
Composing security protocols: from

confidentiality to privacy ⋆

Myrto Arapinis1, Vincent Cheval2,3, and Stéphanie Delaune4

1 School of Informatics, University of Edinburgh, UK
2 LORIA, CNRS, France

3 School of Computing, University of Kent, UK
4 LSV, CNRS & ENS Cachan, France

Abstract. Security protocols are used in many of our daily-life applica-
tions, and our privacy largely depends on their design. Formal verification
techniques have proved their usefulness to analyse these protocols, but
they become so complex that modular techniques have to be developed.
We propose several results to safely compose security protocols. We con-
sider arbitrary primitives modeled using an equational theory, and a rich
process algebra close to the applied pi calculus.
Relying on these composition results, we derive some security properties
on a protocol from the security analysis performed on each of its sub-
protocols individually. We consider parallel composition and the case of
key-exchange protocols. Our results apply to deal with confidentiality but
also privacy-type properties (e.g. anonymity) expressed using a notion
of equivalence. We illustrate the usefulness of our composition results on
protocols from the 3G phone application and electronic passport.

1 Introduction

Privacy means that one can control when, where, and how information about
oneself is used and by whom, and it is actually an important issue in many
modern applications. For instance, nowadays, it is possible to wave an electronic
ticket, a building access card, a government-issued ID, or even a smartphone in
front of a reader to go through a gate, or to pay for some purchase. Unfortu-
nately, as often reported by the media, this technology also makes it possible for
anyone to capture some of our personal information. To secure the applications
mentioned above and to protect our privacy, some specific cryptographic pro-
tocols are deployed. For instance, the 3G telecommunication application allows
one to send SMS encrypted with a key that is established with the AKA proto-
col [2]. The aim of this design is to provide some security guarantees: e.g. the
SMS exchanged between phones should remain confidential from third parties.

Since security protocols are notoriously difficult to design and analyse, formal
verification techniques are important. These techniques have become mature and

⋆ The research leading to these results has received funding from the project ProSecure
(ERC grant agreement n◦ 258865), and the ANR project VIP no 11 JS02 006 01.

have achieved success. For instance, a flaw has been discovered in the Single-
Sign-On protocol used by Google Apps [6], and several verification tools are
nowadays available (e.g. ProVerif [9], the AVANTSSAR platform [7]). These tools
perform well in practice, at least for standard security properties (e.g. secrecy,
authentication). Regarding privacy properties, the techniques and tools are more
recent. Most of the verification techniques are only able to analyse a bounded
number of sessions and consider a quite restrictive class of protocols (e.g. [18]). A
different approach consists in analysing a stronger notion of equivalence, namely
diff-equivalence. In particular, ProVerif implements a semi-decision procedure
for checking diff-equivalence [9].

Security protocols used in practice are more and more complex and it is dif-
ficult to analyse them altogether. For example, the UMTS standard [2] specifies
tens of sub-protocols running concurrently in 3G phone systems. While one may
hope to verify each protocol in isolation, it is however unrealistic to expect that
the whole application will be checked relying on a unique automatic tool. Ex-
isting tools have their own specificities that prevent them to be used in some
cases. Furthermore, most of the techniques do not scale up well on large systems,
and sometimes the ultimate solution is to rely on a manual proof. It is therefore
important that the protocol under study is as small as possible.

Related work. There are many results studying the composition of security pro-
tocols in the symbolic model [15, 13, 12], as well as in the computational model [8,
16] in which the so-called UC (universal composability) framework has been first
developed before being adapted in the symbolic setting [10]. Our result belongs
to the first approach. Most of the existing composition results are concerned
with trace-based security properties, and in most cases only with secrecy (stated
as a reachability property), e.g. [15, 13, 12, 14]. They are quite restricted in terms
of the class of protocols that can be composed, e.g. a fixed set of cryptographic
primitives and/or no else branch. Lastly, they often only consider parallel com-
position. Some notable exceptions are the results presented in [17, 14, 12]. This
paper is clearly inspired from the approach developed in [12].

Regarding privacy-type properties, very few composition results exist. In a
previous work [4], we considered parallel composition only. More precisely, we
identified sufficient conditions under which protocols can “safely” be executed in
parallel as long as they have been proved secure in isolation. This composition
theorem was quite general from the point of view of the cryptographic primitives
allowed. We considered arbitrary primitives that can be modelled by a set of
equations, and protocols may share some standard primitives provided they are
tagged differently. We choose to reuse this quite general setting in this work,
but our goal is now to go beyond parallel composition. We want to extend the
composition theorem stated in [4] to allow a modular analysis of protocols that
use other protocols as sub-programs as it happens in key-exchange protocols.

Our contributions. Our main goal is to analyse privacy-type properties in a
modular way. These security properties are usually expressed as equivalences
between processes. Roughly, two processes P and Q are equivalent (P ≈ Q) if,

2

however they behave, the messages observed by the attacker are indistinguish-
able. Actually, it is well-known that:

if P1 ≈ P2 and Q1 ≈ Q2 then P1 | P2 ≈ Q1 | Q2.
However, this parallel composition result works because the processes that

are composed are disjoint (e.g. they share no key). In this paper, we want to go
beyond parallel composition which was already considered in [4]. In particular,
we want to capture the case where a protocol uses a sub-protocol to establish
some keys. To achieve this, we propose several theorems that state the conditions
that need to be satisfied so that the security of the whole protocol can be derived
from the security analysis performed on each sub-protocol in isolation. They are
all derived from a generic composition result that allows one to map a trace
of the composed protocol into a trace of the disjoint case (protocol where the
sub-protocols do not share any data), and conversely. This generic result can be
seen as an extension of the result presented in [12] where only a mapping from
the shared case to the disjoint case is provided (but not the converse).

We also extend [12] by considering a richer process algebra. In particular, we
are able to deal with protocols with else branches and to compose protocols that
both rely on asymmetric primitives (i.e. asymmetric encryption and signature).

Outline. We present our calculus in Section 2. It can be seen as an exten-
sion of the applied pi calculus with an assignment construction. This will al-
low us to easily express the sharing of some data (e.g. session keys) between
sub-protocols. In Section 3, we present a first composition result to deal with
confidentiality properties. The purpose of this section is to review the difficul-
ties that arise when composing security protocols even in a simple setting. In
Section 4, we go beyond parallel composition, and we consider the case of key-
exchange protocols. We present in Section 5 some additional difficulties that
arise when we want to consider privacy-type properties expressed using trace
equivalence. In Section 6, we present our composition results for privacy-type
properties. We consider parallel composition as well as the case of key-exchange
protocols. In Section 7, we illustrate the usefulness of our composition results
on protocols from the 3G phone application, as well as on protocols from the
e-passport application. We show how to derive some security guarantees from
the analysis performed on each sub-protocol in isolation. The full version of
this paper as well as the ProVerif models of our case studies can be found at
http://www.loria.fr/~chevalvi/other/compo/.

2 Models for security protocols

Our calculus is close to the applied pi calculus [3]. We consider an assignment
operation to make explicit the data that are shared among different processes.

