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Abstract

Mobile ad hoc networks consist of mobile wireless devices which autonomously
organize their infrastructure. In such networks, a central issue, addressed by
routing protocols, is to find a route from one device to another. These pro-
tocols use cryptographic mechanisms in order to prevent malicious nodes from
compromising the discovered route.

Our contribution is twofold. We first propose a calculus for modeling and
reasoning about security protocols, including in particular secured routing pro-
tocols. Our calculus extends standard symbolic models to take into account
the characteristics of routing protocols and to model wireless communication
in a more accurate way. Our second main contribution is a decision procedure
for analyzing routing protocols for any network topology. By using constraint
solving techniques, we show that it is possible to automatically discover (in
NPTIME) whether there exists a network topology that would allow malicious
nodes to mount an attack against the protocol, for a bounded number of ses-
sions. We also provide a decision procedure for detecting attacks in case the
network topology is given a priori. We demonstrate the usage and usefulness of
our approach by analyzing protocols of the literature, such as SRP applied to
DSR and SDMSR.

1. Introduction

Mobile ad hoc networks consist of mobile wireless devices which autonomously
organize their communication infrastructure: each node provides the function
of a router and relays packets on paths to other nodes. Finding these paths is
a crucial functionality of any ad hoc network. Specific protocols, called routing
protocols, are designed to ensure this functionality known as route discovery.

Prior research in ad hoc networking has generally studied the routing prob-
lem in a non-adversarial setting, assuming a trusted environment. Thus, many
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of the currently proposed routing protocols for mobile ad hoc networks are as-
sumed to be used in a friendly environment (e.g., [29, 21]). Recent research
has recognized that this assumption is unrealistic and that attacks can be
mounted [18, 26, 11]. Since an adversary can easily paralyze the operation
of a whole network by attacking the routing protocol, it is crucial to prevent
malicious nodes from compromising the discovered routes. Since then, secured
versions of routing protocols have been developed to ensure that mobile ad hoc
networks can work even in an adversarial setting [37, 18, 27]. Those routing
protocols use cryptographic mechanisms such as encryption, signature, MAC,
in order to prevent a malicious node from inserting and deleting nodes inside a
path. We call these protocols secured routing protocols in the sense that efforts
have been made to add security although some of these protocols may still have
flaws.

Formal modeling and analysis techniques are well-adapted for checking cor-
rectness of security protocols. Formal methods have for example been success-
fully used for analyzing authentication or key establishment security protocols
and a multitude of effective frameworks have been proposed (e.g., the Paulson
inductive model [28], the strand spaces model [35], the applied-pi calculus [1] or
constraints systems [32] to cite only a few). While secrecy and authentication
properties are undecidable in the general case [15], many decision procedures
have been proposed. For example, secrecy and authentication become NP-
complete for a bounded number of sessions [32] and Blanchet has developed a
procedure for security protocols encoded as Horn clauses [9]. This yielded vari-
ous efficient tools for detecting flaws and proving security (e.g., ProVerif [10] or
Avispa [6]).

While key-exchange protocols are well-studied in traditional networks, there
are very few attempts to develop formal techniques allowing an automated anal-
ysis of secured routing protocols. To the best of our knowledge, tools that would
allow the security analysis of routing protocols are also missing. Those proto-
cols indeed involve several subtleties that cannot be reflected in existing work.
For example, the underlying network topology is crucial to define who can re-
ceive the messages sent by a node and the intruder is localized to some specific
nodes (possibly several nodes). Moreover, the security properties include e.g.,
the validity of a route, which differ from the usual secrecy and authentication
properties.

Our contributions. The first main contribution of this paper is proposing a
calculus, inspired from CBS# [26], which allows ad hoc networks and their
security properties to be formally described and analyzed. As in standard formal
models for security protocols, we model cryptography as a black box (the perfect
cryptography assumption), thus the attacker cannot break cryptography, e.g.,
decrypt a message without having the appropriate decryption key. In order to
represent routing protocols in an accurate way, some features need to be taken
into account. Among them:

• Local knowledge: not only do nodes perform cryptographic tests (e.g.,
checking signatures), they also use their local knowledge of the network,
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e.g., they can check that some nodes are their neighbors.

• Network topology : nodes can only communicate (in a direct way) with
their neighbors.

• Broadcast communication: the main mode of communication is broadcast-
ing and only adjacent nodes receive messages.

• Internal states: nodes are not memory-less but store some information in
routing tables with impact on future actions.

To take these features into account, we first propose a logic to express the
tests performed by the nodes at each step. For instance, it allows a node to
check whether a route is “locally” valid, given the information known by that
node. There are also some implications for the attacker model. Indeed, in
most existing formal approaches, the attacker controls the entire network. This
abstraction is suitable for reasoning about classical protocols. However, in the
context of routing protocols, this attacker model is too strong and leads to a
number of false attacks. The constraints on communication also apply to the
attacker. Our model reflects the fact that a malicious node can interfere directly
only with his neighbors. It should be noted that we do not take mobility into
account in the sense that the topology of the network does not change during
our analysis. There are two main reasons for this limitation. First, many flaws
can already be detected without any change in the network topology. Second,
properties like the validity of a route are of course (temporarily) invalidated
during a network topology modification. Therefore, such properties have to be
analyzed once the network is stabilized, previous routing protocol executions
being possibly included in the initial knowledge of the attacker.

