system when we look at its ”limit”).

It will become clear what we mean exactly by convergence in Section 4,
where we will give the formal definition of a limit of a system.

Having defined a run of a system, we can now define the equivalence of two
systems. Intuitively, two systems I and J are equivalent if on any arbitrary
input, whenever I can be transformed to I ′, J can be transformed to a system
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J ′ that “subsumes” I ′ and vice versa. Formally, equivalence is defined as follows
(recall that we denote by I↓ the snapshot of an AXML system I):

Definition 7 (Equivalence). Let I, J be two AXML systems. Then I, J are

equivalent if for each finite input sequence I, (i) for every run I
∗−→I I ′ there is

a run J
∗−→I J ′ such that I ′↓

hom−−−→ J ′↓, and (ii) for every run J
∗−→I J ′ there is

a run I
∗−→I I ′ such that J ′↓

hom−−−→ I ′↓.

Note that the definition of equivalence of two systems is based on the exis-
tence of homomorphisms between the snapshots of the systems and not between
the actual systems. This allows two systems that use completely different com-
munication channels and queries to still be equivalent if their passive part (as
defined by their snapshots) intuitively converges to the same ”limit”.

3. Overview of Results

No input Input

No queries in ptime in ptime
Tree Pattern Queries (TPQs) in ptime in 3exptime; pspace-hard
TPQs with XPath-joins in ptime in 3exptime; pspace-hard
TPQs with Arbitrary Joins pNP

|| -complete open

TPQs with Constructors undecidable undecidable

Figure 4: Complexity results for equivalence

The main focus of the present article is the study of the Equivalence Problem
for AXML systems, i.e., the problem of testing whether two systems are equiv-
alent. In Sections 4 and 5, we study this problem for different classes of AXML
systems. Each such class is identified by choices along two orthogonal axes:
Firstly, the query language Q that is considered, and secondly, the presence or
absence of input channels. Figure 4 summarizes our results on the complexity of
the Equivalence Problem, with the vertical axis for the choice of query language,
and the horizontal one for the consideration of input channels.

The results highlight that the introduction of input channels complicates the
equivalence problem. This is not surprising since to prove equivalence, we have
to verify that the two systems have similar limits for all possible inputs. It also
shows that (as usual) joins greatly increase the power of the query language and,
in our case, the complexity of the equivalence problem. The presence of con-
structors also complicates the problem. Intuitively, we can use such constructors
to “create space” for computations.

Finally, in Section 6 we present a complete axiomatization for query-free
AXML systems, in the form of finitely many equivalence-preserving rewrite
rules that can be used to transform a system into any other equivalent system.
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4. Query-free Systems

In this section we consider the equivalence of query-free systems. We con-
sider first input-free query-free systems (i.e., query-free systems without external
input channels), and then query-free systems with input. Note that, even for
input-free, query-free systems, the equivalence problem is non-trivial. This is
because equivalence is defined in terms of runs (see Definition 7) and a system
may have infinitely many, and arbitrarily long, runs.

Query-free & input-free systems. Given two query-free and input-free systems
to compare, we will show that it suffices to consider their “limits”. The limit
of a system is a possibly infinite tree towards which the successive snapshots
on a run of the system, in a precise sense, converge. We will show that these
limits, even when infinite, can be represented in a finite manner, and we will
present an algorithm that operates on these finite representations in order to
decide equivalence.

To be able to talk about the possibly infinite limit of a system, we first need
to introduce the notion of an infinite XML tree. An infinite XML tree is an
XML tree as defined in Section 2 but with the difference that it contains an
infinite number of nodes. Definition 3 of homomorphism and isomorphism can
be straightforwardly extended to infinite XML trees.

We say that an infinite XML tree I∗ is a limit of a system I if the snapshot
of each instance reachable from I can be embedded in I∗ and conversely, each
finite height prefix of I∗ can be embedded in the snapshot of some instance
reachable from I. Here, by a finite height prefix t|k of a tree t (where k is a
natural number) we mean the tree containing only those nodes from t having
distance at most k from the root.

Definition 8 (Limit of an AXML system). Let I be an AXML input-free
system.2 We say that an infinite XML tree I∗ is a limit of I, if (i) whenever

I
∗−→ I ′, then I ′↓

hom−−−→ I∗ and (ii) for every finite height prefix I∗|k of I∗, there

is an I ′ with I
∗−→ I ′, such that I∗|k

hom−−−→ I ′↓.

Note that Definition 8 does not tell us how limits are constructed. All it
specifies is that a limit of a system I has a certain relationship to the set of all
snapshots of systems obtainable from I by means of a run. Moreover, it is im-
portant to note that the limit is not an arbitrary AXML system but a (possibly
infinite) XML tree; i.e., it does not contain active nodes. However, as we will
see, it contains enough information to decide equivalence, since equivalence of
two systems, as discussed above, is a relationship between the snapshots of the
systems (which are XML trees) and not between the systems themselves.

2This definition, in principle, applies to input-free systems with or without queries. How-
ever, in this section, we will consider only the query-free case.
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Example 4. Consider the system I2 shown in Figure 5a. It is easy to see that
the infinite trees J1 and J2 in Figure 5b are each a limit of this system.

The above example shows that a system may have several homomorphically

non-equivalent limits (note that, while J1
hom−−−→ J2, it is not the case of J2

hom−−−→
J1, i.e., J1 and J2 are not homomorphically equivalent). We call a possibly
infinite XML tree finitely branching if every node has finitely many children.
In what follows, we will only consider finitely branching limits. As we will
show, every input-free system has precisely one finitely branching limit, up
to homomorphic equivalence. Note that, in the above example, J2 is finitely
branching, whereas J1 is not.

Furthermore, we will show that the equivalence of two input-free systems
(which was defined in terms of a possibly infinite number of runs), can be
equivalently cast just in terms of the finitely branching limits of two systems,
cf. Proposition 1 below.

We first need to establish a technical lemma.

Lemma 1. Let I, I ′ be finitely branching but possibly infinite XML trees. If for

every finite height prefix I|k of I, I|k
hom−−−→ I ′, then I

hom−−−→ I ′.

Proof. Let hk : I|k
hom−−−→ I ′, for k ≥ 1. We will construct the desired homo-

morphism g : I
hom−−−→ I ′ as an infinite union

⋃
k gk of partial homomorphisms,

where gk : I|k
hom−−−→ I ′, such that (i) gk ⊆ gk+1 for all k ≥ 1, and (ii) for each

k ≥ 1 there are infinitely many ` > k for which it holds that gk ⊆ h`. The
first condition ensures that the union

⋃
k gk is well-defined, while the second

condition is a convenient invariant used in the construction of the homomor-
phisms g1, g2, . . .. Specifically, let g1 be the map that sends the root node
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of I to the root node of I ′ (which indeed satisfies both conditions). Suppose

that we have constructed g1 : I|1
hom−−−→ I ′, . . . , gk : I|k

hom−−−→ I ′ satisfying
the above conditions. There are only finitely many possible homomorphisms

gk+1 : I|k+1
hom−−−→ I ′ (here, we use the fact that I and I ′ are finitely branching)

and hence, by the pigeon hole principle, there is at least one such homomor-

phism gk+1 : I|k+1
hom−−−→ I ′ extending gk that is contained in infinitely many

h` with ` > k. We can pick any such. Continuing this way, we obtain the
desired sequence of homomorphisms g1 ⊆ g2 ⊆ . . . of which the union

⋃
k gk is

a homomorphism from I to I ′. �

Proposition 1. Let I, J be input-free AXML systems having finitely branching

limits I∗ and J∗. Then I and J are equivalent if and only if I∗
hom←−−→ J∗. In

particular, every input-free AXML system has at most one finitely branching
limit, up to homomorphic equivalence.

Proof. Suppose that I and J are equivalent. It follows from the definition of
limits that, then, every finite height prefix I∗|k of I∗ must have a homomorphism

into J∗, i.e., I∗|k
hom−−−→ J∗ (and vice versa). Hence, by Lemma 1, there is also

a homomorphism from the entire tree I∗ to J∗ (and vice versa). In other

words, I∗
hom←−−→ J∗. Conversely, suppose that I∗

hom←−−→ J∗. Then, in particular,
(since a homomorphism must send roots to roots and preserve the child relation)

I∗|k
hom←−−→ J∗|k for all k. Combining this with the fact that I∗ is a limit for I

and J∗ a limit for J , we obtain that, whenever I
∗−→ I ′, there is a J ′ with J

∗−→ J ′

such that I ′↓
hom−−−→ J ′↓. Similarly, in the other direction. In other words, I and

J are equivalent. �

This proposition highlights the relevance of finitely branching limits of sys-
tems. However, we still have to establish the existence of finitely branching
limits. This is what we will show next (cf. Proposition 3 below). In fact, we will
exhibit a finite representation of these, possibly infinite, limits. For this, we use
finite, labelled, directed, rooted graphs. In the following, we simply call them
“graphs”. Formally, a (rooted) graph is a tuple (N,E, r, λ), where N a finite set
of nodes, E ⊆ N ×N the set of edges, λ a labeling function over N , and r ∈ N
the root.

A graph G represents a possibly infinite tree, that we call the unraveling of
G and denote by unr(G), as follows: The nodes of unr(G) are all non-empty
finite sequences x1 . . . xn where each xi is a node of G, x1 is the root, and for
each i < n, there is an edge from xi to xi+1 in G. The tree-structure of unr(G)
is defined as follows: x1 (which is a sequence of length 1) is the root of unr(G);
if x1 . . . , xn is a node of unr(G) with n > 1, then the (unique) parent of this
node is the sequence x1 . . . xn−1 which is indeed also a node of unr(G); and the
label of x1 . . . , xn is the label of xn in G.

