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Abstract
We study the computational and descriptional complexity
of the following transformation: Given a one-counter au-
tomaton (OCA) A, construct a nondeterministic finite au-
tomaton (NFA) B that recognizes an abstraction of the lan-
guage L(A): its (1) downward closure, (2) upward closure,
or (3) Parikh image. For the Parikh image over a fixed al-
phabet and for the upward and downward closures, we find
polynomial-time algorithms that compute such an NFA. For
the Parikh image with the alphabet as part of the input, we
find a quasi-polynomial time algorithm and prove a com-
pleteness result: we construct a sequence of OCA that ad-
mits a polynomial-time algorithm iff there is one for all
OCA. For all three abstractions, it was previously unknown
if appropriate NFA of sub-exponential size exist.

1. Introduction
The family of one-counter languages is an intermedi-
ate class between context-free and regular languages: it is
strictly less expressive than the former and strictly more ex-
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pressive than the latter. For example, the language {ambm |
m ≥ 0} is one-counter, but not regular, and the set of palin-
dromes over the alphabet {a, b} is context-free, but not one-
counter. From the verification perspective, the correspond-
ing class of automata, one-counter automata (OCA), can
model some infinite-state phenomena with its ability to keep
track of a non-negative integer counter, see, e.g., [10], [29,
Section 5.1], and [3, Section 5.2].

Reasoning about OCA, however, is hardly an easy task.
For example, checking whether two OCA accept some word
in common is undecidable even in the deterministic case; for
nondeterministic OCA even language universality, as well
as language equivalence, is undecidable. For deterministic
OCA, equivalence is NL-complete; the proof of the member-
ship in NL took 40 years [9, 35].

This lack of tractability suggests the study of finite-state
abstractions for OCA. Such a transition is a recurrent theme
in formal methods: features of programs beyond finite state
are modeled with infinite-state systems (such as pushdown
automata, counter systems, Petri nets, etc.), and then finite-
state abstractions of these systems come as an important
tool for analysis (see, e.g., [4–7, 15, 31, 34]). In our work, we
focus on the following three regular abstractions, each
capturing a specific feature of a language L ⊆ Σ∗:

• The downward closure of L, denoted L↓, is the set of all
subwords (subsequences) of all words w ∈ L, i.e., the set of
all words that can be obtained from words in L by removing
some letters. The downward closure is always a superset of
the original language, L ⊆ L↓, and, moreover, a regular one,
no matter what L is, by Higman’s lemma [22].

• The upward closure of L, denoted L↑, is the set of
all superwords (supersequences) of all words w ∈ L, i.e.,
the set of all words that can be obtained from words in L
by inserting some letters. Similarly to L↓, the language L↑
satisfies L ⊆ L↑ and is always regular.

• The Parikh image of L, denoted ψ(L), is the set of all
vectors v ∈ N|Σ|, that count the number of occurrences
of letters of Σ in words from L. That is, suppose Σ =
{a1, . . . , ak}, then every word w ∈ L corresponds to a
vector ψ(w) = (v1, . . . , vk) such that vi is the number of
occurrences of ai in w. The set ψ(L) is always a regular
subset of N|Σ| if L is context-free, by the Parikh theorem [33].
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It has long been known that all three abstractions can
be effectively computed for context-free languages (CFL),
by the results of van Leeuwen [36] and Parikh [33]. Algo-
rithms performing these tasks, as well as finite automata
recognizing these abstractions, are now widely used as build-
ing blocks in the language-theoretic approach to verification.
Specifically, computing upward and downward closures oc-
curs as an ingredient in the analysis of systems communi-
cating via shared memory, see, e.g., [4, 6, 7, 31]. As the
recent paper [28] shows, for parameterized networks of such
systems the decidability hinges on the ability to compute
downward closures. The Parikh image as an abstraction in
the verification of infinite-state systems has been used ex-
tensively; see, e.g., [1, 2, 5, 13, 15, 17, 20, 25, 34]. For push-
down systems, it is possible to construct a linear-sized ex-
istential Presburger formula that captures the Parikh im-
age [37], which leads, for a variety of problems (see, e.g.,
[1, 13, 20, 25]), to algorithms that rely on deciding sat-
isfiability for such formulas (which is in NP). Finite au-
tomata for Parikh images are used as intermediate repre-
sentations, for example, in the analysis of multi-threaded
programs [5, 15, 34] and in recent work on so-called avail-
ability languages [2].

Extending the scope of these three abstractions from CFL
to other classes of languages has been a natural topic of
interest. Effective constructions for the downward closure
have been developed for Petri nets [19] and stacked counter
automata [39]. The paper [38] gives a sufficient condition for
a class of languages to have effective downward closures; this
condition has since been applied to higher-order pushdown
automata [21]. The effective regularity of the Parikh image is
known for linear indexed languages [12], phase-bounded and
scope-bounded multi-stack visibly pushdown languages [26,
27], and availability languages [2]. However, there are also
negative results: for example, it is not possible to effectively
compute the downward closure of languages recognized by
lossy channels automata—this is a corollary of the fact that,
for the set of reachable configurations of a lossy channel
system, boundedness is undecidable [32].

Our contribution
We study the construction of nondeterministic finite au-
tomata (NFA) for L↓, L↑, and ψ(L), if L is given as an OCA
A with n states: L = L(A). It turns out that for one-counter
languages—a proper subclass of CFL—all three abstractions
can be computed much more efficiently than for the entire
class of CFL.

Upward and downward closures: We show, for OCA, how
to construct NFA accepting L↑ and L↓ in polynomial time
(Theorems 2 and 7). The construction for L↑ is straightfor-
ward, but the one for L↓ is involved and uses pumping-like
techniques from automata theory.

These results are in contrast with the exponential lower
bounds known for both closures in the case of CFL [36]:
Several constructions for L↑ and L↓ have been proposed in
the literature (see, e.g., [8, 11, 18, 36]), and the best in terms
of the size of NFA are exponential, due to van Leeuwen [36]
and Bachmeier, Luttenberger, and Schlund [8], respectively.

Parikh image: For OCA, the problem of constructing NFA
for the Parikh image turns out to be quite tricky. While
we were unable to solve the problem completely, we make
significant progress towards its solution:
• For any fixed alphabet Σ we provide a complete solution:
We find a polynomial-time algorithm that computes an NFA

for ψ(L(A)) that has size O(|A|poly(|Σ|)) (Theorem 8). Two
key ingredients of this construction are a sophisticated ver-
sion of a pumping lemma (Lemma 14; cf. a standard pump-
ing lemma for one-counter languages, due to Latteux [30])
and the classic Carathéodory theorem for cones in a multi-
dimensional space.

• We provide a quasi-polynomial solution to this problem
in the general case: We find an algorithm that constructs a
suitable NFA of size O(|Σ|·|A|O(log(|A|))) (Theorem 22). This
construction has two steps, both of which are of interest.
In the first step we show, using a combination of local and
global transformations on runs (Lemmas 20 and 21), that we
may focus our attention on runs with at most polynomially
many reversals. In the second step, which also works for
pushdown automata, we turn the bound on reversals, using
an argument with a flavour of Strahler numbers [16], into a
logarithmic bound on the stack size of a pushdown system
(Lemma 23).

• We prove a lower-bound type result (Theorem 24): We
find a sequence of OCA (Hn)n≥1, where n denotes the
number of states, over alphabets of growing size, that admits
a polynomial-time algorithm for computing an NFA for the
Parikh image if and only if there is such an algorithm for
all OCA. Thus, the problem of transforming an arbitrary
OCA A into an NFA for ψ(L(A)) is reduced to performing
this transformation on Hn, which enables us to call Hn
complete. This result also has a counterpart referring to just
the existence of NFA of polynomial size.

For the Parikh image of CFL, a number of constructions
can be found in the literature as well; we refer the reader to
the paper by Esparza et al. [14] for a survey and state-of-
the-art results: exponential upper and lower bounds of the
form 2Θ(n) on the size of NFA for ψ(L).

Applications
Our results show that for OCA, unlike for pushdown sys-
tems, NFA representations of downward and upward clo-
sures and Parikh image (for fixed alphabet size) have ef-
ficient polynomial constructions. This suggests a possible
way around standard NP procedures that handle existential
Presburger formulas. This insight also leads to significant
gains when abstractions are used in a nested manner, as
illustrated by the following examples.

Consider a network of pushdown systems communicat-
ing via a shared memory. The reachability problem is un-
decidable in this setting. In [7] a restriction called stage-
boundedness, generalizing context-boundedness, is explored.
During a stage, the memory can be written to only by one
system. Reachability along runs with at most k stages is
decidable when all but one pushdown in the network are
counters. The procedure in [7] uses NFA that accept up-
ward and downward closures of one-counter languages; the
polynomial-time algorithms developed in the present paper
bring the complexity from NEXP down to NP for any net-
work with a fixed number of components.

Availability expressions [23] extend regular expressions
by an additional counting operator to express quantitative
properties of behaviours. It uses a feature called occurrence
constraint to impose a set of linear constraints on the num-
ber of occurrences of alphabet symbols in sub-expressions.
As the paper [2] shows, the emptiness problem for avail-
ability expressions is decidable, and the algorithm involves
nested calls to Parikh-image computation for OCA. Our
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quasi-polynomial time algorithm for the Parikh image brings
the complexity from non-elementary down to 2EXP.

2. Preliminaries
2.1 One-counter automata
A one-counter automaton (OCA)A is a 5-tuple (Q,Σ, δ, q0, F )
where Q a a finite set of states, q0 ∈ Q is an initial state,
and F ⊆ Q is a set of final states. Σ is a finite alphabet and
δ ⊆ Q× (Σ∪{ε})×{−1, 0,+1, z}×Q is a set of transitions.
Transitions (p1, a, s, p2) ∈ δ are classified as incrementing
(s = +1), decrementing (s = −1), internal (s = 0), or tests
for zero (s = z). The size of A, denoted |A|, is its number
of states, |Q|.

A configuration of an OCA is a pair that consists of a
state and a (non-negative) counter value, i.e., (q, n) ∈ Q×N.
A pair (p1, c1) ∈ Q×Z may evolve to a pair (p2, c2) ∈ Q×Z
via a transition t = (p1, a, s, p2) ∈ δ iff either s ∈ {−1, 0,+1}
and c1 + s = c2, or s = z and c1 = c2 = 0. We denote this
by (p1, c1)

t−→(p2, c2).
Consider a sequence of the form π = (p0, c0), t1, (p1, c1),

t2, . . . , tm, (pm, cm) where (pi, ci) ∈ Q × Z for 0 ≤ i ≤
m and, whenever i > 0, it also holds that ti ∈ δ and
(pi−1, ci−1)

ti−−→(pi, ci). We say that π induces a word w =
a1a2 . . . am ∈ Σ∗ where ai ∈ Σ∪{ε} and ti = (pi−1, ai, s, pi);
we also say that the word w can be read or observed along
the sequence π. We call the sequence π:

• a quasi-run, denoted π = (p0, c0)
w
=⇒A (pm, cm), if none

of ti is a test for zero;
• a run, denoted π = (p0, c0)

w−−→A(pm, cm), if all (pi, ci) ∈
Q× N.

We abuse notation and write w
=⇒ (resp. w−−→) to mean w

=⇒A
(resp. w−−→A) when it is clear from context. For m = 0,
we also use this notation with w = ε. In addition, for any
quasi-run π as above, the sequence of transitions t1, . . . , tm
is called a walk from the state p0 to the state pm.

We will concatenate runs, quasi-runs, and walks, using
the notation π1 ·π2 and sometimes dropping the dot. If π2 is
a walk and π1 is a run, then π1 ·π2 will also denote a run. In
this and other cases, we will often assume that the counter
values in π2 are picked or adjusted automatically to match
the last configuration of π1.

The number m is the length of π, denoted |π|; for a walk,
its length is equal to the length of the sequence. All concepts
and attributes naturally carry over from runs to walks and
vice versa. Quasi-runs are not used until further sections;
the semantics of OCA is defined just using runs.

A run (p0, c0)
w−−→(pm, cm) is called accepting in A if

(p0, c0) = (q0, 0) where q0 is the initial state of A and pm is
a final state of A, i.e., pm ∈ F . In such a case the word w
is accepted by A; the set of all accepted words is called the
language of A, denoted L(A).

2.2 Regular abstractions
A nondeterministic finite automaton with ε-transitions
(NFA) is a one-counter automaton where all transitions
are tests for zero. Languages of the form L(N ), where N is
an NFA, are regular. If A is an OCA, then L(A) —a one-
counter language— is not necessarily regular. In what fol-
lows, we consider three regular abstractions of (one-counter)
languages: downward closures, upward closures, and Parikh-
equivalent regular languages.

Let w,w′ ∈ Σ∗. We say that the word w is a subword
of the word w′ if w = a1 . . . an and there are xi ∈ Σ∗,
1 ≤ i ≤ n + 1, such that w′ = x1a1x2a2 . . . xnanxn+1. We
write w � w′ to indicate this. For any language L ⊆ Σ∗, the
upward and downward closures of L are the languages

L↑ = {w′ | ∃w ∈ L. w � w′} and
L↓ = {w | ∃w′ ∈ L. w � w′}, respectively.

Any w ∈ Σ∗ defines a function ψ(w) : Σ → N, called the
Parikh image of w (i.e., ψ(w) ∈ NΣ for all w ∈ Σ∗). The
value ψ(w)(a) is the number of occurrences of a in w. The
Parikh image of a language L is the following subset of NΣ:

ψ(L) = {ψ(w) | w ∈ L}.

In the sequel, we usually identify NΣ and N|Σ|.
It follows from Higman’s lemma [22] that, for any L ⊆ Σ∗,

the languages L↑ and L↓ are regular; since they abstract
away some specifics of L, they are regular abstractions of
L. For Parikh images, the situation is different: for example,
unary languages L ⊆ {a}∗ are essentially unaffected by the
Parikh mapping ψ, but it is easy to find unary languages that
are not even decidable, let alone regular. However, Parikh’s
theorem [33] states that if L ⊆ Σ∗ is a context-free language,
then there exists a regular language R ⊆ Σ∗ that is Parikh-
equivalent to L, i.e., such that ψ(L) = ψ(R). Hence, such
languages R are also regular abstractions of L; since all one-
counter languages are context-free, every OCAA has at least
one regular language that is Parikh-equivalent to L(A).

2.3 Convention on OCA
To simplify the presentation, everywhere below we focus our
attention on a sublcass of OCA that we call simple one-
counter automata (simple OCA). A simple OCA is defined
analogously to OCA and is different in the following aspects:
(1) there are no zero tests, (2) there is a unique final state,
F = {qfinal}, (3) only runs that start from the configuration
(qinit, 0) and end at the configuration (qfinal, 0) are considered
accepting. The language of a simple OCA A, also denoted
L(A), is the set of words induced by accepting runs. We now
show that this restriction is without loss of generality.

For an OCA A = (Q,Σ, q0, δ, F ) and any p, q ∈ Q, define
a simple OCA Ap,q def

= (Q,Σ, p, δ+, {q}) where δ+ ⊆ δ is the
set of all transitions in δ that are not tests for zero.

For any simple OCAA, define a sequence of approximants
L(n)(A), n ≥ 0: the language L(n)(A) is the set of all words
observed along runs of A from (q0, n) to (qfinal, n).

Lemma 1. Let K ∈ N and ♦ ∈ {↑,↓, ψ} be an abstraction.
Assume that there is a polynomial g♦ such that for any
OCA A the following holds: for every Ap,q there is an NFA
Bp,q,♦ such that ♦L(Ap,q) ⊆ L(Bp,q,♦) ⊆ ♦(L(K)(Ap,q))
and |Bp,q,♦| ≤ g♦(|A|). Then there is a polynomial f such
that for any A there is an NFA B♦ of size at most f(|A|,K)
with L(B♦) = ♦(L(A)).

Proof (sketch). We use the following two ideas: (i) to com-
pute the abstraction of {w} where w = w1 · w2, it suffices
to concatenate abstractions of {w1} and {w2}; (ii) for any
K ∈ N, every run of A can be described as interleaving of
runs below K and above K. The NFA B♦ is constructed
as follows: first encode counter values below K using states,
and then insert NFA Bp,q,♦ in between (p, n) and (q, n).

Restriction to simple OCA is now a consequence of
Lemma 1 for K = 0.
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3. Upward and Downward Closures
The standard argument used to bound the length of accept-
ing runs of PDAs (or OCAs) can be adapted easily to show

Theorem 2. There is a polynomial-time algorithm that
takes as input an OCA A = (Q,Σ, δ, s, F ) and computes
an NFA with O(|A|3) states accepting L(A)↑.

Next we show a polynomial time procedure that con-
structs an NFA accepting the downward closure of the lan-
guage of any simple OCA. For pushdown automata the
construction involves a necessary exponential blow-up. We
sketch some observations that lead to our polynomial time
construction.

Let A = (Q,Σ, δ, s, F ) be a simple OCA and let K = |Q|.
Consider any run ρ of A from a configuration (p, i) to a
configuration (q, j). If the value of the counter increases
(resp. decreases) by at least K in ρ then, it contains a
segment that can be pumped (or iterated) to increase (resp.
decrease) the value of the counter. Quite clearly, the word
read along this iterated run will be a superword of word read
along ρ. The following lemmas formalize this.

Lemma 3. Let (p, i)
x−→(q, j) with j − i > K. Then, there

is an integer k > 0 such that for each N ≥ 0 there is a run

(p, i)
w=y1.(y2)N+1.y3−−−−−−−−−−−−→(p′, j +N.k) with x = y1y2y3.

Lemma 4. Let (q′, j′)
z−→(p′, i′) with j′ − i′ > K. Then,

there is an integer k′ > 0 such that for every N ≥ 0 there is

a run (q′, j′ +N.k′)
w=y1(y2)N+1y3−−−−−−−−−−−→(p′, i′) with z = y1y2y3.

A consequence of these somewhat innocous lemmas is the
following interesting fact: we can turn a triple consisting of
two runs, where the first one increases the counter by at least
K and the second one decreases the counter by at least K,
and a quasi-run that connects them, into a real run provided
we are content to read a superword along the way.

Lemma 5. Let (p, i)
x−→(q, j)

y
=⇒ (q′, j′)

z−→(p′, i′), with j −
i > K and j′ − i′ > K. Then, there is a run (p, i)

w−−→(p′, i′)
such that xyz � w.

Interesting as this may be, this lemma still relies on
the counter value being recorded exactly in all the three
segments in its antecedent and we weaken this next.

Lemma 6. Let (p, i)
x−→(q, j),(q, j) z−→(p′, i′), with j − i >

K and j′− i′ > K. Let there be a walk from q to q that reads
y. Then, there is a run (p, i)

w−−→(p′, i′) such that xyz � w.

Proof. Let the given walk result in the quasi-run (q, j)
y

=⇒
(q, j+d) (where d is the net effect of the walk on the counter,
which may be positive or negative). Iterating this quasi-run
m times yields a quasi-run (q, j)

ym

==⇒ (q, j + m.d), for any
m ≥ 0. Next, we use Lemma 3 to find a k > 0 such that
for each N > 0 we have a run (p, i)

xN−−−→(q, j + N.k) with
x � xN . Similarly, we use Lemma 4 to find a k′ > 0 such
that for each N ′ > 0 we have a run (q, j+N ′.k′)

yN′−−−→(p′, i′)
with y � yN′ .

Now, we pick m and N to be multiples of k′ in such a
way that N.k+m.d > 0. This can always be done since k is
positive. Thus, N.k+m.d = N ′.k′ with N ′ > 0. Now we try
and combine the (quasi) runs (p, i)

xN−−−→(q, j +N.k), (q, j +

N.k)
ym

==⇒ (q, j+N.k+m.d) and (q, j+N ′.k′)
yN′−−−→(p′, i′) to

form a run. We are almost there, as j+N.k+m.d = j+N ′.k′.

However, it is not guaranteed that this combined quasi-run is
actually a run as the value of the counter may turn negative
in the segment (q, j+N.k)

ym

==⇒ (q, j+N.k+m.d). Let−N ′′ be
the smallest value attained by the counter in this segment.
Then by replacing N by N+N ′′.k′ and N ′ by N ′+N ′′.k we
can manufacture a triple which actually yields a run (since
the counter values are ≥ 0), completing the proof.

With this lemma in place we can now explain how to
relax the usage of counters.

Let us focus on runs that are interesting, that is, those
in which the counter value exceeds K at some point. Any
such run may be broken into 3 stages: the first stage where
counter value starts at 0 and remains strictly below K + 1,
a second stage where it starts and ends at K + 1 and a last
stage where the value begins at K and remains below K and
ends at 0 (the 3 stages are connected by two transitions, an
increment and a decrement). Suppose, we write the given
accepting run as (p, 0)

w1−−→(q, c)
w2−−→(r, 0) where (q, c) is a

configuration in the second stage. If a ∈ Σ is a letter that
may be read in some transition on some walk from q to
q. Then, w1aw2 is in L(A)↓. This is a direct consequence
of the above lemma. It means that in the configurations in
the middle stage we may freely read certain letters without
bothering to update the counters. This turns out to be a
crucial step in our construction. To turn this relaxation idea
into a construction, the following seems a natural.

We make an equivalent, but expanded version of A. This
version has 3 copies of the state space: The first copy is
used as long as the value of the counter stays below K + 1
and on attaining this value the second copy is entered. The
second copy simulates A exactly but nondeterministically
chooses to enter third copy whenever the counter value is
moves from K + 1 to K. The third copy simulates A but
does not permit the counter value to exceed K. For every
letter a and state q with a walk from q to q along which a is
read on some transition, we add a self-loop transition to the
state corresponding to q in the second copy that does not
affect the counter and reads the letter a. This idea has two
deficiencies: first, it is not clear how to define the transition
from the second copy to the third copy, as that requires
knowing that value of the counter is K + 1, and second,
this is still an OCA (since the second copy simply faithfully
simulates A) and not an NFA.

Suppose we bound the value of the counter by some
value U in the second stage. Then we can overcome both
of these defects and construct a finite automaton. By using
a slight generalization of Lemma 6, which allows for the
simultaneous insertion of a number of walks (or by applying
the Lemma iteratively), we can show that any word accepted
by such a finite automaton lies L(A)↓. However, there is no
guarantee that such an automaton will accept every word
in L(A)↓. The second crucial point is that we are able to
show that if U ≥ K2 + K + 1 then every word in L(A)
is accepted by this 3 stage NFA. We show that for each
accepting run ρ in A there is an accepting run in the NFA
reading the same word. The proof is by a double induction,
first on the maximum value attained by the counter and
then on the number of times this value is attained along
the run. Clearly, segments of the run where the value of the
counter does not exceed K2 + K + 1 can be simulated as
is. We then show that whenever the counter value exceeds
this number, we can find suitable segments whose net effect
on the counter is 0 and which can be simulated using the
self-loop transitions added to stage 2 (which do not modify
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the counters), reducing the maximum value of the counter
along the run.

Formalizing this gives:

Theorem 7. There is a polynomial-time algorithm that
takes as input a simple OCA A = (Q,Σ, δ, s, F ) and com-
putes an NFA with O(|A|3) states accepting L(A)↓.

4. Parikh image: Fixed alphabet
The result of this section is the following theorem.

Theorem 8. For any fixed alphabet Σ there is a polynomial-
time algorithm that, given as input a one-counter automaton
over Σ with n states, computes a Parikh-equivalent NFA.

Note that in Theorem 8 the size of Σ is fixed. The theo-
rem implies, in particular, that any one-counter automaton
over Σ with n states has a Parikh-equivalent NFA of size
polyΣ(n), where polyΣ is a polynomial of degree bounded
by f(|Σ|) for some computable function f .

We now provide the intuition behind the proof of Theo-
rem 8. Our key technical contribution is capturing the struc-
ture of the Parikh image of the language L(A).

Recall that a set A ⊆ N|Σ| is called linear if it is of
the form Lin(b;P )

def
= {b + λ1p1 + . . . + λrpr | λ1, . . . , λr ∈

N, p1, . . . , pr ∈ P} for some vector b ∈ N|Σ| and some
finite set P ⊆ N|Σ|; this vector b is called the base and
vectors p ∈ P periods. A set S ⊆ Nd is called semilinear
if it is a finite union of linear sets, S = ∪i∈ILin(bi;Pi).
Semilinear sets were introduced in the 1960s and have since
received a lot of attention in formal language theory and
its applications to verification. They are precisely the sets
definable in Presburger arithmetic, the first-order theory of
natural numbers with addition. Intuitively, semilinear sets
are a multi-dimensional analogue of ultimately periodic sets
in N. For our purposes, of most importance is the following
way of stating the Parikh theorem [33]: the Parikh image of
any context-free language is a semilinear set; in particular, so
is the Parikh image of any one-counter language, ψ(L(A)).

Our proof of Theorem 8 captures the periodic structure
of this set ψ(L(A)). More precisely, we prove polynomial
upper bounds on the number of linear sets in the semilinear
representation of ψ(L(A)) and on the magnitude of periods
and base vectors. Since converting such a semilinear repre-
sentation into a polynomial-size NFA is easy, these bounds
(subsection 4.1) entail the existence of an appropriate NFA.
After this, we show how to compute, in time polynomial in
|A|, this semilinear representation from A (subsection 4.2).

4.1 Semilinear representation of ψ(L(A))

We now explain where the periodic structure of the set
ψ(L(A)) comes from. Consider an individual accepting run
π and assume that one can factorize it as π = ρ · σ · τ so
that for any k ≥ 0 the run ρ · σk · τ is also accepting. Values
k > 0 correspond to pumping the run “up”, and the value
k = 0 corresponds to “unpumping” the infix σ. If we apply
this “unpumping” to π several times (each time taking a
new appropriate factorization of shorter and shorter runs),
then the remaining part eventually becomes small (short).
Its Parikh image will be a base vector, and the Parikh images
of different infixes σ will be period vectors of a linear set in
the semilinear representation.