2.1 Messages

As usual in this kind of models, messages are modelled using an abstract term
algebra. We assume an infinite set of names N of base type (used for representing

3

keys, nonces, . . .) and a set Ch of names of channel type. We also consider a set of
variables X , and a signature Σ consisting of a finite set of function symbols. We
rely on a sort system for terms. The details of the sort system are unimportant,
as long as the base type differs from the channel type, and we suppose that
function symbols only operate on and return terms of base type.

Terms are defined as names, variables, and function symbols applied to other
terms. The set of terms built from N ⊆ N ∪Ch, and X ⊆ X by applying function
symbols in Σ (respecting sorts and arities) is denoted by T (Σ,N∪X). We write
fv (u) (resp. fn(u)) for the set of variables (resp. names) occurring in a term u.
A term u is ground if it does not contain any variable, i.e. fv (u) = ∅.

The algebraic properties of cryptographic primitives are specified by the
means of an equational theory which is defined by a finite set E of equations
u = v with u, v ∈ T (Σ,X), i.e. u, v do not contain names. We denote by =E the
smallest equivalence relation on terms, that contains E and that is closed under
application of function symbols and substitutions of terms for variables.

Example 1. Consider the signature ΣDH = {aenc, adec, pk, g, f, 〈 〉, proj1, proj2}.
The function symbols adec, aenc of arity 2 represent asymmetric decryption
and encryption. We denote by pk(sk) the public key associated to the private
key sk. The two function symbols f of arity 2, and g of arity 1 are used to model
the Diffie-Hellman primitives, whereas the three remaining symbols are used to
model pairs. The equational theory EDH is defined by:

EDH =

{

proj1(〈x, y〉) = x adec(aenc(x, pk(y)), y) = x
proj2(〈x, y〉) = y f(g(x), y) = f(g(y), x)

Let u0 = aenc(〈nA, g(rA)〉, pk(skB)). We have that:

f(proj2(adec(u0, skB)), rB) =EDH
f(g(rA), rB) =EDH

f(g(rB), rA).

2.2 Processes

As in the applied pi calculus, we consider plain processes as well as extended
processes that represent processes having already evolved by e.g. disclosing some
terms to the environment. Plain processes are defined by the following grammar:

P,Q := 0 null P | Q parallel

new n.P restriction !P replication

[x := v].P assignment if ϕ then P else Q conditional

in(c, x).P input out(c, v).Q output

where c is a name of channel type, ϕ is a conjunction of tests of the form u1 = u2

where u1, u2 are terms of base type, x is a variable of base type, v is a term of
base type, and n is a name of any type. We consider an assignment operation
that instantiates x with a term v. Note that we consider private channels but
we do not allow channel passing. For the sake of clarity, we often omit the null
process, and when there is no “else”, it means “else 0”.

Names and variables have scopes, which are delimited by restrictions, inputs,
and assignment operations. We write fv(P), bv (P), fn(P) and bn(P) for the sets
of free and bound variables, and free and bound names of a plain process P .

4

Example 2. Let PDH = new skA.new skB.(PA | PB) a process that models a
Diffie-Hellman key exchange protocol:

– PA
def
= new rA.newnA.out(c, aenc(〈nA, g(rA)〉, pk(skB))).in(c, yA).
if proj1(adec(yA, skA)) = nA then [xA := f(proj2(adec(yA, skA)), rA)].0

– PB
def
= new rB.in(c, yB).out(c, aenc(〈proj1(adec(yB, skB)), g(rB)〉, pk(skA))).

[xB := f(proj2(adec(yB, skB)), rB)].0

The process PA generates two fresh random numbers rA and nA, sends a message
on the channel c, and waits for a message containing the nonce nA in order to
compute his own view of the key that will be stored in xA. The process PB

proceeds in a similar way and stores the computed value in xB.

Extended processes add a set of restricted names E (the names that are a
priori unknown to the attacker), a sequence of messages Φ (corresponding to
the messages that have been sent so far on public channels) and a substitution σ
which is used to store the messages that have been received as well as those that
have been stored in assignment variables.

Definition 1. An extended process is a tuple (E ;P ;Φ;σ) where E is a set of
names that represents the names that are restricted in P, Φ and σ; P is a mul-
tiset of plain processes where null processes are removed and such that fv(P) ⊆
dom(σ); Φ = {w1 ⊲ u1, . . . , wn ⊲ un} and σ = {x1 7→ v1, . . . , xm 7→ vm}
are substitutions where u1, . . . , un, v1, . . . , vm are ground terms, and w1, . . . , wn,
x1, . . . , xm are variables.

For the sake of simplicity, we assume that extended processes are name and
variable distinct, i.e. a name (resp. variable) is either free or bound, and in the
latter case, it is at most bound once. We write (E ;P ;Φ) instead of (E ;P ;Φ; ∅).

The semantics is given by a set of labelled rules that allows one to reason
about processes that interact with their environment (see Figure 1). This defines

the relation
ℓ
−→ where ℓ is either an input, an output, or a silent action τ . The

relation
tr
−−→ where tr denotes a sequence of labels is defined in the usual way

whereas the relation
tr′

==⇒ on processes is defined by: A
tr′

==⇒B if, and only if,

there exists a sequence tr such that A
tr
−−→ B and tr′ is obtained by erasing all

occurrences of the silent action τ in tr.

Example 3. Let ΦDH
def
= {w1 ⊲ pk(skA), w2 ⊲ pk(skB)}. We have that:

({skA, skB};PA | PB;ΦDH)
νw3.out(c,w3).in(c,w3).νw4.out(c,w4).in(c,w4)
=============================⇒ (E ; ∅;ΦDH ⊎ Φ;σ ∪ σ′)

where Φ =EDH
{w3 ⊲ u0, w4 ⊲ aenc(〈nA, g(rB)〉, pkA)}, E = {skA, skB, rA, rB, nA},

σ =EDH
{yA 7→ aenc(〈nA, g(rB)〉, pkA), yB 7→ aenc(〈nA, g(rA)〉, pkB)}, and lastly

σ′ =EDH
{xA 7→ f(g(rB), rA), xB 7→ f(g(rA), rB)}. We used pkA (resp. pkB) as a

shorthand for pk(skA) (resp. pk(skB)).