For every node x1 . . . xn of unr(G), by its original we will mean the node xn
of G. So, in particular, the label of a node of unr(G), by the above definition,
is the label of its original in G.

13



Given two graphs, it is possible to decide if the infinite trees they represent
(i.e., their unravellings) are homomorphically equivalent. For this, we use the
auxiliary notion of graph simulation. A graph G simulates a graph H if there
is a binary relation Z between nodes of G and nodes of H, called a simulation,
satisfying the following conditions: (i) (rootG, rootH) ∈ Z, (ii) whenever (x, y) ∈
Z, then x and y have the same label, and (iii) whenever (x, y) ∈ Z and y has a
successor y′ in H, then x has a successor x′ in G such that (x′, y′) ∈ Z. Note that
Z is not required to be a function, not every node of G is required to belong to
the domain of Z, and not every node of H is required to belong to the co-domain
of Z (although every node of H that is reachable from the root will belong to
the co-domain of Z). We say that two graphs are simulation-equivalent if they
simulate each other. Now we have:

Proposition 2. For all graphs G and H, we have that unr(H)
hom−−−→ unr(G) if

and only if G simulates H, which can be tested in ptime.

Proof. Let G = (NG, EG, rG, λG) and H = (NH , EH , rH , λH).
For the left-to-right direction, for each node n ∈ NG, we will use Gn to

denote the graph derived from G by considering n as the root, i.e., Gn =
(NG, EG, n, λG). Similarly, we define Hn for n ∈ NH . To establish the left-
to-right direction, it is enough to observe that the binary relation {(n, n′) |
unr(Hn′)

hom−−−→ unr(Gn)} is itself a simulation, which is easy to verify.
For the right-to-left direction, let Z be a simulation of G by H. We define a

homomorphism h : unr(H)
hom−−−→ unr(G). Recall that the nodes of unr(G) are

sequences σ of nodes of G starting with rG. We define h(σ′) by induction on
the length of the sequence σ′, and in such a way that, whenever h(σ′) = σ, with
σ′ = x′1 . . . x

′
n and σ = x1 . . . xn, then (xn, x

′
n) ∈ Z. First, h(rH) = rG. Next,

suppose h(x′1 . . . x
′
n) = (x1 . . . xn) and suppose x′1 . . . x

′
nx
′
n+1 is an element of

the domain of unr(G). Then x′n+1 is a successor of x′n in H, and hence, by the
definition of simulations, there is a node xn+1 of H such that xn+1 is a successor
of xn in G and (xn+1, x

′
n+1) ∈ Z. We pick an arbitrary such node xn+1 and

extend h by sending x′1 . . . x
′
nx
′
n+1 to x1 . . . xnxn+1. It is clear that the function

h obtained in this way is a homomorphism.
Existence of a simulation can be tested in PTIME using a greatest-fixed

point computation: Start with the total binary relation, and keep removing
pairs that falsify one of the conditions until either the result is a simulation, or
it no longer contains the root-pair (in which case there is no simulation). �

We next associate to each input-free, query-free system I a graph GI , whose
unravelling, we will show, is a finitely branching limit of I. Given an AXML
system I, by a chain of communication channels (a chain for short) we mean
a sequence c1, . . . , cn of channels (n ≥ 1), such that for all 1 ≤ i < n, there is
a send node attached to channel ci with a child that is a receive node attached
to channel ci+1. The intuition is that if there is a chain c1, . . . , cn, then data
sent on channel cn will eventually be received on channel c1. The graph GI is
obtained from I as follows: (i) all send and receive nodes are removed, (ii) an
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Figure 6: Graph GI1 for system I1 of Figure 3

edge is added from a (passive) node x to a (passive) node y if there is a chain
c1, . . . , cn, such that x is the parent (in I) of a receive node attached to channel
c1, and y is a child (in I) of a send node attached to channel cn, and finally,
(iii) all nodes of GI that are not reachable from the root are removed from the
graph.

Example 5. For instance, Figure 6b shows the graph GI1 obtained for system
I1 of Figure 3. Figure 6a illustrates its construction. The dotted edges are
those that have been dropped. The thicker arcs are those that have been added.
Finally, the nodes in bold face are the ones that have been kept, while the nodes
in normal face are the ones that have been dropped.

The following result states that this graph represents a limit of the system.

Proposition 3. For every input-free, query-free AXML system I, unr(GI) is
a finitely branching limit of I.

Proof. First of all, unr(GI) is finitely branching by construction. To show

that it is a limit of I, we have to prove the following: (i) Whenever I
∗−→ I ′, then

I ′↓
hom−−−→ unr(GI) and (ii) for every finite height prefix unr(GI)|k of unr(GI),

there is an I ′ with I
∗−→ I ′, such that unr(GI)|k

hom−−−→ I ′↓.

Proof of (i). We show that, whenever I → I ′, thenGI andGI′ are simulation-

equivalent. It then follows, by Proposition 2, that unr(GI)
hom←−−→ unr(GI′). This

implies the desired result (by transitivity of the homomorphism relation), since

I↓
hom−−−→ unr(GI). Let I → I ′. Since the system I is input-free and query-free,

I ′ is obtained from I by invoking a send node. Clearly, GI is included in GI′

and hence GI′ simulates GI . Conversely, note that if a node x of GI′ does not
belong to GI , then x was added as a result of the send node invocation, which
means that x is a copy of a node x′ in GI . It can be seen that the binary relation
Z containing all identity pairs (x, x) (where x is a node of GI) as well as all
pairs (x, x′) where x′ is the copy of x created by the send node invocation, is a
simulation of GI′ by GI .
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Proof of (ii). The proof proceeds by induction on k. It will be convenient to
use a slightly stronger induction hypothesis. We first introduce some convenient
notation. We use the notation T |k to denote the height k prefix of a tree T , and
we use the notation Tx to denote the subtree of a tree T rooted at a node x.
Finally, we denote by π : unr(G)→ G the natural homomorphism which sends
each node x1, . . . , xn of unr(G) to the node xn of G. The induction hypothesis
that we use is the following:

(∗) For each k, there is an AXML system I ′ with I →∗ I ′ such that for each

node n of unr(GI), we have unr(GI)n|k
hom−−−→ (I ′↓)π(n).

Observe that, if we pick n to be the root, then this induction hypothesis
implies the condition (ii) that we are trying to prove.

It is clear that (∗) holds when k = 1. Suppose that the claim holds for some
value of k, i.e., there is an instance I ′ with I →∗ I ′ such that for each node n

of unr(GI), we have unr(GI)n|k
hom−−−→ (I ′↓)π(n). Let I ′′ be the AXML system

obtained from I ′ by invoking all send nodes, one after the other, and repeating
this m times, where m is the number of channels occurring in I. Thus each send
node is invoked m times. This construction guarantees that, for every chain of
communication channels c1, . . . , cm, all passive XML data occurring in I ′ below
a send node attached to channel cm will occur in I ′′ below every receive node
for channel c1.

We claim that, for any node n′ of unr(GI), unr(GI)n′ |k+1
hom−−−→ (I ′′↓ )π(n′).

The homomorphism in question sends n′ to π(n′). For any child n′′ of n′ in
unr(GI), we can distinguish two cases: either there is an edge from π(n′) to
π(n′′) in I, or this edge was added in the construction of GI , in which case n′ and
n′′ were connected by a chain of communication channels c!, . . . , cm in I. In the
first case, we can immediately apply the induction hypothesis, which gives us a
homomorphism from unr(GI)n′′ |k to (I ′↓)π(n′′)

. In the second case, we use the

induction hypothesis together with the fact that all passive data occurring in I ′

below a sendcm node occurs in I ′′ below every rcvc1 node. Finally, we combine
all the homomorphisms (for the different children of n′) into one homomorphism
from unr(GI)n′ |k+1 to (I ′′↓ )π(n′). �

Note, that the limit represented by unr(GI) is a finitely branching one,
allowing us to utilize Proposition 1.

Thus to decide equivalence between two such systems, we can first build
their corresponding graphs in linear time and then check homomorphic equiv-
alence between their unravelings using simulation on the graphs (which is also
in ptime). This leads to:

Theorem 1. Equivalence for query-free, input-free AXML systems is in ptime.

Proof. From Propositions 1 and 3, it immediately follows that two input-free,

query-free systems I and J are equivalent iff unr(GI)
hom←−−→ unr(GJ). Since GI

andGJ can be constructed in polynomial time and the homomorphic equivalence
can be checked in polynomial time (see Proposition 2), we get the result. �
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For future reference (specifically, to prove the completeness of our proposed
set of axioms in Section 6), we will prove one more result about graphs and
simulations. Given a graph G with nodes n,m, let us say that n simulates
m if Gn simulates Gm, where Gn is the graph derived from G by letting n
be the root, and similarly for Gm. We call a graph G minimized if (i) every
node is reachable from the root; (ii) there are no two distinct children n,m of a
node in the graph, such that n simulates m; and (iii) no two distinct nodes are
simulation-equivalent.

Proposition 4. Every graph is simulation-equivalent to a minimized graph; two
minimized graphs G,G′ are simulation-equivalent iff they are isomorphic.

Proof. First, every graph G is clearly simulation-equivalent to the subgraph
containing only the nodes that are reachable from the root.

Next, if two nodes n and m simulate each other, then unr(G,n)
hom←−−→

unr(G,m), where by (G,n) we denote the graph G where n is taken as the

root. It follows that unr(G)
hom←−−→ unr(G′), where G′ is obtained from G by

identifying the nodes n and m (i.e., replacing the two by a single node, and
connecting all edges that were connected to n or m to the new node). Hence,
also G and G′ are simulation equivalent.