We would like to emphasize that our model is not strictly dedicated to
routing protocols but can be used to model many other classes of protocols. In
particular, by considering a special network topology where the attacker is at the
center of the network, we retrieve the classical model where the attacker controls
all the communications. We can thus model as usual all the key exchange
and authentication protocols presented e.g., in the Clark & Jacob library [13].
Moreover, since we provide each node with a memory, our model can also capture
protocols where a state global to all sessions is assumed for each agent. For
example, protocols where an agent should check that a key has not already
been accepted in a previous session, in order to protect the protocol against
replay attacks.

Our formal model represents all possible executions against an adversary
that controls some of the nodes and acts maliciously in these nodes by sending
any message that he can construct. Our model is thus infinitely branching. As
a first step towards automation, we provide an alternative symbolic semantics,
based on constraint systems and we show its correctness and completeness w.r.t.
the concrete semantics. This result holds for arbitrary processes (possibly with
replication) and for any set of primitives.
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Our second main contribution is to provide two NP decision procedures for
analyzing routing protocols for a bounded number of sessions and for a large set
of standard primitives. For a fixed set of roles and sessions, our first decision
procedure enables us to discover whether there exists a network topology and a
malicious behavior of some nodes that yield an attack. Using similar ingredients,
we can also decide whether there exists an attack, for a network topology chosen
by the user. Our two procedures hold for any property that can be expressed in
our logic, which includes classical properties such as secrecy as well as properties
more specific to routing protocols such as route validity.

The main ingredients of our decision procedures are as follows. Even if
we consider a bounded number of sessions, the messages sent by the adversary
can be arbitrarily large and may contain arbitrarily many node names. The key
result for decidability is that whenever there is an attack then there exists an
attack that make use of messages of limited size and of limited number of node
names. In particular, we need to show that it is possible to bound the size of
the lists that are carried out by the nodes. To this purpose, we first propose
a symbolic semantics for our execution model and show how the analysis of
routing protocols can be reduced to (generalized) constraint systems solving. We
then adapt and generalize existing techniques [14] for solving our more general
constraint systems. We show in particular that minimal attacks (whether the
underlying network topology is fixed or not) require at most a polynomially
bounded number of nodes. We demonstrate the usage and usefulness of our
model and techniques by analyzing SRP (Secured Routing Protocol) [27] applied
on the protocol DSR (Dynamic Source Routing Protocol) [21]. This allows us
to retrieve an attack presented first in [11]. We also analyze the security of
SDMSR [8], discovering an attack.

Related work. Recently, several results have been proposed for studying routing
protocols. For example, Yang and Baras [36] provide a first symbolic model for
routing protocols based on strand spaces, modeling the network topology. They
implement a semi-decision procedure to search for attacks and find an attack
on AODV [29], a routing protocol (built for friendly environments) that does
not include cryptography. Their approach however does not apply to routing
protocols using cryptographic primitives for securing communications. Schaller
et al [34] propose a symbolic model that allows an accurate representation of the
physical properties of the network, in particular the speed of the communication.
This allows in particular to study distance bounding protocols. Several security
proofs are provided for some fixed protocols, formalized in Isabelle/HOL. No
generic procedure is proposed for proving security. Even if cryptographic primi-
tives are modeled, this work focuses on timing properties or physical properties.
They do not consider e.g., the validity of a route.

Several case studies of important secured routing protocols have been per-
formed. Godskesen [16] provides an analysis of a simplified version of the
ARAN [33] protocol with ProVerif, for a given configuration, and captures a
relay attack. Marshall [20] uses Cryptographic Protocol Analysis Language
Evaluation System (CPAL-ES) to specify the SRP protocol and analyze it. The
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encoding of SRP is performed on a precise fixed topology, without broadcast,
and a relay attack is retrieved. Benetti, Merro and Viganò [7] use the AVISPA
tool to automatically analyse some execution scenarios of the ARAN and endairA
protocols, and find some attacks on ARAN.

While these last results focus on particular routing protocols, some frame-
works have been proposed to model wireless communication and/or routing
protocols in a more generic way. Buttyán and Vajda [11] provide a model for
routing protocols, in a cryptographic setting. Their model enables them to find
attacks on SRP and Ariadne [18]. They provide a security proof (by hand) for
a fixed protocol they propose, endairA. Àcs, Buttyàn and Vajda then develop
their framework for distance vector routing protocols [3], analysing SAODV [37]
and ARAN. They also apply their framework to sensor networks [4], analyzing
TinyOS [30]. The work closest to ours is the one of Nanz and Hankin [26].
They propose a process calculus to model the network topology and broadcast
communications. They analyze scenarios with special topologies and attacker
configuration by computing an over-approximation of reachable states. Their
analysis is safe in the sense that it does not find flaws if the protocol is secure.
The model proposed in this paper is inspired from their work, adding in partic-
ular a logic for specifying the tests performed at each step by the nodes on the
current route and to specify the security properties.

To our knowledge, our paper presents the first decidability and complex-
ity result for routing protocols, for arbitrary intruders and network topologies.
Moreover, since we reuse existing techniques on solving constraint systems, our
decision procedure seems amenable to implementation, re-using existing tools
(such as Avispa [6]).