5

(E ; {if ϕ then Q1 else Q2} ⊎ P ;Φ;σ)
τ
−→ (E ;Q1 ⊎ P ;Φ;σ) (Then)

if uσ =E vσ for each u = v ∈ ϕ

(E ; {if ϕ then Q1 else Q2} ⊎ P ;Φ;σ)
τ
−→ (E ;Q2 ⊎ P ;Φ;σ) (Else)

if uσ 6=E vσ for some u = v ∈ ϕ

(E ; {out(c, u).Q1; in(c, x).Q2} ⊎ P ;Φ;σ)
τ
−→ (E ;Q1 ⊎Q2 ⊎ P ;Φ; σ ∪ {x 7→ uσ})(Comm)

(E ; {[x := v].Q} ⊎ P ;Φ;σ)
τ
−→ (E ;Q ⊎ P ;Φ; σ ∪ {x 7→ vσ}) (Assgn)

(E ; {in(c, z).Q} ⊎ P ;Φ;σ)
in(c,M)
−−−−−→ (E ;Q ⊎ P ;Φ; σ ∪ {z 7→ u}) (In)
if c 6∈ E , MΦ = u, fv(M) ⊆ dom(Φ) and fn(M) ∩ E = ∅

(E ; {out(c, u).Q} ⊎ P ;Φ;σ)
νwi.out(c,wi)−−−−−−−−−→ (E ;Q ⊎ P ;Φ ∪ {wi ⊲ uσ}; σ) (Out-T)

if c 6∈ E , u is a term of base type, and wi is a variable such that i = |Φ|+ 1

(E ; {new n.Q} ⊎ P ;Φ;σ)
τ
−→ (E ∪ {n};Q ⊎ P ;Φ;σ) (New)

(E ; {!Q} ⊎ P ;Φ;σ)
τ
−→ (E ; {!Q;Qρ} ⊎ P ;Φ;σ) (Repl)

ρ is used to rename bv(Q)/bn(Q) with fresh variables/names

(E ; {P1 | P2} ⊎ P ;Φ;σ)
τ
−→ (E ; {P1, P2} ⊎ P ;Φ;σ) (Par)

where n is a name, c is a name of channel type, u, v are terms of base type, and x, z
are variables of base type.

Fig. 1. Semantics of extended processes

2.3 Process equivalences

We are particularly interested in security properties expressed using a notion of
equivalence such as those studied in e.g. [5, 11]. For instance, the notion of strong
unlinkability can be formalized using an equivalence between two situations: one
where each user can execute the protocol multiple times, and one where each
user can execute the protocol at most once.

We consider here the notion of trace equivalence. Intuitively, two protocols P
and Q are in trace equivalence, denoted P ≈ Q, if whatever the messages they
received (built upon previously sent messages), the resulting sequences of mes-
sages sent on public channels are indistinguishable from the point of view of an
outsider. Given an extended process A, we define its set of traces as follows:

trace(A) = {(tr, new E .Φ) | A
tr
=⇒ (E ;P ;Φ;σ) for some process (E ;P ;Φ;σ)}.

The sequence of messages Φ together with the set of restricted names E (those
unknown to the attacker) is called the frame.

Definition 2. We say that a term u is deducible (modulo E) from a frame
φ = new E .Φ, denoted new E .Φ ⊢ u, when there exists a term M (called a recipe)
such that fn(M) ∩ E = ∅, fv (M) ⊆ dom(Φ), and MΦ =E u.

Two frames are indistinguishable when the attacker cannot detect the differ-
ence between the two situations they represent.

6

Definition 3. Two frames φ1 and φ2 with φi = new E .Φi (i ∈ {1, 2}) are stat-
ically equivalent, denoted by φ1 ∼ φ2, when dom(Φ1) = dom(Φ2), and for all
terms M,N with fn({M,N})∩E = ∅ and fv({M,N}) ⊆ dom(Φ1), we have that:

MΦ1 =E NΦ1, if and only if, MΦ2 =E NΦ2.

Example 4. Consider Φ1 = {w1 ⊲ g(rA), w2 ⊲ g(rB), w3 ⊲ f(g(rA), rB)}, and
Φ2 = {w1 ⊲ g(rA), w2 ⊲ g(rB), w3 ⊲ k}. Let E = {rA, rB, k}. We have that
new E .Φ1 ∼ new E .Φ2 (considering the equational theory EDH). This equivalence
shows that the term f(g(rA), rB) (the Diffie-Hellman key) is indistinguishable
from a random key. This indistinguishability property holds even if the messages
g(rA) and g(rB) have been observed by the attacker.

Two processes are trace equivalent if, whatever the messages they sent and
received, their frames are in static equivalence.

Definition 4. Let A and B be two extended processes, A ⊑ B if for every (tr, φ) ∈
trace(A), there exists (tr′, φ′) ∈ trace(B) such that tr = tr′ and φ ∼ φ′. We say
that A and B are trace equivalent, denoted by A ≈ B, if A ⊑ B and B ⊑ A.

This notion of equivalence allows us to express many interesting privacy-type
properties e.g. vote-privacy, strong versions of anonymity and/or unlinkability.

3 Composition result: a simple setting

It is well-known that even if two protocols are secure in isolation, it is not
possible to compose them in arbitrary ways still preserving their security. This
has already been observed for different kinds of compositions (e.g. parallel [15],
sequential [12]) and when studying standard security properties [13] and even
privacy-type properties [4]. In this section, we introduce some well-known hy-
potheses that are needed to safely compose security protocols.

3.1 Sharing primitives

A protocol can be used as an oracle by another protocol to decrypt a message,
and then compromise the security of the whole application. To avoid this kind of
interactions, most of the composition results assume that protocols do not share
any primitive or allow a list of standard primitives (e.g. signature, encryption)
to be shared as long as they are tagged in different ways. In this paper, we adopt
the latter hypothesis and consider the fixed common signature:

Σ0 = {sdec, senc, adec, aenc, pk, 〈, 〉, proj1, proj2, sign, check, vk, h}

equipped with the equational theory E0, defined by the following equations:

sdec(senc(x, y), y) = x check(sign(x, y), vk(y)) = x
adec(aenc(x, pk(y)), y) = x proji(〈x1, x2〉) = xi with i ∈ {1, 2}

This allows us to model symmetric/asymmetric encryption, concatenation, sig-
natures, and hash functions. We consider a type seed which is a subsort of the

7

base type that only contains names. We denote by pk(sk) (resp. vk(sk)) the pub-
lic key (resp. the verification key) associated to the private key sk which has to
be a name of type seed. We allow protocols to both rely on Σ0 provided that
each application of aenc, senc, sign, and h is tagged (using disjoint sets of tags
for the two protocols), and adequate tests are performed when receiving a mes-
sage to ensure that the tags are correct. Actually, we consider the same tagging
mechanism as the one we have introduced in [4] (see Definitions 4 and 5 in [4]).
In particular, we rely on the same notation: we use the two function symbols
tag/untag, and the equation untag(tag(x)) = x to model the interactions between
them. However, since we would like to be able to iterate our composition results
(in order to compose e.g. three protocols), we consider a family of such function
symbols: tagi/untagi with i ∈ N. Moreover, a process may be tagged using a
subset of such symbols (and not only one). This gives us enough flexibility to
allow different kinds of compositions, and to iterate our composition results.

Example 5. In order to compose the protocol introduced in Example 2 with
another one that also relies on the primitive aenc, we may want to consider a
tagged version of this protocol. The tagged version (using tag1/untag1) of PB is
given below (with u = untag1(adec(yB, skB))):















new rB .in(c, yB).
if tag1(untag1(adec(yB, skB))) = adec(yB, skB) then
if u = 〈proj1(u), proj2(u)〉 then
out(c, aenc(tag1(〈proj1(u), g(rB)〉), pk(skA))).[xB := f(proj2(u), rB)].0

The first test allows one to check that yB is an encryption tagged with tag1
and the second one is used to ensure that the content of this encryption is a pair
as expected. Then, the process outputs the encrypted message tagged with tag1.