However, this strategy faces several obstacles. First, the
overall reasoning should work on the level of the whole au-
tomaton, as opposed to individual runs; this means that we

need to rely on a form of a pumping lemma to factorize long
runs appropriately. The pumping lemma for one-counter lan-
guages involves, instead of individual infixes σ, their pairs
(σ1, σ2), so that the entire run factorizes as π = ρ·σ1 ·υ·σ2 ·τ ,
and runs π = ρ · σk1 · υ · σk2 · τ are accepting for all k ≥ 0.
We incorporate this into our argument, talking about split
runs (Definition 9). Here and below, for any run ζ, effect(ζ)
denotes the effect of ζ on the counter, i.e., the difference
between the final and initial counter value along ζ.

Definition 9 (split run). A split run is a pair of runs
(σ1, σ2) such that effect(σ1) ≥ 0 and effect(σ2) ≤ 0.

Second and most importantly, it is crucial for the pe-
riodic structure of the set that individual “pumpings” and
“unpumpings” can be performed independently. That is, sup-
pose we can insert a copy of a sub-run σ into π, as above;
also suppose we can remove from π some other sub-run σ′.
What we need to ensure is that, after removing σ′ from π,
the obtained run π′ will have the property that we can still
insert a σ in it, as in the original run π. In general, of course,
this does not have to be the case: even for finite-state ma-
chines, removal of loops can lead to removal of individual
control states, which can, in turn, prevent the insertion of
other loops (in our case the automaton also has a counter
that must always stay non-negative). To deal with this phe-
nomenon, we introduce the concept of “availability” (Defi-
nition 11). Essentially, a “pumpable” part of the run—i.e.,
a “split walk”—defines a direction (Definition 10); we say
that a direction is available at the run π if it is possible to
insert its copy into π. Thus, when doing “unpumping”, we
need to make sure that the set of available directions does
not change: we call such unpumpings safe (Definition 13).
We show that long accepting runs can always be safely un-
pumped (Lemma 14), which will lead us (Lemma 15) to the
semilinear representation that we sketched at the beginning
of this subsection.

We now describe the formalism behind our arguments.

Definition 10 (direction). A direction is a pair of walks α
and β, denoted d = 〈α, β〉, such that:

• α begins and ends in the same control state,
• β begins and ends in the same control state,
• 0 < |α|+ |β| < n(2n2 + 3)(n3) + 1,
• 0 ≤ effect(α) ≤ n3,
• effect(α) + effect(β) = 0,
• if effect(α) = 0, then either |α| = 0 or |β| = 0.

The direction is of the first kind if effect(α) = 0, and of the
second kind otherwise.

One can think of a direction as a pair of short loops with
zero total effect on the counter. Pairs of words induced by
these loops are sometimes known as iterative pairs. Direc-
tions of the first kind are essentially just individual loops; in
a direction of the second kind, the first loop increases and
the second loop decreases the counter value (this restric-
tion, however, only concerns the total effects of α and β; i.e.,
proper prefixes of α can have negative effects and proper pre-
fixes of β positive effects). The condition that effect(α) ≤ n3

is a pure technicality and is only put in to make some aux-
iliary statements in the proof more laconic; in contrast, the
upper bound |α| + |β| < n(2n2 + 3)(n3) + 1 is crucial (al-
though the choice of larger polynomial is, of course, possible,
at the expense of an increase in the obtained upper bound
on the size of NFA).
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Definition 11 (availability of directions). Suppose π is
an accepting run. A direction d = 〈α, β〉 is available at
π if there exists a factorization π = π1 · π2 · π3 such that
π′ = π1 · απ2β · π3 is also an accepting run. We write π + d
to refer to π′.

Note that for a particular run π there can be more than
one factorization of π into π1, π2, π3 such that π1 ·απ2β · π3

is an accepting run. In such cases the direction d can be
introduced at different points inside π. We only use the
notation π + d to refer to a single run π′ obtained in this
way, without specifying a particular factorization of π.

Denote by avail(π) the set of all directions available at π.

Lemma 12 (monotonicity of availability). If π is an ac-
cepting run of an OCA and d is a direction available at π,
then avail(π) ⊆ avail(π + d).

Definition 13 (unpumping). A run π′ can be unpumped if
there exist a run π and a direction d such that π′ = π + d.
If additionally avail(π′) = avail(π), then we say that π′ can
be safely unpumped.

Note that avail(π′) is always a superset of avail(π) by
Lemma 12. The key part of our argument is the proof that,
indeed, every long run can be unpumped in a safe way:

Lemma 14 (safe unpumping lemma). Every accepting run
π′ of A of length greater than n2((2n2 + 3)(n3))3 can be
safely unpumped.

Proof (sketch). We consider two cases, depending on whether
the height (largest counter value) of π′ exceeds a certain
polynomial in n. The strategy of the proof is the same for
both cases (although the details are somewhat different).
We first show that sufficiently large parts (runs or split
runs) of π′ can always be unpumped (as in standard pump-
ing arguments). We notice that for such an unpumping to
be unsafe, it is necessary that the part contain a configura-
tion whose removal shrinks the set of available directions—a
reason for non-safety; this important configuration cannot
appear anywhere else in π′. We prove that the total number
of important configurations is at most poly(n). As a result, if
we divide the run π′ into sufficiently many sufficiently large
parts, at least one of the parts will contain no important
configurations and, therefore, can be unpumped safely.

Lemma 14 ensures that we faithfully represent the semi-
linear structure of the Parikh image of the entire language
when we take Parikh images of short runs as base vectors
and Parikh images of available directions as period vectors
in the semilinear representation:

Lemma 15. For any OCA A, it holds that

ψ(L(A)) =
⋃

|π| ≤ s(n)

Lin(ψ(π);ψ(avail(π))), (1)

where the union is taken over all accepting runs of A of
length at most s(n) = n2((2n2 + 3)(n3))3.

Finally, to keep the representation of the Parikh image
small, we rely on a Carathéodory-style argument ensuring
that the number of the linear sets in the semilinear repre-
sentation needs to grow only polynomially in the size of the
original automaton, while the sets of period vectors is also
kept small. For this (and only this) part of the argument,
we need the alphabet size, |Σ|, to be fixed.

4.2 Computing the semilinear representation
Lemma 15 suggests the following algorithm for computing
the semilinear representation of ψ(L(A)). Enumerate all
potential Parikh images v of small accepting runs π of A
and all potential Parikh images of directions. For every v
and for every tuple of r ≤ |Σ| vectors v1, . . . , vr that could
be Parikh images of directions in A, check if A indeed has
an accepting run π and directions d1, . . . , dr available at π
such that ψ(π) = v and ψ(d)i = vi for all i (Parikh images
of runs and directions are defined as Parikh images of words
induced by them). Whenever the answer is yes, take a linear
set Lin(v; {v1, . . . , vr}) into the semilinear representation of
ψ(L(A)). Terminate when all tuples (v, v1, . . . , vr) have been
considered for all r ≤ |Σ|.

We now explain why this algorithm works in polynomial
time. Recall that the size of the alphabet, |Σ|, is fixed. Note
that by Definition 10 the total length of runs αi and βi
in a direction di = 〈αi, βi〉 is at most polynomial in n;
similarly, equation (1) in Lemma 15 only refers to accepting
runs π of polynomial length. Therefore, all the components
of all potential Parikh images v and v1, . . . , vr are upper-
bounded by polynomials in n of fixed degree. The number
of such vectors in N|Σ| is polynomial, and so is the number of
appropriate tuples (v, v1, . . . , vr), r ≤ |Σ|. It now remains to
argue that each tuple can be processed in polynomial time.

Lemma 16. For every Σ there is a polynomial-time al-
gorithm that, given a simple OCA A over Σ and vectors
v, v1, . . ., vr ∈ NΣ, 0 ≤ r ≤ |Σ|, with all numbers written in
unary, decides if A has an accepting run π and directions
d1, . . . , dr ∈ avail(π) with ψ(π) = v and ψ(di) = vi for all i.

Lemma 16 is based on the following building block:

Lemma 17. For every Σ there is a polynomial-time al-
gorithm that, given a simple OCA A over Σ, two config-
urations (q1, c1) and (q2, c2) and a vector v ∈ NΣ with all
numbers written in unary, decides if A has a run π =
(q1, c1)−→(q2, c2) with ψ(π) = v.

The algorithm of Lemma 17 solves a version of the
Parikh membership problem for OCA. It constructs a multi-
dimensional table by dynamic programming: for all pairs of
configurations (q′1, c

′
1), (q′2, c

′
2) with bounded c′1, c

′
2 and all

vectors v′ ∈ NΣ of appropriate size, it keeps the information
whether A has a run (q′1, c

′
1)−→(q′2, c

′
2) with Parikh image v′.

This completes our description of how to compute, from
an OCA A, a semilinear representation of ψ(L(A)). Trans-
forming this representation into an NFA is a simple exercise.

5. Parikh image: Unbounded alphabet
In this section we describe an algorithm to construct an NFA
Parikh-equivalent to an OCA A without assumptions |Σ|.
The NFA has at most O(|Σ|KO(logK)) states whereK = |A|,
a significant improvement over O(2poly(K,|Σ|)) for PDA.

We establish this result in two steps. In the first step,
we show that we can focus our attention on computing
Parikh-images of words recognized along reversal bounded
runs. A reversal in a run occurs when the OCA switches
to incrementing the counter after a non-empty sequence of
decrements (and internal moves) or when it switches to
decrementing the counter after a non-empty sequence of
increments (and internal moves). For a number R, a run
is R reversal bounded, if the number of reversals along the
run is ≤ R. Let us use LR(A) to denote the set of words
accepted by A along runs with at most R reversals.
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We construct a new polynomial size simple OCA from
A and show that we can restrict our attention to runs with
at most R reversals of this OCA, where R is a polynomial
in K. In the second step, from any simple OCA A with
K states and any integer R we construct an NFA of size
O(KO(log(R))) whose Parikh image is LR(A). Combination
of the two steps gives a O(KO(logK)) construction.

5.1 Reversal bounding
We establish that, up to Parikh-image, it suffices to consider
runs with 2K2 + K reversals. We use two constructions:
one that eliminates large reversals (think of a waveform)
and another that eliminates small reversals (think of the
noise on a noisy waveform). For the large reversals, the idea
used is the following: we can reorder the transitions used
along a run, hence preserving Parikh-image, to turn it into
one with few large reversals (a noisy waveform with few
reversals). The key idea used is to move each simple cycle at
state q with a positive (resp. negative) effect on the counter
to the first (resp. last) occurrence of the state along the
run. To eliminate the smaller reversals (noise), the idea is to
maintain the changes to the counter in the state and transfer
it only when necessary to the counter to avoid unnecessary
reversals.

counter

time

no
is

e

large reversal

noise

no
is

e

Consider a run of A starting at a configuration (p, c)
and ending at some configuration (q, d) such that the value
of the counter e in any intermediate configuration satisfies
c −D ≤ e ≤ c + D (where D is some positive integer). We
refer to such a run as an D-band run.

Reversals along such a run are not important and we get
rid of them by maintaining the (bounded) changes to the
counter within the state.

We construct a simple OCA A[D] as follows: its states are
Q∪Q1∪Q2 where Q1 = Q×[−D,D] and Q2 = [−D,D]×Q.
All transitions of A are transitions of A[D] as well and thus
using Q it can simulate any run of A faithfully. From any
state q ∈ Q the automaton may move nondeterministically
to (q, 0) in Q1. The states in Q1 are used to simulate D-band
runs of A without altering the counter and by keeping track
of the net change to the counter in the second component
of the state. From a state (q, j) in Q1, A[D] is allowed
to nondeterministically move to (j, q) indicating that it will
now transfer the (positive or negative) value j to the counter.
After completing the transfer it reaches a state (0, q) from
where it can enter the state q via an internal move to
continue the simulation of A.

Observe that there are no reversals in the simulation and
it involves only increments (if d > c) or only decrements (if
d < c). Actually this automaton A[D] does even better.
Concatenation of D-band runs is often not an D-band run
but the idea of reversal free simulation extends to certain
concatenations. We say that a run (p0, c0)

w−−→(pn, cn) is an
increasing (resp. decreasing) iterated D-band run if it can
be decomposed as

(p0, c0)
w1−−→(p1, c1)

w2−−→ . . . (pn−1, cn−1)
wn−−→(pn, cn)

where each (pi, ci)
wi+1−−−−→(pi+1, ci+1) is an D-band run and

ci ≤ ci+1 (resp. ci ≥ ci+1). We say it is an iterated D-band
run if it is an increasing or decreasing iterated D-band run.

Lemma 18. Let (p, c)
w−−→(q, d) be an increasing (resp. de-

creasing) D-band run in A. Then, there is a run (p, c)
w−−→(q, d)

in A[D] along which the counter value is never decremented
(resp. incremented).

While clearly L(A) ⊆ L(A[D]), the converse is not in
general true as along a run of A[D] the real value of the
counter, i.e. the current value of the counter plus the offset
available in the state, may be negative, leading to runs that
are not simulations of runs of A. The trick that helps us
get around this is to relate runs of A[D] to A with a shift in
counter values. The following lemma summarizes this shifted
relationship:

Lemma 19. Let p, q ∈ Q. If (p, 0)
w−−→(q, 0) is a run in A[D]

then (p,D)
w−−→(q,D) is a run in A.

With these two lemmas we have enough information
about A[D] and its relationship with A. We need a bit
more terminology to proceed.

We say that a run of is an D≤ run (resp. D≥ run) if the
value of the counter is bounded from above (resp. below)
by D in every configuration encountered along the run.
We say that a run of A is an D> run if it is of the form
(p,D)

w−−→(q,D), it has at least 3 configurations and the
value of the counter at every configuration other than the
first and last is > D. Consider any run from a configuration
(p, 0) to (q, 0) in A. Once we identify the maximal D> sub-
runs, what is left is a collection of D≤ subruns.

Let ρ = (p, c)
w−−→(q, d) be a run of A with c, d ≤ D.

If ρ is a D≤ run then its D-decomposition is ρ. Other-
wise, its D-decomposition is given by a sequence of runs
ρ0, ρ

′
0, ρ1, ρ

′
1 . . . ρ

′
n−1, ρn with ρ = ρ0.ρ

′
0.ρ1.ρ

′
1 . . . .ρ

′
n−1.ρn,

where each ρi is a D≤ run and each ρ′i is a D> run for
0 ≤ i ≤ n. Notice, that some of the ρi’s may be trivial.
Since the D> subruns are uniquely identified this definition
is unambiguous. We refer to the ρ′i’s (resp. ρis) as the D>
(resp. D≤) components of ρ.

Observe that the D≤ runs of A can be easily simulated
by an NFA. Thus we may focus on transforming the D>
runs, preserving just the Parikh-image, into a suitable form.
For D,M ∈ N, we say that a D> run ρ is a (D,M)-good run
(think noisy waveform with few reversals) if there are runs
σ1, σ2 . . . , σn, σn+1 and iterated D-band runs ρ1, ρ2, . . . , ρn
such that ρ = σ1ρ1σ2ρ2 . . . σnρnσn+1 and |σ1|+. . .+|σn+1|+
2.n ≤M . Using Lemma 18 and that it is a D> run we show

Lemma 20. Let (p,D)
w−−→(q,D) be an (D,M)-good run of

A. Then, there is a run (p, 0)
w−−→(q, 0) in A[D] with atmost

M reversals.

So far we have not used the fact that we can ignore
the ordering of the letters read along a run (since we are
only interested in the Parikh-image of L(A)). We show
that for any run ρ of A we may find another run ρ′ of A,
that is equivalent up to Parikh-image, such that every D>
component in the D-decomposition of ρ′ is (D,M)-good,
where M and D are polynomially related to K.

We fix D = K in what follows. We takeM = 2K2+K for
reasons that will become clear soon. We focus our attention
on some D> component ξ of ρ which is not (D,M)-good.
Let X ⊆ Q be the set of states of Q that occur in at
least two different configurations along ξ. For each of the
states in X we identify the configuration along ξ where it
occurs for the very first time and the configuration where
it occurs for the last time. There are at most 2|X|(≤ 2K)
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such configurations and these decompose the run ξ into a
concatenation of 2|X| + 1(≤ 2K + 1) runs ξ = ξ1.ξ2 . . . ξm
where ξi, 1 < i < m is a segment connecting two such
configurations. Now, suppose one of these ξi’s has length K
or more. Then it must contain a sub-run (p, c)−→(p, d) with
at most K moves, for some p ∈ X (so, this is necessarily a
K-band run). If d− c ≥ 0 (resp. d− c < 0), then we transfer
this subrun from its current position to the first occurrence
(resp. last occurrence) of p in the run. This still leaves a valid
run ξ′ since ξ begins with a K as counter value and |ξi| ≤ K.
Moreover ξ and ξ′ are equivalent upto Parikh-image.

If this ξ′ continues to be a K> run then we again examine
if it is (K,M)-good and otherwise, repeat the operation
described above. As we proceed, we continue to accumulate
a increasing iterated K-band run at the first occurrence
of each state and decreasing iterated K-band run at the
last occurrence of each state. We also ensure that in each
iteration we only pick a segment that does NOT appear in
these 2|X| iterated K-bands. Thus, these iterations will stop
when either the segments outside the iterated K-bands are
all of length < K and we cannot find any suitable segment
to transfer, or when the resulting run is no longer a K> run.
In the first case, we must necessarily have a (K, 2K2 +K)-
good run. In the latter case, the resulting run decomposes
as usual in K≤ and K> components, and we have that every
K> component is strictly shorter than ξ, allowing us to use
an inductive argument to prove the following:

Lemma 21. Let ρ = (p, 0)
w−−→(q, 0) be any run in A. Then,

there is a run ρ′ = (p, 0)
w′−−→(q, 0) of A with ψ(w) =

ψ(w′) such that every K> component ξ in the canonical
decomposition of ρ′ is (K, 2K2 +K)-good.

Let Bpq, p, q ∈ Q, be NFA Parikh-equivalent to L2K2+K

(A[K]p,q) where A[K]pq is A[K] with p as the only initial
and q as the only final state. As a consequence of Lemmas
21,20 and 19, we can obtain an NFA B such that ψ(L(B)) =
ψ(L(A)).

The number of states in the automaton B is
∑
p,q∈Q |B

pq|+
K2. What remains to be settled is the size of the automata
Bpq. This problem is solved in the next subsection and the
solution (see Lemma 23) implies that that the size of Bpq is
bounded by O(|Σ|KO(logK)). Thus we have

Theorem 22. There is an algorithm, which given an OCA
with K states and alphabet Σ, constructs a Parikh-equivalent
NFA with O(|Σ|.KO(logK)) states.

5.2 Parikh image under reversal bounds
Here we show that, for an OCA A, with K states and whose
alphabet is Σ, and any R ∈ N, an NFA Parikh-equivalent to
LR(A) can be constructed with size O(|Σ|.KO(logK)). As a
matter of fact, this construction works even for pushdown
systems and not just OCAs.

Let A be a simple OCA. It will be beneficial to think
of the counter as a stack with a single letter alphabet, with
pushes for increments and pops for decrements. Then, in any
run from (p, 0) to (q, 0), we may relate an increment move
uniquely with its corresponding decrement move, the pop
that removes the value inserted by this push.

Now, consider a one reversal run ρ of A from say (p, 0)
to (q, 0) involving two phases, a first phase ρ1 with no decre-
ment moves and a second phase ρ2 with no increment moves.
Such a run can be simulated, up to equivalent Parikh image
(i.e. upto reordering of the letters read along the run) by
an NFA as follows: simultaneously simulate the first phase

(ρ1) from the source and the second phase, in reverse or-
der (ρrev2 ), from the target. (The simulation of ρrev2 uses the
transitions in the opposite direction, moving from the target
of the transition to the source of the transition). The sim-
ulation matches increment moves of ρ1 against decrement
moves in ρrev2 (more precisely, matching the ith increment
ρ1 with the ith decrement in ρrev2 ) while carrying out moves
that do not alter the counters independently in both direc-
tions. The simulation terminates (or potentially terminates)
when a common state, signifying the boundary between ρ1

and ρ2 is reached from both ends.
The state space of such an NFA will need pairs of states

fromQ, to maintain the current state reached by the forward
and backward simulations. Since, only one letter of the input
can be read in each move, we will also need two moves to
simulate a matched increment and decrement and will need
states of the form Q×Q×Σ for the intermediate state that
lies between the two moves.

Unfortunately, such a naive simulation would not work if
the run had more reversals. For then the ith increment in the
simulation from the left need not necessarily correspond to
the ith decrement in the reverse simulation from the right.
In this case, the run ρ can be written as follows:

(p, 0)ρ1(p1, c)
τ1−−→(p′1, c+ 1)ρ3(p′2, c+ 1)
τ2−−→(p2, c)ρ4(q1, c)ρ5(q, 0)

where, the increment τ1 corresponds to the decrement τ2 and
all the increments in ρ1 are exactly matched by decrements
in ρ5. Notice that the increments in the run ρ3 are exactly
matched by the decrements in that run and similarly for
ρ4. Thus, to simulate such a well-matched run from p to
q, after simulating ρ1 and ρrev5 simultaneously matching
corresponding increments and decrements, and reaching the
state p1 on the left and q1 on the right, we can choose to
now simulate matching runs from p1 to p2 and from p2 to q1
(for some p2). Our idea is to choose one of these pairs and
simulate it first, storing the other in a stack. We call such
pairs obligations. The simulation of the chosen obligation
may produce further such obligations which are also stored
in the stack. The simulation of an obligation succeeds when
the state reached from the left and right simulations are
identical, and at this point we we may choose to close this
simulation and pick up the next obligation from the stack
or continue simulating the current pair further. The entire
simulation terminates when no obligations are left. Thus, to
go from a single reversal case to the general case, we have
introduced a stack into which states of the NFA used for
the single reversal case are stored. This can be formalized
to show that the resulting PDA is Parikh-equivalent to A.

But a little more analysis shows that there is a simulating
run where the height of the stack is bounded by log(R) where
R is the number of reversals in the original run. Thus, to
simulate all runs of A with at most R reversals, we may
bound the stack height of the PDA by log(R).

We show that if the stack height is h then we can choose
to simulate only runs with at most 2log(R)−h reversals for
the obligation on hand. Once we show this, notice that when
h = log(R) we only need to simulate runs with 1 reversal
which can be done without any further obligations being
generated. Thus, the overall height of the stack is bounded
by log(R). Now, we explain why the claim made above holds.
Clearly it holds initially when h = 0. Inductively, whenever
we split an obligation, we choose the obligation with fewer
reversals to simulate first, pushing the other obligation onto
the stack. Notice that this obligation with fewer reversals is

8



q1 q2 q3 · · · qn
c1,2 c2,3

c1,3

c1,n

c2,n

c3,n

a1,1|1

a1,2|2

a1,n|n

...

a2,1|−1

a2,2|−2

a2,n|−n

...

a3,1|1

a3,2|2

a3,n|n

...

an,1|(−1)n+1

an,2|(−1)n+12

an,n|(−1)n+1n

...

Figure 1. The one-counter automaton Hn

guaranteed to contain at most half the number of reversals of
the current obligation (which is being split). Thus, whenever
the stack height increases by 1, the number of reversals to
be explored in the current obligation falls at least by half
as required. On the other hand, an obligation (p, q) that
lies in the stack at position h from the bottom, was placed
there while executing (earlier) an obligation (p′, q′) that
only required 2k−h+1 reversals. Since the obligation (p, q)
contributes only a part of the obligation (p′, q′), its number
of reversals is also bounded by 2k−h+1. And when (p, q) is
removed from the stack for simulation, the stack height is
h− 1. Thus, the invariant is maintained. Once we have this
bound on the stack, for a given R, we can simulate it by an
exponentially large NFA. This yields the following lemma:

Lemma 23. There is a procedure that takes a simple OCA
A with K states and whose alphabet is Σ, and a number
R ∈ N and returns an NFA Parikh-equivalent to LR(A) of
size O(|Σ|.(RK)O(log(R))).

5.3 Completeness result
In this subsection, we present a simple sequence of OCA that
is complete with respect to small Parikh-equivalent NFAs.
This means, if the OCA in this sequence have polynomial-
size Parikh-equivalent NFAs, then all OCA have polynomial-
size Parikh-equivalent NFAs.

It will be convenient to slightly extend the definition of
OCA. An extended OCA is defined as an OCA, but in its
transition (p, a, s, q), the entry s can assume any integer
(in addition to z). Of course here, the number of states is
not an appropriate measure of size. Therefore, the size of
a transition t = (p, a, s, q) of A is |t| = max(0, |s| − 1) if
s ∈ Z and 0 if s = z. If A has n states, then we define
its size is |A| = n +

∑
t∈δ |t|. Given an extended OCA of

size n, one can clearly construct an equivalent OCA with n
states. Furthermore, if one consideres an (ordinary) OCA as
an extended OCA, then its size is the number of states.

The complete sequence (Hn)n≥1 of automata consists of
extended OCA and is illustrated in Figure 1. The automaton
Hn has n states, q1, . . . , qn. On each qi and for each k ∈
[1, n], there is a loop reading ai,k and adding (−1)i+1 · k to
the counter. Moreover, for i, j ∈ [1, n] with i < j, there is
a transition reading ci,j that does not use the counter. For
each k ∈ [1, n], Hn has n transitions of size k−1. Since it has
n states, this results in a size of n+

∑n
k=1(k−1) = 1

2
n(n+1).

The result of this section is the following.

Theorem 24. There are polynomials p and q such that the
following holds.

1. If for each n, there is a Parikh-equivalent NFA for Hn
with h(n) states, then for every OCA of size n, there is
a Parikh-equivalent NFA with at most q(h(p(n))) states.

2. If there is an algorithm that computes a Parikh-equivalent
NFA for Hn in time O(h(n)), then one can compute
a Parikh-equivalent NFA for arbitrary OCA in time
O(q(h(p(n)))).

Explicitly, we only prove the first statement and keep the
analogous statements in terms of time complexity implicit.
Our proof consists of three steps (Lemmas 25, 27, and 28).
Intuitively, each of them is one algorithmic step one has to
carry out when constructing a Parikh-equivalent NFA for a
given OCA.