Outline. Section 2 presents our formal model for routing protocols. It is illus-
trated with the modeling of the SRP protocol. We then give an alternative sym-
bolic semantics, in Section 3, based on constraint systems and more amenable
to automation. We show its correctness and completeness w.r.t. the concrete
semantics. This result is of independent interest. In order to provide decision
procedures for routing protocols, we first show in Section 4 how to transform
the constraint systems corresponding to routing protocols into solved constraint
systems. We then need to decide security properties such as route validity on
solved constraint systems. We show in Section 5 that whenever there is an
attack, there is a small one. Wrapping all the results together we provide our
two decision procedures in Section 6. We provide applications of our results in
Section 7. Some concluding remarks can be found in Section 8. The technical
details of the proofs can be found in Appendix.

2. Model for protocols

2.1. Messages

Cryptographic primitives are represented by function symbols. More specif-
ically, we consider a signature (S,F) made of a set of sorts S and a set of
function symbols F together with arities of the form ar(f) = s1 × . . .× sk → s.
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We consider an infinite set of variables X and an infinite set of names N that
typically represent nonces or agent names. In particular, we consider a special
sort loc for the nodes of the network. We assume that names and variables are
given with sorts. We also assume an infinite subset Nloc of names of sort loc.
The set of terms of sort s is defined inductively by:

t ::= term of sort s
| x variable x of sort s
| a name a of sort s
| f(t1, . . . , tk) application of symbol f ∈ F

where ar(f) = s1 × . . .× sk → s and ti is a term of some sort si.

We assume a special sort terms that subsumes all the other sorts and such
that any term is of sort terms. We write var(t) (resp. names(t)) for the set of
variables (resp. names) occurring in a term t and St(t) for the set of syntactic
subterms of t. Sometimes, for sake of readability, we will write var(t1, t2) (resp.
names(t1, t2) and St(t1, t2)) instead of var({t1, t2}) (resp. names({t1, t2}) and
St({t1, t2})) or var(T ) (resp. names(T ) and St(T )) when T is a set of terms.
The term t is said to be a ground term if var(t) = ∅.

Example 1. For example, we will consider the specific signature (S1,F1) de-
fined by S1 = {loc, lists, terms} and F1 = {hmac, 〈〉, ::, [], { } , priv, {| |} , J K },
with the following arities:

• hmac, 〈 , 〉, { } , {| |} , J K : terms× terms→ terms,

• :: : loc× lists→ lists,

• [] :→ lists,

• priv : terms→ terms.

The sort lists represents lists of terms of sort loc. We assume that there
is no name of sort lists. The symbol :: is the list constructor. [] is a constant
representing an empty list. The term hmac(m, k) represents the keyed hash
message authentication code computed over message m with key k while 〈〉 is a
pairing operator. The terms {m}k and {|m|}k represent respectively the message
m encrypted with the symmetric (resp. asymmetric) key k. The term JmKk
represents the message m signed by the key k. The term priv(a) represents the
private key of the agent a. For simplicity, we identify the agent names with
their public keys. (Or conversely, we claim that agent identities are defined by
their public keys). We write 〈t1, t2, t3〉 for the term 〈t1, 〈t2, t3〉〉, and [t1; t2; t3]
for t1 :: (t2 :: (t3 :: [])).

Substitutions are written σ = {t1/x1
, . . . , tn/xn

} with dom(σ) = {x1, . . . , xn}.
We only consider well-sorted substitutions, that is substitutions for which xi
and ti have the same sort. The substitution σ is ground if all of the ti are
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ground. We denote by img(σ) the image of σ, i.e., img(σ) = {xσ | x ∈ dom(σ)}.
The application of a substitution σ to a term t is written σ(t) or tσ. A most
general unifier of two terms t and u is a substitution denoted by mgu(t, u). We
write mgu(t, u) = ⊥ when t and u are not unifiable.

The ability of the intruder is modeled by a deduction relation `⊆ 2terms ×
terms. The relation T ` t represents the fact that the term t is computable from
the set of terms T . The deduction relation can be arbitrary in our model and
is thus left unspecified. It is typically defined through a deduction system like
the one provided in Example 2.

Example 2. Consider the term algebra (S1,F1) defined in Example 1, the de-
duction system presented in Figure 1 reflects the ability for the intruder to com-
pose messages by pairing, encrypting, and signing messages provided he has the
corresponding keys. He can also compute a hmac when he knows the key and
build lists. Conversely, he can retrieve components of a pair or a list. He can
also decompose messages by decrypting provided he holds the decryption keys.
For signatures, the intruder is also able to verify whether a signature JmKk and
a message m match (provided he has the verification key), but this does not
produce any new message: this capability needs not to be represented in the
deduction system. We also consider an optional rule

T ` JuKv
T ` u

that expresses the ability to retrieve the whole message from its signature. This
property may or may not hold depending on the signature scheme, and that is
why this rule is optional. Some of our results will be based on this deduction
system and will hold in both cases, whether or not this rule is considered in the
deduction relation.

2.2. Process calculus

Several calculi already exist for modelling security protocols (e.g. [2, 1]).
However, modeling ad-hoc routing protocols requires several additional features.
For instance, a node of the network may store some information, e.g. the content
of its routing table. We also need to take into account the network topology and
to model broadcast communication. Such features can not be easily modeled
in these calculi. Our calculus is inspired from CBS# [26], which allows mobile
wireless networks and their security properties to be formally described and
analyzed. However, we extend this calculus to allow nodes to perform some
sanity checks on the routes they receive, such as neighborhood properties, as it
is the case in the context of secured routing protocols.