Finally, suppose that there are two distinct children n,m of a node x,

such that n simulates m. Then unr(G,m)
hom−−−→ unr(G,n). It easily follows

that, if G′ is the graph obtained from G by removing the edge (x,m), then

unr(G′)
hom←−−→ unr(G). Therefore G and G′ are simulation equivalent.

As for the second claim, ifG andG′ are isomorphic, they are clearly simulation-
equivalent. In the other direction, let Z,Z ′ be simulations in both directions.
The desired isomorphism can be constructed step-by-step. We sketch the con-
struction. Initially we take the partial isomorphism sending the root r of G
to the root r′ of G′. Next, we consider the children of r on one hand and the
children of r′ on the other. For each child x of r, let x→ be a child of r′ such
that (x, x→) ∈ Z. Similarly, for each child y of r′, let y← be a child of r such
that (y, y←) ∈ Z ′. It follows from the minimality of G and G′ (more specifically,
condition (ii) of minimality, in combination with the transitivity of the simula-
tion relationship) that (x→)← = x and (y←)→ = y. Hence, the function (·)→
defines a bijection between the successors of r and the successors of r′ where
each pair in the bijection is simulation-equivalent. Repeating this, we finally
obtain a bijection, containing only pairs that are simulation-equivalent. But
this must be an isomorphism. �

Proposition 4 can be viewed as providing an alternative method for testing
the equivalence of two query-free, input-free systems (but less practical, since it
would require solving the graph isomorphism problem). However, will put this
to use in Section 6 when we consider axiomatization.

Query-free systems with input. As already mentioned, the introduction of input
channels complicates the equivalence problem in general. Query-free systems
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though are the exception. Because of the absence of queries, the system cannot
“look inside” the data provided by an input channel. Such data ends up behav-
ing as a single “black block of data” that may end up replicated as-is in possibly
many places. Therefore, we can treat input channels simply as fresh symbols,
reducing thus the equivalence problem in the presence of inputs to that in their
absence. More formally, we have:

Theorem 2. For any AXML query-free system I (with input channels), let Î
be the AXML system obtained from I by uniformly replacing each receive node
rcvi from some input channel i by a fresh (passive) label �i. Then two systems

I, J are equivalent if and only if Î and Ĵ are equivalent. Thus, equivalence of
query-free AXML systems can be tested in ptime.

Proof. One direction is clear: If I and I ′ are equivalent then they are in
particular equivalent in the case where the input on channel i consists of a
single node labeled �i, hence Î and Ĵ are equivalent too.

The other direction follows from the fact that a limit of I on an input
{(c1, F1), . . . , (cn, Fn)} is the finitely branching tree obtained by taking the limit

of Î and replacing each �i by a copy of the XML forest Fi. Hence, if Î and Ĵ
have homomorphically equivalent finitely branching limits, then so do I and J
on all possible finite inputs. �

Theorem 2 can be intuitively rephrased as follows: when testing equivalence
of query-free systems, active node labels rcvi (where i is an input channel) may
be ignored and simply treated as (distinct) passive labels.

5. AXML Systems with Queries

The equivalence problem becomes harder when we allow systems that con-
tain query nodes. In this section we consider such systems. Since the complexity
of checking equivalence depends on the query language employed, we study dif-
ferent query languages. We start by defining these languages and then present
the equivalence results; first for input-free systems and then for those with input.

5.1. Query languages

The query languages we consider are all variants of tree pattern queries [6].
They are different in the use of joins and/or constructors that is allowed.

TPQs with Joins. We first define tree pattern queries with joins (TPQ-J).

Definition 9 (Tree Pattern Queries with Joins). Let V be an infinite set
of variables. A tree pattern query with joins (TPQ-J) is a tree whose edges
are labeled by child or descendant, and whose nodes are labeled by elements of
L ∪ V, together with a distinguished “result node” corresponding to the root of
the subtree to be returned by the query.
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The semantics is the following: Let q be a TPQ-J and I an XML document.
A matching of q in I is a map sending nodes of q to nodes of I and variables
from V to labels from L, such that (i) the root of q is mapped to the root of
I, (ii) child/descendant relationships and labels from L are preserved, (iii) for
each node of q labeled by a variable from V, the image of the label of the node
is the label of the image of the node. Evaluating q on I yields the set of all
subtrees J of I for which there is a matching from q to I such that the result
node of q is mapped to the root of J .

This semantics can be straightforwardly extended to a set of XML docu-
ments. This extension is required in our setting, since in an AXML system a
query is in general applied to more than one XML document. Let q be a TPQ-J
and {Ii|i = 1, . . . , n} a set of XML documents. Evaluating q on {Ii} yields the
union of the results of evaluating q on each of the documents (i.e.,

⋃
i{q(Ii)}).

Clearly, whenever a TPQ-J q has more than one occurrence of the same
variable, it is performing a join. We say that q is a tree pattern query without
joins or simply a tree pattern query (TPQ) if it does not contain two occurrences
of the same variable. Note that, in this case, the only role of a variable is to act
as a wildcard.

Definition 10 (Tree Pattern Queries with XPath-Joins). A tree pattern
query with XPath-joins (TPQ-XJ) is a TPQ-J satisfying the following structural
condition (†):

(†) Call a node x in a tree pattern an intermediary of a pair of nodes y, z if
y and z are joining nodes (i.e., are labeled by the same variable), x lies
on the shortest path between y and z (which includes y and z themselves),
and x is not the least common ancestor of y and z. The following two
conditions hold:

1. no node is an intermediary of two different pairs of nodes,

2. no node on the path from the root to the result node is an intermediary
of any pair of nodes.

Definition 10 is arguably somewhat involved. However, the condition (†)
ensures that all TPQ-XJs are expressible in XPath using data equality tests, and
this is the only fact about TPQ-XJ that will use in what follows. More precisely,
let XPath(↓,↓+,=) be the fragment of navigational XPath studied in [10], in
which only the downward axes ↓ and ↓+ may be used and in which data equalities
are allowed as tests. We refer to [10] for the precise syntax and semantics. Then
we have the following.

Proposition 5. Every TPQ-XJ can be translated in polynomial time to an
equivalent XPath(↓,↓+,=) path expression.

Proof. We give the basic outline of the translation. The details are straight-
forward, but we omit them because they would require us to go into the precise
syntax and semantics of XPath(↓,↓+,=) [10], which is not relevant for the rest
of the paper.
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Figure 7: Examples of TPQs with joins

Consider any TPQ-XJ. By induction, we can associate to each node of the
query either

(i) an XPath(↓,↓+,=) path expression (if the node is an intermediary, or if the
node lies on the path from the root to the result node), or

(ii) an XPath(↓,↓+,=) node expression (otherwise).

The XPath(↓,↓+,=) expression associated to a leaf is either .[p] (if the leaf is
labeled by some p ∈ L, or simply . (if the leaf is labeled by an element of
V). The XPath(↓,↓+,=) expression associated to a non-leaf node is obtained by
combining the XPath(↓,↓+,=) expressions associated to the children of the node,
as well as the label of the node in question. Data equalities are used whenever
the node in question is the least common ancestor of a pair of nodes labeled by
the same variable.

Since the root trivially lies on the path from the root to the result node,
we obtain, in the end, a path expression that, when evaluated at the root of a
document, yields precisely the nodes returned by the TPQ-XJs. �

Example 6. Figure 7 shows examples of tree pattern queries and their results
on an example XML document. Labels of the form $x (shown in italics) repre-
sent variables and labels in bold face signify a pattern’s result node. Edges of the
form | are child edges. A query can also contain descendant edges denoted by ‖,
as for instance in the query corresponding to node q in the system of Figure 1.
Figure 7b shows a TPQ without joins and Figures 7c and 7d show TPQs with
joins. While the query in Figure 7c is a TPQ with XPath-joins, the query in
Figure 7d is not, as it fails to meet both subconditions of (†).

TPQs with Constructors. Apart from tree pattern queries with joins, we also
consider tree pattern queries with constructors. Instead of being allowed to
simply copy a single subtree appearing in its input to its output, a tree pattern
query with constructors can create and output a new tree constructed from
existing data.

20



a 

$x 

b 

$y 

c 

$z 

h 

$x $y 

q4 q4(D) 

h 

b 

b 

e 

c 

e 

e 

h 

d 

b 

e 

c 

f 

e ( ) , 

Figure 8: Example of TPQ with constructors

Definition 11 (TPQs with Constructors). A tree pattern query with con-
structors (TPQ-C) is a pair (q, t) where q is a TPQ and t a template, i.e., an
XML document in which the labels of some of the leaves have been replaced by
variables occurring in q.

The semantics is defined as follows: Let I be an XML document and let
q′ = (q, t) be a TPQ-C. Each matching m of q in I, yields an answer tm obtained
by replacing in t each leaf labeled x ∈ V by the subtree of I rooted at m(s),
where s is the unique node of q labeled x. Note that, here, we use the fact
that q is a TPQ, as opposed to an arbitrary TPQ-J, because in TPQs each
variable may occur only once. In principle, the definition could be adapted to
also incorporate joins, but it will turn out that the use of TPQ-Cs quickly leads
to undecidability even without joins, and therefore the above definition will be
sufficient. Also, note that the result node of q plays no role in this definition.

Just as in the case of TPQ-Js, a TPQ-C may be applied to a set {I1, . . . , In}
of XML documents. In this case, q({I1, . . . , In}) =

⋃
1≤i≤n{q(Ii)}.

Example 7. Figure 8 shows an example of a TPQ-C query and its result when
applied on document D of Figure 7a.