For the first step in our proof, we need some terminology.
Let A = (Q,Σ, δ, q0, F ) be an extended OCA. Recall that a
word (p1, a1, s1, p

′
1) · · · (pn, an, sn, p′n) over δ is called a walk

if p′i = pi+1 for every i ∈ [1, n−1]. The walk u is called a p1-
cycle (or just cycle) if p′n = p1. If, in addition, i 6= j implies
pi 6= pj , then u is called simple. A cycle as above is called
proper if there is some i ∈ [1, n] with pi 6= p1. We say that
A is acyclic if it has no proper cycles, i.e. if all cycles consist
solely of loops. Equivalently, an OCA is acyclic if there is a
partial order ≤ on the set of states such that if a transition
leads from a state p to q, then p ≤ q.

A transition (p, a, s, q) is called positive (negative) if s > 0
(s < 0). We say that a walk contains k reversals if it
has a scattered subword of length k + 1 in which positive
and negative transitions alternate. An (extended) OCA is
called (r-)reversal-bounded if none of its walks contains
r + 1 reversals. Observe that an acyclic (extended) OCA is
reversal-bounded if and only if on each state, there are either
no positive transitions or no negative transitions. We call
such automata RBA (reversal-bounded acyclic automata).

Recall that we have seen in section 5.1 that constructing
Parikh-equivalent NFAs essentially reduces to the case of
reversal-bounded simple OCA. The first construction here
takes a reversal-bounded automaton and decomposes it into
an RBA and a regular substitution. This means, if we
can find Parikh-equivalent OCA for RBAs, we can do so
for arbitrary OCA: Given an NFA for the RBA, we can
replace every letter by the finite automaton specified by
the substitution. Here, the size of the substitution σ is the
maximal number of states of an automaton specified for a
language σ(a), a ∈ Σ.

Lemma 25. Given an r-reversal-bounded simple OCA A
of size n, one can construct an RBA B of size 6n5(r + 1)
and a regular substitution σ of size n(n + 1) such that
ψ(σ(L(B))) = ψ(L(A)).

We prove this lemma by showing that runs of reversal-
bounded simple OCA can be ‘flattened’: Each run can be
turned into one with Parikh-equivalent input that consists
of a skeleton of polynomial length in which simple cycles
are inserted flat, i.e. without nesting them. The RBA B
simulates the skeleton and has self-loop which are replaced
by σ with a regular language that simulates simple cycles.

In the next construction of our proof (Lemma 27), we
employ a combinatorial fact. A Dyck sequence is a sequence
x1, . . . , xn ∈ Z such that

∑k
i=1 xi ≥ 0 for every k ∈ [1, n].

We call a subset I ⊆ [1, n] removable if removing all xi,
i ∈ I, from the sequence yields again a Dyck sequence and∑
i∈I xi =

∑n
i=1 xi. We call the sequence r-reversal-bounded

if there are at most r alternations between positive numbers
and negative numbers.

Lemma 26. Let N ≥ 0 and x1, . . . , xn be an r-reversal-
bounded Dyck sequence with xi ∈ [−N,N ] for each i ∈ [1, n]
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such that
∑
i=1 xi ∈ [0, N ]. Then it has a removable subset

I ⊆ [1, n] with |I| ≤ 2r(2N2 +N).

We now want to make sure that the self-loops on our
states are the only transitions that use the counter. Note
that this is a feature of Hn. An RBA is said to be loop-
counting if its loops are the only transitions that use the
counter, i.e. all other transitions (p, a, s, q) have s = 0.

Lemma 27. Given an RBA A, one can construct a loop-
counting RBA B of polynomial size such that L(A) ⊆
L(B) ⊆ L(K)(A) for a polynomially bounded K.

Here, the idea is to add a counter that tracks the counter
actions of non-loop transitions. However, in order to show
that the resulting automaton can still simulate all runs while
respecting its own counter (i.e. it has to reach zero in the
end and cannot drop belo zero), we use Lemma 26. It allows
us to ‘switch’ parts of the run so as not to use B’s counter,
but the internal one in the state. Note that according to
Lemma 1, it suffices to construct Parikh-equivalent NFAs
that fulfill the approximation relation in the lemma here.

We are now ready to reduce to the NFA Hn.
Lemma 28. Given a loop-counting RBA A of size n, one
can construct a regular substitution σ of size at most 2 such
that ψ(σ(L(H2n+2))) = ψ(L(A)).

Here, roughly speaking, we embed the partial order on
the set of states into the one in H2n+2. Then, the substi-
tution σ replaces each symbol in H2n+2 by the outputs of
the correponding transition in A. Here, we have to deal with
the fact that in A, there might be loops that do not read
input, but those do not exist in H2n+2. However, we can
replace the symbols on non-loops by regular languages so as
to produce the output of their neighboring loops.
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A. Equivalence between problems of
characterizations of the three regular
abstractions for OCA and simple OCA

Due to the following Lemma 30, without loss of generality
we can restrict our attention to computing the regular ab-
stractions of a subclass OCA, namely simple OCA, defined
analogously to OCA but different in the following aspects:
(1) there are no zero tests, (2) there is a unique final state,
F = {qfinal}, (3) only runs that start from the configuration
(qinit, 0) and end at the configuration (qfinal, 0) are considered
accepting. The language of a simple OCA A, also denoted
L(A), is the set of words induced by accepting runs.

Definition 29. Let A be a simple OCA. We define a
sequence of L(n)(A) called approximants defined as language
of words observed along runs of A from a configuration
(q0, n) to a configuration (qfinal, n).

Let OCA A = (Q,Σ, q0, δ, F ), for any p, q ∈ Q we
define Ap,q def

= (Q,Σ, p, δ+, {q}) where δ+ is the subset of
all transitions in δ which are not test for zero transitions.

Lemma 30. Let K ∈ N and ♦ ∈ {↑,↓, ψ} be an abstraction.
Assume that there is a polynomial g♦ such that for any
OCA A following holds: for every Ap,q there is an NFA
Bp,q,♦ such that ♦L(Ap,q) ⊆ L(Bp,q,♦) ⊆ ♦(L(K)(Ap,q))
and |Bp,q,♦| ≤ g♦(|A|). Then there is a polynomial f such
that for any A there is an NFA B♦ of size at most f(|A|,K)
with L(B♦) = ♦(L(A)).

Remark 31. Restricting ourself to simple OCA, mentioned
in the beginning of the section, is a consequence of Lemma 30
for K = 0. Indeed, if we can build polynomially bounded
NFA for an abstraction of any given NFA, then we can do
it for any simple OCA as well. On the other hand, if we can
do it, for any simple OCA than due to Lemma 30 we can
construct a polynomially bounded NFA that is abstraction
of any given OCA.

In order to prove the lemma, consider the following defi-
nition.

Definition 32. Let L,L′ ⊆ Σ∗. By a concatenation of
languages denoted L · L′ we mean a set of all words that
can be obtained by concatenation of a word from L and a
word L′ i.e. {w · w′|w ∈ L, w′ ∈ L′}.

Let Π be a finite alphabet. A substitution is a function
φ : Π → 2Σ∗ . Suppose L ⊆ Π∗ is a language. For w =
w1 · · ·wn with w1, . . . , wn ∈ Π, the set φ(w) contains all
words x1 · · ·xn where xi ∈ φ(wi). Lifting this notation to
languages, we get φ(L) =

⋃
w∈L φ(w).

Lemma 33. Let A = (Q,Σ, δ, q0, F ) be an OCA and
suppose we are given, for each Ap,q, an OCA Bp,q with
L(Ap,q) ⊆ L(Bp,q) ⊆ L(n)(Ap,q). Then there is an NFA B
over an alphabet Π and substitution φ : Π −→ 2Σ∗ such
that L(A) = φ(L(B)) and that for every letter a ∈ Π hold
φ(a) ∈ Σ or φ(a) equals L(Bp,q) for some p, q ∈ Q.

Proof. First, for any n ∈ N holds that, an accepting run π of
A can be decomposed into π = π1π

′
1π2π

′
2 . . . π

′
n−1πn where

each πi is a run in OCA such that counter values along πi
stay below n, and where each run π′i induces a word from a
language L(n)(Ainit.state(π′i),final.state(π′i)).

Thus we define B as follows: Π is a Σ plus the set of
triples (n, p, q) where p, q ∈ Q, the set of states is equal
Q × {0 . . . n}, initial state is (q0, 0) and final states are
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p q =⇒ p qinit
Bp,q,♦

qinit qa ε ε

Figure 2. The substitution operation

F × {0}. The last thing is set of transitions; for p, q ∈ Q
it contains transition ((p, n), (n, p, q), 0, (q, n)) and for any
i, j ∈ {0 . . . n} the transition ((p, i)a, 0, (q, j)) if and only if
there is a move (p, i)

a−→ (q, j) in A.
The φ is simply induced by its definition on elements of

Π: for every a ∈ Π we have that if a ∈ Σ then φ(a) = {a}
else if a = (n, p, q) and φ(a) = L(n)(Ap,q).

It is easy check that L(A) = φ(L(B)).

Next, we show how use B if we are interested in F -
abstractions of L(A). We start from a following simple
observations; for any language L = L1 · L2 we have that:

• L↓ = L1↓ · L2↓
• L↑ = L1↑ · L2↑
• ψ(L) = ψ(L1) · ψ(L2)

A natural consequence is the following lemma.

Lemma 34. Let B be an automaton like one defined in
Lemma 33 for a given OCA A. Now let φ↓, φ↑, φ ψ are defined
as follows: If a ∈ Σ then φ↓(a) = {a}↓, φ↑(a) = {a}↑,
φ ψ(a) = {a}, on the other hand if a is of the form (n, p, q)
i.e. a ∈ Π\Σ then φ↓((n, p, q)) = L(n)(Ap,q)↓, φ↑((n, p, q)) =
L(n)(Ap,q)↑, φ ψ((n, p, q)) = ψ(L(n)(Ap,q)).

Then the following equalities hold

• L(A)↓ = φ↓(L(B)),
• L(A)↑ = φ↑(L(B)),
• ψ(L(A)) = φ ψ(L(B)).

Proof. Lemma contains three claims which have very similar
proofs, thus we present only one of them, for downward
closure.

The first inclusion. Let w′ ∈ L(A)↓ thus there is w ∈
L(A) such that w′ � w. Due to Lemma 33 we know
that there is a word u = u1 . . . uk, where ui ∈ Π, such
that w ∈ φ(u) (φ is defined in the proof of Lemma 33).
We claim that w′ ∈ φ↓(u). Indeed, observe that φ↓(u) =
φ↓(u1) · · ·φ↓(uk) = φ(u1)↓ · · ·φ(uk)↓; further recall that if
L = L1 · L2 implies L↓ = L1↓ · L2↓ so we conclude that
φ↓(u) = (φ(u1) · · ·φ(uk))↓ = φ(u)↓ ⊇ w↓. As w′ ∈ w↓, this
gives us what we need, so w′ ∈ φ↓(u).

In the opposite direction. Let w′ ∈ φ↓(L(B)). Then
w′ ∈ φ↓(u) for some u ∈ L(B). Using similar calculation
like previously we can show that w′ ∈ φ(u)↓ but this mean
that w′ ∈ w↓ for some w ∈ φ(u). Now as we know that
φ(u) ∈ L(A) we have that w′ ∈ L(A)↓ which ends the proof.

Finally we can prove Lemma 30.

Proof. We start from Lemma 34. We take automaton B
and choose suitable substitution φ♦, where ♦ ∈ {↑,↓, ψ},
depending on the abstraction that we are interested in.
The idea is to substitute every transition in B, say τ =
(p, a, 0, q), by a suitable designed automaton Bp,q,♦ =
(Qp,q,Σ, qinit, δp,q, {qfinal}) that accepts the language φ♦(a).

If a ∈ Π \ Σ then automaton is Bp,q, else if a ∈ Σ then
automaton that we glue is one of following:

for φ↑ qinit qfinal
a

Σ Σ

,

for φ↓ qinit qfinal

a

ε ,

for φ ψ qinit qfinal
a

.
It is obvious that this construction provides a required

NFA. The last question is about its size. According to
Lemma 33 we have that |B| = |A| · K. So to estimate
the size of the final construction we need to add at most
|Σ| ·2|B|+(|A|)2 ·g(|A|) states, which proves the polynomial
bound on the size of B♦.

Remark 35. It is easy observation that above construction
can be preformed in polynomial time in K, |A| and time
needed to construct all automata Bp,q,♦ where ♦ ∈ {↑,↓, ψ}.

B. Upward and Downward Closures
We begin by showing that for any OCA A we can effectively
construct, in P, a NFA that accepts L(A)↑. This easy con-
struction follows the argument traditionally used to bound
the length of the shortest accepting run in a pushdown au-
tomaton. We give the details as the ideas used here recur
elsewhere. We use the following notation in what follows:
for a run ρ and an integer D we write ρ[D] to refer to the
quasi-run ρ′ obtained from ρ by replacing the counter value
v by v +D in every configuration along the run.

Lemma 36. Let A = (Q,Σ, δ, s, F ) be a OCA and let w
be a word accepted by A. Then there is a word y � w in
L(A) such that y is accepted by a run where the value of the
counter never exceeds |Q|2 + 1.

Proof. We show that for any accepting run ρ reading a word
w, there is an accepting run ρ′, reading a word y � w, in
which the maximum value of the counter does not exceed
|Q|2+1. We prove this by double induction on the maximum
value of the counter and the number of times this value is
attained during the run ρ.

If the maximum value is below |Q|2 + 1 there is nothing
to prove. Otherwise let the maximum value m > |Q|2 + 1 be
attained c times along ρ. We break the run up as a concate-
nation of subruns ρ = ρ0ρ1ρ2ρ3 . . . ρmρ

′
m−1 . . . ρ

′
2ρ
′
1ρ
′
0 where

1. ρ0ρ1ρ2 . . . ρm is the shortest prefix of ρ after which the
counter reaches the value m.

2. ρ0ρ1ρ2 . . . ρi is the longest prefix of ρ0ρ1ρ2 . . . ρm after
which the counter value is i, 1 ≤ i ≤ m− 1.

3. ρ0ρ1ρ2 . . . ρm.ρ
′
m−1 . . . ρ

′
i, is the shortest prefix of ρ with

ρ0ρ1ρ2 . . . ρm as a prefix and after which the counter
value is i, 0 ≤ i ≤ m− 1.

Let the configuration reached after the prefix ρ0 . . . ρi be
(pi, i), for 1 ≤ i ≤ m. Similarly let the configuration
reached after the prefix ρ0ρ1ρ2 . . . ρm.ρ

′
m−1 . . . ρ

′
i be (qi, i),

for 0 ≤ i ≤ m− 1.
Now we make two observations: firstly, the value of

the counter never falls below i during the segment of
the run ρi+1 . . . ρ

′
i — this is by the definition of the ρis

and ρ′is. Secondly, there are i < j such that pi = pj
and qi = qj — this is because m ≥ |Q|2 + 1. Together
this means that we may shorten the run by deleting
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the sequence of transitions corresponding to the segment
ρi+1 . . . ρj leading from (pi, i) to (pj , j) and the sequence
corresponding to the segment ρ′j−1 . . . ρ

′
i from (qj , j) to

(qi, i) and still obtain a valid run of the system. That is,
ρ0ρ1 . . . ρiρj+1[−d]ρj+2[−d] . . . ρ′j [−d]ρ′i−1 . . . ρ

′
0 is a valid

run, where d = j − i. Clearly the word accepted by such
a run is a subword of w, and further this run has at least
one fewer occurrence of the maximal counter value m. The
Lemma follows by an application of the induction hypoth-
esis to this run and using the transitivity of the subword
relation.

The set of words in L(A) accepted along runs where the
value of the counter does not exceed |Q|2 + 1 is accepted by
an NFA with |Q|.(|Q|2+1) states (it keeps the counter values
as part of the state). Combining this with the standard
construction for upward closure for NFAs we get

Theorem 2. There is a polynomial-time algorithm that
takes as input an OCA A = (Q,Σ, δ, s, F ) and computes
an NFA with O(|A|3) states accepting L(A)↑.

The construction can be extended to general OCA with-
out any change in the complexity

Next we show a polynomial time procedure that con-
structs an NFA accepting the downward closure of the lan-
guage of any simple OCA. For pushdown automata the
construction involves a necessary exponential blow-up. We
sketch some observations that lead to our polynomial time
construction.

Let A = (Q,Σ, δ, s, F ) be a simple OCA and let K = |Q|.
Consider any run ρ of A from a configuration (p, i) to a
configuration (q, j). If the value of the counter increases
(resp. decreases) by at least K in ρ then, it contains a
segment that can be pumped (or iterated) to increase (resp.
decrease) the value of the counter. If the increase in the
value of the counter in this iterable segment is k then
by choosing an appropriate number of iterations we may
increase the value of the counter at the end of the run by
any multiple of this k. Quite clearly, the word read along
this iterated run will be a superword of word read along ρ.
The following lemmas,whose proof is a simplified version of
that of Lemma 36, formalize this.

Lemma 3. Let (p, i)
x−→(q, j) with j − i > K. Then, there

is an integer k > 0 such that for each N ≥ 0 there is a run

(p, i)
w=y1.(y2)N+1.y3−−−−−−−−−−−−→(p′, j +N.k) with x = y1y2y3.

Proof. Consider the run (p, i)
x−→(q, j) and break it up as

(p, i) =(pi, i)
x1−−→(pi+1, i+ 1)

x2−−→(pi+2, i+ 2) . . .

. . .
xj−−→(pj , j)

x′−−→(q, j)

where the run (pi, i)
x1−−→ . . .

xr−−→(pr, r) is the shortest prefix
after which the value of the counter attains the value r. Since
j − i > K it follows that there are r, r′ with i ≤ r < r′ ≤ j
such that pr = pr′ . Clearly one may iterate the segment of
the run from (pr, r) to (pr, r

′) any number of times, say
N ≥ 0, to get a run (p, i)

w−−→(q, j + (r′ − r)N). where
w = x1 . . . xr(xr+1 . . . xr′)

N+1xr+1 . . . xk. Setting k = r′ − r
yields the lemma.

An analogous argument shows that if the value of the
counter decreases by at least K in ρ then we may iterate a
suitable segment to reduce the value of the counter by any

multiple of k′ (where the k′ is the net decrease in the value of
the counter along this segment) while reading a superword.
This is formalized as

Lemma 4. Let (q′, j′)
z−→(p′, i′) with j′ − i′ > K. Then,

there is an integer k′ > 0 such that for every N ≥ 0 there is

a run (q′, j′ +N.k′)
w=y1(y2)N+1y3−−−−−−−−−−−→(p′, i′) with z = y1y2y3.

Proof. We break the run into segments as:

(q′, j′) =(qj′ , j
′)

zj′−1−−−−→(qj′−1, j
′ − 1)

zj′−2−−−−→(qj′−2, j
′ − 2) . . .

. . .
zi′−−→(qi′ , i

′)
z′−−→(p′, i′)

where (qj′ , j
′)

zj′−1−−−−→(qj′−1, j
′ − 1)

zj′−2−−−−→(qj′−2, j
′ − 2) . . .

zt−−→(qt, t) is the shortest prefix after which the value of
counter is t. Since j′ − i′ > K it follows that there are
t, t′,j′ ≥ t > t′ ≥ i′ such that qt = qt′ . Then, starting at
any configuration (qt, t + (t − t′)N), N ∈ N we may iterate
the transitions in the run (qt, t)−→(qt′ , t

′) an additional N
times. This yields a run (qt, t+ (t− t′)N)

z′′−−→(qt′ , t
′) where

z′′ = (zt−1 . . . zt′)
N+1. Observe that zt−1 . . . z

′
t is a subword

of z′′. Finally, notice that this also means that (q′, j′+N.(t−
t′))

z1...zt−−−−−→(qt, t + N.(t − t′))
z′′−−→(qt′ , t

′)
zt′+1...zi−−−−−−−→(p′, i′).

Taking k′ = (t− t′) completes the proof.

A consequence of these somewhat innocous lemmas is the
following interesting fact: we can turn a triple consisting of
two runs, where the first one increases the counter by at least
K and the second one decreases the counter by at least K,
and a quasi-run that connects them, into a real run provided
we are content to read a superword along the way.

Lemma 5. Let (p, i)
x−→(q, j)

y
=⇒ (q′, j′)

z−→(p′, i′), with j −
i > K and j′ − i′ > K. Then, there is a run (p, i)

w−−→(p′, i′)
such that xyz � w.

Proof. Let the lowest value of counter in the entire run be
m. If m ≥ 0 then the given quasi-run is by itself a run and
hence there is is nothing to prove. Let us assume that m is
negative.

First we use Lemma 3, to get a k and an x′ for any N > 1

and a run (p, i)
x′−−→(q, j + k.N) with x � x′. We can then

extend this to a run (p, i)
x′−−→(q, j + k.N)

y
=⇒ (q′, j′ + k.N),

by simply choosing N so that k.N > m. Then, we have that
the value of the counter is ≥ 0 in every configuration of this
quasi-run. Thus (p, i)

x′−−→(q, j+k.N)
y−→(q′, j′+k.N) for any

such N . Now, we apply Lemma 4 to the run (q′, j′)
z−→(p′, i′)

to obtain the k′. We now set our N to be a value divisible by
k′, say k′.I. Thus, (p, i)

x′−−→(q, j + k.k′.I)
y−→(q′, j′ + k.k′.I)

and now we may again use Lemma 4 to conclude that
(q′, j′ + k.k′.I)

z′′−−→(p′, i′) with x � x′ and z � z′′. This
completes the proof.

Interesting as this may be, this lemma still relies on
the counter value being recorded exactly in all the three
segments in its antecedent and this is not sufficient. In the
next step, we weaken this requirement (while imposing the
condition that q = q′ and j = j′) by releasing the (quasi)
middle segment from this obligation.

Lemma 6. Let (p, i)
x−→(q, j),(q, j) z−→(p′, i′), with j − i >

K and j′− i′ > K. Let there be a walk from q to q that reads
y. Then, there is a run (p, i)

w−−→(p′, i′) such that xyz � w.
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Proof. Let the given walk result in the quasi-run (q, j)
y

=⇒
(q, j+d) (where d is the net effect of the walk on the counter,
which may be positive or negative). Iterating this quasi-run
m times yields a quasi-run (q, j)

ym

==⇒ (q, j + m.d), for any
m ≥ 0. Next, we use Lemma 3 to find a k > 0 such that
for each N > 0 we have a run (p, i)

xN−−−→(q, j + N.k) with
x � xN . Similarly, we use Lemma 4 to find a k′ > 0 such
that for each N ′ > 0 we have a run (q, j+N ′.k′)

yN′−−−→(p′, i′)
with y � yN′ .

Now, we pick m and N to be multiples of k′ in such a
way that N.k+m.d > 0. This can always be done since k is
positive. Thus, N.k+m.d = N ′.k′ with N ′ > 0. Now we try
and combine the (quasi) runs (p, i)

xN−−−→(q, j +N.k), (q, j +

N.k)
ym

==⇒ (q, j+N.k+m.d) and (q, j+N ′.k′)
yN′−−−→(p′, i′) to

form a run. We are almost there, as j+N.k+m.d = j+N ′.k′.
However, it is not guaranteed that this combined quasi-run is
actually a run as the value of the counter may turn negative
in the segment (q, j+N.k)

ym

==⇒ (q, j+N.k+m.d). Let−N ′′ be
the smallest value attained by the counter in this segment.
Then by replacing N by N+N ′′.k′ and N ′ by N ′+N ′′.k we
can manufacture a triple which actually yields a run (since
the counter values are ≥ 0), completing the proof.

With this lemma in place we can now explain how to
relax the usage of counters.

Let us focus on runs that are interesting, that is, those
in which the counter value exceeds K at some point. Any
such run may be broken into 3 stages: the first stage where
counter value starts at 0 and remains strictly below K + 1,
a second stage where it starts and ends at K + 1 and a last
stage where the value begins at K and remains below K and
ends at 0 (the 3 stages are connected by two transitions, an
increment and a decrement). Suppose, we write the given
accepting run as (p, 0)

w1−−→(q, c)
w2−−→(r, 0) where (q, c) is a

configuration in the second stage. If a ∈ Σ is a letter that
may be read in some transition on some walk from q to
q. Then, w1aw2 is in L(A)↓. This is a direct consequence
of the above lemma. It means that in the configurations in
the middle stage we may freely read certain letters without
bothering to update the counters. This turns out to be a
crucial step in our construction. To turn this relaxation idea
into a construction, the following seems a natural.

We make an equivalent, but expanded version of A. This
version has 3 copies of the state space: The first copy is
used as long as the value of the counter stays below K + 1
and on attaining this value the second copy is entered. The
second copy simulates A exactly but nondeterministically
chooses to enter third copy whenever the counter value is
moves from K + 1 to K. The third copy simulates A but
does not permit the counter value to exceed K. For every
letter a and state q with a walk from q to q along which a is
read on some transition, we add a self-loop transition to the
state corresponding to q in the second copy that does not
affect the counter and reads the letter a. This idea has two
deficiencies: first, it is not clear how to define the transition
from the second copy to the third copy, as that requires
knowing that value of the counter is K + 1, and second,
this is still an OCA (since the second copy simply faithfully
simulates A) and not an NFA.