The intended behavior of each node of the network can be modeled by a
process defined by the grammar given in Figure 2. Our calculus is parameterized
by a set L of formulas. The process out(u).P emits u and then behaves like P .
The process in u[Φ].P expects a message m of the form u such that Φ is true
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T ` a T ` l

T ` a :: l

T ` u T ` v

T ` 〈u, v〉

T ` u T ` v

T ` {u}v

T ` {u}v T ` v

T ` u

T ` a :: l

T ` a
T ` 〈u, v〉

T ` u

T ` u T ` v

T ` {|u|}v

T ` {|u|}v T ` priv(v)

T ` u

T ` a :: l

T ` l
T ` 〈u, v〉

T ` v

T ` u T ` v

T ` JuKv

T ` JuKv
(optional)

T ` u

T ` u T ` v

T ` hmac(u, v)

u ∈ T ∪ {[]}

T ` u

Figure 1: Deduction system associated to the signature (S1,F1).

P,Q := processes
null null process
out(u).P emission
in u[Φ].P reception, Φ ∈ L
store(u).P storage
read u then P else Q reading
if Φ then P else Q conditional, Φ ∈ L
P | Q parallel composition
!P replication
new m.P fresh name generation

Figure 2: Processes

and then behaves like Pσ where σ is such that m = uσ. If Φ is the true formula,
we simply write in u.P . The process store(u).P stores u in its storage list and
then behaves like P . The process read u then P else Q looks for a message of
the form u in its storage list and then, if such an element m is found, it behaves
like Pσ where σ is such that m = uσ. If no element of the form u is found, then
it behaves like Q. The process P | Q runs P and Q in parallel. The process
!P executes P some arbitrary finite number of times. The restriction new m is
used to model the creation in a process of new random numbers (e.g., nonces or
key material). The process new m.P is the process that invents a new name m
and continues as P . Sometimes, for the sake of clarity, we will omit the null
process. We also omit the else part when Q = null. We write fv(P ) for the set
of free variables of P . A process P is ground when fv(P ) = ∅.

The store and read primitives are particularly important when modeling
routing protocols, in order to avoid multiple answers to a single request or to
allow nodes to store and retrieve already known routes. These primitives can
also be used to represent other classes of protocols, where a global state is
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assumed for each agent, in order to store some information (black list, already
used keys. etc.) throughout the sessions.

Secured routing protocols typically require that nodes perform some checks
on the messages they receive before accepting them. We will typically consider
the logic Lroute defined by the grammar given in Figure 3. check(a, b) represents
the fact that the two nodes a and b are neighbors. checkl(c, l) holds when l is
a plausible route from the view of c, i.e., c occurs in the list (exactly once) and
the previous and successive nodes in the list are neighbors of c. These checks
typically allow a node to control that the route they are forwarding looks valid,
from their point of view. It might help to detect when a malicious node has
altered a route in a previous phase (e.g. request phase). The predicate route
represents the validity of a route and will be used to express security properties.
Lastly, loop(l) checks the existence of a loop in l.

Φ := formula
check(a, b)

}
adjacency tests

checkl(c, l)
route(l) validity of a route
loop(l) existence of a loop in a list
Φ1 ∧ Φ2 conjunction
Φ1 ∨ Φ2 disjunction
¬Φ negation

Figure 3: Logic Lroute

Given an undirected graph G = (Nloc, E), the formal semantics [[Φ]]G of a
formula Φ ∈ Lroute is recursively defined as follows:

• [[check(a, b)]]G = true iff (a, b) ∈ E.

• [[checkl(c, l)]]G = true iff l is of sort lists, c appears exactly once in l, and
for any l′ sub-list of l,

– if l′ = a :: c :: l1, then (a, c) ∈ E.

– if l′ = c :: b :: l1, then (c, b) ∈ E.

• [[route(l)]]G = true iff l is of sort lists, l = [a1; . . . ; an], for every 1 ≤ i < n,
(ai, ai+1) ∈ E, and for every 1 ≤ i, j ≤ n, i 6= j implies that ai 6= aj .

• [[loop(l)]]G iff l is of sort lists and there exists an element appearing at least
twice in l.

• [[Φ1 ∧ Φ2]]G = [[Φ1]]G ∧ [[Φ2]]G.

• [[Φ1 ∨ Φ2]]G = [[Φ1]]G ∨ [[Φ2]]G.

• [[¬Φ]]G = ¬[[Φ]]G.
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Our model is defined for any kind of logic L, provided that the semantics
[[Φ]]G of a closed formula Φ is defined, as soon as the underlying graph G is
provided.

2.3. Example: modelling the SRP protocol

We consider the secured routing protocol SRP introduced in [27], assuming
that each node already knows his neighbors (running e.g. some neighbor discov-
ery protocol [31]). SRP is not a routing protocol by itself, it describes a generic
way for securing source-routing protocols. We model here its application to the
DSR protocol [21]. DSR is a protocol which is used when an agent S (the source)
wants to communicate with another agent D (the destination), who is not his
immediate neighbor. In an ad hoc network, messages can not always be sent
directly to the destination, but sometimes have to travel along a path of nodes.