3.2 Revealing shared keys

Consider two protocols, one whose security relies on the secrecy of a shared
key whereas the other protocol reveals it. Such a situation will compromise the
security of the whole application. It is therefore important to ensure that shared
keys are not revealed. To formalise this hypothesis, and to express the sharing
of long-term keys, we introduce the notion of composition context. This will help
us describe under which long-term keys the composition has to be done.

A composition context C is defined by the grammar:

C := | new n. C | !C where n is a name of base type.

Definition 5. Let C be a composition context, A be an extended process of the
form (E ;C[P];Φ), key ∈ {n, pk(n), vk(n) | n occurs in C}, and c, s two fresh
names. We say that A reveals key when

(E ∪ {s};C[P | in(c, x). if x = key thenout(c, s)];Φ)
tr
=⇒ (E ′;P ′;Φ′;σ′)

for some E ′, P ′, Φ′, and σ′ such that new E ′.Φ′ ⊢ s.

8

3.3 A first composition result

Before stating our first result regarding parallel composition for confidentiality
properties, we gather the required hypotheses in the following definition.

Definition 6. Let C be a composition context and E0 be a finite set of names
of base type. Let P and Q be two plain processes together with their frames Φ
and Ψ . We say that P/Φ and Q/Ψ are composable under E0 and C when fv (P) =
fv (Q) = ∅, dom(Φ) ∩ dom(Ψ) = ∅, and

1. P (resp. Q) is built over Σα ∪ Σ0 (resp. Σβ ∪ Σ0), whereas Φ (resp. Ψ) is
built over Σα ∪ {pk, vk, 〈 〉} (resp. Σβ ∪ {pk, vk, 〈 〉}), Σα ∩ Σβ = ∅, and P
(resp. Q) is tagged;

2. E0 ∩ (fn(C[P]) ∪ fn(Φ)) ∩ (fn(C[Q]) ∪ fn(Ψ)) = ∅; and
3. (E0;C[P];Φ) (resp. (E0;C[Q];Ψ)) does not reveal any key in

{n, pk(n), vk(n) | n occurs in fn(P)∩fn(Q)∩bn(C)}.

Condition 1 is about sharing primitives, whereas Conditions 2 and 3 ensure
that keys are shared via the composition context C only (not via E0), and are
not revealed by each protocol individually.

We are now able to state the following theorem which is in the same vein as
those obtained previously in e.g. [15, 13]. However, the setting we consider here
is more general. In particular, we consider arbitrary primitives, processes with
else branches, and private channels.

Theorem 1. Let C be a composition context, E0 be a finite set of names of base
type, and s be a name that occurs in C. Let P and Q be two plain processes
together with their frames Φ and Ψ , and assume that P/Φ and Q/Ψ are com-
posable under E0 and C. If (E0;C[P];Φ) and (E0;C[Q];Ψ) do not reveal s then
(E0;C[P | Q];Φ ⊎ Ψ) does not reveal s.

As most of the proofs of similar composition results, we show this result going
back to the disjoint case. Indeed, it is well-known that parallel composition works
well when protocols do not share any data (the so-called disjoint case). We show
that all the conditions are satisfied to apply our generic result (presented only
in the full version of this paper) that allows one to go back to the disjoint case.
Thus, we obtain that the disjoint case D = (E0;C[P] | C[Q];Φ ⊎ Ψ) and the
shared case S = (E0;C[P | Q];Φ ⊎ Ψ) are in trace equivalence, and this allows
us to conclude.

4 The case of key-exchange protocols

Our goal is to go beyond parallel composition, and to further consider the par-
ticular case of key-exchange protocols. Assume that P = new ñ.(P1 | P2) is a
protocol that establishes a key between two parties. The goal of P is to establish
a shared session key between P1 and P2. Assume that P1 stores the key in the
variable x1, while P2 stores it in the variable x2, and then consider a protocol Q
that uses the values stored in x1/x2 as a fresh key to secure communications.

9

4.1 What is a good key exchange protocol?

In this setting, sharing between P and Q is achieved through the composition
context as well as through assignment variables x1 and x2. The idea is to abstract
these values with fresh names when we analyse Q in isolation. However, in order
to abstract them in the right way, we need to know their values (or at least
whether they are equal or not). This is the purpose of the property stated below.

Definition 7. Let C be a composition context and E0 be a finite set of names.
Let P1[] (resp. P2[]) be a plain process with a hole in the scope of an assignment
of the form [x1 := t1] (resp. [x2 := t2]), and Φ be a frame.

We say that P1/P2/Φ is a good key-exchange protocol under E0 and C when
(E0;Pgood;Φ) does not reveal bad where Pgood is defined as follows:

Pgood = new bad .new d.
(

C[new id.(P1[out(d, 〈x1, id〉)] | P2[out(d, 〈x2, id〉)])]

| in(d, x).in(d, y).if proj1(x) = proj1(y) ∧ proj2(x) 6= proj2(y) then out(c, bad)

| in(d, x).in(d, y).if proj1(x) 6= proj1(y) ∧ proj2(x) = proj2(y) then out(c, bad)

| in(d, x).in(c, z).if z ∈ {proj1(x), pk(proj1(x)), vk(proj1(x))} then out(c, bad)
)

where bad is a fresh name of base type, and c, d are fresh names of channel type.

The expressions u 6= v and u ∈ {v1, . . . , vn} used above are convenient no-
tations that can be rigorously expressed using nested conditionals. Roughly, the
property expresses that x1 and x2 are assigned to the same value if, and only if,
they are joined together, i.e. they share the same id. In particular, two instances
of the role P1 (resp. P2) cannot assign their variable with the same value: a fresh
key is established at each session. The property also ensures that the data shared
through x1/x2 are not revealed.

Example 6. We have that PA/PB/ΦDH described in Example 2, as well as its
tagged version (see Example 5) are good key-exchange protocols under E0 =
{skA, skB} and C = . This corresponds to a scenario where we consider only a
single execution of the protocol (no replication).

Actually, the property mentioned above is quite strong, and never satisfied
when the context C under study ends with a replication, i.e. when C is of the
form C′[!]. To cope with this situation, we consider another version of this
property. When C is of the form C′[!], we define Pgood as follows (where r1
and r2 are two additional fresh names of base type):

new bad , d, r1, r2.
(

C′[new id.!(P1[out(d, 〈x1, id, r1〉)] | P2[out(d, 〈x2, id, r2〉)])]

| in(d, x).in(d, y).if proj1(x) = proj1(y) ∧ proj2(x) 6= proj2(y) then out(c, bad)

| in(d, x).in(d, y).if proj1(x) = proj1(y) ∧ proj3(x) = proj3(y) then out(c, bad)

| in(d, x).in(c, z).if z ∈ {proj1(x), pk(proj1(x)), vk(proj1(x))} then out(c, bad)
)

Note that the id is now generated before the last replication, and thus is not
uniquely associated to an instance of P1/P2. Instead several instances of P1/P2

may now share the same id as soon as they are identical. This gives us more flexi-
bility. The triplet 〈u1, u2, u3〉 and the operator proj3(u) used above are convenient

10

notations that can be expressed using pairs. This new version forces distinct val-
ues in the assignment variables for each instance of P1 (resp. P2) through the 3rd
line. However, we do not fix in advance which particular instance of P1 and P2

should be matched, as in the first version.