Suppose we bound the value of the counter by some
value U in the second stage. Then we can overcome both
of these defects and construct a finite automaton as follows:
The state space of the resulting NFA has stages of the
form (q, i, j) where j ∈ {1, 2, 3} denotes the stage to which

this copy of q belongs. The value i is the value of the
counter as maintained within the state of the NFA. The
transitions interconnecting the stages go from a state of
the form (q,K, 1) to one of the form (q′,K + 1, 2) (while
simulating a transition involving an increment) and from a
stage of the form (q,K + 1, 2) to one of the form (q′,K, 3)
(while simulating a decrement). The value of i is bounded
by K if j ∈ {1, 3} while it is bounded by U if j = 2. (States
of the form (q, i, 2) also have self-loop transitions described
above.) By using a slight generalization of Lemma 6, which
allows for the simultaneous insertion of a number of walks
(or by applying the Lemma iteratively), we can show that
any word accepted by such a finite automaton lies L(A)↓.
However, there is no guarantee that such an automaton will
accept every word in L(A)↓. The second crucial point is that
we are able to show that if U ≥ K2+K+1 then every word in
L(A) is accepted by this 3 stage NFA. We show that for each
accepting run ρ in A there is an accepting run in the NFA
reading the same word. The proof is by a double induction,
first on the maximum value attained by the counter and
then on the number of times this value is attained along
the run. Clearly, segments of the run where the value of the
counter does not exceed K2 + K + 1 can be simulated as
is. We then show that whenever the counter value exceeds
this number, we can find suitable segments whose net effect
on the counter is 0 and which can be simulated using the
self-loop transitions added to stage 2 (which do not modify
the counters), reducing the maximum value of the counter
along the run.

We now present the formal details. We begin by describ-
ing the NFA AU where U ≥ K + 1.

AU = (Q1 ∪Q2 ∪Q3,Σ,∆, iU , FU})

where Q1 = Q× {0 . . .K} × {1}, Q2 = Q× {0 . . . U} × {2}
and Q3 = Q × {0 . . .K} × {3}. We let iU = (s, 0, 1) and
FU = {(f, 0, 1), (f, 0, 3) | f ∈ F}. The transition relation is
the union of the relations ∆1, ∆2 and ∆3 defined as follows:

Transitions in ∆1:

1. (q, n, 1)
a−→(q′, n, 1) for all n ∈ {0 . . .K} whenever

(q, a, i, q′) ∈ δ. Simulate an internal move.
2. (q, n, 1)

a−→(q′, n − 1, 1) for all n ∈ {1 . . .K} whenever
(q, a,−1, q′) ∈ δ. Simulate a decrement.

3. (q, n, 1)
a−→(q′, n+1, 1) for all n ∈ {0 . . .K−1} whenever

(q, a,+1, q′) ∈ δ. Simulate an increment.
4. (q,K, 1)

a−→(q′,K+1, 2) whenever (q, a,+1, q′) ∈ δ. Sim-
ulate an increment and shift to second phase.

Transitions in ∆2:

1. (q, n, 2)
a−→(q′, n, 2) for all n ∈ {0 . . . U} when (q, a, i, q′) ∈

δ. Simulate an internal move.
2. (q, n, 2)

a−→(q′, n − 1, 2) for all n ∈ {1 . . . U} whenever
(q, a,−1, q′) ∈ δ. Simulate a decrement.

3. (q,K+1, 2)
a−→(q′,K, 3) whenever (q, a,−1, q′) ∈ δ. Sim-

ulate a decrement and shift to third phase.
4. (q, n, 2)

a−→(q′, n+1, 2) for all n ∈ {0 . . . U −1} whenever
(q, a,+1, q′) ∈ δ. Simulate an increment move.

5. (q, n, 2)
a−→(q, n, 2) whenever there is a walk from q to q

on some word w and, a � w. Freely simulate loops.

Transitions in ∆3:

1. (q, n, 3)
a−→(q′, n, 3) for all n ∈ {0 . . .K} whenever

(q, a, i, q′) ∈ δ. Simulate an internal move.
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2. (q, n, 3)
a−→(q′, n − 1, 3) for all n ∈ {1 . . .K} whenever

(q, a,−1, q′) ∈ δ. Simulate a decrement.
3. (q, n, 3)

a−→(q′, n+1, 3) for all n ∈ {0 . . .K−1} whenever
(q, a,+1, q′) ∈ δ. Simulate an increment move.

The following Lemma, which is easy to prove, states that
the first and third phases simulate faithfully any run where
the value of the counter is bounded by K.

Lemma 37. 1. If (q, i, l)
w−−→(q′, j, l) in AU then (q, i)

w−−→(q′, j)
in A, for l ∈ {1, 3}.

2. If (q, i)
w−−→(q′, j) in A through a run where the value of

the counter is ≤ K in all the configurations along the run
then (q, i, l)

w−−→(q′, i, l) for l ∈ {1, 3}.

The next Lemma extends this to runs involving the
second phase as well. All moves other than those simulating
unconstrained walks can be simulated by A. The second
phase of AU can also simulate any run where the counter is
bounded by U . Again the easy proof is omitted.

Lemma 38. 1. If (q, i, l)
w−−→(q′, j, l′) is a run of AU in

which no transition from ∆2 of type 5 is used then
(q, i)

w−−→(q′, j) is a run of A.
2. If ρ = (q0, i0)

a1−−→(q1, i1)
a2−−→ . . .

am−−−→(qm, im) is a run
in A in which the value of the counter never exceeds U
then ρ′ = (q0, i0, 2)

a1−−→(q1, i1, 2)
a2−−→ . . .

am−−−→(qm, im, 2)
is a run in AU .

Now, we are in a take the first step towards generalizing
Lemma 6 to prove that L(AU ) ⊆ L(A)↓.

Lemma 39. Let (q, i, 2)
w−−→(q′, j, 2) be a run in AU . Then,

there is an N ∈ N, words x0, y0, x1, y1, . . . , xN , and integers
n0, n1, . . . , nN−1 such that, in A we have:

1. w � x0y0x1y1 . . . xN .
2. (q, i)

x0y0...xN======⇒ (q′, j′) where j′ = j+n0 +n1 . . .+nN−1.

3. (q, i)
x0y

m0
0 x1y

m1
1 ...xN

============⇒ (q′, j′′) where j′′ = j + m0.n0 +
m1.n1 . . .+mN−1.nN−1, for any 1 ≤ m0,m1, . . .mN−1.

Note that 2 is just a special case of 3 when mr = 1 for all r.

Proof. The run (q, i, 2)
w−−→(q′, j, 2) in AU uses only transi-

tions of the types 1, 2, 4 and 5 in ∆2. Let N be the number
of transitions of type 5 used in the run. We then break up
the run as follows:

(q, i, 2)
x0−−→(p0, i0, 2)

a0−−→(p0, i0, 2)
x1−−→(p1, i1, 2) . . .

. . . (pN−1, iN−1, 2)
aN−1−−−−→(pN−1, iN−1, 2)

xN−−−→(q′, j, 2)

where the transitions, indicated above, on ai’s are the N
moves using transitions of type 5 in the run. Let (pr, ir)

yr
=⇒

(pr, i
′
r) be a quasi-run with ar � yr and let nr = i′r − ir.

Clearly w � x0y0x1y1 . . . xN .
It is quite easy to show by induction on r, 0 ≤ r < N ,

by replacing moves of types 1, 2 and 4 by the corresponding
moves in A and moves of type 5 by the iterations of the
quasi-runs identified above that:

(q, i)
x0−−→(p0, i0)

y
m0
0==⇒ (p0, i0 +m0.n0)

x1=⇒ (p1, i1 +m0.n0)

y
m1
1==⇒ (p1, i1 +m0.n0 +m1.n1)

. . .
xr−−→(pr, ir +m0.n0 . . .+mr−1.nr−1)

ymr
r==⇒ (pr, ir +m0.n0 . . .mr.nr)
xr+1−−−−→(pr+1, ir+1 +m0n0 . . .mr.nr)

and with r = N − 1 we have the desired result.

Now, we use an argument that generalizes Lemma 6 in
order to show that:

Lemma 40. Let w be any word accepted by the automaton
AU . Then, there is a word w′ ∈ A such that w � w′.

Proof. If states in Q2 are not visited in the accepting run
of AU on w then we can use Lemma 37 to conclude that
w ∈ A. Otherwise, we break up the run of AU on w into
three parts as follows:

(s, 0, 1)
w1−−→(p,K, 1)

a1−−→(q,K + 1, 2)
w2−−→(r,K + 1, 2)

a2−−→(t,K, 3)
w3−−→(f, 0, 3)

Using Lemma 37 we have (s, 0)
w1−−→(p,K) and (t,K)

w3−−→(f, 0).
We then apply Lemmas 3 and 4 to these two segments re-
spectively to identify k and k′. Next we use Lemma 39 to
identify the positive integer N , integers n0, n1, . . . nN−1 and
the quasi-run

(q,K + 1)
x0y0...xN======⇒ (r,K + 1 + n0 + n1 . . .+ nN−1)

with w2 � x0y0x1y1 . . . xN−1yN−1xN . We identify numbers
m,m0,m1, . . . ,mN−1, all ≥ 1, such that (m−1).k+m0.n0 +
. . .mN−1.nN−1 = k′.m′ for some m′ ≥ 0. By taking m − 1
and each mi to be some multiple of k′ we get the sum
(m − 1).k + m0.n0 + . . .mN−1nN−1 to be a multiple of k′,
however this multiple may not be positive. Since k > 0, by
choosing m − 1 to be a sufficiently large multiple of k′ we
can ensure that m′ ≥ 0. Using these numbers we construct
the quasi-run

(q,K + 1 + (m− 1).k)
x0y

m0
0 x1y

m1
1 ...xN

============⇒
(r,K + 1 + (m− 1).k +m0n0 + . . .mN−1nN )

withK+1+(m−1).k+m0n0+. . .mN−1nN = K+1+k′.m′.
Let l be the lowest value attained in this quasi-run. If l ≥ 0
then

(q,K + 1 + (m− 1).k)
x0y

m0
0 x1y

m1
1 ...xN−−−−−−−−−−−−−→(r,K + 1 + k′.m′)

and using Lemma 3 and 4 we get

(s, 0)
w−−→(p,K + (m− 1).k)
a1−−→(q,K + 1 + (m− 1).k)

x0y
m0
0 x1y

m1
1 ...xN−−−−−−−−−−−−−→(r,K + 1 + k′.m′)

a2−−→(t,K + k′.m′)
z−→(f, 0, 3)

with w1 � w, w2 � x0y
m0
0 x1y

m1
1 . . . xN and w3 � z as

required.
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Suppose l < 0. Then, we let I be a positive integer such
that I.k + l > 0 and I = k′.m′′ (i.e. I is divisible by k′)
which must exist since k > 0. Then

(q,K+1+(m−1).k+I.k)
x0y

m0
0 x1y

m1
1 ...xN

============⇒ (r,K+1+I.k+k′.m′)

is a quasi-run in which the counter values are always ≥ 0
and is thus a run. Once again, we may use Lemmas 3 and 4
(since I.k is a multiple of k′) to get

(s, 0)
w−−→(p,K + (m− 1).k + I.k)
a1−−→(q,K + 1 + (m− 1).k + I.k)

x0y
m0
0 x1y

m1
1 ...xN−−−−−−−−−−−−−→(r,K + 1 + k′.m′)

a2−−→(t,K + k′.m′ + I.k)
z−→(f, 0, 3)

with w1 � w, w2 � x0y
m0
0 x1y

m1
1 . . . xN and w3 � z. This

completes the proof of the Lemma.

Next, we show that if U ≥ K2 + K + 1 then L(A) ⊆
L(AU ).

Lemma 41. Let U ≥ K2 + K + 1. Let w be any word in
L(A). Then, w is also accepted by AU .

Proof. The proof is accomplished by examining runs of the
from (s, 0)

w−−→(f, 0) and showing that such a run may be
simulated by AU transition by transition in a manner to be
described below. Any run ρ = (s, 0)

w−−→S(f, 0) can be broken
up into parts as follow:

(s, 0)
x−→(h, j)

y−→(h′, j′)
z−→(f, 0)

where, ρ1 = (s, 0)
x−→(h, j) is the longest prefix where the

counter value does not exceed K, ρ3 = (h′, j′)
z−→(f, 0),

is the longest suffix, of what is left after removing ρ1, in
which the value of the counter does not exceed K, and
ρ2 = (h, j)

y−→(h′, j′) is what lies in between. We note
that using Lemma 37 we can conclude that there are runs
(s, 0, 1)

x−→(h, j, 1) and (h′, j′, 3)
z−→(f, 0, 3). Further, ob-

serve that if value of the counter never exceeds K then ρ2

and ρ3 are empty, x = w, h = f and j = 0. In this case, using
Lemma 37, there is a (accepting) run (s, 0, 1)

w−−→(f, 0, 1).
If the value of the counter exceeds K then j = j′ = K

and by Lemma 37, (s, 0, 1)
x−→(h,K, 1), (h′,K, 3)

z−→(f, 0, 3)
and ρ2 is non-empty. Further suppose that, ρ2, when written
out as a sequence of transitions is of the form

ρ2 =(h,K)
a−→(p,K + 1) = (p0, i0)

a1−−→(p1, i1)

a2−−→(p2, i2) . . .
an−−→(pn, in) = (q,K + 1)

b−→(h′,K)

We will show by double induction on the maximum value
of the counter value attained in the run ρ2 and the number
of times the maximum is attained that there is a run

ρ′2 =(h,K, 1)
a−→(p,K + 1, 2) = (p′0, i

′
0, 2)

a1−−→(p′1, i
′
1, 2)

a2−−→(p′2, i
′
2, 2) . . .

an−−→(p′n, i
′
n, 2) = (q,K + 1, 2)

b−→(h′,K, 3)

such that for all i, 0 ≤ i < n,

1. either pi = p′i and pi+1 = p′i+1 and the ith transition (on
ai+1) is of type 1, 2 or 4,

2. or p′i = p′i+1, i′i = i′i+1, p′i =⇒ pi and pi+1 =⇒ p′i so that
the ith transition (on ai+1) is a transition of type 5.

For the basis, notice that if the maximum value attained
is ≤ K2 + K + 1 then, by Lemma 38, there is a run of AU
that simulates ρ2 such that item 1 above is satisfied for all
i.

Now, suppose the maximum value attained along the run
is m > K2 +K + 1. We proceed along the lines of the proof
of Lemma 36. We first break up the run ρ2 as

(h,K)
a−→(p0,K + 1) = (qK+1,K + 1)

yK+2−−−−→(qK+2,K + 2)
yK+3−−−−→(qK+3,K + 3) . . .

ym−−−→(qm,m)

y′m−1−−−−→(q′m−1,m− 1) . . .
y′K+1−−−−→(q′K+1,K + 1)

z−→(q,K + 1)
b−→(h′,K)

where

• The prefix upto (qm,m), henceforth referred to as σm, is
the shortest prefix after which the counter value is m.
• The prefix upto (qi, i), K + 1 ≤ i < m is the longest
prefix of σm after which the value of the counter is i.
• The prefix upto (q′i, i), K + 1 ≤ i < m is the shortest
prefix of ρ2 with σm as a prefix after which the counter
value is i.

By construction, the value of the counter in the segment of
the run from (qi, i)−→ . . .−→(q′i, i) never falls below i. Further,
by simple counting, there are i, j with K + 1 ≤ i < j ≤ m
such that qi = qj and q′i = q′j . Thus, by deleting the segment
of the runs from (qi, i) to (qi, j) and (q′j , j) to (q′j , i) we get
a shorter run ρd which looks like

(h,K)
a−→(p0,K + 1) = (qK+1,K + 1) . . .
yi−−→(qi, i)

yj+1−−−−→(qj+1, i+ 1) . . .

ym−−−→(qm,m− j + i)
y′m−1−−−−→ . . .

y′j−−→(q′j , i)
y′i−1−−−−→(q′i−1, i− 1) . . . (q′K+1,K + 1)

z−→(q,K + 1)
b−→(h′,K)

This run reaches the value m at least one time fewer than ρ2

and thus we may apply the induction hypothesis to conclude
the existence of a run ρ′d of AU that simulates this run move
for move satisfying the properties indicated in the induction
hypothesis. Let this run be:

(h,K, 1)
a−→(r0,K + 1, 2) . . .
yi−−→(ri, ci, 2))

yj+1−−−−→(rj+1, cj+1, 2) . . .

ym−−−→(rm, cm, 2)
y′m−1−−−−→ . . .

y′j−−→(r′j , c
′
j , 2)

y′i−1−−−−→(r′i−1, c
′
i−1, 2) . . . (r′K+1, c

′
K+1, 2)

z−→(r′,K + 1, 2)
b−→(h′,K)

Now, if (pl, il)
al+1−−−−→(pl+1, il+1) was a transition in ρ2

in the part of the run from (qi, i) to (qi, j) then, qi =⇒ pl,
pl

al+1
===⇒ qi and pl+1 =⇒ qi. Now, either ri = qi or ri =⇒ qi,

and qj+1 =⇒ ri and (qi, aj+1, op, qj+1) is a transition for some
op. In the both cases clearly ri

al+1
===⇒ ri. Thus every such

deleted transition can be simulated by a transition of the
form (ri, ci, 2)

al+1−−−−→(ri, ci, 2).
A similar argument shows that every transition of the

form (pl, il)
al+1−−−−→(pl+1, il+1) deleted in the segment (q′j , j)

to (q′j , i) can be simulated by (r′j , c
′
j , 2)

al+1−−−−→(r′j , c
′
j , 2). Thus
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we can extend the run ρ′d to a run ρ′2 that simulates ρ2

fulfilling the requirements of the induction hypothesis. This
completes the proof of this lemma.

Notice that the size of the state space of AU is K.(K2 +
K + 1) when U = K2 + K + 1. Since downward closures
of NFAs can be constructed by just adding additional (ε)
transitions, Lemmas 40 and 41 imply that:

Theorem 7. There is a polynomial-time algorithm that
takes as input a simple OCA A = (Q,Σ, δ, s, F ) and com-
putes an NFA with O(|A|3) states accepting L(A)↓.

A closer look reveals that the complexity remains the
same even for general OCA. We only need one copy of AU .

C. Parikh image: Bounded alphabet
The result of this section is the following theorem.

Theorem 42. For any fixed alphabet Σ there is a polynomial-
time algorithm that, given as input a one-counter automaton
over Σ with n states, computes a Parikh-equivalent NFA.

Note that in Theorem 42 the size of the alphabet Σ is
fixed. The theorem implies, in particular, that any one-
counter automaton over Σ with n states has a Parikh-
equivalent NFA of size polyΣ(n), where polyΣ is a poly-
nomial of degree bounded by f(|Σ|) for some computable
function f .

The numbering sequence from the conference version is
mapped as follows:

• Theorem 8 is Theorem 42,
• Definition 9 is Definition 46,
• Definition 10 is Definition 47,
• Definition 11 is Definition 48,
• Lemma 12 is Lemma 50,
• Definition 13 is Definition 51,
• Lemma 14 is Lemma 52,
• Lemma 15 is Lemma 53,
• Lemma 16 is Lemma 60,
• Lemma 17 is Lemma 56.

Remark 43. We start with yet another simplifying assump-
tion (in addition to that of subsection 2.3). In one part of
our proof (subsection C.2 below) we will need to rely on the
fact that short input words can only be observed along short
runs; this is, of course, always true if all OCA in question
have to ε-transitions. We note here that, for the purpose of
computing the Parikh image, we can indeed assume without
loss of generality that this is the case. To see this, replace
all ε on transitions of an OCA A with a fresh letter e 6∈ Σ;
i.e., increase the cardinality of Σ by 1. Now construct an
NFA Parikh-equivalent to the new OCA over the extended
alphabet; it is easy to see that replacing all occurrences of
e in the NFA by ε will give us an appropriate NFA. In this
NFA ε-transitions can be eliminated in a standard way.

C.1 Basic definitions
We start from a sequence of definitions which are necessary
to describe pumping schemas for one-counter automata, that
are crucial to capture the linear structure of the Parikh
image of the language accepted by a given one-counter
automaton.

Definition 44 (attributes of runs and walks). For a run
π = (p0, c0), t1, (p1, c1), t2, . . . , tm, (pm, cm) or a walk (if it
has sense)1 we define the following attributes:

|π| = m, (length)
init.state(π) = p0, (initial control state)

final.state(π) = pm, (final control state)
init.counter(π) = c0, (initial counter value)

final.counter(π) = cm, (final counter value)
high(π) = max{ci | 0 ≤ i ≤ m},
low(π) = min{ci | 0 ≤ i ≤ m},

drop(π) = init.counter(π)− low(π),

height(π) = high(π)− low(π),

effect(π) = final.counter(π)− init.counter(π).

We also use the following terms for quasi runs and walks:

• the induced word is w = a1a2 . . . am ∈ Σ∗ where ti =
(pi−1, ai, s, pi) ∈ δ with ai ∈ Σ ∪ {ε},
• the Parikh image, denoted ψ(π), is the Parikh image of
the induced word.

Note that a run of length 0 is a single configuration.

Definition 45 (concatenation). The concatenation of a run
π1 and a quasi run π2

π1 = (p0, c0), t1, (p1, c1), t2, . . . , tm, (pm, cm) and
π2 = (q0, c̄0), t̄1, (q1, c̄1), t̄2, . . . , t̄k, (qk, c̄k)

where pm = q0 and cm
def
= final.counter(π1) ≥ drop(π2) is the

sequence

π3 = (p0, c0), t1, (p1, c1), t2, . . . , tm, (pm, cm),

t̄1, (q1, c̄
′
1), t̄2, . . . , t̄k, (qk, c̄

′
k)

where c̄′i = c̄i− c̄0 + cm; note that this sequence π3 is a run.
The concatenation of π1 and π2 is denoted by π3 = π1 ·π2; we
also write π3 = π1π2 when we want no additional emphasis
on this operation.

Note that in our definition of concatenation the value
final.counter(π1) can be different from init.counter(π2), in
which case the counter values all configurations in π2 are
adjusted accordingly. The condition final.counter(π1) ≥
drop(π2) ensures that all the adjusted values stay non-
negative, i.e., that the concatenation π1 · π2 is indeed a
run.

We extend Definition 45 of concatenation to a concate-
nation of a run π1 and a walk α. Let α be a sequence of
transitions in some quasi-run π2. The concatenation π1 and
α is allowed only if π1 · π2 is well-defined, and the effect of
π1 ·α

def
= π1 ·π2, so it is a run. To sum up, we can concatenate

runs, quasi-runs, and walks, using the notation π1 · π2 and
sometimes dropping the dot. If π2 is a walk and π1 is a run,
then π1 · π2 will also denote a run. In this and other cases,
we will often assume that the counter values in π2 are picked
or adjusted automatically to match the last configuration of
π1. However, whenever we introduce parts of the run, e.g.,
by writing “suppose π = π1 · π2”, we always assume that π2

1To define attributes for walk we take a quasi run such that its
sequence of transitions is equal to the walk. All attributes ex-
cept of init.counter(), final.counter(), high(), low() are well defined
for walk, as their value is purely determined by a sequence of
transitions.
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is just a sub-run of π, that is, no implicit shifting occurs in
this particular concatenation.

We say that a run π2 is in π if π = π1π2π3 for
some runs π1, π3 and final.counter(π1) = init.counter(π2),
final.counter(π3) = init.counter(π3).

We say that runs π1, π2, . . . , πk are disjoint in π if
π = π′1π1π

′
2π2π

′
3 . . . π

′
kπkπ

′
k+1 for some runs π′1, π′2 . . . π′k+1,

where final.counter(π′i) = init.counter(πi) and final.counter(πi) =
init.counter(π′i+1) for all 1 ≤ i ≤ k.

C.2 Semilinear representation of ψ(L(A))

Definition 46 (split run). A split run is a pair of runs (ρ, σ)
such that effect(ρ) ≥ 0 and effect(σ) ≤ 0.

In fact, we can even drop these inequalities in the defini-
tion, but we believe it’s more visual this way.

Definition 47 (direction). A direction is a pair of walks α
and β, denoted d = 〈α, β〉, such that:

• init.state(α) = final.state(α),
• init.state(β) = final.state(β),
• 0 < |α|+ |β| < n(2n2 + 3)(n3) + 1,
• 0 ≤ effect(α) ≤ n3,
• effect(α) + effect(β) = 0,
• if effect(α) = 0, then either |α| = 0 or |β| = 0.

One can think of a direction as a pair of short loops with
zero total effect on the counter. Pairs of words induced by
these loops are sometimes known as iterative pairs. Direc-
tions of the first kind are essentially just individual loops; in
a direction of the second kind, the first loop increases and
the second loop decreases the counter value (even though
the values drop(α) and drop(β) are allowed to be strictly
positive). The condition that effect(α) ≤ n3 is a pure tech-
nicality and is only exploited at a later stage of the proof;
in contrast, the upper bound |α|+ |β| < n(2n2 + 3)(n3) + 1
is crucial.

We also use the following terms:

• the Parikh image of a split run (ρ, σ) is ψ((ρ, σ))
def
=

ψ(ρ) + ψ(σ),
• similarly, the Parikh image of a direction 〈α, β〉 is
ψ(〈α, β〉) def

= ψ(α) + ψ(β),
• split runs (ρ1, σ1) . . . (ρk, σk) are disjoint in a run π iff
ρ1, σ1, . . . , ρk, σk form disjoint subsequences of transi-
tions in the sequence π;

Remark: the number of directions can be exponential,
but the number of their Parikh images is at most (n(2n2 +
3)(n3) + 1)|Σ|. Since |Σ| is fixed, this is polynomial in n.

Definition 48 (availability of directions). Suppose π is a
run. A direction d = 〈α, β〉 is available at π if there exists a
factorization π = π1 · π2 · π3 such that π′ = π1 · απ2β · π3 is
also a run.

In the context of the definition above we write π + d
to refer to π′. This plus operation is non-commutative and
binds from the left. Whenever we use this notation, we
implicitly assume that the direction d is available at π.

Note that for a particular run π there can be more than
one factorization of π into π1, π2, π3 such that π1απ2βπ3 is
a valid run. In such cases the direction d can be introduced
at different points inside π. In what follows we only use the
notation π + d to refer to a single run π′ obtained in this
way, without specifying a particular factorization of π. We

ensure that all statements that refer to π+d hold regardless
of which factorization is chosen of π.

Lemma 49 (characterization of availability). A direction
〈α, β〉 is available at a run π if and only if π has two
configurations (init.state(α), c1) and (init.state(β), c2), occur-
ring in this particular order, such that c1 ≥ drop(α) and
c2 + effect(α) ≥ drop(β).