To discover a route to the destination, the source constructs a request packet
and broadcasts this packet to its neighbors. The request packet contains its
name S, the name of the destination D, an identifier of the request id , a list
containing the beginning of a route to D, and a hmac computed over the content
of the request with a key KSD shared by S and D. The source then waits for
an answer containing a route to D with a hmac matching this route, and checks
that it is a plausible route by checking that the route does not contain a loop
and that its neighbor in the route is indeed a real neighbor in the network.

In what follows, we consider the signature given in Example 1, and we use
the following notations: xS , xD, and xa are variables of sort loc; req, rep, and
id are names; xid, and xm are variables of sort terms; and xL, xl, and xr are
variables of sort lists. We also use some variables as parameters: zS , zD, and
zV variables of sort loc, and zKSD

is a parameter used to store the key shared
between zS and zD.

The process executed by a source node zS initiating the search of a route to-
wards a destination node zD is Pinit(zS , zD, zKSD

) = new id .out(u1).in u2[ΦS ].null
where:

u1 = 〈req, zS , zD, id , zS :: [], hmac(〈req, zS , zD, id〉, zKSD
)〉

u2 = 〈rep, zD, zS , id , xL, hmac(〈rep, zD, zS , id, xL〉, zKSD
)〉

ΦS = checkl(zS , xL) ∧ ¬loop(xL).

The names of the intermediate nodes are accumulated in the route request
packet. Intermediate nodes relay the request over the network, except if they
have already seen it, which is modeled by checking that the session id has
not been already stored. An intermediate node also checks that the received
request is locally correct by verifying whether the head of the list in the request
is one of its neighbors. The process executed by an intermediate node zV when
forwarding a request is as follows:

Preq(zV ) = in w1[ΦV ].read t then null else (store(t).out(w2))
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where


w1 = 〈req, xS , xD, xid , xa :: xr, xm〉
ΦV = check(zV , xa)
t = 〈xS , xD, xid〉
w2 = 〈req, xS , xD, xid , zV :: (xa :: xr), xm〉

When the request reaches the destination zD, it checks that the request has
a correct hmac and that the first node in the route is one of its neighbors.
Then, the destination zD constructs a route reply, in particular it computes
a new hmac over the route accumulated in the request packet with zKSD

, and
sends the answer back over the network.The process executed by the destination
node zD is Pdest(zD, zS , zKSD

) = in v1[ΦD].out(v2).null where:

v1 = 〈req, zS , zD, xid , xa :: xl, hmac(〈req, zS , zD, xid〉, zKSD
)〉

ΦD = check(zD, xa)
v2 = 〈rep, zD, zS , xid , xa :: xl, hmac(〈rep, zD, zS , xid , xa :: xl〉, zKSD

)〉

Then, the reply travels along the route back to zS . The intermediate nodes
check that the route in the reply packet is locally correct (i.e., they check that
their name appears once in the list and that the nodes before and after them are
their neighbors) before forwarding it. The process executed by an intermediate
node zV when forwarding a reply is the following:

Prep(zV ) = in w′[Φ′V ].out(w′).null

where

{
w′ = 〈rep, xD, xS , xid , xr, xm〉
Φ′V = checkl(zV , xr)

2.4. Execution model

Each process is located at a specified node of the network. Unlike classical
Dolev-Yao model, the intruder does not control the entire network but can only
interact with his neighbors. More specifically, we assume that the topology of
the network is represented by an undirected graph G = (Nloc, E), where an
edge in the graph models the fact that two nodes are neighbors. We will only
consider finite graphs, i.e., such that E is finite. We also assume that we have
a set of nodes M ⊆ Nloc that are controlled by the attacker. These nodes are
then called malicious. Our model is not restricted to a single malicious node.
Our results allow us to consider the case of several compromised nodes that
collaborate by sharing their knowledge, using out-of-band resources or hidden
channels (e.g. running other instances of the routing protocols). However, it is
well-known that the presence of several colluding malicious nodes often yields
straightforward attacks [19, 24].

A (ground) concrete configuration of the network is a triplet (P;S; I) where:

• P is a multiset of expressions of the form bP cn where null processes, i.e.,
expressions of the form bnullcn are removed. bP cn represents the (ground)
process P located at node n ∈ Nloc. We will write bP cn ∪ P instead of
{bP cn} ∪ P.
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• S is a set of expressions of the form btcn with n ∈ Nloc and t a ground
term. btcn represents the fact that the node n has stored the term t.

• I is a set of ground terms representing the messages seen by the intruder.

A configuration with a hole is a triplet of the form (bP [ ]cn ∪P;S; I) where
P, S and I are defined as above, and P [ ] is a process with a hole, i.e., a process
with a hole instead of a process. This is useful for describing part (e.g. the
beginning) of a process, while leaving the hole to represent the other part that
will be filled in later.

Example 3. Let S and D be names of sort loc, and KSD be another name that
intuitively represents the key shared between the nodes S and D. sort Continuing
our modeling of SRP, a possible initial configuration for the SRP protocol is

K0 = (bPinit(S,D,KSD)cS | bPdest(D,S,KSD)cD; ∅; I0)

where both the source node S and the destination node D wish to communicate.
A more realistic configuration would include intermediate nodes but as shown in
the following examples, this initial configuration is already sufficient to present
an attack. We assume that each node has an empty storage list and that the
initial knowledge of the intruder is given by I0. A possible network configuration
is modeled by the graph G0 = (Nloc, E0) below. We assume that there is a single
malicious node, i.e., M0 = {nI}. The nodes W and X are two extra (honest)
nodes. We do not need to assume that the intermediate nodes W and X execute
the routing protocol.