5.2. Input-free Systems

Recall from Section 4 that, for a query-free system I, we were able to con-
struct a finite graph GI whose unraveling is a finitely branching limit of I. Using
these graphs, and using the concept of simulations, we were then able to test
the equivalence between any two query-free systems.

For input-free systems with queries, a graph representing a limit of the sys-
tem cannot be obtained as easily from the system as before, because, intuitively,
computing the limit involves repeatedly evaluating the queries of the system.
However, we will show that for input-free systems with TPQ-Js, a Datalog
program can be constructed that computes such a graph. If the system uses
only TPQ-XJs, then the Datalog program can be executed in polynomial time.
Therefore, we can test equivalence in polynomial time by executing the Datalog
programs and testing whether the graphs obtained simulate each other. The
same strategy works for systems with arbitrary TPQ-Js, but with a slightly
higher computational complexity. On the other hand, as we will show later in
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this section, for input-free systems containing TPQs with constructors, equiva-
lence is undecidable.

TPQs with Joins. We look first at the case of TPQs with joins. Let I =
(N,E, λ) be an input-free system containing TPQ-Js. We will specify the Dat-
alog program ΠI that computes as its output a graph that represents a limit of
the system. The Datalog program will contain a constant n for each node n of
I, as well as a constant a for each node label a ∈ L occurring in I. We will use
X,Y, Z, . . . as variables.

child(m,n) :- (for (m,n) ∈ E)
label(m,a) :- (for λ(m) = a ∈ L)
child(X,Y) :- child(X,m), child(m,Y) (for λ(m) = rcvi and λ(n) = sndi)
child(X,Y) :- child(X,m), child(m,U), q(U,Y) (for λ(m) = q)
desc(X,Y) :- child(X,Y)
desc(X,Y) :- child(X,Z), desc(Z,Y)

Here, by q(X,Y ) we denote the query q written out as a conjunctive query
using the child, desc and label relations, where X is identified with the root,
and Y with the result node of q. The intuition behind this Datalog is as fol-
lows: the first two rules (or, more precisely, the first two sets of rules, with
are parametrized by m, n and a) encode the basic tree-structure of the AXML
system. The third rule captures the semantics of send and receive nodes. The
fourth rule captures the semantics of query nodes. The last two rules, finally,
are simply bookkeeping rules that compute the descendant relation, as the latter
may be used inside the queries q.

The Datalog program ΠI computes as its output, in a natural way, a graph
GI . More precisely, GI is the graph (N ′, E′, r, λ), where N ′ ⊆ N is the set of
all passive nodes of I, E′ ⊆ N ′ ×N ′ is the child relation over N ′ computed by
ΠI , r is the root node of I, and λ is the labeling function of I restricted to N ′.

In this way, we get an analogue of Proposition 3 for AXML systems with
TPQs with joins:

Proposition 6. For every input-free system with TPQs with joins, unr(GI) is
a finitely branching limit of I.

Proof. The proof is along the same lines as that of Proposition 3. In part (i)
of the proof, there is an additional case, where a query node is invoked, but
the argument used there is essentially the same as in the case of a send node
invocation.

In part (ii), note that if a node n′′ is a child of a node n′ in unr(GI), there
are three possibilities: (a) there is an edge from π(n′) to π(n′′) in I; (b) the
edge from π(n′) to π(n′′) was added to GI because n′ has a receive node child
and n′′ has a send node parent, and there is a chain of communication channels
connecting the channels of the send and the receive node in question; (c) the
edge from π(n′) to π(n′′) was added to GI because π(n′) has a query node as
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a child, and n′′ is among the answers of the query in question. The first two
cases were already dealt with in the proof of Proposition 3. For third case, note
that if (n,m) ∈ q(GI) (i.e., if m is among the answers of the query q when

evaluated from node n), and unr(GI)n′ |k
hom−−−→ (I ′↓)n for any node n′ such that

π(n′) = n and for big enough k, then it follows from the induction hypothesis
that m ∈ q(content(n, I ′)) and hence, if I ′′ is the AXML system obtained from
I ′ by invoking the send node in question, then the node n in I ′′ has a child that
is a copy of m. �

Using Propositions 1 and 2 immediately yields an algorithm for testing equiv-
alence of two input-free systems with TPQs with joins. In particular, according
to Proposition 1, checking equivalence of two input-free systems with finitely
branching limits reduces to checking homomorphic equivalence of their limits.
In the case of an input-free system I with TPQs with joins a finitely branching
limit is unr(GI), as shown by Proposition 6. Thus to check equivalence of two
such systems I and J it suffices to check for the homomorphic equivalence of
unr(GI) and unr(GJ), which according to Proposition 2 can be done by check-
ing whether GI simulates GJ and vice versa. The only piece missing for deciding
the equivalence of two such systems is constructing GI (resp. GJ), which can
be done by executing a Datalog program, as explained above.

Since this algorithm involves constructing and running a Datalog program,
it requires in general more than polynomial time. However, it can be shown
that it runs in time pnp|| , i.e., deterministic polynomial time with parallel access

to an np-oracle [15]. This follows, as we will explain, from the fact that the
arity of the relations in the constructed Datalog program is bounded. In fact,
we have the following:

Theorem 3. The equivalence problem for input-free AXML systems with TPQs
with joins is pnp|| -complete.

Proof. For the upper bound, it suffices to show that the Datalog program ΠI

can be executed in time pnp|| . The remainder of the algorithm consists of testing
whether the resulting graphs for the two systems simulate each other, which by
Proposition 2 can be done in polynomial time.

Observe that the arity of the relations in the Datalog program ΠI is bounded
by a constant where the constant in question is 2). The combined complexity
of evaluating a Datalog program whose relations have bounded arity is in pnp|| .
To see this, first observe that there are only polynomially many possible atomic
facts using constants and relations occurring in the program (where the degree
of the polynomial depends on the maximal arity of the relations). Hence, if a
fact belongs to the answer of the program, this can be witnessed by a polynomial
size derivation, and therefore the problem of testing whether a fact belongs to
the answer of the program is in np (we assume that “polynomial size derivation”
includes a homomorphism witnessing each application of a rule). The complete
answer of the Datalog program can then be computed by asking an np-oracle,
for each of the polynomially many possible facts (in parallel), whether or not it
belongs to the answer of the Datalog program.
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For the lower bound, we will first define another problem and show it to be
pnp|| -complete. The problem is:

(∗) given two unary conjunctive queries and an instance, decide if the two
queries have the same answers on this instance.

This problem is clearly decidable in pnp|| (the algorithm uses an np-oracle to
test, for each element of the active domain of the instance, whether it belongs
to the answer of each of the two queries, and, depending on the result, outputs
yes or no). The pnp|| -hardness of (∗) is proved by a reduction from the following

problem, which is known to be complete for this complexity class [17]: given
two graphs, decide if they have the same chromatic number. For any k ≥ 1, let
Ik be the instance (for a schema consisting of a single binary relation) that is a
disjoint union of cliques of sizes 1. . . k. For any graph G, let qG be the canonical
conjunctive query of G, i.e., the Boolean conjunctive query whose existential
variables are the elements of G and whose conjuncts are the edges of G. Then
it is not hard to see that two graphs G,G′ have the same chromatic number if
and only if qG and qG′ have the same answers on the instance Ik, where k is
the maximum of the number of vertices of G and G′. Note that this reduction
uses only a single binary relation, and hence, the problem (∗) is already pnp|| -
complete for queries and instances over a fixed schema consisting of a single
binary relation.

Finally, we show how to reduce (∗) to the problem at hand. We assume a
fixed schema consisting of a binary relation R. We can associate to each instance
I = {R(a1, b1), . . . , R(an, bn)} an XML tree

tI = root{R{1{a1}, 2{b1}}, . . . , R{1{an}, 2{bn}}} .

Analogously, we can associate to each unary conjunctive query q a TPQ-J q′

(over XML trees): for each conjunct R(u, v) of q, q′ contains a subtree below
its root of the form R{1{$u}, 2{$v}}. Then two unary conjunctive queries
q1, q2 have the same answers on an instance I if and only if the AXML system
root{q′1{tI}} is equivalent to the AXML system root{q′2{tI}}. �

Since np is contained in pnp|| , in particular, this shows that testing equivalence
of AXML systems with TPQs with joins is np-hard.

If we restrict our attention to TPQs with XPath-joins, then we can prove
much better complexity bounds. These are based on the result shown in [7] that
XPath expressions, seen as conjunctive queries, have bounded tree-width. Recall
from Proposition 5 that every TPQ-XJ is equivalent to an XPath expression.
Hence, every TPQ-XJ, viewed as a conjunctive query, has bounded tree-width.
It follows that the constructed Datalog program ΠI has bounded tree-width as
well, in the sense that the body of each rule is a conjunctive query of bounded
tree-width. Without going into the definition of tree-width, what matters here is
that the combined complexity of evaluating a conjunctive query is known to be
in ptime if the conjunctive query has bounded tree-width [11] (cf. [9] for more
details). It follows, that evaluating a Datalog program of bounded tree-width
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whose relations have bounded arity, is also ptime. Consequently, the above
algorithm for testing equivalence of two systems runs in ptime if the systems
only contain TPQs with XPath-joins.

Theorem 4. The equivalence problem for input-free systems with TPQs with
XPath-joins is decidable in ptime.

TPQs with Constructors. Finally, we move to systems containing TPQs with
constructors. In this case, equivalence turns out to be undecidable, as these
systems are expressive enough to simulate the computation of a Turing Machine.
In particular, we show the undecidability by reduction from the acceptance
problem of a Turing Machine (TM): Given a TM and an input, we create an
AXML system that simulates the TM on the input and returns a designated
symbol if and only if the TM accepts this input. Hence we obtain the following
undecidability result:

Theorem 5. Equivalence of input-free AXML systems with TPQs with con-
structors is undecidable.