Proof. Denote p = init.state(α) and q = init.state(β). It is
immediate that for a direction 〈α, β〉 to be available, it is
necessary that π have some configurations of the form (p, c1)
and (q, c2) that occur in this order. Let π = π1π2π3 where
π1 ends in (p, c1) and π2 ends in (q, c2). We now show that
the direction 〈α, β〉 is available if and only if c1 ≥ drop(α)
and c2 + effect(α) ≥ drop(β).

We first suppose that these two inequalities hold. Ob-
serve that π1α is then a run as c1 ≥ drop(α); furthermore,
final.counter(π1α) = c1+effect(α) ≥ c1: by our definition of a
direction, we have effect(α) ≥ 0. Hence, final.counter(π1α) ≥
c1 ≥ drop(π2), where the last inequality holds because
π1π2 is a run. It follows that π1απ2 is also a run; we note
that final.counter(π1απ2) = final.counter(π1π2) + effect(α) =
c2 + effect(α) ≥ drop(β). This, in turn, implies that π1απ2β
is a run. Moreover effect(α) = −effect(β) by our definition of
a direction, so final.counter(π1απ2β) = final.counter(π1π2) =
c2. Since π1π2π3 is a run, we have c2 ≥ drop(π3); hence,
π1απ2βπ3 is also a run.

Conversely, suppose π1απ2βπ3 is a run. Recall that π1

ends in (p, c1); we conclude that c1 ≥ drop(α). Also recall
that in the run π1π2π3 the fragment π2 ends in (q, c2);
here c2 = final.counter(π1π2). But π1απ2βπ3 is a run, so
final.counter(π1απ2) ≥ drop(β); since final.counter(π1απ2) =
final.counter(π1π2) + effect(α), we also conclude that c2 +
effect(α) ≥ drop(β). This completes the proof.

By avail(π) we denote the set of all directions available
at π.

Lemma 50 (monotonicity of availability). If π is a run of
a one-counter automaton and d is a direction available at π,
then avail(π) ⊆ avail(π + d).

Proof. By Lemma 49 it suffices to show that for every pair
of configurations (p, c1), (q, c2) that appear in π in this par-
ticular order there is a pair of configurations (p, c′1), (q, c′2)
that appear in π′ = π+d, in this particular order, such that
c′1 ≥ c1 and c′2 ≥ c2. Now, this claim is not difficult to sub-
stantiate. Suppose d = 〈α, β〉. Indeed, for any decomposition
of π = π1π2π3 such that there is a π′ = π1απ2βπ3, define
π′1 = π1, π′2 = (init.state(π2), init.counter(π2) + effect(α))π2,
π′3 = π3. Now π′2 is simply π2 shifted up, as effect(α) ≥ 0.
Observe that now π′ = π′1απ

′
2βπ

′
3. Thus for any pair of

configurations in π there is a corresponding pair of configu-
rations with the needed properties in π′. This completes the
proof.

Definition 51 (unpumping). A run π′ can be unpumped if
there exist a run π and a direction d such that π′ = π + d.

If additionally avail(π′) = avail(π), then we say that
π′ can be safely unpumped. Note that avail(π′) is always a
superset of avail(π) by Lemma 50.

Lemma 52 (safe unpumping lemma). Every accepting run
π′ of A of length greater than n2((2n2 + 3)(n3))3 can be
safely unpumped.
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Lemma 52 is the key lemma in the entire Appendix C; we
prove it in subsection C.4.

Recall that a set A ⊆ N|Σ| is called linear if it is of
the form Lin(b;P )

def
= {b + λ1p1 + . . . + λrpr | λ1, . . . , λr ∈

N, p1, . . . , pr ∈ P} for some vector b ∈ N|Σ| and some finite
set P ⊆ N|Σ|; this vector b is called the base and vectors
p ∈ P periods. A set S ⊆ Nd is called semilinear if it is a
finite union of linear sets, S = ∪i∈ILin(bi;Pi). Semilinear
sets were introduced by FIXME in 1960s and have since
received a lot of attention in formal language theory and
its applications to verification. They are precisely the sets
definable in Presburger arithmetic, the first-order theory of
natural numbers with addition. Intuitively, semilinear sets
are a multi-dimensional analogue of ultimately periodic sets
in N.

The following lemma characterizes the semilinear set
ψ(L(A)) through sets of directions available at short ac-
cepting runs.

Lemma 53. For any one-counter automaton A, it holds
that

ψ(L(A)) =
⋃

|π| ≤ small1

Lin(ψ(π);ψ(avail(π))),

where the union is taken over all runs of A of length at most
small1

def
= n2((2n2 + 3)(n3))3.

Proof. Start with the ⊇ part. It suffices to show that, for any
run π of A and any vector v ∈ Lin(ψ(π);ψ(avail(π))), the
set L(A) contains at least one word with Parikh image v.
Indeed, take such a v and suppose that v = v0 +

∑m
i=1 λivi,

where the vector v0 is the Parikh image of the word induced
by the run π, vectors v1, . . . , vm are Parikh images of the
words induced by some directions d1, . . . , dm available at π,
and λ1, . . . , λm are nonnegative integers. Lemma 50 ensures
that we can form a run

π + d1 + . . .+ d1︸ ︷︷ ︸
λ1 times

+ . . .+ dm + . . .+ dm︸ ︷︷ ︸
λm times

.

This run induces a word accepted by A, and the Parikh
image of this word is v, as desired.

Now turn to the ⊆ part and take some vector v in
ψ(L(A)). This vector v is the Parikh image of a word in
L(A), which is induced by some accepting run π0 of A.
If the length of π0 does not exceed n2((2n2 + 3)(n3))3,
there is nothing to prove, so assume otherwise. By the main
lemma 52, π0 can be safely unpumped. This implies that
π0 = π1 + d1 for some direction d1. Note that the length
of π1 is strictly less than the length of π0; if it is greater
than n2((2n2 + 3)(n3))3, then we apply the safe unpumping
lemma again: π1 = π2 + d2. We repeat the process until the
length of the run drops to n2((2n2 + 3)(n3))3 or below:

π0 = πk + dk + dk−1 + . . .+ d1, (2)

where |πk| ≤ n2((2n2 + 3)(n3))3. Take Parikh images of the
words that are induced by the runs on both sides of (2): on
the left-hand side, we obtain v; we claim that on the right-
hand side we obtain a vector from Lin(ψ(πk);ψ(avail(πk))).
Indeed, recall that Lemma 52 guarantees that all these
unpumpings are safe, i.e., avail(πi) = avail(πi−1) for 0 < i ≤
k. Since each direction di is available at the run πi, it follows
that all the directions d1, . . . , dk are available at πk, so the
Parikh image of the word induced by the run on the right-
hand side of (2) indeed belongs to Lin(ψ(πk);ψ(avail(πk))).

But, by our choice above, the run πk has length at most
n2((2n2 + 3)(n3))3. This concludes the proof.

Up to now we were focused on building some semilinear
representation of ψ(L(A)). Our next goal is to improve
this representation, before we start we introduce two useful
notions. For a given vector v we define ‖v‖∞

def
= max{v(a) |

a ∈ Σ} and ‖v‖1
def
=
∑
a∈Σ v(a). For a set of vectors F by

‖F‖∞ we denote max{‖v‖∞ | v ∈ F}. We also denote the
cardinality of a finite set F by #F .

The following lemma uses results from Huynh [24] and
in Kopczyński and To [25], which rely on the Carathéodory
theorem for cones in a multi-dimensional space. Essentially,
the underlying idea is that if a vector is a linear combination
of more than |Σ| vectors in a |Σ|-dimensional space, then,
by using linear dependencies, one can reduce this number to
just |Σ|. For non-negative integer combinations, the situa-
tion is slightly more complicated, but the same idea can be
carried through.

Lemma 54. Let S ⊆ N|Σ| be a semilinear set with represen-
tation S =

⋃
i∈I Lin(ci;Pi) and suppose M ∈ N is such that

‖ci‖∞, ‖Pi‖∞ ≤M for all i ∈ I. Then S also has a represen-
tation S =

⋃
j∈J Lin(bj ;Qj), where #J ≤ (M + 1)poly(|Σ|)

and for each j ∈ J there exists an i ∈ I such that the fol-
lowing conditions hold:

• Lin(bj ;Qj) ⊆ Lin(ci;Pi),
• Qj is a linearly independent subset of Pi, and
• ‖bj‖∞ ≤ (M + 1)poly(|Σ|).

Proof. The case #I = 1 appears in Huynh [24, Lemma 2.8]
and in Kopczyński and To [25, Theorem 6]. In these results,
upper bounds on #J are only stated implicitly and only for
I = 1. We will rely on results of Kopczyński and To, as
it seems simpler to extract an explicit upper bound from
their arguments. Their results can be stated as follows: If
S = Lin(c1, P1;), then S has also a representation S =⋃
j∈J1

Lin(bj ;Qj) such that for each j ∈ J1 the following
conditions hold:

• Lin(bj ;Qj) ⊆ Lin(c1;P1),
• Qj is a linearly independent subset of P1, and
• ‖bj‖∞ ≤ (M + 1)poly(|Σ|).

In fact, the precise bound we get from [25, Theorem 6] is as
follows:

‖bj‖∞ ≤ (2M + 1)|Σ| · (M |Σ| · |Σ|
|Σ|
2 )2.

Observe that if S =
⋃
i∈I Lin(ci, Pi;), then we can transfer

the above result directly: S =
⋃
i∈I
⋃
j∈Ji Lin(bj ;Qj) =⋃

j∈J Lin(bj ;Qj) and the above bounds are transfered as
well.

So the only remaining part is to prove that #J ≤ (M +
1)poly(|Σ|). To do this, we start from the observation that
every element j ∈ J is uniquely determined by the pair
(bj , Qj), so #J is bounded by the cardinality of a set of all
possible pairs (b,Q) where

• b ∈ N|Σ| and ‖b‖∞ ≤ (M + 1)poly(|Σ|)

• Q is an r-tuple of vectors (v1, . . . vr) where r ≤ |Σ| and
each vi ∈ N|Σ| and ‖vi‖∞ ≤M .
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Due to the above characterization, we can bound the number
of possible pairs (b,Q) by

((M + 1)poly(|Σ|))|Σ| · ((M + 1)|Σ|)|Σ|,

which is again a polynomial inM , because |Σ| is fixed. Thus,
#J ≤ (M+1)(poly(|Σ|)+|Σ|)·|Σ|. This completes the proof.

Lemma 55. For any one-counter automaton A, it holds
that

ψ(L(A)) =
⋃

|π| ≤ small2

Lin(ψ(π);ψ(Dπ)),

where the union is taken over all runs of A of length at most
small2

def
= poly(n2((2n2 + 3)(n3))3) and, for each π, Dπ is

a subset of avail(π) of cardinality at most |Σ|.

Proof. From Lemma 53 we know that

ψ(L(A)) =
⋃

|π′| ≤ small1

Lin(ψ(π′);ψ(avail(π′))).

If we apply to it Lemma 54 we get the desired statement. It is
worth emphasizing that Dπ ⊆ avail(π) due to the following
reasoning:
First due to Lemma 54, ψ(π) ∈ Lin(ψ(π′);ψ(avail(π′))) for
some π′ and π can be obtained from π′ by pumping some of
directions in the set avail(π′). Thus according to Lemma 54
the set avail(π′) ⊆ avail(π) and consequently (according to
Lemma 54) as Dπ ⊆ avail(π′) we get Dπ ⊆ avail(π).

C.3 Computing the semilinear representation
Below we state sub-procedures used in the algorithm.

Lemma 56. For every fixed Σ there is a polynomial-time al-
gorithm for the following task: given a one-counter automa-
ton A over Σ, two configurations (q1, c1) and (q2, c2) and a
vector v ∈ NΣ with all numbers written in unary, decide if
A has a run π = (q1, c1)−→(q2, c2) with ψ(π) = v.

Proof. Our algorithm leverages the unary representation of
c1, c2, and components of v. Define H0 = max(c1, c2) +
‖v‖1 + 1. Observe that for any run π = (q1, c1)−→(q2, c2)
such that ψ(π) = v the counter value stays below H0, as in
one move the counter can not be changed by more than 1
and the number of moves is bounded by ‖v‖1.

The algorithm constructs a multi-dimensional table that
for all pairs of configurations (q′1, c

′
1), (q′2, c

′
2) with c′1, c′2 <

H0 and all vectors v′ ∈ {0, . . . , H0}Σ keeps the information
whether there exists a w′ ∈ Σ∗ such that A has a run
(q′1, c

′
1)

w′−−→(q′2, c
′
2) where the counter value stays below H0

and ψ(w′) = v′. The size of the table is at most (|A| ·H0)2 ·
(H0 + 1)|Σ|, which is polynomial in the size of the input for
a fixed Σ.

The algorithm fills the entries of the table using dy-
namic programming. To begin with, runs whose Parikh im-
age is the zero vector only connect pairs where (q′1, c

′
1) =

(q′2, c
′
2). Now take a non-zero vector v′ ∈ {0, . . . , H0}Σ;

a run (q′1, c
′
1)

w′−−→(q′2, c
′
2) with ψ(w′) = v′ exists if and

only if there exists an intermediate configuration (q̄, c̄) such
that (q′1, c1)

w̄−−→(q̄, c̄)
a−→(q′2, c

′
2), where w̄ ∈ Σ∗, a ∈ Σ,

and ψ(w̄) + ψ(a) = v′; note that the vector ψ(a) has 1
in exactly one component and 0 in other components, so
ψ(w̄) ∈ {0, . . . , H0}Σ and ‖ψ(w̄)‖1 = ‖v′‖1 − 1. This com-
pletes the description of the algorithm.

Corollary 57. For a fixed alphabet Σ the Parikh member-
ship problem for (simple) one-counter automata is in P:
there exists a polynomial-time algorithm that takes as an
input a (simple) one-counter automaton A over Σ with n
states and a vector v ∈ N|Σ| with components written in
unary, and outputs some accepting run π of A with ψ(π) = v
if such a run exists or “none” otherwise.

Lemma 58. For every fixed Σ there is a polynomial-time
algorithm for the following task: given a one-counter au-
tomaton A over Σ, a sequence of 2|Σ| configurations C def

=
(q1, c1), (q2, c2) . . . (q2|Σ|, c2|Σ|) and a vector v ∈ NΣ with all
numbers written in unary, decide if A has an accepting run
π such that ψ(π) = v and π contains C as a subsequence.

Proof. Observe, that if there is such a run π then configu-
rations in C are cutting π into 2|Σ| + 1 fragments. Each of
these fragments have its own Parikh image u1, u2 . . . u2|Σ|+1

that sum up to v. Thus the procedure iterates through all
possible partitions of v into 2|Σ| + 1 vectors, and for each
such partition it checks if there exists a required set of runs:
between consecutive elements of C, a run from the initial
configuration (q0, 0) to the first element of C and run form
the last element of C to some accepting configuration. Each
of those small test can be done in polynomial time using al-
gorithm form Lemma 56. The crucial fact is that the number
of possible partitions of v into 2|Σ|+1 vectors is polynomial
in ‖v‖1 as the dimension is fixed i.e. number of partitions is
bounded by (‖v‖|Σ|1 )2|Σ|+1. This implies that the presented
procedure works in polynomial time.

Lemma 59. For every fixed Σ there is a polynomial-time
algorithm for the following task: given a one-counter au-
tomaton A over Σ, a sequence of 2|Σ| configurations C def

=
(q1, c1), (q2, c2) . . . (q2|Σ|, c2|Σ|) and a vector v with all num-
bers written in unary, decide if in A there exist a direc-
tion 〈α, β〉 and two configurations (pi, ci), (pj , cj) ∈ C where
i ≤ j such that:
• ψ(〈α, β〉) = v,
• init.state(α) = pi, low(α) ≤ ci and
• init.state(β) = pj , low(β) ≤ cj + effect(α)

Proof. First observe that there are
(

2+(2|Σ|)−1
2

)
possibilities

for a pair (pi, ci), (pj , cj) of configurations, thus it suffice to
provide a polynomial time procedure to check if there exist a
direction 〈α, β〉 for a given pair of configurations. Indeed we
can iterate through all possible pairs and for each of them
use the procedure.

Second if there is a direction 〈α, β〉 then effect(α) ≤ ‖v‖1;
thus in order to check existence of 〈α, β〉 we proceed as
follows: for every x ∈ {0 . . . ‖v‖1} check if there are runs α
from (pi, ci) to (pi, ci + x) and β from (pj , cj + x) to (pj , cj)
such that ψ(α) + ψ(β) = v.

This question is very close to the question considered in
Lemma 56, the problem is that we don’t know the partition
of v into ψ(α) and ψ(β).

However, observe that the number of possible partitions
is polynomial (bounded by ‖v‖|Σ|1 ·‖v‖

|Σ|
1 ). Thus basically for

every possible partition of v into v1 and v2 we check if there
are runs α from (pi, ci) to (pi, ci+x) and β from (pj , cj +x)
to (pj , cj) such that ψ(α) = v1 and ψ(β) = v2. This can be
done in polynomial time according to Lemma 56.

In conclusion we iterate though all pairs of configurations
in C through all possible effects of α and all possible split-
tings of v into v1 and v2; for each such choice we check if
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there are runs α and β using algorithm from Lemma 56. The
number of possible choices is polynomial and for each choice
we execute a polynomial time procedure so the algorithm
works in polynomial time.

Lemma 60. For every fixed Σ there is a polynomial-time al-
gorithm for the following task: given a one-counter automa-
ton A over Σ and vectors v, v1, . . ., vr ∈ NΣ, 0 ≤ r ≤ |Σ|,
with all numbers written in unary, decide if A has an ac-
cepting run π and directions d1, . . . , dr available at π such
that ψ(π) = v and ψ(di) = vi for all i.

Proof. First observe that if there is such a run π then
according to Lemma 49 for every vi ∈ {v1 . . . v|Σ|} there is a
pair of configurations such that it makes available a direction
di where ψ(di) = vi. Thus for a set of vectors {v1 . . . v|Σ|}
there is a sequence C of 2|Σ| configurations such that it is
a subsequence of π and for every vector vi there is a pair of
configurations in C which makes some direction di available
in sense of Lemma 49.

Second observation is that the counter value of any con-
figuration C can not exceed ‖v‖1; thus the sequence C has
to be an element of a family of 2|Σ|-sequences of configu-
rations bounded by ‖v‖1. The size of this family is at most
(|A| · ‖v‖1)2|Σ|.

From above we derive a following procedure. For every
possible choice of the sequence C test:

• if there is an accepting run π that contains C as a
subsequence and where ψ(π) = v,
• if for every vi ∈ {v1 . . . v|Σ|} there is a pair of configura-
tions in C which makes available (in sense of Lemma 49)
some direction di such that ψ(di) = vi.

The first item is handle by algorithm from Lemma 58, the
second by Lemma 59.

The proposed algorithm is polynomial time as the num-
ber of possible C is polynomial in the size of the input and
for each possible C we execute small number of times poly-
nomial time algorithms from Lemmas 58 and 59.

Lemma 61. For a fixed alphabet Σ there exists a polynomial-
time algorithm that takes as an input a simple one-counter
automaton over Σ with n states and outputs (in unary)
an integer k ≥ 0, vectors bi ∈ N|Σ|, and sets of vectors
Pi ⊆ N|Σ|, |Pi| ≤ |Σ| for 1 ≤ i ≤ k, such that

ψ(L(A)) =
⋃

1≤i≤k

Lin(bi;Pi)

and the following property is satisfied: for each i there exists
an accepting run π of A and directions d1, . . . , dr available
at π such that ψ(π) = bi and ψ({d1, . . . , dr}) = Pi.

Proof. Proof bases on two Lemmas 55 and 60. From the first
one we conclude that it suffices to characterize polynomially
many linear sets li such that ψ(L(A)) =

⋃
i li. According to

Lemma 55 for each linear set li = Lin(bi;Qi) holds:

• there exist an accepting run πi such that ψ(πi) = bi and
‖bi‖1 ≤ poly(n2((2n2 + 3)(n3))3),
• the number of elements of Qi is bounded by |Σ|
• for every vj ∈ Qi there exist a direction dj ∈ avail(π),
such that ψ(dj) = vj .

The last bullet point combined with Definition 47 of direc-
tion gives upper-bound on the vj ∈ Qi for any i, precisely
‖vj‖1 ≤ n(2n2 + 3)(n3) + 1.

Thus in order to compute the linear sets that characterize
ψ(L(A)) we iterate through all possible vectors for b, where
‖b‖1 ≤ poly(n2((2n2 + 3)(n3))3), and all possible sets Q,
where |Q| ≤ |Σ|, and for every v ∈ Q hold ‖v‖1 ≤ n(2n2 +
3)(n3) + 1. For each combination we check independently if
Lin(b;Q) satisfies three bullet points. Second bullet point is
satisfied by the definition. To check first and third we use
the algorithm proposed in Lemma 60.

To show that above procedure terminates in polynomial
time we observe that

• number of possible choices for b and Q is bounded by
poly(n2((2n2 + 3)(n3))3)|Σ| · ((n(2n2 + 3)(n3) + 1)|Σ|)|Σ|,
• length of description of b and Q in unary encoding is
polynomial in A (for example can be bounded by number
of possible choices).
• Algorithm from Lemma 60 terminates in time polynomial
in the input and as input is polynomial in |A| then it
terminates in time polynomial in |A|.

Lemma 62. For a fixed alphabet Σ there exist a polynomial
time algorithm that takes as an input a one-counter automa-
ton over Σ with n states and returns a Parikh-equivalent
NFA.

Proof. Observe that it suffice to show how to change one
linear set to NFA; indeed in the end we can take union
of automata designed for polynomialy many linear sets li.
To build NFA that accepts a language Parikh equivalent
to li = Lin(b;Q) we start form building an automaton
that accepts only one word which is Parikh equivalent to
b. Next to the unique accepting state we add one loop for
each vi ∈ Q. Word that can be read along i − th loop
is Parikh equivalent to vi ∈ Q. It is easy to see that
such automaton accepts a language Parikh equivalent with
Lin(b; li).

Note that DFA instead of NFA would not suffice for
this construction, because even transforming unary NFA
into unary NFA induces a super-polynomial blowup (a stan-
dard example has several cycles whose lengths are different
prime numbers, with lcm (least common multiple) of super-
polynomial magnitude).

C.4 Proof of the main lemma
In this subsection we prove Lemma 52. We consider two
cases, depending on whether the height (largest counter
value) of π′ exceeds a certain polynomial in n. The strategy
of the proof is the same for both cases (although the details
are somewhat different).

Lemma 63. Every accepting run π′ of height greater than
(2n2 + 3)(n3) can be safely unpumped.

Lemma 64. Every accepting run π′ of height at most
(2n2 + 3)(n3) and length greater than n2((2n2 + 3)(n3))3

can be safely unpumped.

We first show that sufficiently large parts (runs or split
runs) of π′ can always be unpumped (as in standard pump-
ing arguments). We notice that for such an unpumping to be
unsafe, it is necessary that the part contain a configuration
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whose removal shrinks the set of available directions—a rea-
son for non-safety; this important configuration cannot ap-
pear anywhere else in π′. We prove that the total number of
important configurations is at most poly(n). As a result, if
we divide the run π′ into sufficiently many sufficiently large
parts, at least one of the parts will contain no important
configurations and, therefore, can be unpumped safely.

C.4.1 High runs: Proof of Lemma 63
The idea behind bounding the height of runs bases on two
concepts. First is that if a run is high then there is a direction
in it that can be unpumped. Second is that if a given run
is even higher then there are a lot of different directions
which can be unpumped and among them at least one can be
unpumped in a safe way. As unpumping intuitively reduces
the hight of a run, then iterative application of it lead to a
path of bounded hight.

Claim 65. Let (ρ, σ) be a split run such that effect(ρ) ≥ n3

and −effect(σ) ≥ n3, then (ρ, σ) = (ρ1αρ2, σ1βσ2) such that
〈α, β〉 is a direction.

Proof. Let ρ′ and σ′ be a pair of sub-runs of ρ and σ,
respectively, such that |ρ′| = |σ′| = n3; such sub-runs exists
because effect(ρ) ≥ n3 and −effect(σ) ≥ n3. Consider three
possibilities:

1) there is a non-empty walk α such that ρ′ = ρ′1αρ
′
2

that starts and ends in the same configuration, i.e.
final.counter(ρ′1) = final.counter(ρ′1α) and init.state(α) =
final.state(α);

2) there is a non-empty walk β such that σ′ = σ′1βσ
′
2

that starts and ends in the same configuration, i.e.
final.counter(σ′1) = final.counter(σ′1β) and init.state(β) =
final.state(β);

3) effect(ρ′) ≥ n2 and −effect(σ′) ≥ n2.

(Note that at least one of these three statements must hold,
because, for example, the inequality effect(ρ′) < n2 implies
that the run ρ′ traverses at most n2 · |Q| = n3 different
configurations; however, |ρ′| = n3 implies that the total
number of configurations that ρ′ traverses is n3 + 1. Hence,
by the pigeonhole principle the run ρ′ should traverse some
configuration at least twice—which is the first possibility in
the list above.) For each of these three possibilities, we now
show how to find some direction 〈α, β〉 inside the split run
(ρ′, σ′).

Consider the first possibility, the direction 〈α, ε〉 suffices
for our purposes. Indeed, it is a direction of the first kind
as effect(α) = effect(ε) = 0 and |ε| = 0; the reader will
easily check that all the conditions in the definition of a
direction (Definition 47) are satisfied. The second possibility
is completely analogous: the direction has the form 〈ε, β〉.

Now consider the third possibility. First, for every i ∈
{0, . . . , n2} pick one configuration in the run ρ′ with the
counter value init.counter(ρ′) + i; call these configurations
red. As there are n2 + 1 red configurations, at least n+ 1 of
them have the same state; we call these n+ 1 configurations
blue. The corresponding indices i (for which the selected red
configuration is also blue) are called blue too. Now for every
blue i we pick in the other run, σ′, some configuration with
the counter value equal to init.counter(σ′)− i; we call these
n+1 configurations green. Among green configurations there
are at least two with the same state, say for i = i1 and i = i2.
Let σβ be the run between them contained in σ′; now β is a
walk induced by σβ . But for α we can, in turn, take a walk

induced by a run between blue configurations with indices
i = i1 and i = i2. By construction, effect(α) = −effect(β) >
0, and it is easy to check that 〈α, β〉 is indeed a direction of
the second kind. This completes the proof.