S

W

nI

X

D

In routing protocols, each honest node broadcasts its messages to all its
neighbors. To capture more malicious behaviors, we allow the nodes controlled
by the intruder to send messages only to some specific neighbor. The commu-
nication system is formally defined by the rules of Figure 4. They are parame-
terized by the underlying graph G and the set of malicious nodes M. A node
expecting a message of the form u will accept any ground term t, provided that t
is an instance of u, that is t = uσ with dom(σ) = var(u). We assume that each
node that is sent a message that matches what it expects does indeed proceed
the message. This is reflected in the three bullets of the Comm rule. We could
model unreliable communications by removing these three conditions, yielding
an actually simpler model.
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Comm ({bin uj [Φj ].Pjcnj
| σj 6= ⊥, [[Φjσj ]]G = true, (n, nj) ∈ E}

∪ bout(t).P cn ∪ P;S; I)
→G,M ({bPjσjcnj} ∪ bP cn ∪ P;S; I ′)

where σj is such that t = ujσj , I ′ = I ∪ {t} if (n, nI) ∈ E for some
nI ∈M and I ′ = I otherwise. Moreover, bP ′cn′ ∈ P implies that:

• (n, n′) 6∈ E, or

• P ′ is not of the form in u′[Φ′].Q′, or

• P ′ = in u′[Φ′].Q′ and

– either there does not exist σ such that t = u′σ,

– or [[Φ′σ]]G = false where σ is such that t = u′σ with dom(σ) =
var(u′).

In (bin u[Φ].P cn ∪ P;S; I) →G,M (bPσcn ∪ P;S; I)
if (nI , n) ∈ E for some nI ∈M, I ` t, t = uσ and [[Φσ]]G = true

for some substitution σ with dom(σ) = var(u)

Store (bstore(t).P cn ∪ P;S; I) →G,M (bP cn ∪ P; btcn ∪ S; I)

Read-Then (bread u then P else Qcn ∪ P; btcn ∪ S; I)
→G,M (bPσcn ∪ P; btcn ∪ S; I)

where σ is a substitution with dom(σ) = var(u) and such that uσ = t
Read-Else (bread u then P else Qcn ∪ P;S; I)

→G,M (bQcn ∪ P;S; I)
if for all t such that btcn ∈ S, there does not exist any substitution such that uσ = t.

If-Then (bif Φ then P else Qcn ∪ P;S; I)
→G,M (bP cn ∪ P;S; I) if [[Φ]]G = true

If-Else (bif Φ then P else Qcn ∪ P;S; I)
→G,M (bQcn ∪ P;S; I) if [[Φ]]G = false

Par (bP1 | P2cn ∪ P;S; I) →G,M (bP1cn ∪ bP2cn ∪ P;S; I)

Repl (b!P cn ∪ P;S; I) →G,M (bPαcn ∪ b!P cn ∪ P;S; I)
where α is a renaming of the bound variables of P

New (bnew m.P cn ∪ P;S; I) →G,M (bP{m′
/m}cn ∪ P;S; I)

where m′ is a fresh name

Figure 4: Concrete transition system.
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The relation→∗G,M is the reflexive and transitive closure of→G,M. We may
write →M, →G, → instead of →G,M when the underlying network topology G
or the underlying set M is clear from the context.

Note that in the case where we assume that there is a single malicious node
and each honest node is connected to it (and not to any other node), we retrieve
the model where the attacker is assumed to control all the communications.

Example 4. Continuing Example 3, the following sequence of transitions is
enabled from the initial configuration K0:

K0→∗G0,M0
(bin u2[ΦS ].0cS ∪ bPdest(D,S,KSD)cD; ∅; I0 ∪ {u1})

where u1, u2,ΦS are defined as follows:

u1 = 〈req, S,D, id , S :: [], hmac(〈req, S,D, id〉,KSD)〉
u2 = 〈rep, D, S, id , xL, hmac(〈rep, D, S, id, xL〉,KSD)〉
ΦS = checkl(S, xL) ∧ ¬loop(xL)

During this transition, S broadcasts to its neighbors a request in order to
find a route to D. The intruder nI is a neighbor of S in G0, so he learns the
request message. Assuming that the intruder knows the names of his neighbors,
i.e., W,X ∈ I0, he can then build the following fake message request:

m = 〈req, S,D, id, [X;W ;S], hmac(〈req, S,D, id〉,KSD)〉

and send it to D. Since (X,D) ∈ E0, the node D accepts this message and
the resulting configuration is (bin u2[ΦS ].nullcS ∪ bout(v2σ).nullcD; ∅; I0 ∪ {u1})
where {

v2 = 〈rep, D, S, xid , xa :: xl, hmac(〈D,S, xid , xa :: xl〉,KSD)〉
σ = {id/xid

,X/xa
, [W ;S]/xl

}

As usual, an attack is defined as a reachability property.

Definition 1 (M-attack). Let G = (Nloc, E) be a graph and M be a set of
nodes. There is an M-attack on a configuration with a hole (P[ ];S; I) for the
network topology G and the formula Φ if there exist n,P ′,S ′, I ′ such that:

(P[if Φ then out(error)];S; I) →∗G,M (bout(error)cn ∪ P ′,S ′, I ′)

where error is a special symbol not occurring in the configuration (P[ ];S; I).