Proof. It can be proven by reduction from the acceptance problem of Turing
Machines (TMs). This is based on the observation that any TM can be simulated
by an AXML system with TPQs with constructors. Given a TM M and an
input T , we construct two AXML systems I1 and I2. I1 simulates M on T
and outputs a fresh symbol accept iff M accepts the input. I2 is simply the
system root{accept}. Given I1 and I2, as described above, it is easy to see
that I1 and I2 are equivalent iff M accepts input I. A configuration of M (i.e.,
its state and input tape) is modeled as a tree. Each transition is simulated
by a query node that checks whether the configuration satisfies the transition
condition and, if it does, outputs the new configuration. To make sure that the
query nodes implementing the transitions operate on each configuration that M
goes through, the output of each query node is sent to an internal channel and
recursively received by children of the query nodes. Finally, another query node
outputs ‘accept’ when M reaches its final state.

More precisely, the system I1 simulating M on T consists of:

- a root node with children
- a send node send1 with children

- one query node qi for every pair of transition rule and symbol in the
alphabet of M with child a rcv1 node

- the encoding of the initial configuration, constructed as described below
- a query node qextend−left with a child rcv1 node
- a query node qextend−right with a child rcv1 node

- a send node send2 with a child query node qfinal that has a child rcv1 node
- a rcv2 node

In this construction, a configuration (s, t) of M , where s is the current state,
and t = xn . . . x1hy1 . . . ym the input tape with h being the symbol under the
head, is encoded as:
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{s{ h{ l{x1{x2 . . . {xn{#}}}},
r{y1{y2 . . . {ym{#}}}} } }}

where #, l and r are fresh symbols not contained in M ’s alphabet.
Each qi is a TPQ with constructors that implements one of the transition

rules of the TM for a particular symbol in M ’s alphabet. For instance, consider
the transition rule (σ, s) → (σ′, s′, RIGHT ), specifying that on symbol σ and
state s, the TMM replaces σ by σ′, transitions to state s′ and moves one position
to the right. This transition rule can be implemented by the following class of
TPQs with constructors; one for each symbol c in M ’s alphabet: (q, t), where
q : {s{σ{l{$x}, r{c{$y}}}}} and t : {s′{c{l{σ′{$x}}, r{$y}}}}. The query
qfinal checks if the current configuration is in the final state and if this holds,
it outputs accept. Finally, qextend−left and qextend−right simulate the infinite
tape by extending the tape with a blank symbol, whenever encountering the #
symbol on the left and right end of the tape, respectively. �

In fact, the undecidability proof uses no input channels, no joins, and no
repeated variables in the template.

5.3. Simplifying Systems with Input

We consider next systems with input. In this case, our strategy of creating
a graph representing a limit of the system is no longer directly applicable. The
reason is that queries can now operate on inputs, which are unknown before-
hand. Therefore we can only hope to create a finite representation of a limit if we
allow this representation to also contain queries over the input. Indeed, we will
employ graphs that contain queries and our decision procedure for equivalence
will reason on them.

To simplify the equivalence check, we will first bring the systems into a
special form. For our purposes, a simple system will be one in which all queries
have been “pushed down to the inputs”, i.e., the system contains only queries
that operate directly on data received on external input channels, as opposed
to operating on data generated by the system itself. An example of an AXML
system that is not simplified is given in Figure 9a. Note that the query q1 in
this system operates on data received not on an external input channel but on
an internal channel, while the query q2 operates not on data received on an
external input channel but on data actively created by part of the system. The
procedure that we use to transform a system into an equivalent simple system is
interesting in its own right, and we first describe it in its own dedicated section.
Then in the following subsection, we will present the decision procedure for
equivalence for two simple systems.

Regular Tree Pattern Queries. As we will see, to be able to “push queries down
to the inputs” we need to employ a query language that is more powerful than
TPQs. This is because arbitrary AXML systems can combine queries with
recursion (via the use of send and receive nodes), while simplified systems, in
which all queries must operate on external input data, cannot apply queries
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Figure 9: Example of system simplification

recursively. To this end we generalize the query languages we use, by allowing
a limited form of recursion inside the queries themselves.

Definition 12. A regular tree pattern query (RTPQ) is a regular expression
over the infinite alphabet consisting of all tree pattern queries. RTPQs with
Joins and RTPQs with XPath-Joins are defined in the same way.

Intuitively, the additional expressive power of RTPQs will capture the re-
cursion that would otherwise be modelled by the send and receive nodes, if the
queries were allowed to appear at arbitrary places in the tree (and not only
directly over the external inputs).

Before we proceed to define simple systems, we give an example illustrating
why it will be important to allow RTPQs when we define simple systems.

Example 8. Consider the send1 subtree in Figure 9a. It is easy to see that it
sends to channel 1 all subtrees of the input channel ext that are reachable by
an (a/b)∗-path. Let I be the system consisting of a root whose children are this
same send1 subtree, and a rcv1 node. According to the definition given below,
the system I is not simple, because the query q1 is applied over an internal
channel. However, it is equivalent to the system {root{q{rcvext}}}, where q is
the RTPQ /(a/b)∗. According to the definition below, the latter system is indeed
simple. This illustrates the fact that, in order to turn a system with TPQs into
an equivalent simple system, it may be necessary to introduce RTPQs.

Simple systems. Intuitively, a system is simple if it only applies queries directly
on the input, and not on pieces of XML that have been produced by the system
itself. It turns out that a system can apply queries on the input in two ways:
it can either copy part of the input to the output or simply check whether the
input contains a pattern (i.e., perform a Boolean test on the input). These two
ways are demonstrated by the following example:
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Example 9. Consider the two query nodes of system I3 in Figure 9a. As we
discussed above, q1 simply copies pieces of the data received on the external input
channel ext to the output. On the other hand, q2 uses the input differently. It
checks whether ext contains the symbol γ and if it does, it returns c followed by
the contents of the internal channel 1.

In order to give a formal definition of simple systems, we introduce two new
types of active nodes, that represent the following two types of queries: input-
queryc,q and input-testc,q, where c is an input channel and q is a query. The
first, which is only allowed to occur as a leaf, can be viewed as shorthand for
q{rcvc}. In other words, it corresponds to copying part of the input to the
output. The second is allowed to have any number of children, and input-testc,q
tests whether the query q has a non-empty result on the input received from
input channel c. If the answer is positive, then a snapshot of the entire subforest
below the the input-test node is copied appended as siblings of the input-test
node. In other words, input-testc,q acts as a filter, and input-testc,q{forest} can
be viewed as shorthand for q′{s{in{rcvc}, out{forest}}}, where q′ is the query

s
/ \
in out
| |
q $x

, which tests whether q has a non-empty result in the subtree below the

in-node, and then returns all subtrees below the out-node.
Finally, we can define what it means for a system to be simple. We call

an AXML system simple if it only uses queries in these two ways, i.e., if it
can be viewed syntactically as an AXML system using the active node labels
sendc, rcvc as usual, and, instead of arbitrary query nodes, the active node
labels input-queryc,q and input-testc,q where c is an external input channel.

Example 10. Figures 9c shows a simple system equivalent to I3, using input-
queryc,q and input-testc,q nodes. When, as discussed above, input-queryc,q and
input-testc,q are viewed as shorthand notations, the system in Figure 9c unfolds
into the system in Figure 9b.

Making systems simple. For technical convenience, we will next restrict our
attention to systems with a single input channel. This is harmless, because if
a system has input channels c1, . . . , cn, one can replace each rcvci by qi(rcvc),
where c is a single input channel and q is the query /i (for 1 ≤ i ≤ n) Although
this changes the semantics of the system, two systems are equivalent before this
modification if and only if they are equivalent after. Therefore, in studying the
complexity of the equivalence problem we may assume a single input channel.

The following theorem shows that every system is equivalent to a simple
system, provided that the queries are allowed to use recursion and the system
has a single input channel.

Theorem 6. Given a system with TPQs that has a single input channel, one
can compute an equivalent simple system with RTPQs. Similarly for systems
with TPQs with XPath-joins. In both cases the translation can be carried out in
2EXPTIME.
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The proof, which is spelled out in the Appendix, involves a detour through
monadic Datalog [12]. More specifically, we identify a class of monadic Datalog
queries that can express precisely the RTPQs (with XPath-joins). We then
prove the Theorem using these monadic Datalog queries.

RTPQs are clearly more powerful than TPQs as a query language. Indeed,
RTPQs enhance the expressive power of simple systems, as compared to TPQs.
Interestingly, this is not the case for arbitrary (non-simple) systems with inputs,
as shown by the following result:

Theorem 7. Every AXML system with RTPQs can be translated in polynomial
time to an equivalent AXML system with TPQs. Similarly for RTPQs with
joins, and for RTPQs with XPath-joins.

We describe the proof of Theorem 7 by means of an example. Consider the
regular tree pattern (qaqb)

∗, where qa is the tree pattern that selects a-children
of the root, and qb is the tree pattern that selects b-children of the root. In
other words, (qaqb)

∗ selects all nodes reachable by an (ab)∗-path from the root.
In order to construct an AXML system computing this query, we first translate
the regular expression to a non-deterministic finite state automaton (NFA). In
this case, the NFA A has two states, 1 and 2, and a transition from 1 to 2
labeled by the tree pattern qa, and a transition from 2 to 1 labeled by the tree
pattern qb. State 1 is both the initial state and the final state. Now, from the
NFA A we construct an AXML system IA. It has one channel for each state
of the automaton, plus the external input channel. In this case, the system
is {send1{qa{rcv2}, rcvc}, send2{qb{rcv1}}, rcv1}. It is clear that the AXML
system IA computes the query (qaqb)

∗, and therefore we can substitute any
occurrence of the query by a copy of this AXML system.