Definition 66 (promising split run). A split run (ρ, σ) in
the run π′ = π1ρπ2σπ3 is promising if low(ρπ2σ) ≥ n3,
effect(ρ) ≥ n3, and −effect(σ) ≥ n3.

Definition 67 (unpumping a split run). A split run (ρ′, σ′)
in an accepting run π′ = π1 · ρ′ · π2 · σ′ · π3 can be unpumped
if there exist a split run (ρ, σ) and a direction d such that
the following conditions hold:
• ρ′ = ρ1αρ2 for some runs ρ1, ρ2,
• σ′ = σ1βσ2 for some runs σ1, σ2,
• π = π1 · ρ1ρ2 · π2 · σ1σ2 · π3 is an accepting run.

One can conclude in such a case that π′ = π + d.

Claim 68. Any promising split run in an accepting run π′
can be unpumped.

Proof. Let π′ = π1ρπ2σπ3 where the split run (ρ, σ) is
promising. Note that by the definition of a promising split
run, (ρ, σ) satisfies the conditions of Claim 65. Therefore,

π′ = π1 · ρ1αρ2 · π2 · σ1βσ2 · π3

where 〈α, β〉 is a direction, so it remains to prove that

π = π1 · ρ1ρ2 · π2 · σ1σ2 · π3

is, first, a run and, second, an accepting run. It is straight-
forward to see that in this new concatenation the control
states match, so it suffices to check that the counter values
in π stay non-negative; by Definition 45, the (necessary and)
sufficient condition for this is that the drop(·) of each subse-
quent run does not exceed the final.counter(·) of the prefix.
To simplify notation, we denote π′2

def
= ρ2π2σ1.

As π1 · ρ1 is a prefix of π′, we know that it is a run; the
first thing that has to be checked is that π1 · ρ1π

′
2 is a run.

This holds if

final.counter(π1 · ρ1) ≥ drop(π′2), i.e., if
final.counter(π1 · ρ1)− drop(π′2) ≥ 0.

We have

final.counter(π1 · ρ1)− drop(π′2)

= final.counter(π1 · ρ1α)− effect(α)− drop(π′2)

= final.counter(π1 · ρ1α)− effect(α)− drop(ρ2 · π2 · σ1)

= low(ρ2 · π2 · σ1)− effect(α)

≥ low(ρ · π2 · σ)− effect(α)

≥ n3 − effect(α)

≥ n3 − n3 = 0,

where the equalities and inequalities follow from Defini-
tions 44 and 47 and from the conditions of the claim. Hence,
π1 · ρ1π

′
2 is a run.

Since effect(α) = −effect(β), the equality

final.counter(π1 · ρ1π
′
2) = final.counter(π1 · ρ1απ

′
2β)

holds. Therefore, as π1ρ1απ
′
2βσ2π3 = π′ is a run, π1ρ1π

′
2σ3π3 =

π is a run too. Moreover,

final.counter(π) = final.counter(π′),

so π is an accepting run, for π′ is accepting as well. This
completes the proof.
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Definition 69 (state fingerprint). Let τ be a run. The state
fingerprint of τ is the set of all pairs (q1, q2) ∈ Q × Q such
that τ contains configurations c1 = (q1, r1) and c2 = (q2, r2)
for some r1 and r2, and, moreover, there exists at least
one occurrence of c1 before (possibly coinciding with) some
occurrence of c2.

Claim 70. Suppose

π′ = π1π2 · απ3β · π4π5 and
π = π1π2 · π3 · π4π5

are accepting runs and 〈α, β〉 is a direction, so that π′ =
π + 〈α, β〉. Also suppose that

low(π2 · απ3β · π4) ≥ 2(n3).

If the runs π2 · απ3β · π4 and π2 · π3 · π4 have identical state
fingerprints, then avail(π′) = avail(π).

Proof. Since 〈α, β〉 is a direction, we have effect(α) =
−effect(β) ≤ n3. Thus for all configurations observed along
π2π3π4 their counter values are at least 2(n3)− effect(α) ≥
n3. Now we can use our characterization of availability
(Lemma 49). Let a direction d be available in π′ due to
a pair of configurations (q1, c1), (q2, c2). We have to con-
sider three cases depending on where (q1, c1), (q2, c2) are:
both configurations are in parts π1, π5, both configurations
are in π2απ3βπ4 and one is in π1 or π5 and the second in
π2απ3βπ4. In first case exactly the same pair of configu-
rations can be found in π. In the second case due to the
assumption about equality of state fingerprints we can find
a pair (q1, c

′
1), (q2, c

′
2) where c′1, c′2 ≥ n3 ≥ drop(α), drop(β)

so d is available in π. In the third case we have to combine
both previous cases. There are two symmetric situations,
first if the pair of configurations (q1, c1) is in π1 and (q2, c2)
in π2απ3βπ4 or (q1, c1) is in π2απ3βπ4 and (q2, c2) is in
π5. Here we consider only the first one of them, the second
is analogous. We need to find a pair of configurations in
π that witnesses the availability of d. The first element of
the pair is the same (q1, c1) that can be found in π1 as a
subrun of π′. To find the second element, consider this con-
figuration (q2, c2) in π′; it occurs in π2απ3βπ4, so the state
fingerprint contains the pair (q2, q2), simply by definition.
Thus, in π2π3π4 we can find a configuration (q2, c3) such
that c3 ≥ n3. Now this moves us from the pair of config-
urations (q1, c1), (q2, c2) to the pair (q1, c1), (q2, c3), which
completes the proof.

Claim 71. Let π = π1π2π3 be an accepting run. Suppose
the run π2 satisfies low(π2) ≥ 2(n3) and contains 2n2 + 1
pairwise disjoint promising split runs. Then π can be safely
unpumped.

Proof. From Claim 68 we know that each of these split runs
can be unpumped; so the accepting run π can be unpumped
in at least 2n2 +1 different ways. Furthermore, by Claim 70,
if the state fingerprint of π2 after unpumping one of these
split runs does not change, then this unpumping is safe.
Hence, it remains to show that such an unpumping indeed
exists.

For any pair of states in the state fingerprint of π2, mark
two configurations of π2 that witness this pair (in sense of
Lemma 49). In total, at most 2n2 configurations of π2 will be
marked. Since π2 contains at least 2n2 +1 disjoint promising
split runs, there is a promising split run in π2 that contains
no marked configuration. Our choice of this split run ensures
that its unpumping will not change the state fingerprint

of π2: every pair of states in the state fingerprint of π2 is
witnessed by a pair of configurations outside this split run.
This completes the proof.

Claim 72. Let π be a run of height at least (2n2 + 3)(n3).
Then π = π1π2π3 for some runs π1, π2, π3 such that
low(π2) ≥ 2(n3) and π2 contains at least 2n2 + 1 pairwise
disjoint promising split runs.

Proof. First factorize π as π = π1π2π3 where init.counter(π2) =
2(n3), final.counter(π2) = 2(n3) and low(π2) = 2(n3).
We can now split π2 into two parts, π2 = π′2π

′′
2 , so that

final.counter(π′2) = init.counter(π′′2 ) = high(π2). Let ρi for
0 ≤ i ≤ 2n2 + 1 be the sub-run of π′2 which starts at the last
configuration of π′2 with counter value 2(n3) + i · (n3) + 1
and ends at the last configuration with counter value
2(n3) + (i + 1) · (n3). Similarly, let σi be the sub-run of
π′′2 which ends at the last configuration with counter value
2(n3) + i · (n3) + 1 and starts at the last configuration with
counter value 2(n3) + (i+ 1) · (n3).

It is obvious that (ρi, σi) ∩ (ρj , , σj) = ∅ for i 6= j and
that (ρi, σi) is a promising split run for any i ≤ 2n2 + 1.

Lemma 63 follows from Claims 71 and 72.

C.4.2 Low runs: Proof of Lemma 64
The idea behind bounding the length of low runs (not
high runs) bases on similar concept as bounding the hight
of runs. First we show that long enough low run can be
unpumped and next that if the run is even longer then
there are a lot different directions that can be unpumped
independently; finally one of them can be unpumped in a
safe way. Unpumping makes a run shorter so any low run
that can not be unpumped anymore can not be very long.

Definition 73 (promising run). A run τ is promising if
high(τ) < (2n2 + 3)(n3) and |τ | > n(2n2 + 3)(n3) + 1.

Claim 74. Any promising run τ can be unpumped.

Proof. As the counter value in the run τ is bounded by
(2n2 +3)(n3) and the length of τ is at least n(2n2 +3)(n3)+
1 then among first n(2n2 + 3)(n3) + 1 configurations at
least one configuration has to repeat. Thus τ = π1απ2

where init.state(α) = final.state(α) and init.counter(α) =
final.counter(α). As a result, the fragment α between two oc-
currences of this repeating configuration can be unpumped,
so the outcome of this operation is a run π1 · π2. Note that
the unpumped direction is of the form 〈α, c〉, where c is path
of length zero (a configuration that occurs to the right of α).
In this case the effect(α) = 0 and it does not violates the
upper bound on the length.

Now, instead of the state fingerprint introduced in the
previous subsubsection C.4.1, we will use configuration fin-
gerprint, defined as follows.

Definition 75 (configuration fingerprint). Let τ be a run.
The configuration fingerprint of τ is the set of all pairs of
configurations (c1, c2) such that in τ there exists at least
one occurrence of c1 before (possibly coinciding with) some
occurrence of c2.

Remark 76. Suppose τ is an accepting run ofA of height at
most (2n2 + 3)(n3), then the cardinality of its configuration
fingerprint does not exceed poly1

def
= n2((2n2 + 3)(n3))2.
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Claim 77. If runs τ and τ ′ have identical configuration
fingerprints, then avail(τ ′) = avail(τ).

Claim 77 follows from Lemma 49.

Claim 78. Any accepting run τ that satisfies high(τ) ≤
(2n2 + 3)(n3) and contains, as sub-runs, 2(poly1) pairwise
disjoint promising runs, can be safely unpumped.

Proof. Let S be the configuration fingerprint of τ . For every
element of x ∈ S we choose two configurations that witnesses
x. Observe that set of chosen configurations is of size at most
2 · |S| ≤ 2 · (poly1); thus there exist a promising run σ which
does not contain any chosen configuration. Now unpumping
σ does not change set of configurations fingerprint, so it is
safe unpunping.

Claim 79. In any accepting run τ which is a promising run
of length at least 2poly1 · (n(2n2 + 3)(n3) + 1) there exist at
least 2poly1 pairwise disjoint promising runs.

Proof. Immediate consequence of Claim 74.

Lemma 64 follows from Claims 78 and 79.

D. Parikh image: Unbounded alphabet
In this section we describe an algorithm to construct an NFA
Parikh-equivalent to an OCA A without assumptions |Σ|.
The NFA has at most O(|Σ|KO(logK)) states whereK = |A|,
a significant improvement over O(2poly(K,|Σ|)) for PDA.

We establish this result in two steps. In the first step,
we show that we can focus our attention on computing
Parikh-images of words recognized along reversal bounded
runs. A reversal in a run occurs when the OCA switches
to incrementing the counter after a non-empty sequence of
decrements (and internal moves) or when it switches to
decrementing the counter after a non-empty sequence of
increments (and internal moves). For a number R, a run
is R reversal bounded, if the number of reversals along the
run is ≤ R. Let us use LR(A) to denote the set of words
accepted by A along runs with at most R reversals.

We construct a new polynomial size simple OCA from
A and show that we can restrict our attention to runs with
at most R reversals of this OCA, where R is a polynomial
in K. In the second step, from any simple OCA A with
K states and any integer R we construct an NFA of size
O(KO(log(R))) whose Parikh image is LR(A). Combination
of the two steps gives a O(KO(logK)) construction.

D.1 Reversal bounding
We establish that, up to Parikh-image, it suffices to consider
runs with 2K2 + K reversals. We use two constructions:
one that eliminates large reversals (think of a waveform)
and another that eliminates small reversals (think of the
noise on a noisy waveform). For the large reversals, the idea
used is the following: we can reorder the transitions used
along a run, hence preserving Parikh-image, to turn it into
one with few large reversals (a noisy waveform with few
reversals). The key idea used is to move each simple cycle at
state q with a positive (resp. negative) effect on the counter
to the first (resp. last) occurrence of the state along the
run. To eliminate the smaller reversals (noise), the idea is to
maintain the changes to the counter in the state and transfer
it only when necessary to the counter to avoid unnecessary
reversals.

counter

time
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large reversal
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no
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Consider a run of A starting at a configuration (p, c)
and ending at some configuration (q, d) such that the value
of the counter e in any intermediate configuration satisfies
c −D ≤ e ≤ c + D (where D is some positive integer). We
refer to such a run as an D-band run.

Reversals along such a run are not important and we get
rid of them by maintaining the (bounded) changes to the
counter within the state.

We construct a simple OCA A[D] as follows: its states are
Q∪Q1∪Q2 where Q1 = Q×[−D,D] and Q2 = [−D,D]×Q.
All transitions of A are transitions of A[D] as well and thus
using Q it can simulate any run of A faithfully. From any
state q ∈ Q the automaton may move nondeterministically
to (q, 0) in Q1. The states in Q1 are used to simulate D-band
runs of A without altering the counter and by keeping track
of the net change to the counter in the second component
of the state. For instance, consider the D-band run of A
described above: A[D] can move from (p, c) to ((p, 0), c) then
simulate the run of A to (q, d) to reach ((q, d − c), c). At
this point it needs to transfer the net effect back to the
counter (by altering it appropriately). The states Q2 are
used to perform this role. From a state (q, j) in Q1, A[D]
is allowed to nondeterministically move to (j, q) indicating
that it will now transfer the (positive or negative) value j to
the counter. After completing the transfer it reaches a state
(0, q) from where it can enter the state q via an internal
move to continue the simulation of A.

The nice feature of this simulated run via Q1 and Q2 is
that there are no reversals in the simulation and it involves
only increments (if d > c) or only decrements (if d < c). We
now formalize the automaton A[D] and its properties. The
simple OCA A[D] = (QD,Σ, δD, s, F ) is defined as follows:

QD = Q ∪ (Q× {−D, . . . ,D}) ∪ ({−D, . . . ,D} ×Q)

and δD is defined as follows:

1. δ ⊆ δR . Simulate runs of A.
2. (q, ε, i, (q, 0)) ∈ δD. Begin a summary phase.
3. ((q, j), a, i, (q′, j)) ∈ δD, if (q, a, i, q′) ∈ δ. Simulate an

internal move.
4. ((q, j), a, i, (q′, j + 1)) ∈ δD, if (q, a,+1, q′) ∈ δ. Simulate

an increment.
5. ((q, j), a, i, (q′, j − 1)) ∈ δD, if (q, a,−1, q′) ∈ δ. Simulate

a decrement.
6. ((q, j), ε, i, (j, q)) ∈ δD. Finish summary run.
7. ((j, q), ε,+1, (j− 1, q)) ∈ δD, if j > 0. Transfer a positive

effect.
8. ((j, q), ε,−1, (j+1, q)) ∈ δD, if j < 0. Transfer a negative

effect.
9. ((0, q), ε, i, q) ∈ δD. Transfer control back to copy of A.

The following Lemma is the first of a sequence that relate
A and A[D].

Lemma 80. 1. For any p, q ∈ Q and any c, d ∈ N, if
(p, c)

w−−→(q, d) in A then (p, c)
w−−→(q, d) in A[D].

2. For any p, q ∈ Q and any c, d ∈ N if (p, c)
w−−→(q, d) in

A[D] then (p, c+D)
w−−→(q, d+D) in A. In particular, if

(p, 0)
w−−→(q, 0) in A[D] then (p,D)

w−−→(q,D) in A.

Proof. The first statement simply follows from the fact that
δ ⊆ δD.
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Let ρ = (p, c)
w−−→(q, d) be a run in A[D]. The second

statement is proved by induction on the number of transi-
tions of type 2 taken along ρ (i.e. the number of summary
simulations used in ρ). If this number is 0 then all the tran-
sitions used are of type 1 thus ρ is a run in A and thus ρ[D]
satisfies the requirements of the Lemma.

Otherwise, let ρ must be of the form

ρ = (p, c)
w1−−→(p1, c1)

ε,i−−→((p1, 0), c1)
w2−−→((0, q1), d1)

ε,i−−→(q1, d1)
w3−−→(q, d)

where we have identified the first occurrence of the transition
of type 2 and as well as the first occurrence of a transition
of type 9. Now, by the induction hypothesis, we have runs
(p, c+D)

w1−−→(p1, c1 +D) and (q1, d1 +D)
w3−−→(q, d+D) in

A.
From the definition of δD, run ((p1, 0), c1)

w2−−→((0, q1), d1)
must be of the form

((p1, 0), c1)
w2−−→((p2, c2), c1)

ε−→((c2, p2), c1)
ε−→((0, p2), c1+c2)

with p2 = q1 and d1 = c1 + c2 and where the run
((p1, 0), c1)

w2−−→((p2, c2), c1) involves only transitions of the
form 3, 4 or 5.

Claim: Let ((g, 0), e)
x−→((h, i), e) be a run in A[D] using

only transitions of type 3, 4 or 5. Then (g, e)
x−→(h, e+ i) in

A for any e ≥ D.

Proof of Claim: By induction on the length of the run.
The base case is trivial. For the inductive case, suppose
((g, 0), e)

x′−−→((h′, i′), e)
a−→((h, i), e) and by the induction

hypothesis (g, e)
x′−−→(h′, e+i′) for any e ≥ D. Now, if the last

transition is an internal transition then, (h′, a, i, h) ∈ δ and
i = i′. Thus (h′, e+i)

a−→(h, e+i) inA. If the last transition is
an increment then (h′, a,+1, h) ∈ δ and i = i′+1. Thus, once
again we have (h′, e+ i)

a−→(h, e+ i) in A. Finally, if the last
transition is a decrement transition then, (h′, a,−1, h) ∈ δ.
Then, i = i′ − 1 and i ≥ −D. Thus, e + i ≥ 0 and thus
(h′, e + i′)

a−→(h, e + i) in A, completing the proof of the
claim. �

Since, c1 + D ≥ D, we may apply the claim to conclude
that (p1, c1 +D)

w2−−→(p2 = q1, c1 +D + c2 = d1 +D) in A.
This completes the proof of the Lemma.

Next we show that A[D] can simulate any D-band run
without reversals.

Lemma 81. Let (p, c)
w−−→(q, d) be an D-band run in A.

Then, there is a run (p, c)
w−−→(q, d) in A[D] in which the

counter value is never decremented if c ≤ d and never
incremented if c ≥ d.

Proof. The idea is to simply simulate the run as a summary
run in A[D]. Let the given run be

(p, c) = (p0, c0)
a1−−→(p1, c1)

a2−−→(p2, c2) . . .
an−−→(pn, cn) = (q, d)

Then, it is easy to check that the following is a run in A[D]

(p0, c0)
ε−→((p0, 0), c0)

a1−−→((p1, c1 − c0), c0)
a2−−→ . . .

an−−→((pn, cn − c0), c0)
ε−→((cn − c0, pn), c0)

It is also easy to verify that for any configuration with
((j, p), e) with e + j ≥ 0, ((j, p), e)

ε−→(p, e + j) is a run in
A[D] consisting only of increments if j > 0 and consisting
only of decrements if j < 0. Since cn ≥ 0, (cn − c0) + c0 ≥ 0
and the result follows.

Actually this automaton A[D] does even better. Concate-
nation of D-band runs is often not an D-band run but the
idea of reversal free simulation extends to certain concatena-
tions. We say that a run (p0, c0)

w−−→(pn, cn) is an increasing
(resp. decreasing) iterated D-band run if it can be decom-
posed as

(p0, c0)
w1−−→(p1, c1)

w2−−→ . . . (pn−1, cn−1)
wn−−→(pn, cn)

where each (pi, ci)
wi+1−−−−→(pi+1, ci+1) is an D-band run and

ci ≤ ci+1 (resp. ci ≥ ci+1). We say it is an iterated D-band
run if it is an increasing or decreasing iterated D-band run.

Lemma 18. Let (p, c)
w−−→(q, d) be an increasing (resp. de-

creasing) D-band run in A. Then, there is a run (p, c)
w−−→(q, d)

in A[D] along which the counter value is never decremented
(resp. incremented).

Proof. Simulate each ρi by a run that only increments (resp.
decrements) the counter using Lemma 81.

While, as a consequence of item 1 of Lemma 80, L(A) ⊆
L(A[D]), the converse is not in general true as along a run
of A[D] the real value of the counter, i.e. the current value
of the counter plus the offset available in the state, may be
negative, leading to runs that are not simulations of runs
of A. The trick, as elaborated in item 2 of Lemma 80, that
helps us get around this is to relate runs of A[D] to A with
a shift in counter values. We need a bit more terminology
to proceed.

We say that a run of is an D≤ run (resp. D≥ run) if the
value of the counter is bounded from above (resp. below)
by D in every configuration encountered along the run.
We say that a run of A is an D> run if it is of the form
(p,D)

w−−→(q,D), it has at least 3 configurations and the
value of the counter at every configuration other than the
first and last is > D. Consider any run from a configuration
(p, 0) to (q, 0) in A. Once we identify the maximal D> sub-
runs, what is left is a collection of D≤ subruns.

Let ρ = (p, c)
w−−→(q, d) be a run of A with c, d ≤ D.

If ρ is a D≤ run then its D-decomposition is ρ. Other-
wise, its D-decomposition is given by a sequence of runs
ρ0, ρ

′
0, ρ1, ρ

′
1 . . . ρ

′
n−1, ρn with ρ = ρ0.ρ

′
0.ρ1.ρ

′
1 . . . .ρ

′
n−1.ρn,

where each ρi is a D≤ run and each ρ′i is a D> run for
0 ≤ i ≤ n. Notice, that some of the ρi’s may be trivial.
Since the D> subruns are uniquely identified this definition
is unambiguous. We refer to the ρ′i’s (resp. ρis) as the D>
(resp. D≤) components of ρ.

Observe that the D≤ runs of A can be easily simulated
by an NFA. Thus we may focus on transforming the D>
runs, preserving just the Parikh-image, into a suitable form.
For D,M ∈ N, we say that a D> run ρ is a (D,M)-good run
(think noisy waveform with few reversals) if there are runs
σ1, σ2 . . . , σn, σn+1 and iterated D-band runs ρ1, ρ2, . . . , ρn
such that ρ = σ1ρ1σ2ρ2 . . . σnρnσn+1 and |σ1|+. . .+|σn+1|+
2.n ≤M . Using Lemma 18 and that it is a D> run we show

Lemma 20. Let (p,D)
w−−→(q,D) be an (D,M)-good run of

A. Then, there is a run (p, 0)
w−−→(q, 0) in A[D] with atmost

M reversals.

Proof. Let the given run be ρ. We first shift down ρ to ρ[−D]
to obtain a run from (p, 0) to (q, 0), which is possible since
ρ is D> run. We then transform each of the iterated D-
band runs using Lemma 18 so that there are no reversals
in the transformed runs. Thus all reversals occur inside the
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σi[−D]’s or at the boundary and this gives us the bound
required by the lemma.

So far we have not used the fact that we can ignore
the ordering of the letters read along a run (since we are
only interested in the Parikh-image of L(A)). We show
that for any run ρ of A we may find another run ρ′ of A,
that is equivalent up to Parikh-image, such that every D>
component in the D-decomposition of ρ′ is (D,M)-good,
where M and D are polynomially related to K.

We fix D = K in what follows. We takeM = 2K2+K for
reasons that will become clear soon. We focus our attention
on some D> component ξ of ρ which is not (D,M)-good.
Let X ⊆ Q be the set of states of Q that occur in at
least two different configurations along ξ. For each of the
states in X we identify the configuration along ξ where it
occurs for the very first time and the configuration where
it occurs for the last time. There are at most 2|X|(≤ 2K)
such configurations and these decompose the run ξ into a
concatenation of 2|X| + 1(≤ 2K + 1) runs ξ = ξ1.ξ2 . . . ξm
where ξi, 1 < i < m is a segment connecting two such
configurations. Now, suppose one of these ξi’s has length K
or more. Then it must contain a sub-run (p, c)−→(p, d) with
at most K moves, for some p ∈ X (so, this is necessarily a
K-band run). If d− c ≥ 0 (resp. d− c < 0), then we transfer
this subrun from its current position to the first occurrence
(resp. last occurrence) of p in the run. This still leaves a valid
run ξ′ since ξ begins with a K as counter value and |ξi| ≤ K.
Moreover ξ and ξ′ are equivalent upto Parikh-image.

If this ξ′ continues to be a K> run then we again examine
if it is (K,M)-good and otherwise, repeat the operation
described above. As we proceed, we continue to accumulate
a increasing iterated K-band run at the first occurrence
of each state and decreasing iterated K-band run at the
last occurrence of each state. We also ensure that in each
iteration we only pick a segment that does NOT appear in
these 2|X| iterated K-bands. Thus, these iterations will stop
when either the segments outside the iterated K-bands are
all of length < K and we cannot find any suitable segment
to transfer, or when the resulting run is no longer a K> run.
In the first case, we must necessarily have a (K, 2K2 +K)-
good run. In the latter case, the resulting run decomposes
as usual in K≤ and K> components, and we have that every
K> component is strictly shorter than ξ. We formalize the
ideas sketched above now.

We begin by proving a Lemma which says that any K>

run ρ can be transformed into a Parikh-equivalent run ξ
which is either a K> run which is (K, 2K2 + K)-good or
has a K-decomposition each of whose K> components are
strictly shorter than ρ.

Lemma 82. Let ρ = (p,K)
w−−→(q,K) be a K> run in

A. Then, there is a run ξ = (p,K)
w′−−→(q,K) in A, with

|ξ| = |ρ|, ψ(w) = ψ(w′) such that one of the following holds:

1. ξ is not a K> run. Thus, all K>-components in the K-
decomposition of ξ are strictly shorter than ξ (and hence
ρ).