The usual secrecy property can be typically encoded by adding a witness
process in parallel. For example, the process Q = in s. can only evolve if
it receives the secret s. Thus the secrecy preservation of s on a configuration
(P;S; I) for a graph G = (Nloc, E) can be defined by the (non) existence of an
{nI}-attack on the configuration (P ∪ bQcn;S; I) and the formula true for the
graph G′ = (Nloc, E ∪ {(n, nI)}) where n is a name of sort loc that does not
occur in P.
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Example 5. For the SRP protocol, the property we want to check is that the
list of nodes obtained by the source through the protocol represents a path in
the graph. We can easily encode this property by replacing the null process
in Pinit(zS , zD, zKSD

) by a hole, and checking whether the formula ¬route(xL)
holds. Let P ′init(zS , zD, zKSD

) be the resulting process.

P ′init(zS , zD, zKSD
) = new id .out(u1).in u2[ΦS ].P

where P = if ¬route(xL) then out(error). Then, we recover the attack mentioned
in [11] with the topology G0 given in Example 3, and from the initial configura-
tion:

K ′0 = (bP ′init(S,D,KSD)cS | bPdest(D,S,KSD)cD; ∅; I0).

The attack scenario is the following. The source S sends a route request
towards D. The request reaches the node nI . Thus, the attacker receives the
following message 〈req, S,D, id, S :: [], hmac(〈req, S,D, id〉,KSD)〉. The attacker
then sends the following message to D in the name of X:

〈req, S,D, id, [X;W ;S], hmac(〈req, S,D, id〉,KSD)〉.

Since D is a neighbor of nI , it will hear the transmission. In addition, since
the list of nodes [X;W ;S] ends with X, which is also a neighbor of D, the
destination D will process the request and will send the following route reply
back to S: 〈rep, D, S, id, [X;W ;S], hmac(〈rep, D, S, id, [X;W ;S]〉,KSD)〉. This
reply will reach S through the malicious node nI . More precisely, the attacker
will send the reply to S in the name of W . Since W is a neighbor of S, the
source will accept this reply which contains a false route.

In our framework, we have that:

K ′0 →∗ (bin u2[ΦS ].P cS ∪ bout(m′).nullcD; ∅; I)
→ (bin u2[ΦS ].P cS ∪ bnullcD; ∅; I ′)
→ (bif¬route([X;W ;S]) then out(error)cS ; ∅; I ′)
→ (bout(error).nullcS ; ∅; I ′)

where

 m′ = 〈rep, D, S, id, [X;W ;S], hmac(〈D,S, id, [X;W ;S]〉,KSD)〉
I = I0 ∪ {u1}, and
I ′ = I0 ∪ {u1} ∪ {m′}.

2.5. Contributions

We are now ready to state our two main decidability results.
Simple properties like secrecy are undecidable when considering an unbounded

number of role executions, even for classical protocols [15]. Since our class of
processes encompasses classical protocols, the existence of an attack is also un-
decidable. In what follows, we thus consider a finite number of sessions, that
is processes without replication. In most existing frameworks, the intruder is
given as initial knowledge a finite number of messages (e.g. some of the secret
keys or messages learned in previous executions). However, in the context of
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routing protocols, it is important to give an a priori unbounded number of node
names to the attacker that he can use at will, in particular for possibly passing
some disequality constraints and for creating false routes.

We say that a process is finite if it does not contain the replication operator.
A concrete configuration K = (P[ ];S; I) is said initial if K is ground, P is
finite, S is a finite set of terms and I = Nloc ∪ I ′ where I ′ is a finite set of
terms (the intruder is given all the node names in addition to its usual initial
knowledge).

Note that unlike many approaches for standard protocols, fixing in advance
the number of names an adversary may use would limit its power. There are
two main reasons. First, the nodes may be checking that the route they are
carrying does not contain a loop, which means that all nodes of the route are
distinct. Due to routing protocol, an attack may require a route of a certain
length. Thus the adversary may need some fresh node names just to ensure that
all names are different. Second, our framework allows both disequality tests and
typed variables. Distinct nodes names may be needed to pass some disequality
tests. Since variables are typed, it is not always possible to simulate distinct
names by simply pairing (concatenating) a single one.

We show that accessibility properties are decidable for finite processes of our
process algebra, which models secured routing protocols, for a bounded number
of sessions but an unbounded number of node names. Of course, any attack
will use just finitely many names but the exact number of names is not fixed
in advance. We actually provide two decision procedures, according to whether
the network is a priori given or not. In the case where the network topology is
not fixed in advance, our procedure enables us to automatically decide whether
there exists a (worst-case) topology that would yield an attack.

Theorem 1. Let K = (P[ ];S; I) be an initial concrete configuration with a
hole, M ⊆ Nloc be a finite set of nodes, and Φ ∈ Lroute be a formula. Deciding
whether there exists a graph G = (Nloc, E) such that there is an M-attack
on K and Φ for the topology G is NP-complete.

Theorem 2. Let K = (P[ ];S; I) be an initial concrete configuration with a
hole, G = (Nloc, E) be a finite graph, M ⊆ Nloc be a finite set of nodes, and
Φ ∈ Lroute be a formula. Deciding whether there exists anM-attack on K and Φ
for the topology G is NP-complete.