Theorem 7 shows that the recursion natively supported by all systems through
the interaction of send and receive nodes, is a very powerful construct. It allows,
among other things, systems with TPQs to express regular path languages by
simulating finite state automata.

5.4. Testing the Equivalence of Simple Systems with Input

It follows from results in [10] that the containment problem for unions of
RTPQs with XPath-joins is decidable. In fact, a slightly more general result
holds:

Proposition 7 ([10]). The following is decidable in EXPTIME: Given two
unions of RTPQs with XPath-joins q, q′, and a Boolean combination φ of Boolean
RTPQs with XPath-joins, does q ⊆ q′ hold on XML documents satisfying φ?

Here, a Boolean RTPQ with XPath-joins is an RTPQ with XPath-joins viewed
as a Boolean (non-emptiness) query. Note that unions of RTPQs with XPath-
joins, as well as Boolean combinations of such Boolean queries, can be directly
expressed in RegXPath(↓,=), which is the main logic studied in [10], via a
polynomial-time translation. We use Proposition 7 to show that the equivalence
problem for simple systems with input and RTPQs with XPath-joins is decidable
(and therefore also the equivalence for non-simple such systems).
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Theorem 8. The equivalence problem for simple AXML systems with input
and RTPQs with XPath-joins is decidable in EXPTIME.

Proof. The outline of the proof is as follows. Let I, J be the systems that we
need to test for equivalence. We collect all Boolean queries occurring in I and
J in the form of input-tests. We consider, one by one, all combinations of these
Boolean queries, and, for each case, test if I and J are equivalent on all inputs
satisfying exactly those Boolean queries (if so, then, indeed, I and J must be
equivalent on all possible inputs). This allows us to eliminate input-tests from I
and J , so that we only have to test (many) equivalences between simple systems
that do not contain any input-test nodes. Finally, in order to test whether
two simple systems with input-queries are equivalent (on a restricted class of
inputs) we construct graphs representing the limits of the two systems, where
the nodes of the graphs may be annotated by queries over the input, and we
test simulation-equivalence of the graphs (but taking into account containment
relations that may hold between queries). Below, we spell out this approach in
more detail.

Suppose I, J are simple systems with input and TPQs with XPath-joins. Let
Qtest be the set of queries occurring in I and J as input-tests, and let Qquery
be the set of queries occurring in I and J as input-queries.

For each subset X ⊆ Qtest, let IX and JX be obtained by removing all
input-test nodes, and adding edges from the parent of an input-test node to
all its children if the input-test query belongs to X. Note that IX and JX are
simple systems without input-test nodes that behave in exactly the same way as
I and J do, on inputs for which it holds that X is exactly the set of queries from
Qtest that are satisfied. Hence, in order to test whether I and J are equivalent
on all inputs, it is enough to test that each IX is equivalent to JX on inputs
satisfying exactly those queries from Qtest that belong to X.

This leaves us with the task of showing that the following problem is decid-
able in EXPTIME (note that performing exponentially many EXPTIME-tasks
is still in EXPTIME).

Given simple systems I, J without input-test nodes, and given a
Boolean combination φ of Boolean RTPQs with XPath-joins, decide
if I and J are equivalent on inputs satisfying φ.

We say that a subset Y ⊆ Qquery is closed w.r.t. φ if the following holds:
For all q ∈ Qquery, if q is contained in

⋃
q′∈Y q

′ on XML documents satisfying
φ, then q ∈ Y . Suppose we are interested in the behavior of a system I on
input satisfying φ. Then, we may assume that for every node of I, the set of all
input-query children of that node form a set of queries that is a closed subset
of Qquery with respect to φ (if not, then the relevant additional input-query
children can be added without affecting the semantics of I on inputs satisfying
φ). In this case, we say that I is closed w.r.t. φ. Proposition 7 allows us to
compute the closure of I w.r.t. φ in EXPTIME (in the size of I and φ) by
repeatedly testing containment until no further input-query children need to be
added to the document.
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Finally, let I, J be simple systems without input-test nodes, φ be a Boolean
combination of Boolean RTPQs with XPath-joins, and I, J be closed with re-
spect to φ. Then it can be seen that I and J are equivalent with respect to φ
if and only if the graphs of I and J are simulation-equivalent, where the input-
query nodes are now treated as passive nodes (each query is treated as a different
symbol). Indeed, if the graphs of I and J are not simulation equivalent, then
I and J have different (non-homomorphically equivalent) limits on any input
XML data satisfying φ that is distinguishing in the sense that it contains data
satisfying any closed combination of queries from Qquery.

Since the existence of simulations can be tested in PTIME, we get an overall
upper bound of EXPTIME. �

Combining this with Theorem 6, yields the following result for deciding
equivalence of (non-simple) systems with input and TPQs with XPath-joins:

Corollary 1. The equivalence problem for (non-simple) AXML systems with
input and TPQs with XPath-joins is decidable in 3EXPTIME.

We do not know whether this bound is tight. However, we know that the
equivalence problem for systems with TPQs and input is PSPACE-hard.

Theorem 9. The equivalence problem for simple systems with RTPQs and in-
put, and hence also the equivalence problem for systems with TPQs and input,
is PSPACE-hard.

This follows directly from the PSPACE-hardness of the equivalence problem
for regular expressions [16] (cf. the proof of Theorem 7).

Remark. In the case where the joins are not restricted to XPath-joins,
decidability of equivalence still remains open. However, for such systems equiv-
alence is decidable if we restrict our attention to inputs over a fixed set of labels.
The result is based on the fact that then a join can be replaced by a disjunction
of finitely many patterns in which the join variable is replaced by a concrete
value (and therefore the problem is reduced to the join-free case).

6. Axiomatization for query-free AXML systems (with inputs)

As a first step in studying optimization of AXML systems, we present here a
finite set of axioms (or, more precisely, a finite set of axiom schemes) that can be
used to rewrite systems into other, equivalent systems. Each axiom states that
two forests are equivalent, in the sense that one may be replaced by the other
inside the context of a bigger AXML system, without affecting the semantics of
the overall AXML system. We show that the axioms are complete for query-free
AXML systems, in the sense that for every two such systems I, J , if I and J are
equivalent, then I can be rewritten into J by a finite sequence of applications
of the axioms as undirected rewrite rules.

The axioms are the following:
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ax1 sendc{F1, F2} = sendc{F1}, sendc{F2}
ax2 sendc{F1}, a{F2} = a{sendc{F1}, F2}
ax3 sendc{F}, rcvc = sendc{F}, F

if there is no other sendc node in the AXML system
ax4 sendc{F} = ε if there is no rcvc node in the AXML system
ax5 sendc{rcvc′ , F} = sendc{F}

if every rcvc node in the AXML system has a rcvc′ sibling
ax6 sendc{F} = ε if c is an inaccessible channel
ax7 rcvc, rcvd = rcvc if channel c simulates channel d
ax8 rcvc = rcvd if channels c and d simulate each other

Here, the variables F, F1, F2 denote AXML forests. The equality sign in
these axioms is used to indicate that, inside any XML system, a subforest as in
the left-hand side of the axiom may be replaced by the subforest as described in
the right-hand side of the axiom, and vice versa, without affecting the semantics
of the AXML system in question. In other words, the axioms can be used as
equivalence-preserving undirected rewrite rules. For example, the axiom ax1,
as an undirected rewrite rule, allows us to take an AXML system containing
a subtree as described by the left-hand side (where c is any channel and F1

and F2 are arbitrary AXML forests) and rewrite it by replacing this subtree by
the right-hand side (where F1 and F2 remain the same) or vice versa. In other
words, using ax1 as an undirected rewrite rule, a send node with more than one
child may be split into two send nodes, and two sibling send nodes acting on
the same channel may be merged into one send node.

Some of these axioms have side conditions, that must be satisfied by the en-
tire AXML system in order for the axiom to be applied. The side conditions of
the axioms ax6-ax8 require some explanation, as they refer to “inaccessible chan-
nels” and to “simulations” between channels. We say that a channel c is accessi-
ble in a system, if there is a sequence of channels c1, . . . , cn such that cn = c, and
rcvc1 occurs in the system in a place that is not in the scope of any send-node,
and each rcvci+1 occurs in the scope of some sendci-node. Intuitively, a channel
is accessible if data sent on this channel will eventually affect the snapshot of
the system. This explains axiom ax6. A simulation in an AXML system is a bi-
nary relation Z between channels such that whenever (c, d) ∈ Z and the system
contains a subtree of the from sendd{F (rcvd1 , . . . , rcvdn)} then there are chan-
nels c1, . . . , cn such that the system contains sendc{F (rcvc1 , . . . , rcvcn)} and
(ci, di) ∈ Z holds for all i ≤ n. Here, we use the notation F (rcvd1 , . . . , rcvdn)
for a forest containing receive nodes rcvd1 , . . . , rcvdn (with n ≥ 0) and we
use F (rcvc1 , . . . , rcvcn) to denote the same forest in which the receive nodes
rcvd1 , . . . , rcvdn have been replaced by rcvc1 , . . . , rcvcn . If there is a simulation
Z such that (c, d) ∈ Z, then we say that c simulates d. Intuitively, if c simulates
d, then all data sent on channel d is also sent on channel c. This explains axioms
ax7-ax8.