Example 7. We have that PA/PB/ΦDH as well as its tagged version are good
key-exchange protocols under E0 = {skA, skB} and C =! .

4.2 Do we need to tag pairs?

When analysing Q in isolation, the values stored in the assignment variables
x1/x2 are abstracted by fresh names. Since P and Q share the common signa-
ture Σ0, we need an additional hypothesis to ensure that in any execution, the
values assigned to the variables x1/x2 are not of the form 〈u1, u2〉, pk(u), or
vk(u). These symbols are those of the common signature that are not tagged,
thus abstracting them by fresh names in Q would not be safe. This has already
been highlighted in [12]. They however left as future work the definition of the
needed hypothesis and simply assume that each operator of the common signa-
ture has to be tagged. Here, we formally express the required hypothesis.

Definition 8. An extended process A satisfies the abstractability property if

for any (E ;P ;Φ;σ) such that A
tr
=⇒(E ;P ;Φ;σ), for any x ∈ dom(σ) which corre-

sponds to an assignment variable, for any u1, u2, we have that xσ 6=E 〈u1, u2〉,
xσ 6=E pk(u1), and xσ 6=E vk(u1).

Note also that, in [12], the common signature is restricted to symmetric
encryption and pairing only. They do not consider asymmetric encryption, and
signature. Thus, our composition result generalizes theirs considering both a
richer common signature, and a lighter tagging scheme (we do not tag pairs).

4.3 Composition result

We retrieve the following result which is actually a generalization of two theorems
established in [12] and stated for specific composition contexts.

Theorem 2. Let C be a composition context, E0 be a finite set of names of
base type, and s be a name that occurs in C. Let P1[] (resp. P2[]) be a plain
process without replication and with an hole in the scope of an assignment of
the form [x1 := t1] (resp. [x2 := t2]). Let Q1 (resp. Q2) be a plain process such
that fv(Q1) ⊆ {x1} (resp. fv(Q2) ⊆ {x2}), and Φ and Ψ be two frames. Let
P = P1[0] | P2[0] and Q = new k.[x1 := k].[x2 := k].(Q1 | Q2) for some fresh
name k, and assume that:

1. P/Φ and Q/Ψ are composable under E0 and C;

2. (E0;C[Q];Ψ) does not reveal k, pk(k), vk(k);

3. (E0;C[P];Φ) satisfies the abstractability property; and

4. P1/P2/Φ is a good key-exchange protocol under E0 and C.

11

If (E0;C[P];Φ) and (E0;C[Q];Ψ) do not reveal s then (E0;C[P1[Q1]|P2[Q2]];Φ ⊎ Ψ)
does not reveal s.

Basically, we prove this result relying on our generic composition result.
In [12], they do not require P to be good but only ask for secrecy of the shared
key. In particular they do not express any freshness or agreement property about
the established key. Actually, when considering a simple composition context
without replication, freshness is trivial (since there is only one session). More-
over, in their setting, agreement is not important since they do not have else
branches. The analysis of Q considering that both parties have agreed on the
key corresponds to the worst scenario. Note that this is not true anymore in pres-
ence of else branches. The following example shows that as soon as else branches
are allowed, as it is the case in the present work, agreement becomes important.

Example 8. Consider a simple situation where:

– P1[0] = new k1.[x1 := k1].0 and P2[0] = newk2.[x2 := k2].0;
– Q1 = if x1 = x2 then out(c, ok) else out(c, s) and Q2 = 0.

Let E0 = ∅, and C = new s. . We consider the processes P = P1[0] | P2[0], and
Q = new k.[x1 := k].[x2 := k].(Q1 | Q2) and we assume that the frames Φ and Ψ
are empty. We clearly have that (E0;C[P];Φ) and (E0;C[Q];Ψ) do not reveal s
whereas (E0;C[P1[Q1] | P2[Q2];Φ ⊎ Ψ) does. The only hypothesis of Theorem 2
that is violated is the fact that P1/P2/Φ is not a good key-exchange protocol
due to a lack of agreement on the key which is generated (bad can be emitted
thanks to the 3rd line of the process Pgood given in Definition 7).

Now, regarding their second theorem corresponding to a context of the form
new s. ! , as before agreement is not mandatory but freshness of the key estab-
lished by the protocol P is crucial. As illustrated by the following example, this
hypothesis is missing in the theorem stated in [12] (Theorem 3).

Example 9. Consider A = ({kP }; new s.!([x1 := kP].0 | [x2 := kP].0); ∅), as well
as B = ({kP }; new s. !Q; ∅) where Q = new k.[x1 := k].[x2 := k].(Q1 | Q2) with

Q1 = out(c, senc(senc(s, k), k)); and Q2 = in(c, x).out(c, sdec(x, k)).

Note that neither A nor B reveals s. In particular, the process Q1 emits the
secret s encrypted twice with a fresh key k, but Q2 only allows us to remove one
level of encryption with k. Now, if we plug the key-exchange protocol given above
with no guarantee of freshness (the same key is established at each session), the
resulting process, i.e. (E0;C[P1[Q1] | P2[Q2]]; ∅) does reveal s.

Note that this example is not a counter example of our Theorem 2: P1/P2/∅
is not a good key-exchange protocol according to our definition.

5 Dealing with equivalence-based properties

Our ultimate goal is to analyse privacy-type properties in a modular way. In [4],
we propose several composition results w.r.t. privacy-type properties, but for
parallel composition only. Here, we want to go beyond parallel composition, and
consider the case of key-exchange protocols.

12

5.1 A problematic example

Even in a quite simple setting (the shared keys are not revealed, protocols do
not share any primitives), such a sequential composition result does not hold.
Let C = new k.! new k1.! new k2. be a composition context, yes/no, ok/ko be
public constants, u = senc(〈k1, k2〉, k), and consider the following processes:

Q(z1, z2) = out(c, u).in(c, x).if x = u then 0 else
if proj1(sdec(x, k)) = k1 then out(c, z1) else out(c, z2)

P [] = out(c, u).
(

| in(c, x).if x = u then 0 else
if proj1(sdec(x, k)) = k1 then out(c, ok) elseout(c, ko)

)

We have that C[P [0]] ≈ C[P [0]] and also that C[Q(yes, no)] ≈ C[Q(no, yes)].
This latter equivalence is non-trivial. Intuitively, when C[Q(yes, no)] unfolds its
outermost ! and then performs an output, then C[Q(no, yes)] has to mimic this
step by unfolding its innermost ! and by performing the only available output.
This will allow it to react in the same way as C[Q(yes, no)] in case encrypted
messages are used to fill some input actions. Since the two processes P [0] and
Q(yes, no) (resp. Q(no, yes)) are almost “disjoint”, we could expect the equiva-
lence C[P [Q(yes, no)]] ≈ C[P [Q(no, yes)]] to hold. Actually, this equivalence does
not hold. The presence of the process P gives to the attacker some additional
distinguishing power. In particular, through the outputs ok/ko outputted by P ,
the attacker will learn which ! has been unfolded. This result holds even if we
rename function symbols so that protocols P and Q do not share any primitives.
The problem is that the two equivalences we want to compose hold for differ-
ent reasons, i.e. by unfolding the replications in a different and incompatible
way. Thus, when the composed process C[P [Q(yes, no)]] reaches a point where
Q(yes, no) can be executed, on the other side, the process Q(no, yes) is ready
to be executed but the instance that is available is not the one that was used
when establishing the equivalence C[Q(yes, no)] ≈ C[Q(no, yes)]. Therefore, in
order to establish equivalence-based properties in a modular way, we rely on a
stronger notion of equivalence, namely diff-equivalence, that will ensure that the
two “small” equivalences are satisfied in a compatible way.