2. ξ is a K> run and ξ = σ1ρ1 . . . σnρn where n ≤ 2K + 1,
each ρi is an iterated K-band run and |σi| ≤ K for each
i. Thus, ξ is (K, 2K2 +K)-good.

Proof. Let ρ = (p0, c0)
a1−−→(p1, c1) . . .

am−−−→(pm, cm). Let
X ⊆ Q be the set of controls states that repeat in the
run ρ. We identify the first and last occurrences of each

state q ∈ X along the run ρ, and there are n = 2.|X| ≤ 2K
such positions. We then decompose the run ρ as follows

(p0, c0) =(q0, e0)σ1(q1, e1)σ2(q2, e2) . . .

. . . (qn−1, en−1)σn(qn, en)σn+1(qn+1, en+1) = (q, d)

where configurations (q1, e1), (q2, e2) . . . (qn, en) correspond
to the first or last occurrence of states fromX. We introduce,
for reasons that will become clear in the following, an empty
iterated K-band run ρi following each (qi, ei) to get

(q0, e0)σ1(q1, e1)ρ1(q1, e1)σ2(q2, e2)ρ2(q2, e2) . . .

. . . (qn−1, en−1)σn(qn, en)ρn(qn, en)σn+1(qn+1, en+1)

Let ξ0 be ρ with the decomposition as written above. We
shall now construct a sequence of runs ξi, i ≥ 0, from (p,K)
to (q,K), maintaining the length and the Parikh image as
an invariant, that is, ψ(ξi) = ψ(ξi+1) and |ξi| = |ρ|. In
each step, starting with a K> run ξi, we shall reduce the
length of one of the σi by some 1 ≤ l ≤ K and increase the
length of one iterated K-band runs ρj by l to obtain a run
ξi+1, maintaining the invariant. If this resulting run is not a
K> run then it has a K-decomposition in which every K>

component is shorter than ξi (and hence ρ), thus satisfying
item 1 of the Lemma completing the proof. Otherwise, after
sufficient number of iterations of this step, we will be left
satisfying item 2 of the Lemma. Let the K> run ξi be given
by

(q0, e0)σi1(q1, e
i
1)ρi1(q1, f

i
1)σi2(q2, e

i
2)ρi2(q2, f

i
2) . . .

. . . (qn−1, e
i
n−1)σin(qn, e

i
n)ρin(qn, f

i
n)σin+1(qn+1, e

i
n+1)

where each ρij is an iterated K-band run. If the length of
|σij | ≤ K for each j ≤ n + 1 then, we have already fulfilled
item 2 of the Lemma, completing the proof. Otherwise, there
is some j such that |σij | ≥ K. Therefore, we may decompose
σij as

(qj−1, f
i
j−1)χ1(r, g)χ2(r, g′)χ3(qj , e

i
j)

where (r, g)χ2(r, g′) is a run of length ≤ K and r ∈ X. There
are two cases to consider, depending on whether g′ − g ≥ 0
or g′ − g < 0.

Let (qB , e
i
B) and (qE , f

i
E) be the first and last occurrences

of r in ξi. We will remove the segment of the run given by χ2

and add it to ρiB if g′ ≥ g and add it to ρiE otherwise. First of
all, since the first and last occurrences of r are distinct, the
ρiB will remain a increasing iterated K-band run while ρiE
remains a decreasing iterated K-band run. Clearly, such a
transformation preserves the Parikh image of the word read
along the run. It is easy to check that, since ξi is a K> run
and the length of χ2 is bounded byK, the resulting sequence
ξi+1 (after adjusting the counter values) will be a valid run,
since the counter stays ≥ 0. However, it may no longer be a
K> run. (This may happen, if eiB < g and there is a prefix
of χ2 whose net effect is to reduce the counter by more than
eiB−K.) However, in this case we may set ξi+1 is a run from
(p,K) to (q,K), with the same length as ξi and thus every
K> component in its K-decomposition is necessarily shorter
than ξi. Thus, it satisfies item 1 of the Lemma.

If ξi+1 remains aK> run then we observe that |σi1 . . . σin| >
|σi+1

1 . . . σi+1
n | and this guarantees the termination of this

construction with a ξ satisfying one of the requirements of
the Lemma.

Starting with any run, we plan to apply Lemma 82, to
the K> components, preserving Parikh-image, till we reach
one in which every K> component satisfies item 2 of Lemma
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82. To establish the correctness of such an argument we need
the following Lemma.

Lemma 83. Let ρ = (p, 0)
w−−→(q, 0) be a run. If ρ =

ρ1(r,K)ρ2 then every K> component in the decomposition
of ρ is a K> component of ρ1 or ρ2 and vice versa. In
particular, if ρ = ρ1(r,K)ρ2(r′,K)ρ3 then, K> components
of the K-decomposition of ρ are exactly the K> components
of the runs ρ1, ρ2 or ρ3.

Proof. By the definition of K> run and K decompositions.

We can now combine Lemmas 83 and 82 to obtain:

Lemma 21. Let ρ = (p, 0)
w−−→(q, 0) be any run in A. Then,

there is a run ρ′ = (p, 0)
w′−−→(q, 0) of A with ψ(w) =

ψ(w′) such that every K> component ξ in the canonical
decomposition of ρ′ is (K, 2K2 +K)-good.

Proof. The proof is by double induction, on the length of the
longest K> component in ρ that is not (K, 2K2 +K)-good
and the number of components of this size that violate it.
For the basis case, observe that any K> component whose
length is bounded by 2K2 +K is necessarily (K, 2K2 +K)-
good.

For the inductive case, we pick a K> component ξ in ρ of
maximum size apply Lemma 82 and replace ξ by ξ′ to get ρ′.
If ξ′ is (K, 2K2 + K)-good we have reduced the number of
components of the maximum size that are not (K, 2K2 +2)-
good in ρ′. Otherwise, ξ′ satisfies item 2 of Lemma 82 and
thus by Lemma 83 the number of K> components in the
decomposition of ρ′ of the size of ξ that are not (K, 2K2+K)-
good is one less than that in ρ. This completes the inductive
argument.

Remark 84. We note that the above proof can be formu-
lated slightly differently. The reason we work with D>-runs
(which is also incorporated in the definition of (D,M)-good
runs) is that such runs of A from, say (p,D) to (q,D), can be
simulated faithfully by A[D] from (p, 0) to (q, 0) while runs
of A[D] from (p, 0) to (q, 0) can be simulated by A along
runs from (p,D) to (q,D). Since, segments of any run of
A where the counter value lies below D can be easily simu-
lated by an NFA, D-decompositions and the above inductive
argument come naturally.

A slightly different argument is the following: If we begin
with (2D)≥ run of A then, we can carry out the above
inductive argument without bothering about whether it
remains a (2D)> run at each step, for it is guaranteed to
remain a D≥ run. Then, instead of the automaton A[D]
we use a slight variant B[D] which does the following: it
simulates A[D] and at every point where it reverses from
decrements to increments it verifies that the counter is at
least D by decrementing the counter D times and then
incrementing the counter D times. Then, we can relate A
and B[D] without a level shift as follows: for any C ≥ 2D,
there is a run (p, C)

w−−→(q, C) in A if and only if there is a
run (p, C)

w−−→(q, C) in B[D].
We have preferred the argument where the automaton is

simpler to define and it does not track reversals. The two
proofs are of similar difficulty.

Let AK be the NFA simulating the simple OCA A when
the counter values lie in the range [0,K], by maintain-
ing the counter values in its local state. This automaton
is of size O(K2). Now, suppose for each pair of states

p, q ∈ Q we have an NFA Bpq which is Parikh-equivalent
to L2K2+K(A[K]p,q), where A[K]p,q is the automaton A[K]
with p as the only initial state and q as the only accepting
state. We combine these automata (there are K2 of them)
with AK by taking their disjoint union and adding the fol-
lowing additional (internal) transitions. We add transitions
from the states of the from (p,K) of AK , for p ∈ Q to the
initial state of state of all the Bpq, q ∈ Q. Similarly, from
the accepting states of Bpq we add internal transitions to
the state (q,K) in AK . Finally we deem (s, 0) to be the
only initial state and (f, 0) to be the only final state of the
combined automaton. We call this NFA B.

The next lemma confirms that B is the automaton we are
after.

Lemma 85. ψ(L(B)) = ψ(L(A))

Proof. Let ρ be an accepting run of A on a word w. We
first apply Lemma 21 to construct a run ρ′ on a w′, with
ψ(w) = ψ(w′), in whose K-decomposition, every K> com-
ponent is (K, 2K2 + K)-good. Let χ = (p,K)

x−→(q,K) be
such a component. Then, by Lemma 20, there is a run
χ′ : (p, 0)

x−→(q, 0) in A[K] with at most 2K2 + K rever-
sals. Thus, there is a x′ ∈ L(Bpq) with ψ(x) = ψ(x′). If
(s, 0)

x−→(p,K) is aK≤ component of ρ′ then (s, 0)
x−→(p,K)

in AK . If (p,K)
x−→(q,K) is a K≤ component of ρ′ then

(p,K)
x−→(q,K) in AK and finally if (p,K)

x−→(f, 0) is a K≤
component of ρ′ then (p,K)

x−→(f, 0) in AK . Putting these
together we get a run from (s, 0) to (f, 0) in B on a word
Parikh-equivalent to w′ and hence w.

For the converse, any word in L(B) is of the form
x.u1.v1.u2.v2 . . . unvn.y where (s, 0)

x−→(p1,K) inAK , (qn,K)
y−→(f, 0) in AK , ui ∈ L(Bpiqi) and (qi,K)

vi−−→(pi+1,K) in
AK , for each 1 ≤ i ≤ n. By construction, there is a run
(s, 0)

x−→(p1,K) in A and (qn,K)
y−→(f, 0) in A. Further

for each i, there is a run (qi,K)
vi−−→(pi+1,K) in A as well.

Since ui ∈ L(Bpiqi), by construction of Bpiqi , there is a run

(pi, 0)
u′i−−→(qi, 0) (with a bound on the number of reversals,

but that is not important here) in A[K] with ψ(ui) = ψ(u′i).
But then, by the second part of Lemma 80, there is a run

(pi,K)
u′i−−→(qi,K) in A. Thus we can put together these

different segments now to obtain an accepting run in A on
the word x.u′1.v1.u

′
2.v2 . . . u

′
nvn. Thus, ψ(L(B)) ⊆ ψ(L(A)),

completing the proof of the Lemma.

The number of states in the automaton B is
∑
p,q∈Q |B

pq|+
K2. What remains to be settled is the size of the automata
Bpq. That is, computing an upper bound on the size of an
NFA which is Parikh-equivalent to the language of words
accepted by an OCA (in this case A[K]) along runs with
at most R (in this case K2 + K) reversals. This prob-
lem is solved in the next subsection and the solution (see
Lemma 23) implies that that the size of Bpq is bounded by
O(|Σ|KO(logK)). Thus we have

Theorem 22. There is an algorithm, which given an OCA
with K states and alphabet Σ, constructs a Parikh-equivalent
NFA with O(|Σ|.KO(logK)) states.

D.2 Parikh image under reversal bounds
Here we show that, for an OCA A, with K states and whose
alphabet is Σ, and any R ∈ N, an NFA Parikh-equivalent to
LR(A) can be constructed with size O(|Σ|.KO(logK)). As a
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matter of fact, this construction works even for pushdown
systems and not just OCAs.

Let A be a simple OCA. It will be beneficial to think
of the counter as a stack with a single letter alphabet, with
pushes for increments and pops for decrements. Then, in any
run from (p, 0) to (q, 0), we may relate an increment move
uniquely with its corresponding decrement move, the pop
that removes the value inserted by this push.

Now, consider a one reversal run ρ of A from say (p, 0)
to (q, 0) involving two phases, a first phase ρ1 with no decre-
ment moves and a second phase ρ2 with no increment moves.
Such a run can be simulated, up to equivalent Parikh image
(i.e. upto reordering of the letters read along the run) by
an NFA as follows: simultaneously simulate the first phase
(ρ1) from the source and the second phase, in reverse or-
der (ρrev2 ), from the target. (The simulation of ρrev2 uses the
transitions in the opposite direction, moving from the target
of the transition to the source of the transition). The sim-
ulation matches increment moves of ρ1 against decrement
moves in ρrev2 (more precisely, matching the ith increment
ρ1 with the ith decrement in ρrev2 ) while carrying out moves
that do not alter the counters independently in both direc-
tions. The simulation terminates (or potentially terminates)
when a common state, signifying the boundary between ρ1

and ρ2 is reached from both ends.
The state space of such an NFA will need pairs of states

fromQ, to maintain the current state reached by the forward
and backward simulations. Since, only one letter of the input
can be read in each move, we will also need two moves to
simulate a matched increment and decrement and will need
states of the form Q×Q×Σ for the intermediate state that
lies between the two moves.

Unfortunately, such a naive simulation would not work if
the run had more reversals. For then the ith increment in the
simulation from the left need not necessarily correspond to
the ith decrement in the reverse simulation from the right.
In this case, the run ρ can be written as follows:

(p, 0)ρ1(p1, c)
τ1−−→(p′1, c+ 1)ρ3(p′2, c+ 1)
τ2−−→(p2, c)ρ4(q1, c)ρ5(q, 0)

where, the increment τ1 corresponds to the decrement τ2 and
all the increments in ρ1 are exactly matched by decrements
in ρ5. Notice that the increments in the run ρ3 are exactly
matched by the decrements in that run and similarly for
ρ4. Thus, to simulate such a well-matched run from p to
q, after simulating ρ1 and ρrev5 simultaneously matching
corresponding increments and decrements, and reaching the
state p1 on the left and q1 on the right, we can choose to
now simulate matching runs from p1 to p2 and from p2 to q1
(for some p2). Our idea is to choose one of these pairs and
simulate it first, storing the other in a stack. We call such
pairs obligations. The simulation of the chosen obligation
may produce further such obligations which are also stored
in the stack. The simulation of an obligation succeeds when
the state reached from the left and right simulations are
identical, and at this point we we may choose to close this
simulation and pick up the next obligation from the stack
or continue simulating the current pair further. The entire
simulation terminates when no obligations are left. Thus, to
go from a single reversal case to the general case, we have
introduced a stack into which states of the NFA used for
the single reversal case are stored. This can be formalized
to show that the resulting PDA is Parikh-equivalent to A.

We also add that the order in which the obligations are
verified is not important, however, the use of a stack to do

this simplifies the arguments. Observe that in this construc-
tion each obligation inserted into the stack corresponds to
a reversal in the run being simulated, as a matter of fact, it
will correspond to a reversal from decrements to increments.
Thus it is quite easy to see that the stack height of the sim-
ulating run can be bounded by the number of reversals in
the original run.

But a little more analysis shows that there is a simulating
run where the height of the stack is bounded by log(R) where
R is the number of reversals in the original run. Thus, to
simulate all runs of A with at most R reversals, we may
bound the stack height of the PDA by log(R).

We show that if the stack height is h then we can choose
to simulate only runs with at most 2log(R)−h reversals for
the obligation on hand. Once we show this, notice that when
h = log(R) we only need to simulate runs with 1 reversal
which can be done without any further obligations being
generated. Thus, the overall height of the stack is bounded
by log(R). Now, we explain why the claim made above holds.
Clearly it holds initially when h = 0. Inductively, whenever
we split an obligation, we choose the obligation with fewer
reversals to simulate first, pushing the other obligation onto
the stack. Notice that this obligation with fewer reversals is
guaranteed to contain at most half the number of reversals of
the current obligation (which is being split). Thus, whenever
the stack height increases by 1, the number of reversals to
be explored in the current obligation falls at least by half
as required. On the other hand, an obligation (p, q) that
lies in the stack at position h from the bottom, was placed
there while executing (earlier) an obligation (p′, q′) that
only required 2k−h+1 reversals. Since the obligation (p, q)
contributes only a part of the obligation (p′, q′), its number
of reversals is also bounded by 2k−h+1. And when (p, q) is
removed from the stack for simulation, the stack height is
h− 1. Thus, the invariant is maintained.

We now describe the formal construction of the automa-
ton establish its correctness now. We establish the result
directly for a pushdown system. A pushdown system is a
tuple A = (Q,Σ,Γ,⊥, δ, s, F ) where Γ is the stack alphabet
and ⊥ is a special bottom of stack symbol. The transitions
in δ are of the form (q, a, push(x), q′) denoting a move where
the letter x ∈ Γ is pushed on the stack while reading a ∈ Σε,
or (q, a, pop(x), q′) denoting a move where the letter x ∈ Γ
is popped from the stack while reading a ∈ Σε or (q, a, i, q′)
where the stack is ignored while readin a ∈ Σε. A configu-
ration of such a pushdown is a pair (q, γ) with q ∈ Q and
γ = Γ∗⊥. The notion of move (q, γ)

τ−→(q′, γ′) using some
τ ∈ δ and (q, γ)

a−→(q′, γ′) where a ∈ Σε are defined as ex-
pected and we omit the details here.

Observe first of all that if Γ is a singleton we have exactly
a simple OCA. The push moves correspond to increments,
pop moves to decrements and there are no emptiness tests
here as there are no zero tests in simple OCAs, and the cor-
respondence between configurations is obvious. We remark
that as far as PDAs go, the lack of an emptiness test is not a
real restriction as we can push a special symbol right at the
beginning of the run and subsequently simulate an empti-
ness test by popping and pushing this symbol back on to
the stack. Thus, we lose no generality either. Having said
this, we use emptiness test in the PDA we construct as it
simplifies the presentation (while omitting it from the one
given as input w.l.o.g.)

Given a PDA A = (Q,Σ,Γ, δ,⊥, s, F ) we construct a new
PDA AP which simulates runs of A, upto Parikh-images,
and does so using runs where the stack height is bounded
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by log(R) where R is the number of reversals in the run of A
being simulated. AP = (ΓP ∪ {sP , tP },Σ,ΓP , δP , sP , tP ) is
defined as follows. The set of ΓP is given by (Q×Q)∪ (Q×
Q×Σ). States of the form (p, q) are charged with simulating
a well matched run from (p,⊥) to (q,⊥). While carrying out
a matched push from the left and a pop from the right, as
we are only allowed read one letter of Σ in a single move,
we are forced to have an intermediary state to allow for the
reading of the letters corresponding to both the transitions
being simulated. The states of the form (p, q, a), a ∈ Σ, are
used for this purpose. The transition relation δP is described
below:

1. (sP , ε, i, (s, t)) ∈ δP . Initialize the start and target states.
2. ((p, q), a, i, (p′, q)) ∈ δP whenever (p, a, i, p′) ∈ δ. Simu-

late an internal move from the left.
3. ((p, q), a, i, (p, q′)) ∈ δP whenever (q′, a, i, q) ∈ δ. Simu-

late an internal move from the right.
4. ((p, q), a, i, (p′, q′, b)) ∈ δP whenever

(p, a, push(x), p′), (q′, b, pop(x), q) ∈ δP
for some x ∈ Γ. Simulate a pair of matched moves, a
push from the source and the corresponding pop from
the target, first part.

5. ((p, q, b), b, i, (p, q)) ∈ δP whenever b ∈ Σ. Second part of
the move described in previous item.

6. ((p, q), ε, push((q′, q)), (p, q′)) ∈ δP for every state q′ ∈
Q. Guess a intermediary state where a pop to push
reversal occurs. Simulate first half first and push the
second as an obligation on the stack.

7. ((p, q), ε, push((p, q′)), (q′, q)) ∈ δP for every state q′ ∈
Q. Guess a intermediary state where a pop to push
reversal occurs. Simulate second half first and push the
first as an obligation on the stack.

8. ((p, p), ε, pop((p′, q′)), (p′, q′)) ∈ δP . Current obligation
completed, load next one from stack.

9. ((p, p), ε,⊥?, tP ) ∈ δP . All segments completed success-
fully, so accept.

The following Lemma shows that every run of AP simu-
lates some run of A upto Parikh-image. In what follows, we
say that a run ρ is a γ-run for some γ ∈ Γ∗⊥ if γ is a suffix
of the stack contents in every configuration in ρ.

Lemma 86. Let β ∈ Γ∗P⊥. Let ((p, q), β)
w−−→((r, r), β) be a

β-run in AP , for some p, q and r in Q. Then, for every
γ ∈ Γ∗⊥ there is a run (p, γ)

w′−−→(q, γ) in A such that
ψ(w′) = ψ(w). Thus, if w ∈ L(AP ) then there is a w′ in
L(A) with ψ(w) = ψ(w′).

Proof. For purpose of the proof, we will prove the following
claim.

Claim 87. If there is a run of the form ((p, q), β)
v−→((p′, q′),

β) in AP , then for every γ ∈ Γ∗, there are runs of the form
(p, γ⊥)

v1−−→(p′, αγ⊥) and (q′, αγ⊥)
v2−−→(q, γ⊥), such that

ψ(v) = ψ(v1.v2).

Proof. We will now prove this by inducting on stack height
reached and on length of the run. Suppose the stack was
never used (always remained β), then the proof is easy to
see.

Let us assume that stack was indeed used, then the run
((p, q), β)

v−→((p′, q′), β) can be split as

((p, q), β)
v1−−→((p1, q1), β)−→((p2, q2), (t1, t2)β)

v2−−→
((r1, r1), (t1, t2)β)−→((t1, t2), β)

v3−−→((p′, q′), β)

We have two cases to consider, either q1 = t2 or p1 = t1.
We will consider the case where q1 = t2, the other case is
analogous. In this case, clearly p2 = p1 and t1 = q2. Hence
the run is of the form

((p, q), β)
v1−−→((p1, q1), β)−→((p1, q2), (q2, q1)β)

v2−−→
((r1, r1), (q2, q1)β)−→((q2, q1), β)

v3−−→((p′, q′), β)

Now consider the sub-run of the form

((p, q), β)
v1−−→((p1, q1), β)

clearly such a run is shorter and hence by induction we

have a corresponding runs of the form (p, γ⊥)
v′1−−→(p1, α

′′γ⊥)

and (q1, α
′′γ⊥)

v′′1−−→(q, γ⊥), for some α′′ ∈ Γ∗ and such that
ψ(v1) = ψ(v′1.v

′′
1 ).

Consider the sub-run of the form

((p1, q2), (q2, q1)β)
v2−−→((r1, r1), (q2, q1)β)

clearly stack height of such a run is shorter by 1. Hence
by induction, we have a corresponding runs of the form,

(p1, αγ⊥)
v′2−−→(r1, α

′αγ⊥) and (r1, α
′αγ⊥)

v′′2−−→(q1, αγ⊥)
for some α′ ∈ Γ∗, such that ψ(v2) = ψ(v′2.v

′′
2 ).

consider the sub-run of the form

((q2, q1), β)
v3−−→((p′, q′), β)

clearly such a run is shorter in length, hence by in-

duction, we have corresponding runs (q2, γ⊥)
v′3−−→(p′, αγ⊥)

and (q′, αγ⊥)
v′′3−−→(q1, γ⊥), for some α ∈ Γ∗ and such that

ψ(v3) = ψ(v′3.v
′′
3 ).

Now combining these sub-runs, we get the required run.

It is easy to see that the proof of Lemma follows directly
once this claim is in place.

In the other direction, we show that every run of A is
simulated upto Parikh-image by AP with a stack height that
is logarithmic in the number of reversals. Let

(p, α) = (p0, α0)
τ1−−→(p2, α1)

τ2−−→ . . .
τn−−→ = (pn, αn) = (q, α)

be a run in A. A reversal in such a run is a sequence of the
from

(pi, αi)
ai+1,pop(xi)−−−−−−−−−→(pi+1, αi+1)

τi+2...τj−1−−−−−−−−→ (pj−1, αj−1)

aj ,push(xj)
−−−−−−−−→(pj , αj)

where none of the transitions τi+2 . . . τj−1 are push or pop
moves. The next lemma shows how AR simulates runs of A
and provides bounds on stack size in terms of the number
of reversals of the run in A.
Lemma 88. Let (p, α)

w−−→(q, α) be a α-run of A with R
reversals with α ∈ Γ∗.⊥. Then, for any γ ∈ Γ∗P⊥, there is
a γ-run ((p, q), γ)

w′−−→((r, r), γ) with ψ(w) = ψ(w′). Further
for any configuration along this run the height of the stack
is no more than |γ|+ log(R+ 1).
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Proof. The proceeds by a double induction, first on the
number of reversals and then on the length of the run.

For the base case, suppose R = 0. If the length of the
run is 0 then the result follows trivially. Otherwise, let the
α-run ρ, α ∈ Γ∗⊥ be of the form:

(p, α) = (p0, α0)
τ1−−→(p1, α1)

τ2−−→ . . .
τn−−→(pn, αn) = (q, α)

If τ1 is an internal move (p0, a1, i, p1) then ((p0, pn), a1, i
, (p1, pn)) is a transition δP (of type 2). Thus

((p0, pn), γ)
a1−−→((p1, pn), γ)

is a valid move in AP . Let w = a1w1. Then, by induction
hypothesis, there is a γ-run

((p1, pn), γ)
w′1−−→((r, r), γ))

with ψ(w′1) = ψ(w1), whose stack height is bounded by |γ|.
Putting these two together we get a γ-run

((p0, pn), γ)
a1.w

′
1−−−−→((r, r), γ)

with ψ(w) = ψ(a1.w
′
1) whose stack height is bounded by |γ|

as required.
If τn is an internal transition (pn−1, an, i, pn) then

((p0, pn), an, i, (p0, pn−1)) ∈ δP

is a transition of of type 3. Thus, ((p0, pn), γ)
an−−→((p0, pn−1), γ)

is a move in AP . Further, by the induction hypothe-
sis, there is a word w2 with w = w2.an and a γ-run

((p0, pn−1), γ)
w′2−−→((r, r), γ) with ψ(w2) = ψ(w′2). Then,

since ψ(an.w
′
2) = ψ(w2.an), we can put these two together

to get the requisite run. Once again the stack height is
bounded by |γ|.