In what follows, whenever we speak of systems, we always assume that they
are query-free. We call a system normalized if it is a tree where all sub-
trees immediately below the root are either of the form rcvc or of the form
sendc{a{rcvc1 , . . . , rcvcn}} where a is a single passive node, and, furthermore,
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there do not exist two send nodes for the same channel. A normalized system
can naturally be seen as an encoding of a graph, where the channels are the
nodes of the graph and each subtree of the form sendc{a{rcvc1 , . . . , rcvcn}}
specifies the incoming edges of the node corresponding to channel c. Indeed,
the graph represented by a normalized AXML system I, in this way, is precisely
the graph of I as we defined it in Section 4. As a first step, we have:

Lemma 2. Using the axioms ax1-ax5 as undirected rewrite rules, every system
can be rewritten to a normalized system.

Proof. The axiom ax1 is used (in the right-to-left direction) to make sure
there is a single send node per channel, after the axiom ax2 has been used (in
the right-to-left direction) for moving around send nodes and bringing them
directly below the root of the system. The axioms ax3 and ax4 are used for
splitting up data into pieces containing a single passive node, by introducing
intermediate channels. For instance, if a and b are passive labels, then using
first ax4 and then ax3 (both in the right-to-left direction), a{b} is rewritten to
a{rcvc, sendc{b}}. Finally, ax5 (in combination with ax2 and ax3) is used to
ensure guardedness, i.e., that every rcv-node is directly below a passive node
and not directly below a send-node. �

Notice that the definition of simulations that we gave above can be simplified
when we consider normalized systems: a simulation in a normalized system is
a binary relation Z between channels such that whenever (c, d) ∈ Z and the
system contains sendd{a{rcvd1 , . . . , rcvdn}} then there are channels c1, . . . , cn
such that the system contains sendc{a{rcvc1 , . . . , rcvcn}} and (ci, di) ∈ Z holds
for all i ≤ n. We say that a normalized system is minimized if (i) every channel
is accessible, (ii) no two different channels simulate each other, and (iii) it does
not contain siblings rcvc and rcvd where c simulates d. It is clear that we have
the following lemma:

Lemma 3. Every normalized AXML system can be rewritten to a minimized
normalized AXML system using the axioms ax6-ax8 as undirected rewrite rules.

Now, it follows from Proposition 4 that two minimized normalized AXML
systems are equivalent if and only if they are isomorphic. Hence, we have:

Theorem 10. Two query-free AXML systems are equivalent iff one can be
rewritten to the other using the axioms ax1-ax8 as undirected rewrite rules.

Proof. The right-to-left direction corresponds to the fact that the axioms are
sound (which can be easily seen). For the left-to-right direction, suppose that
I and J are equivalent AXML systems. Let I ′ and J ′ be minimized normalized
AXML systems such that I and I ′ are provably equivalent and J and J ′ are
provably equivalent. Then I ′ and J ′ coincide (recall that we identify AXML
systems up to isomorphism). �
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In the case of acyclic systems (systems where the dependencies between the
channels do not induce a cycle), fewer axioms are needed.

Theorem 11. Two acyclic AXML systems are equivalent if and only if one can
be rewritten to the other using the axioms ax1-ax4 together with

ax9 sendc{ε} = ε

as undirected rewrite rules.

Proof. The axioms allow us to effectively eliminate all send-nodes and rcv-
nodes for internal channels from an acyclic system. As before, using ax1 and
ax2 we can rewrite any system into one in which there is only a single send node
for each channel. This transformation preserves acyclicity. Furthermore, using
ax9 we can make sure that whenever the system contains a receive node for
some internal channel, then it also contains a send node for the same channel.
Next, since the system is acyclic, all receive nodes for internal channels can be
removed, one by one, using ax3. Finally, ax4 is used to remove all send nodes.

All this means we have to consider systems with external receive nodes only.
It follows by Theorem 2 that any two such systems are equivalent if and only if
they are homomorphically equivalent, i.e., they are isomorphic when reduced.
Since we identify systems up to homomorphic equivalence, this gives us the
result. �

7. Discussion

We conclude by summarizing our main results, putting them into perspec-
tive, and discussing related work.

The main motivation of this work was providing formal foundations for the
optimization of distributed systems with queries and communication (which we
model as AXML systems). To this end, we identified a well-behaved notion of
equivalence and investigated the complexity of testing equivalence for different
classes of AXML systems. Our complexity results, ranging from PTIME to
undecidability, show that we cover a large spectrum of AXML systems in terms
of expressive power.

Our framework is based on the work on Positive AXML [1], which identified
monotone AXML systems as a well-behaved class of AXML systems. Our results
rely implicitly on properties shown in [1], such as confluence (which implies that
all fair runs yield the same system).

In addition to providing decision procedures for equivalence, we also studied
the axiomatization of AXML systems. In particular, we presented a complete
set of axioms for the equivalence of query-free systems. Although there is more
work to be done in this direction (generalizing the result to systems with queries
is an interesting problem for future work), this is an important first step in
addressing formally the optimization problem for AXML systems, and it is a
natural continuation of the work on OptimAX [4], which presented a (sound
but not complete) set of rewrite rules for AXML systems.
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At this point, we would like to mention that some of the results we obtained
along the way are of independent interest, either because they may serve as a
stepping stone in further analysis of AXML systems, or because they provide
further insight into the capabilities and limitations of AXML systems. In partic-
ular, our results in Section 5.3 show that it is possible to push queries appearing
in an AXML system down to the input. We believe that this is an important
step towards understanding issues such as relevance (i.e., which parts of the
input are relevant to the result of an AXML system) [2]. The same results in
Section 5.3 also characterize in some sense the expressive power of AXML sys-
tems. They show, for example that the queries that are computable by AXML
systems containing tree pattern queries, are precisely the regular tree-pattern
queries. Regular tree-patterns extend tree-patterns with a limited form of re-
cursion, and allow us to express queries such as “return all nodes reachable by
an (ab)∗-path from the root”.

Acknowledgments. We are grateful to Pierre Bourhis and Diego Figueira
for useful discussions.
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Appendix A. Proof of Theorem 6 (simplifying systems with queries
and input)

This appendix is dedicated to the proof of Theorem 6. To simplify the
presentation, we focus on the case of TPQs without joins. As we will explain,
the proof extends with minor modifications to TPQs with XPath-joins (but not
to TPQs with arbitrary joins).

TP-Datalog. We start by defining a fragment of monadic Datalog with the same
expressive power as RTPQs. We call it TP-Datalog, where TP stands for “Tree
Pattern”. The idea is that the body of each rule is a tree pattern (or, rather, a
forest pattern, since we do not require it to have a single root).

Definition 13 (Forest-pattern query). Forest-pattern queries (FPQs) are
defined in the same way as tree pattern queries, except that the existence of
a unique root is not required (i.e., there may be more than one root node), and
there is no designated result node (and therefore, FPQs are Boolean queries).
Forest-pattern queries with XPath-joins (FPQ-XJs) are defined in the same way,
where condition (†) is required to hold if a root were added on top of the forest,
and this root were the result node.

An example of an FPQ is
a b
| ||
c d

. An example of a FPQ-XJ is
a b
| ||
$x $x

.

Note that this is indeed a FPQ-XJ because if we add a single new root node
above the other nodes, and if we designate this new node as the result node, we

obtain the TPQ-XJ

root
/ \
a b
| ||
$x $x

, which satisfies the (†) condition.

Definition 14 (TP-Datalog). A TP-Datalog program is a monadic Datalog
program whose EDBs are the binary relations “ch” (for the child relation) “desc”
(for the descendant relation) and “label” (where label(x, y) represents the fact
that the node x has node label y) and unary relation “root”, consisting of rules
that are of one of the following forms:

Q(y)← root(y)

Q(y)← P (x), q(x, y)

Q(y)← P (x), q(x, y), P1(x1), . . . , Pn(xn), q′(x1, . . . , xn)

with x, y, x1, . . . , xn are distinct variables, q a TPQ with root x and result node
y, and q′ is a FPQ with roots x1, . . . , xn. TP-XJ-Datalog programs are defined
similarly, but using TPQ-XJs and FPQ-XJs instead of TPQs and FPQs.

Proposition 8. Every TP-Datalog query is equivalent to a disjunction of queries,
each of which is the conjunction of an RTPQ with zero or more Boolean RTPQs.
The same holds for TP-XJ-Datalog and RTPQ-XJs.
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Proof. We present the argument in depth for the case of TP-Datalog, and
then explain how it extends to TP-XJ-Datalog.

Let (Π, P0) be a TP-Datalog query (i.e., Π is a TP-Datalog program, and
P0 a designated IDB predicate defining the query). First suppose that all rules
are of the form Q(y) ← root(y) or Q(y) ← P (x), q(x, y) with q a tree-pattern
query whose root is x and whose result node is y. In other words, the rule
bodies do not contain any “root-labeled forest pattern queries” of the form
P1(x1), . . . , Pn(xn), q′(x1, . . . , xn). In this case, it is easy to construct for each
IDB P of Π an equivalent RTPQ, by viewing Π as a non-deterministic finite
state automaton (NFA). Each IDB corresponds to a state of the NFA, and each
rule constitutes a transition. The IDBs Q for which the program contains a rule
Q(y) ← root(y) are the initial states of the NFA. We then apply the Kleene
translation from NFAs to regular expressions in order to obtain an equivalent
RTPQ.