Note that this problem does not arise when considering reachability proper-
ties and/or parallel composition. In particular, we have that:

C[P [0] | Q(yes, no)] ≈ C[P [0] | Q(no, yes)].

5.2 Biprocesses and diff-equivalence

We consider pairs of processes, called biprocesses, that have the same structure
and differ only in the terms and tests that they contain. Following the approach
of [9], we introduce a special symbol diff of arity 2 in our signature. The idea
being to use this diff operator to indicate when the terms manipulated by the
processes are different. Given a biprocess B, we define two processes fst(B) and
snd(B) as follows: fst(B) is obtained by replacing each occurrence of diff(M,M ′)
(resp. diff(ϕ, ϕ′)) with M (resp. ϕ), and similarly snd(B) is obtained by replacing
each occurrence of diff(M,M ′) (resp. diff(ϕ, ϕ′)) with M ′ (resp. ϕ′).

13

The semantics of biprocesses is defined as expected via a relation that ex-
presses when and how a biprocess may evolve. A biprocess reduces if, and only
if, both sides of the biprocess reduce in the same way: a communication succeeds
on both sides, a conditional has to be evaluated in the same way in both sides
too. For instance, the then and else rules are as follows:

(E ; {if diff(ϕL, ϕR) then Q1 else Q2} ⊎ P ;Φ;σ)
τ
−→bi (E ;Q1 ⊎ P ;Φ;σ)

if uσ =E vσ for each u = v ∈ ϕL, and u′σ =E v′σ for each u′ = v′ ∈ ϕR

(E ; {if diff(ϕL, ϕR) then Q1 else Q2} ⊎ P ;Φ;σ)
τ
−→bi (E ;Q2 ⊎ P ;Φ;σ)

if uσ 6=E vσ for some u = v ∈ ϕL, and u′σ 6=E v′σ for some u′ = v′ ∈ ϕR

When the two sides of the biprocess reduce in different ways, the biprocess

blocks. The relation
tr
=⇒bi on biprocesses is defined as for processes. This leads

us to the following notion of diff-equivalence.

Definition 9. An extended biprocess B0 satisfies diff-equivalence if for every

biprocess B = (E ;P ;Φ;σ) such that B0
tr
=⇒biB for some trace tr, we have that

1. new E .fst(Φ) ∼ new E .snd(Φ)

2. if fst(B)
ℓ
−→ AL then there exists B′ such that B

ℓ
−→bi B

′ and fst(B′) = AL

(and similarly for snd).

The notions introduced so far on processes are extended as expected on bipro-
cesses: the property has to hold on both fst(B) and snd(B). Sometimes, we also
say that the biprocessB is in trace equivalence instead of writing fst(B) ≈ snd(B).

As expected, this notion of diff-equivalence is actually stronger than the usual
notion of trace equivalence.

Lemma 1. A biprocess B that satisfies diff-equivalence is in trace equivalence.

6 Composition results for diff-equivalence

We first consider the case of parallel composition. This result is in the spirit
of the one established in [4]. However, we adapt it to diff-equivalence in order
to combine it with the composition result we obtained for the the case of key-
exchange protocol (see Theorem 4).

Theorem 3. Let C be a composition context and E0 be a finite set of names
of base type. Let P and Q be two plain biprocesses together with their frames Φ
and Ψ , and assume that P/Φ and Q/Ψ are composable under E0 and C.

If (E0;C[P];Φ) and (E0;C[Q];Ψ) satisfy diff-equivalence (resp. trace equiv-
alence) then the biprocess (E0;C[P | Q];Φ ⊎ Ψ) satisfies diff-equivalence (resp.
trace equivalence).

Proof. (sketch) As for the proof for Theorem 1, parallel composition works
well when processes do not share any data. Hence, we easily deduce that D =
(E0;C[P] | C[Q];Φ ⊎ Ψ) satisfies the diff-equivalence (resp. trace equivalence).

14

Then, we compare the behaviours of the biprocess D to those of the biprocess
S = (E0;C[P | Q];Φ ⊎ Ψ). More precisely, this allows us to establish that fst(D)
and fst(S) are in diff-equivalence (as well as snd(D) and snd(S)), and then we
conclude relying on the transitivity of the equivalence. ⊓⊔

Now, regarding sequential composition and the particular case of key-exchange
protocols, we obtain the following composition result.

Theorem 4. Let C be a composition context and E0 be a finite set of names of
base type. Let P1[] (resp. P2[]) be a plain biprocess without replication and with
an hole in the scope of an assignment of the form [x1 := t1] (resp. [x2 := t2]).
Let Q1 (resp. Q2) be a plain biprocess such that fv(Q1) ⊆ {x1} (resp. fv (Q2) ⊆
{x2}), and Φ and Ψ be two frames. Let P = P1[0] | P2[0] and Q = new k.[x1 :=
k].[x2 := k].(Q1 | Q2) for some fresh name k, and assume that:

1. P/Φ and Q/Ψ are composable under E0 and C;

2. (E0;C[Q];Ψ) does not reveal k, pk(k), vk(k);

3. (E0;C[P];Φ) satisfies the abstractability property; and

4. P1/P2/Φ is a good key-exchange protocol under E0 and C.

Let P+=P1[out(d, x1)] | P2[out(d, x2)] | in(d, x).in(d, y).ifx = y then 0 else 0.
If the biprocesses (E0; new d.C[P+];Φ) and (E0;C[Q];Ψ) satisfy diff-equivalence
then (E0;C[P1[Q1] | P2[Q2]];Φ ⊎ Ψ) satisfies diff-equivalence.

We require (E0; new d.C[P+];Φ) to be in diff-equivalence (and not simply
(E0;C[P];Φ)). This ensures that the same equalities between values of assign-
ment variables hold on both sides of the equivalence. Actually, when the compo-
sition context C under study is not of the form C′[!], and under the hypothesis
that P1/P2/Φ is a good key-exchange protocol under E0 and C, we have that
these two requirements coincide. However, the stronger hypothesis is important
to conclude when C is of the form C′[!]. Indeed, in this case, we do not know
in advance what are the instances of P1 and P2 that will be “matched”. This is
not a problem but to conclude about the diff-equivalence of the whole process
(i.e. (E0;C[P1[Q1] | P2[Q2]];Φ ⊎ Ψ)), we need to ensure that such a matching is
the same on both sides of the equivalence. Note that to conclude about trace
equivalence only, this additional requirement is actually not necessary.

7 Case studies

Many applications rely on several protocols running in composition (parallel,
sequential, or nested). In this section, we show that our results can help in the
analysis of this sort of complex system. Our main goal is to show that the extra
hypotheses needed to analyse an application in a moduar way are reasonnable.