Since the given run is a α-run, the only other case
left to be considered is when τ1 is a push move and τn
is a pop move. Thus, let τ1 = (p0, a1, push(x1), p1) and
τn = (pn−1, an, pop(xn), pn). We claim that x1 = xn and
as a matter fact the value x1 pushed by τ1 remains in the
stack all the way till end of this run and is popped by τn.
If the x1 was popped earlier in the run than the last step,
then the stack height would have necessarily reached |α| at
this pop, and therefore there will necessarily be a subsequent
push of xn. But this contradicts the fact that R = 0. Thus,
we have the following moves in AP .

((p0, pn), γ)
((p0,pn),a1,i,(p1,pn−1,an))−−−−−−−−−−−−−−−−−−→((p0, pn−1, an), γ)

((p1,pn−1,an),an,i,(p1,pn−1)−−−−−−−−−−−−−−−−−−−−→((p1, pn−1), γ)

Let w = a1w3an. Then applying the induction hypothesis

we get a γ-run ((p1, pn−1), γ)
w′3−−→((r, r), γ) where the stack

height is never more than |γ|. Combining these two gives

us a γ-run ((p0, pn), γ)
a1anw

′
3−−−−−−→ ((r, r), γ) where the stack

height is never more than |γ|. Observing that ψ(a1anw
′
3) =

ψ(a1w3an) gives us the desired result.
Now we examine runs with R ≥ 1. And once again we

proceed by induction on the length l of runs with R reversals.
For R ≥ 1 there are no runs of length l = 0 and so the basis
holds trivially. As usual, let

(p, α) = (p0, α0)
τ1−−→(p1, α1)

τ2−−→ . . .
τn−−→ = (pn, αn) = (q, α)

be an α-run with R reversals. If either τ1 or τn is an
internal move then the proof can proceed by induction on
l exactly along the same lines as above and the details are
omitted. Otherwise, since this is a α-run, τ1 is a push move

and τn is a pop move. Let τ1 = (p0, a1, push(x1), p1) and
τn = (pn−1, an, pop(xn), pn). Now we have two possibilities.

Case 1: The value x1 pushed in τ1 is popped only by τn.
This is again easy, as we can apply the same argument as in
the case R = 0 to conclude that,

((p0, pn), γ)
((p0,pn),a1,i,(p1,pn−1,an))−−−−−−−−−−−−−−−−−−→((p0, pn−1, an), γ)

((p1,pn−1,an),an,i,(p1,pn−1)−−−−−−−−−−−−−−−−−−−−→((p1, pn−1), γ)

Again, with w = a1w3a2, and applying the induction hy-
pothesis to the shorter run (p1, α1)

w3−−→(pn−1, αn−1) with
exactly R reversals, we obtain a γ-run

((p1, pn−1), γ)
w′3−−→((r, r), γ)

in which the height of the stack is bounded by |γ|+ log(R+
1). Combining these gives us the γ-run with stack height

bounded by |γ|+ log(R+ 1), ((p0, pn), γ)
a1anw

′
3−−−−−−→((r, r), γ)

as required.

Case 2: The value x1 pushed in τ1 is popped by some τj
with j < n. Then we break the run into two α-runs, ρ1 =

(p0, α0)
a1...aj−−−−−→(pj , αj) and ρ2 = (pj , αj)

aj+1...an−−−−−−−→(pn, αn).
Note that α = α0 = αj = αn. Let a1 . . . aj = w1 and
aj+1 . . . an = w2. Let the number of reversals of ρ1 and
ρ2 be R1 and R2 respectively. First of all, we observe that
R1 + R2 + 1 = R. Thus R1, R2 < R and further either
R1 ≤ R/2 or R2 ≤ R/2.

Suppose R1 ≤ R/2. Then, by the induction hypothesis,
there is an ((pj , pn)γ)-run

ρ′1 = (((p0, pj), (pj , pn).γ)
w′1−−→((r′, r′), (pj , pn).γ))

with ψ(w1) = ψ(w′1) and whose stack height is bounded by

|(pj , pn).γ|+ log(R1 + 1) = |γ|+ 1 + log(R1 + 1)

≤ |γ|+ 1 + log(R+ 1)− 1

= |γ|+ log(R+ 1)

Similarly, by the induction hypothesis, there is an γ-run

ρ′2 = ((pj , pn), γ)
w′2−−→((r, r), γ) whose number of reversals

is bounded by |γ|+ log(R2 + 1) ≤ |γ|+ log(R+ 1) and for
which ψ(w′2) = ψ(w2).

We have everything in place now. We construct the
desired run by first using a transition of type 6, following
by ρ′1, followed by a transition of type 8, followed by a
simulation of ρ′2 to obtain the following:

((p0, pn), γ)
((p0,pn),ε,push((pj ,pn)),(p0,pj))
−−−−−−−−−−−−−−−−−−−−−−→((p0, pj), (pj , pn).γ)

w′1−−→((r′, r′), (pj , pn)γ)

((r′,r′),ε,pop((pj ,pn)),(pj ,pn))
−−−−−−−−−−−−−−−−−−−−−→((pj , pn), γ)

w′2−−→((r, r), γ)

This runs satisfies all the desired properties. The case where
R2 ≤ R/2 is handled similarly using moves of type 7 instead
of type 6 and using the fact the ψ(w′2.w

′
1) = ψ(w′1.w

′
2). This

completes the proof of the Lemma.

As we did for OCAs we let LR(A) refer to the language
of words accepted by A along runs with atmost R reversals.
Now, for a given R, we can simulate runs of AP where
stack height is bounded by log(R), using an NFA by keeping
the stack as part of the state. The size of such an NFA is
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O(|QP ||ΓP |O(log(R))) = O(|Σ||Q|O(log(R))). Let AR be such
an NFA. Then by Lemma 86, we have ψ(L(AR)) ⊆ ψ(L(A))
and by Lemma 88 we also have ψ(LR(A)) ⊆ ψ(L(AR)). By
keeping track of the reversal count in the state, we may
construct an A′ with state space size O(R.|Q|) such that
that L(A′) = LR(A′) = LR(A). Thus, we have

Lemma 23. There is a procedure that takes a simple OCA
A with K states and whose alphabet is Σ, and a number
R ∈ N and returns an NFA Parikh-equivalent to LR(A) of
size O(|Σ|.(RK)O(log(R))).

D.3 Completeness result
In the proofs, we will use the following fact, which is easy
to see.

Lemma 89. Let A be an NFA of size n over Σ and σ : Σ→
P(Γ∗) be a substitution of size m. Then there is an NFA for
σ(L(A)) of size n2 ·m.

Proof of Lemma 25. A phase of A is a walk in which no
reversal occurs, i.e. which is contained in δ∗+ or in δ∗−, where

δ+ = {(p, a, s, q) ∈ δ | s ∈ {0, 1}},
δ− = {(p, a, s, q) ∈ δ | s ∈ {0,−1}}.

Observe that since A is r-reversal-bounded, every accepting
run decomposes into at most r + 1 phases. As a first step,
we rearrange phases to achieve a certain normal form. We
call two phases u and v equivalent if (i) ψ(u) = ψ(v), and
(ii) they begin in the same state and end in the same state.

If u = (p0, a1, s1, p1)(p1, a2, s2, p2) · · · (pm−1, am, sm, pm)
is a phase, then we write Θ(u) for the set of all phases

(p0, a1, s1, p1)v1(p1, a2, s2, p2) · · · vm−1(pm−1, am, sm, pm)
(3)

where for each 1 ≤ i ≤ m, we have vi = wi,1 · · ·wi,ki for
some simple pi-cycles wi,1, . . . , wi,ki .

Claim: For each phase v, there is a phase u with |u| ≤
B := 2n2+n and a phase v′ ∈ Θ(u) such that v′ is equivalent
to v.

Observe that it suffices to show that starting from v, it is
possible to successively delete factors that form simple cycles
such that (i) the set of visited states is preserved and (ii) the
resulting phase u has length ≤ B: If we collect the deleted
simple cycles and insert them like the wi,j from 3 into u, we
obtain a phase v′ ∈ Θ(u), which must be equivalent to v.

We provide an algorithm that performs such a successive
deletion in v. During its execution, we can mark positions
of the current phase with states, i.e. each position can be
marked by at most one state. We maintain the following
invariants. Let M ⊆ Q be the set of states for which there
is a marked position. Then (i) deleting all marked positions
results in a walk (hence a phase), (ii) If p ∈ M , then there
is some position marked with p that visits p, (iii) for each
state p, at most n positions are marked by p, and (iv) the
unmarked positions in v form at most |M | + 1 contiguous
blocks.

The algorithm works as follows. In the beginning, no
position in v is marked. Consider the phase v̄ consisting of
the unmarked positions in v. If |v̄| ≤ n(n+1), the algorithm
terminates. Suppose |v̄| > n(n + 1). Since the unmarked
positions in v form at most n + 1 contiguous blocks, there
has to be a contiguous block w of unmarked positions with
|w| > n. Then then w contains a simple p-cycle f as a factor.
Note that f is also a factor of v. We distinguish two cases:

• If deleting f from v does not reduce the set of visited
states, we delete f .
• If there is a state p visited only in f . Then, p /∈ M :
Otherwise, by invariant (ii), there would be a position
that visits p and is marked by p and hence lies outside
of f . Therefore, we can mark all positions in f by p.

These actions clearly preserve our invariants.
Each iteration of the algorithm reduces the number of

unmarked positions, which guarantees termination. Upon
termination, we have |v̄| ≤ n(n + 1), meaning there are at
most n(n + 1) unmarked positions in v. Furthermore, by
invariant (iii), we have at most n2 marked positions. Thus,
v has length ≤ B = 2n2 + n and has the same set of visited
states as the initial phase. This proves our claim.

We are ready to describe the OCA B. It has states
Q′ = Q × [0, B] × [0, r]. For each j ∈ [1, r], let δj = δ+
is j is even and δj = δ− if j is odd. The initial state is
(q0, 0, 0) and (q,B, r) is final, where f is the final state of
A. For each (i, j) ∈ [0, B − 1] × [0, r], and each transition
(p, a, s, q) ∈ δj , we add the transitions

((p, i, j), a, s, (q, i+ 1, j)), (4)
((p, i, j), ε, 0, (p, i+ 1, j)). (5)

Moreover, for each p ∈ Q, i ∈ [0, B], and j ∈ [0, r − 1],
we include

((p, i, j), ε, 0, (q, 0, j + 1)). (6)
The input alphabet Σ′ of B consists of the old symbols Σ and
the following fresh symbols. For each p ∈ Q and z ∈ [−n, n],
we include a new symbol ap,z. Moreover, for each p ∈ Q and
k ∈ [0, n], we add a loop transition

((p, i, j), ap,s·k, s · k, (p, i, j)), (7)

where s = (−1)j+1. In other words, we add a loop in (p, i, j)
that reads ap,s·k and adds s · k to the counter, where the
sign s depends on which phase we are simulating. Let us
estimate the size of B. It has n ·B · (r+ 1) states. Moreover,
for each k ∈ [1, n], it has 2 · n · B · (r + 1) transitions with
an absolute counter value of k. This means, B is of size

nB(r + 1) +

n∑
k=1

(k − 1) · 2 · nB(r + 1)

= nB(r + 1) · (1 + 2 · 1

2
n(n− 1))

= n(2n2 + n)(r + 1) · (1 + n(n− 1))

≤ 3n3(r + 1) · 2n2 = 6n5(r + 1)

Furthermore, B is an RBA: If we set (p, i, j) < (q, `,m) iff
(i) j < m or (ii) j = m and i < `, then this is clearly a strict
order on the states of B and every transition of type (4), (5)
or (6) is increasing with respect to this order. Hence, a cycle
cannot contain a transition of type (4), (5) or (6), and all
other transitions are loops. Thus, B is an RBA.

The idea is now to substitute each symbol ap,z by the
regular language of of p-cycles without reversal that add
z to the counter. To this end, we define the NFA Bp,z as
follows.

• If z ≥ 0, then Iz = [0, z] and let δ′z = δ+.
• If z < 0, then Iz = [z, 0] and let δ′z = δ−.

Bp,z has states Qp,z = Q × Iz, (p, 0) is its initial state and
(p, z) its final state. It has the following transitions: For each
transition (q, a, s, q′) ∈ δ′z, we include ((q, y), a, (q′, y+s)) for
each y ∈ Iz with y+s ∈ Iz. Now indeed, L(Bp,z) is the set of
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inputs of p-cycles without reversal that add z to the counter.
Note that Bp,z has at most n(n+ 1) states.

Let us now define the substitution σ. For each a ∈ Σ, we
set σ(a) = {a}. For the new symbols ap,z ∈ Σ′ \Σ, we define
σ(ap,z) = L(Bp,z). Since each Bp,z has at most n(n + 1)
states, σ has size at most n(n+ 1).

It remains to be shown that ψ(σ(L(B))) = ψ(L(A)). It
is clear from the construction that σ(L(B)) ⊆ L(A) and in
particular ψ(σ(L(B))) ⊆ ψ(L(A)). For the other inclusion,
we apply our claim. Suppose v is an accepting walk of A.
Since A is r-reversal-bounded, v decomposes into r + 1
(potentially empty) phases: We have v = v0 · · · vr, where
each vj is a phase.

For each vj , our claim yields phases uj and v′j ∈ Θ(uj)
such that |uj | ≤ B and v′j is equivalent to vj . Now each
v′j gives rise to a walk wj of B as follows. First, each uj
induces a run from (p, 0, j) to (q, |uj |, j), where p and q is
the first and last state of uj , respectively, via transitions
(4). Now for each simple p-cycle added to uj to obtain v′j ,
we insert a transition of type (7), whose input can later be
replaced with the p-cycle by σ. Now we can connect the
walks w0, · · · , wr via the transitions (5) and (6) and thus
obtain a walk w of B. Clearly, applying σ to the output of
w yields an word that is Parikh-equivalent to the ouput of
v. This proves ψ(L(A)) ⊆ ψ(σ(L(B))).

Proof of Lemma 26. Assume there is a Dyck sequence x1, . . . , xn
for which the statement fails. Furthermore, assume that
this is a shortest one. We may assume that xi 6= 0 for all
i ∈ [1, n]. Of course we have n > 2r(2N2 + N): Otherwise,
we could choose I = [1, n]. We define si =

∑i
j=1 xj for each

j ∈ [1, n].
Consider

s+ =
∑

i∈[1,n], xi>0

xi, s− =
∑

i∈[1,n], xi<0

xi.

A contiguous subsequence of x1, . . . , xn is called a phase
if all its numbers have the same sign. Suppose we had
si ≤ 2N2 +N for every i ∈ [1, n]. Then every positive phase
contains at most 2N2 +N elements. Since we have at most
r phases, this means s+ ≤ r(2N2 + N). However, we have
s++s− ≥ 0 and thus |s−| ≤ |s+| ≤ r(2N2+N). This implies
n ≤ 2r(2N2 +N), in contradiction to above.

Hence, we have si > 2N2 +N for some i ∈ [1, n]. Choose
r ∈ [1, i] maximal such that sr+1 ≤ N2 +N . Then sr ≥ N2.
Similarly, choose t ∈ [i, n] minimal such that st−1 ≤ N2+N .
Then st ≥ N2. Note also that sj ≥ N2 for j ∈ [r, t]. Now we
have

∑i
j=r+2 xj ≥ N2 and

∑t−2
j=i+1 xj ≤ −N

2. Therefore,
there is a u ∈ [0, N ] that appears at least N times among
xr+2, . . . , xi and there is v ∈ [−N, 0] that appears at least
N times among xi+1, . . . , xt−2.

We can remove v-many appearances of the u and u-many
appearances of the v. Since sj ≥ N2 for j ∈ [r, t] and we
lower the partial sums by at most N2, this remains a Dyck
sequence. We call it y1, . . . , ym. Moreover, it has the same
sum as x1, . . . , xn since we removed v · u and added u · v.
Finally, it is shorter than our original sequence and thus has
a removable subset I with at most 2r(2N2 + N) elements.
We denote sequence remaining after removing the yi, i ∈ I,
by z1, . . . , zp. Note that it has sum 0. Now, we add the
removed appearances of u and v back at their old places
into z1, . . . , zp, we get a Dyck sequence with sum 0 that
differs from x1, . . . , xn only in the removed yi, i ∈ I. Thus,
we have found a removable subset with at most 2r(2N2 +N)
elements, in contradiction to the assumption.

Proof of Lemma 27. Suppose A = (Q,Σ, δ, q0, F ) is an RBA
of size n. The idea is to keep the counter effect of non-loop
transitions in the state. This is possible since A is an RBA
and thus the accumulated effect of all non-loop transitions is
bounded by K. This means, however, that the counter value
we simulate might be smaller than the value of B’s counter.
This means, if the effect stored in the state is negative and
B’s counter is zero, we might simulate quasi runs with a
negative counter value. That is why faithfully, we can only
smulate runs that start and end at counter value K.

We will use the following bounds:

N = n2, M = 2N2 +N, K = N +M · n.
We construct the automaton B as follows. It has the state set
Q′ = Q×[−K,K]×[0,M ]. Its initial state is (q0, 0, 0) and all
states (q, 0,m) with q ∈ F andm ∈ [0,M ] are final. For each
non-loop transition (p, a, s, q) ∈ δ, we include transitions

((p, k,m), a, 0, (q, k + s,m)), (8)

for all k ∈ [−K,K] with k + s ∈ [−K,K] and m ∈ [0,M ].
In contrast to non-loop transitions, loop transitions can
be simulated in two ways. For each loop transition t =
(p, a, s, p), we include the loop transition:

((p, k,m), a, s, (p, k,m)) (9)

for each k ∈ [−K,K] and m ∈ [0,M ], but also the transition

((p, k,m), a, 0, (p, k + s,m+ 1)) (10)

for each k ∈ [0,K] and m ∈ [0,M −1] with k+s ∈ [−K,K].
First, we show that this OCA is in fact acyclic. By

assumption, A is acyclic, so we can equip Q with a partial
order ≤ such that every non-loop transition of A is strictly
increasing. We define a partial order ≤′ on Q′ as follows. For
(p, k,m), (p′, k′,m′) ∈ Q′, we have (p, k,m) ≤′ (p′, k′,m′) if
and only if (i) p < q or (ii) p = q and m < m′. Then, clearly,
all transitions in B are increasing with respect to ≤′.

Note that B has n · (2K + 1) · (M + 1) states. Moreover,
for each of the transitions of A that have positive weight (of
which there are at most n), it introduces (2K+1) ·M edges,
each of weight at most n. In total, B has size at most

n · (2K + 1) · (M + 1) + n · (2K + 1) ·M · n,
which is polynomial in n.

It remains to be shown that L(A) ⊆ L(B) ⊆ L(K)(A).
We begin with the inclusion L(A) ⊆ L(B). Consider an
accepting walk in A. It can easily be turned into a walk
of B as follows. Instead of a non-loop transition, we take its
counterpart of type (8). Instead of a loop-transition, we take
its counterpart of type (9). Consider the final configuration
((q, k,m), x) reached in B. The sum of k and x is the counter
value at the end of walk in A, so k + x = 0. Now it could
happen that x > 0 and k < 0, in which case this is not
an accepting walk of B. However, we know that k results
from executing non-loop transitions and A is acyclic, which
means there are at most n of them in a walk. Hence, we have
x = |k| ≤ n2 = N .

Consider the loop transitions executed in our walk and
let x1, . . . , xm be the counter values they add to B’s counter.
Note that

∑m
i=1 xi = x ∈ [0, N ]. Now we want to switch

some of the loops, meaning that instead of taking a tran-
sition of type (9), we take the corresponding transition of
type (10) (including, of course, the necessary updates to the
rightmost component of the state). Observe that the loop-
transitions contain at most n reversals (the loop-transitions
on each state have the same sign in their counter action,
otherwise, the automaton would not be reversal-bounded).
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According to Lemma 26, there are ≤ 2n(2N2 +N) = M
occurences of loops we can switch such that (i) the resulting
walk still leaves B’s counter non-negative at all times and
(ii) the new walk leaves B’s counter empty in the end. Since
we do this with at most M loop-transitions, the rightmost
component of the state has enough capacity.

Moreover, we do not exceed the capacity of the middle
component: Before the switching, this component assumed
values of at most N , because there are at most n non-loop
transitions in a run of A. Then, we add at most M times a
number of absolute value ≤ n. Hence, at any point, we have
an absolute value of at most N +M ·n = K. Thus, we have
found an accepting walk in B that accepts the same word.
We have therefore shown L(A) ⊆ L(B).

The other inclusion, L(B) ⊆ L(K)(A), it easy to show:
Whenever we can go in one step from configuration ((q, k,m), x)
to ((q′, k′,m′), x) in B for q, q′ ∈ Q, then we can go from
(q,K + x + k) to (q′,K + x′ + k′) in A. Note that then,
K + x + y and K + x′ + y′ are both non-negative. This
implies that L(B) ⊆ L(K)(A).

Proof of Theorem 28. Suppose A is a loop-counting RBA
of size n. By possibly adding a state and an ε-transition,
we may assume that in A, every run involves at least one
transition that is not a loop. After this transformation, A
has size at most m = n+ 1.

Let f ∈ Q be the final state of A. Since A is acyclic, we
may define a partial order on Q as follows. For p, q ∈ Q, we
write p ≤ q is there is a (possibly empty) walk starting in
p and arriving in q. Then indeed, since A is acyclic, ≤ is a
partial order. We can therefore sortQ topologically, meaning
we can find an injective function ϕ : Q → [1,m] such that
p ≤ q implies ϕ(p) ≤ ϕ(q) and ϕ(q0) = 1 and ϕ(f) = m. The
function ϕ will help us map states of A to states of H2m,
but it is not quite enough in its current form: We want to
map a state p in A to a state q in H2m such that the signs
of the counter actions of loops in p and in q coincide. To this
end, we have to modify ϕ slightly.

Consider a state p. Since A is r-reversal-bounded, either
all p-loops are non-incrementing or all p-loops are non-
decrementing. Hence, we may define τ : Q→ {0, 1} by

τ(p) =

{
1 if all p-loops are non-decrementing
0 if all p-loops are non-incrementing

Using τ , we can construct our modification χ : Q → [1, 2m]
of ϕ. For p ∈ Q, let

χ(p) = 2 · ϕ(p)− τ(p).

Note that we may assume that τ(q0) = 1 (otherwise, we
could delete the loops in q0, they cannot occur in a valid
run) and thus χ(q0) = 1. By the same argument, we have
τ(f) = 0 and hence χ(f) = 2m. Moreover, we still have that
p ≤ q implies χ(p) ≤ χ(q).

The idea is now to let each symbol as,k be substituted
by all labels of loops in the state χ−1(s) that change the
counter by k. Moreover, we want to substitute cs,t by all
labels of transitions from χ−1(s) to χ−1(t). However, since
the loops in H2m always modify the counter, those loops on
χ−1(s) (or on χ−1(t)) that do not modify the counter, are
generated in the images of cs,t.

We turn now to the definition of σ. Let S ⊆ [1, 2m] be the
set χ(Q) of all χ(q) for q ∈ Q. Then χ : Q→ S is a bijection.
We begin by defining subsets Γi,j and Ωi,j of Σ ∪ {ε} for
i, j ∈ [1, 2m]. Consider s ∈ S and let k ∈ [0,m]. Note that
all counter actions on transitions inA have an absolute value

of ≤ m. By Γs,k we denote the set of all a ∈ Σ such that
there is a loop (χ−1(s), a, u, χ−1(s)) in A with |u| = k. For
all other indices i, j, Γi,j is empty. Furthermore, for s, t ∈ S
with s < t, let

Ωs,t = {a ∈ Σ | (χ−1(s), a, 0, χ−1(t)) ∈ δ}.

Note that if s 6= t, all transitions from χ−1(s) to χ−1(t) leave
the counter unchanged (A is loop-counting). Again, for all
other choices of i, j ∈ [1, 2m], Ωi,j is empty.

We define σ as follows. Let

Σ2m = {ai,j | i, j ∈ [1, 2m]} ∪ {ci,j | i, j ∈ [1, 2m], i < j}
be the input alphabet of H2m. For s, k ∈ [1, 2m], let

σ(ai,j) = Γi,j (11)

and for s, t ∈ [1, 2m], s < t, we set

σ(cs,t) = (Γs,0)∗Ωs,t(Γt,0)∗. (12)

Now it is easy to verify that ψ(σ(L(H2n+2))) = ψ(L(A))
(recall that m = n + 1). Note that loops in A that do not
modify the counter are contributed by the images of the cs,t.
This will generate all inputs because we assumed that in A,
every run involves at least one non-loop transition. Observe
that since the regular languages (11) and (12) each require
at most 2 states, σ has size at most 2.

Proof of Theorem 24. Suppose for each n, there is a Parikh-
equivalent NFA for Hn of size at most h(n). Our proof
strategy is the following. The preceding lemmas each allow
us to restrict the class of input automata further. It is
therefore convenient to define the following. Let C be a
class of one-counter automata. We say that C is polynomial
modulo h if there are polynomials p and q such that for each
OCA A in C, there is a Parikh-equivalent NFA B of size at
most q(h(p(n))). Of course, we want to show that the class
of all OCA is polynomial modulo h.

First, in section 5.1, we have seen that there is a poly-
nomial p1 such that the following holds: if the class Cp1 of
all automata A that are p1(|A|)-reversal-bounded, is poly-
nomial modulo h, then so is the class of all OCA. Therefore,
it remains to be shown that Cp1 is polynomial modulo h.

Next, we apply Lemma 25. Together with Lemma 89, it
yields that if the class of RBAsis polynomial modulo h, then
so is the class Cp1 . Hence, it remains to be shown that the
class of RBAs is polynomial modulo h.

Furthermore, Lemma 1 and Lemma 27 together imply
that if the class of loop-counting RBAs is polynomial modulo
h, then so is the class of all RBAs. Hence, we restrict
ourselves to the class of loop-counting RBAs.

Finally, Lemma 28 tells us that the class of loop-counting
RBAs is polynomial modulo h.
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