The general case requires more work. Let Q be the set of all “root-labeled
forest pattern queries” of the form P1(x1), . . . , Pn(xn), q′(x1, . . . , xn) occurring
in the rule bodies in Π. Recall that these are Boolean queries. There is a
natural technique for eliminating the queries inside the Datalog program, which
involves considering all possible ways in which a set of Boolean queries from
Q may become true, one after the other, during the evaluation of the Datalog
program. In other words, we consider all possible ordered subsets ~X of Q. For

each such ordered subset, we construct a program Π
~X that simulates executions

of Π assuming that, during the execution, the Boolean queries in ~X become
eventually true, in the order in which they are listed in ~X. It is easy to construct

the program Π
~X in question: if | ~X| = n, then the program contains n copies

P 1 . . . Pn of each IDB Π of Π, where, intuitively, P k computes the extension of
P after the first k − 1 Boolean queries in ~X have become true. If Π contains a
rule of the form

Pi(y)← Pj(x), q(x, y)

or
Pi(y)← Pj(x), q(x, y), P1(x1), . . . , Pn(xn), q′(x1, . . . , xn)

and the root-labeled forest pattern query P1(x1), . . . , Pn(xn), q′(x1, . . . , xn) is

among the first k queries listed in ~X, then Π
~X contains, for all k ≤ ` ≤ n the

rule
P

(`)
i ← P

(`)
j (x) ∧ q(x, y)

reflecting the fact that, from stage k onwards, we assume the Boolean query
P1(x1), . . . , Pn(xn), q′(x1, . . . , xn) to be true.

Similarly, if Π contains a rule of the form Q(y)← root(y), then Π
~X contains

the rule Q(k)(y)← root(y) for all 1 ≤ k ≤ n.
We explain next how to express by means of a Boolean RTPQ that the ith

Boolean query in ~X indeed evaluates to true given that the ones before did (this

allows us to ensure that the assumption that the queries in ~X become true one
after the other is warranted). Let this Boolean query be of the form

P1(x1), . . . , Pn(xn), q′(x1, . . . , xn) .
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For each j ≤ n, we compute the RTPQ corresponding to P
(i−1)
j (as described

above via NFAs). Then we split q′ into individual tree pattern queries rooted
by x1, . . . , xn respectively, compose each tree pattern with the relevant RTPQ
that we just computed, and take the big conjunction, obtaining a conjunction
of Boolean RTPQs.

The final query we obtain is a big disjunction (corresponding to all possible
ordered subsets of Q), where each disjunct is a conjunction consisting of a
Boolean RTPQ (which simulates the original query under the assumption that
the chosen ordered subset of Q is correct) with Boolean RTPQs (which justify
the assumption that the chosen ordered subset of Q is indeed consistent).

Finally, let us mention that, in the case with XPath-joins, the construction
is essentially the same, but the step of “splitting of the forest-pattern query”
is a bit more subtle. Here, the forest-pattern query q′ cannot be decomposed
into individual tree-pattern queries because there may be equality-edges linking
nodes in different tree patterns. Nevertheless, it is easily seen that the structural
property (†) of XPath-joins enables us to construct the desired Boolean RTPQs
(Note that the condition (†) implies that for every tree in the forest q′ there
is at most one other tree such that there is a join connecting nodes in the two
trees – that is, one tree cannot be involved in two joins with other trees). �

This shows that, in constructing the simple system equivalent to a given
system, we can use TP-Datalog queries instead of RTPQs in the input-test and
input-query nodes (indeed, queries of the form as described in the statement
of Proposition 8 can easily be expressed by simple AXML systems using only
RTPQs, using input-query nodes for the unary RTPQs and input-tests for the
Boolean RTPQs)

Inspection of the proof of Proposition 8 shows that the translation is single
exponential.

Incidentally, a converse of Proposition 8 hold as well, as can easily be seen
by encoding RTPQs as finite state automata, and translating the latter to TP-
Datalog (using a unary predicate per state of the automaton).

The graph of a system with input. Recall the definition of the graph associated
to an input-free system. A similar graph can be constructed for a system with
input. For simplicity, we consider the case where there is a single input channel
and a single input tree. For each pair (I, T ), where I is a system and T is an
input tree, we construct a graph GI,T as follows: the nodes of the graph are the
passive nodes of I, together with the nodes of T . There is an edge between two
nodes n,m if, in the limit, every copy of n will have a child that is a copy of m.
It can be seen that such a finite graph representing the limit of the system can
always be constructed (indeed, one way to see this is to imagine the input as
part of the system, sitting underneath some send-node, and using our previous
results concerning input-free systems).

We will show how to construct, for every system I, a monadic Datalog
program that takes as input a tree T and computes the graph GI,T . Afterwards,
by analyzing the datalog program further, we can obtain from it a way to turn
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every system into a simple one. Before we can give the definition of the Datalog
program, we need to introduce some auxiliary concepts.

Partial matchings. Let I be an AXML system, n a node of I, and q a TPQ. By
a partial matching for q at n we will mean a partial map f from nodes of q to
nodes of I, such that (i) the domain of f is prefix-closed, i.e., if a node belongs
to the domain of f , then all its ancestors do too, (ii) f maps the root of q to
n, and (iii) f preserves node labels (but not necessarily child and descendant
edges). Intuitively, the idea of a partial mapping is that the nodes not in the
domain of f are to be mapped to parts of the input data.

Given a partial matching f for a TPQ q at a node n in a system I, the
image of q under f , denoted by img(q, f), is the conjunction of all formulas of
the form

• chf(x),f(y) for child(x, y) ∈ q with x, y ∈ dom(f)

• descf(x),f(y) for desc(x, y) ∈ q with x, y ∈ dom(f)

• chf(x)(y) for child(x, y) ∈ q with x ∈ dom(f), y 6∈ dom(f)

• descf(x)(y) for desc(x, y) ∈ q with x ∈ dom(f), y 6∈ dom(f)

• ch(x, y) for child(x, y) ∈ q with x, y 6∈ dom(f)

• desc(x, y) for desc(x, y) ∈ q with x, y 6∈ dom(f)

• label(x, a) for label(x, a) ∈ q with x 6∈ dom(f)

Intuitively, img(q, f) is a conjunctive query listing the requirements that need
to be satisfied in order for the partial matching f to extend to a real matching
of q in the graph GI,T .

The definition of partial matchings and of img(f, q) extend naturally to the
case of TPQ-XJs.

Construction of the datalog program. Let I be a system with TPQs and with
input, using only a single input channel. Let T be an XML tree (in general it
can be a forest but we will consider the case of a single tree, for simplicity). Fur-
thermore, assume the tree T is represented as a structure with binary relations
“child”, “desc”, “label” and unary relation “root”.

We will construct a TP-datalog program that takes as input the tree T and
that computes the graph GI,T we described above. Note that I is fixed (whereas
T is not.) The TP-datalog program uses many unary IDB relations, indexed
by nodes of I. These relations compute for each node n of I, which nodes of T
will eventually become children of n, and also which nodes of I will eventually
become children of n, during execution of I.

For convenience, we will initially present the datalog program using unary
and zero-ary IDB relations. Afterwards, it will be clear that the program can be
equivalently written using only unary IDB relations, in which case it is indeed
a TP-datalog program.

Let N be the set of all passive nodes of I. The datalog program consists of
the following rules:
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• chn,m ← ; for all nodes n,m ∈ N such that m is a child of n or m is a child of
a send-node and n is the parent of a corresponding rcv-node.

• descn,m ← chn,m for all nodes n,m ∈ N

• descn,m ← chn,n′ , descn′,m for all nodes n,m, n′ ∈ N

• descn(x)← chn(x) for all nodes n ∈ N

• descn(x)← chn(y), desc(y, x) for all nodes n ∈ N

• descn(x)← descn,m, descm(x) for all nodes n,m ∈ N

Finally, for each node n having a child m labeled by q, and for each partial
matching f of q at a node n′, we add

• chn,f(y) ← chm,n′ , img(f, q) if y ∈ dom(f), or

• chn(y)← chm,n′ , img(f, q) if y 6∈ dom(f)

When run on input T , the program indeed computes the graph GI,T , in the
following sense: for all nodes n,m of I, chn,m computes given T whether n is a
child of m in the graph GI,T . Intuitively, the program searches in T and I for
data that implies that an edge should exist between from n to m. Similarly, for
each node n of I, the unary IDB relation chn computes the nodes in T that are
the children of n in the graph GI,T .

Now, remark that all zero-ary IDB relations can be replaced by unary ones
(whenever the body of a rule contains a zero-ary relation B, it can be replaced
by B(x) with x a fresh variable, and whenever the head of a rule reads B, it
can be replaced by B(x) where x is a fresh variable, and root(x) is added to the
body of the rule in question. The reader may verify that, after this modification,
the above program Π is indeed a TP-datalog program, and hence the chn,m and
chn relations are indeed TP-datalog queries.

Finally, given the TP-datalog program Π, and using Proposition 8, we can
easily construct a simple system containing RTPQs that is equivalent to the
original system I (the query computed by an IDB chn,m of Π is used, after
conversion to RTPQ, as an input-test, while the query computed by an IDB
chn is used, after conversion to RTPQ, as an input-query).

The argument extends to the case where the input system contains TPQ-
XJs, in which case the program constructed is a TP-XJ-Datalog program, and
the final simplified system may contain RTPQ-XJs.

Complexity analysis. The construction of the TP-datalog program from the
system is single exponential, due to the fact that a query, in general, has ex-
ponentially many partial matchings in a system. Converting the TP-datalog
program into RTPQs may involve another single exponential blowup. Finally,
converting the obtained graph with queries into a simple system can be done
in ptime. Hence, all in all, the algorithm transforming an arbitrary system
with TPQs into a simple system with RTPQs runs in 2exptime. The same
complexity bounds are obtained in the case of TPQs with XPath-joins.
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