7.1 3G mobile phones

We look at confidentiality and privacy guarantees provided by the AKA protocol
and the Submit SMS procedure (sSMS) when run in composition as specified
by the 3GPP consortium in [2].

15

Protocols description. The sSMS protocol allows a mobile station (MS) to send
an SMS to another MS through a serving network (SN). The confidentiality of
the sent SMS relies on a session key ck established through the execution of the
AKA protocol between the MS and the SN. The AKA protocol achieves mutual
authentication between a MS and a SN, and allows them to establish a shared
session key ck . The AKA protocol consists in the exchange of two messages: the
authentication request and the authentication response. The AKA protocol as
deployed in real 3G telecommunication systems presents a linkability attack [5],
and thus we consider here its fixed version as described in [5]. At the end of
a successful execution of this protocol, both parties should agree on a fresh
ciphering key ck . This situation can be modelled in our calculus as follows:

new skSN . !new IMSI . new kIMSI . !new sqn. new sms .

(AKASN [sSMSSN] | AKAMS [sSMSMS])

where skSN represents the private key of the network; while IMSI and kIMSI

represent respectively the long-term identity and the symmetric key of the MS.
The name sqn models the sequence number on which SN and MS are synchro-
nised. The two subprocessesAKAMS and sSMSMS (resp. AKASN , and sSMSSN)
model one session of the MS’s (resp. SN’s) side of the AKA, and sSMS protocols
respectively. Each MS, identified by its identity IMSI and its key kIMSI , can run
multiple times the AKA protocol followed by the sSMS protocol.

Security analysis. We explain how some confidentiality and privacy properties
of the AKA protocol and the sSMS procedure can be derived relying on our
composition results. We do not need to tag the protocols under study to perform
our analysis since they do not share any primitive but the pairing operator. Note
that the AKA protocol can not be modelled in the calculus given in [12] due to
the need of non-trivial else branches. Moreover, to enable the use of ProVerif,
we had to abstract some details of the considered protocols that ProVerif cannot
handle. In particular, we model timestamps using nonces, we replace the use of
the xor operation by symmetric encryption, and we assume that the two parties
are “magically” synchronised on their counter value.

Strong unlinkability requires that an observer does not see the difference between
the two following scenarios: (i) a same mobile phone sends several SMSs; or (ii)
multiple mobile phones send at most one SMS each. To model this requirement,
we consider the composition context5:

CU []
def
= !new IMSI 1. new kIMSI 1. !new IMSI 2. new kIMSI 2.

let IMSI = diff[IMSI 1, IMSI 2] in let kIMSI = diff[kIMSI 1, kIMSI 2] in
new sqn. new sms.

To check if the considered 3G protocols satisfy strong unlinkability, one needs to
check if the following biprocess satisfies diff-equivalence (Φ0 = {w1 ⊲ pk(skSN)}):

(skSN ;CU [AKASN [sSMSSN] | AKAMS [sSMSMS]];Φ0)

5 We use let x = M in P to denote the process P{M/x}.

16

Hypotheses (1-4) stated in Theorem 4 are satisfied, and thus this equivalence
can be derived from the following two “smaller” diff-equivalences:

(skSN ; new d. CU [AKA+];Φ0) and (skSN ;C′

U [sSMS]; ∅)

– sSMS
def
= sSMSSN | sSMSMS ,

– AKA+ def
= AKASN [out(d, xckSN)] | AKAMS [out(d, xckMS)] |

in(d, x). in(d, y). if x = y then 0 else 0

– C′

U []
def
= CU [new ck.let xckSN = ck in let xckMS = ck in].

Weak secrecy requires that the sent/received SMS is not deducible by an out-
sider, and can be modelled using the context

CWS []
def
=!new IMSI . new kIMSI . !new sqn.new sms. .

The composition context CWS is the same as fst(CU) (up to some renaming),
thus Hypotheses (1-4) of Theorem 2 also hold and we derive the weak secrecy
property by simply analysing this property on AKA and sSMS in isolation.

Strong secrecy means that an outsider should not be able to distinguish the
situation where sms1 is sent (resp. received), from the situation where sms2 is
sent (resp. received), although he might know the content of sms1 and sms2.
This can be modelled using the following composition context:

CSS []
def
=!new IMSI . new kIMSI . !new sqn. let sms = diff[sms1, sms2] in

where sms1 and sms2 are two free names known to the attacker. Again, our
Theorem 4 allows us to reason about this property in a modular way.

Under the abstractions briefly explained above, all the hypotheses have been
checked using ProVerif. Actually, it happens that ProVerif is also able to conclude
on the orignal protocol (the one without decomposition) for the three security
properties mentioned above. Note that a less abstract model of the same protocol
(e.g. the one with the xor operator) would have required us to rely on a manual
proof. In such a situation, our composition result allows us to reduce a big
equivalence that existing tools cannot handle, to a much smaller one which is a
more manageable work in case the proof has to be done manually.

7.2 E-passport application

We look at privacy guarantees provided by three protocols of the e-passport
application when run in composition as specified in [1].

Protocols description. The information stored in the chip of the passport is
organised in data groups (dg1 to dg19): dg5 contains a JPEG copy of the dis-
played picture, dg7 contains the displayed signature, whereas the verification
key vk(skP) of the passport, together with its certificate sign(vk(skP), skDS) is-
sued by the Document Signer authority are stored in dg15. For authentication
purposes, a hash of all the dgs together with a signature on this hash value are
stored in a separate file, the Security Object Document:

sod
def
= 〈sign(h(dg1, . . . , dg19), skDS), h(dg1, . . . , dg19)〉.

17

The ICAO standard specifies several protocols through which this informa-
tion can be accessed [1]. First, the Basic Access Control (BAC) protocol estab-
lishes a key seed kseed from which a session key kenc is derived. The purpose of
kenc is to prevent skimming and eavesdropping on the subsequent communica-
tion with the e-passport. The security of the BAC protocol relies on two master
keys, ke and km. Once the BAC protocol has been successfully executed, the
reader gains access to the information stored in the RFID tag through the Pas-
sive Authentication (PA) and the Active Authentication (AA) protocols that can
be executed in any order. This situation can be modelled in our calculus:

P
def
= new skDS . !new ke. new km . new skP .new id . new sig. new pic. . . .

!(BACR[PAR | AAR] | BACP [PAP | AAP])

where id , sig, pic, ... represent the name, the signature, the displayed picture, etc
of the e-passport’s owner, i.e. the data stored in the dgs (1-14) and (16-19). The
subprocesses BACP , PAP and AAP (resp. BACR, PAR and AAR) model one
session of the passport’s (resp. reader’s) side of the BAC, PA and AA protocols
respectively. The name skDS models the signing key of the Document Signing
authority used in all passports. Each passport (identified by its master keys ke
and km , its signing key skP , the owner’s name, picture, signature, ...) can run
multiple times the BAC protocol followed by the PA and AA protocols.

Security analysis. We explain below how strong anonymity of these three pro-
tocols executed together can be derived from the analysis performed on each
protocol in isolation. In [4], as sequential composition could not be handled, the
analysis of the e-passports application had to exclude the execution of the BAC
protocol. Instead, it was assumed that the key kenc is “magically” pre-shared
between the passport and the reader. Thanks to our Theorem 4, we are now able
to complete the analysis of the e-passport application.

To express strong anonymity, we need on the one hand to consider a system
in which the particular e-passport with publicly known id1, sig1, pic1, etc. is
being executed, while on the other hand it is a different e-passport with publicly
known id2, sig2, pic2, etc. which is being executed. We consider the context:

CA[]
def
=!new ke. new km. new skP .let id = diff[id1, id2] in . . . !

This composition context differs in the e-passport being executed on the left-
hand process and on the right-hand process. In other words, the system satisfies
anonymity if an observer cannot distinguish the situation where the e-passport
with publicly known id1, sig1, pic1, etc. is being executed, from the situation
where it is another e-passport which is being executed. To check if the tagged
version of the e-passport application (we assume here that BAC, PA, and AA are
tagged in different ways) preserves strong anonymity, one thus needs to check if
the following biprocess satisfies diff-equivalence (with Φ0 = {w1 ⊲ vk(skDS)}):

(skDS ;CA[BAC
R[PAR | AAR] | BACP [PAP | AAP]];Φ0)

We can instead check whether BAC, PA and AA satisfy anonymity in isola-
tion, i.e. if the following three diff-equivalences hold:

18

(skDS ; new d. CA[BAC
+]; ∅) (α)

(skDS ;C
′

A[PA
R | PAP];Φ0) (β)

(skDS ;C
′

A[AA
R | AAP]; ∅) (γ)

where

– BAC+ def
= BACR[out(d, xkencR)] | BACP [out(d, xkencP)]

| in(d, x). in(d, y). ifx = y then 0 else 0;

– C′

A[]
def
= CA[C

′′

A[]]; and

– C′′

A[]
def
= new kenc. let xkencR = kenc in let xkencP = kenc in .

Then, applying Theorem 3 to (β) and (γ) we derive that the following biprocess
satisfies diff-equivalence:

(skDS ;C
′

A[PA
R | AAR | PAP | AAP];Φ0) (δ).

and applying Theorem 4 to (α) and (δ), we derive the required diff-equivalence:

(skDS ;CA[BAC
R[PAR | AAR] | BACP [PAP | AAP]];Φ0)

Note that we can do so because Hypotheses (1-4) stated in Theorem 4 are
satisfied, and in particular because BACR/BACP /∅ is a good key-exchange pro-
tocol under {skDS} and CA. Again, all the hypotheses have been checked using
ProVerif. Actually, it happens that ProVerif is also able to directly conclude on
the whole system.

Unfortunately, our approach does not apply to perform a modular analysis
of strong unlinkability. The BAC protocol does not satisfy the diff-equivalence
needed to express such a security property, and this hypothesis is mandatory to
apply our composition result.

8 Conclusion

We investigate composition results for reachability properties as well as privacy-
type properties expressed using a notion of equivalence. Relying on a generic
composition result, we derive parallel composition results, and we study the
particular case of key-exchange protocols under various composition contexts.

All these results work in a quite general setting, e.g. processes may have
non trivial else branches, we consider arbitrary primitives expressed using an
equational theory, and processes may even share some standard primitives as
long as they are tagged in different ways. We illustrate the usefulness of our
results through the mobile phone and e-passport applications.

We believe that our generic result could be used to derive further composition
results. We may want for instance to relax the notion of being a good protocol
at the price of studying a less ideal scenario when analysing the protocol Q in
isolation. We may also want to consider situations where sub-protocols sharing
some data are arbitrarily interleaved. Moreover, even if we consider arbitrary
primitives, sub-protocols can only share some standard primitives provided that
they are tagged. It would be nice to relax these conditions. This would allow one
to compose protocols (and not their tagged versions) or to compose protocols
that both rely on primitives for which no tagging scheme actually exists (e.g.
exclusive-or).

19

References

1. PKI for machine readable travel documents offering ICC read-only access. Tech-
nical report, International Civil Aviation Organization, 2004.

2. 3GPP. Technical specification group services and system aspects; 3G security;
security architecture (release 9). Technical report, 3rd Generation Partnership
Project, 2010.

3. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In Proc. 28th Symposium on Principles of Programming Languages (POPL’01),
2001.

4. M. Arapinis, V. Cheval, and S. Delaune. Verifying privacy-type properties in a
modular way. In Proc. 25th IEEE Computer Security Foundations Symposium
(CSF’12), 2012.

5. M. Arapinis, L. I. Mancini, E. Ritter, M. Ryan, N. Golde, K. Redon, and R. Bor-
gaonkar. New privacy issues in mobile telephony: fix and verification. In ACM
Conference on Computer and Communications Security, 2012.

6. A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and M. L. Tobarra. Formal
analysis of SAML 2.0 web browser single sign-on: breaking the SAML-based sin-
gle sign-on for google apps. In Proc. 6th ACM Workshop on Formal Methods in
Security Engineering (FMSE 2008), 2008.

7. A. Armando et al. The AVANTSSAR Platform for the Automated Validation of
Trust and Security of Service-Oriented Architectures. In Proc. 18th Int. Conference
on Tools and Algorithms for the Construction and Analysis of Systems, 2012.

8. B. Barak, R. Canetti, J. Nielsen, and R. Pass. Universally composable protocols
with relaxed set-up assumptions. In Proc. 45th Symposium on Foundations of
Computer Science (FOCS’04), 2004.

9. B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equiv-
alences for security protocols. Journal of Logic and Algebraic Programming, 2008.

10. F. Böhl and D. Unruh. Symbolic universal composability. In Proc. 26th Computer
Security Foundations Symposium (CSF’13), 2013.

11. M. Bruso, K. Chatzikokolakis, and J. den Hartog. Formal verification of pri-
vacy for RFID systems. In Proc. 23rd Computer Security Foundations Symposium
(CSF’10), 2010.

12. Ş. Ciobâcă and V. Cortier. Protocol composition for arbitrary primitives. In Proc.
of the 23rd IEEE Computer Security Foundations Symposium (CSF’10), 2010.

13. V. Cortier and S. Delaune. Safely composing security protocols. Formal Methods
in System Design, 34(1):1–36, Feb. 2009.

14. T. Groß and S. Mödersheim. Vertical protocol composition. In Proc. 24th Computer
Security Foundations Symposium, (CSF’11), 2011.

15. J. D. Guttman and F. J. Thayer. Protocol independence through disjoint encryp-
tion. In Proc. 13th Computer Security Foundations Workshop (CSFW’00), 2000.

16. R. Küsters and M. Tuengerthal. Composition Theorems Without Pre-Established
Session Identifiers. In Proc. 18th Conference on Computer and Communications
Security (CCS’11), 2011.

17. S. Mödersheim and L. Viganò. Secure pseudonymous channels. In Proc. 14th
European Symposium on Research in Computer Security (ESORICS’09), 2009.

18. A. Tiu and J. E. Dawson. Automating open bisimulation checking for the spi
calculus. In Proc. 23rd Computer Security Foundations Symposium (CSF’10),
2010.

20