NP-hardness is an immediate consequence of NP-hardness of secrecy [32]
for standard security protocols, which can be easily encoded in our framework,
considering a graph where a malicious node is connected to all the other nodes.
Our contribution therefore consists in providing two NP algorithms. We provide
here a very general sketch of the proof, describing the remaining sections of the
paper.
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• We first provide an alternative symbolic semantics (Section 3) based on
constraint systems and more amenable to automation. We show its cor-
rectness and completeness w.r.t. the concrete semantics.

• We show how to transform the constraint systems corresponding to routing
protocols into solved constraint systems (Section 4) .

• We show how to bound the size of a minimal attack on a solved constraint
system (Section 5).

• We can then conclude to decidability, providing an NPTIME complexity
bound (Section 6).

We provide applications of our results in Section 7.

3. Symbolic semantics

It is difficult to directly reason with the transition system defined in Figure 4
since it is infinitely branching: a potentially infinite number of distinct messages
can be sent at each step by the intruder node. Indeed, the intruder has at his
disposal an infinite number of names, and he can also build large terms using
e.g., lists and encryptions. That is why it is often interesting to introduce a
symbolic transition system where each intruder step is captured by a single rule
(e.g., [5]).

3.1. Constraint systems

As in [25, 14, 32], groups of executions can be represented using constraint
systems. However, compared to previous work, we have to enrich constraint
systems in order to cope with the formulas that are checked upon the reception
of a message and also in order to cope with generalized disequality tests for
reflecting cases where agents reject messages of the wrong form. Indeed, since
messages can be broadcast to all neighbors, we need to determine for each
message which agents will accept the message and which agents will not accept
it.

Definition 2 (constraint system). A constraint system C is a finite conjunc-
tion of constraints of the form v = u (unification constraint), I 
 u (deduction
constraint), ∀X. v 6= u (disequality constraint), and Φ (formula of Lroute), where
v, u are terms, I is a set of terms that contains at least a term of each sort, and
X is a set of variables. Moreover, we assume that the constraints in C can be
ordered C1, . . . , Cn in such a way that the following properties hold:

• (monotonicity) If Ci = (Ii 
 ui) and Cj = (Ij 
 uj) with i < j then
Ii ⊆ Ij;

• (origination) If Ci = (Ii 
 ui) (resp. Ci = (vi = ui)) then for all
x ∈ var(Ii) (resp. x ∈ var(vi)), there exists j < i such that
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– either Cj = (Ij 
 uj) with x ∈ var(uj);

– or Cj = (vj = uj) with x ∈ var(uj).

Lastly, we assume that var(C) ⊆ rvar(C) where rvar(C) represents the set of
variables introduced in C in the right-hand-side of a unification constraint or a
deduction constraint.

The origination property ensures that variables are always introduced by a
unification constraint or a deduction constraint, which is always the case when
modeling protocols.

Note that our disequality constraints are rather general since they do not
simply allow one to check that two terms are different (u 6= v), but they also al-
low to ensure that no unification was possible at a certain point of the execution,
which is a necessary check due to our broadcast primitive.

A solution to a constraint system C for a graph G is a ground substitution θ
such that dom(θ) = rvar(C) and:

• vθ = uθ for all v = u ∈ C;

• Iθ ` uθ for all I 
 u ∈ C;

• for all (∀X. v 6= u) ∈ C, the terms vθ and uθ are not unifiable (even
renaming the variables of X with fresh variables); and

• [[Φθ]]G = true for every formula Φ ∈ C.

Example 6. Consider the following set of constraints:

C =

{
I0 ∪ {u1} 
 v1 ∧ ΦD ∧
I0 ∪ {u1, v2} 
 u2 ∧ ΦS ∧ ¬route(xL)

}
with:

u1 = 〈req, S,D, id , S :: ⊥, hmac(〈req, S,D, id〉,KSD)〉
u2 = 〈rep, D, S, id , xL, hmac(〈rep, D, S, id, xL〉,KSD)〉
ΦD = check(D,xa)
ΦS = checkl(S, xL) ∧ ¬loop(xL)
v1 = 〈req, S,D, xid , xa :: xl, hmac(〈req, S,D, xid〉,KSD)〉
v2 = 〈rep, D, S, xid , xa :: xl, hmac(〈rep, D, S, xid , xa :: xl〉,KSD)〉

We have that C is a constraint system, and assuming that X,W ∈ I0, we
have that the substitution

θ = {id/xid
,X/xa

, [W ;S]/xl
, [X;W ;S]/xL

}
is a solution of the constraint system C for graph G0 defined in Example 2.3.
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3.2. Transition system

Concrete executions can be finitely represented by executing the transitions
symbolically. A symbolic configuration is a quadruplet (P;S; I; C) where

• P is a multiset of expressions of the form bP cn where null processes are
removed. bP cn represents the process P located at node n ∈ Nloc;

• S is a set of expressions of the form btcn with n ∈ Nloc and t a term (not
necessarily ground).

• I is a set of terms (not necessarily ground) representing the messages seen
by the intruder.

• C is a constraint system such that T ⊆ I for every constraint T 
 u ∈ C.

Such a configuration is ground when: fv(P) ∪ var(S) ∪ var(I) ⊆ rvar(C).
Compared to concrete configurations, terms exchanged by processes in sym-

bolic configurations are not necessarily ground anymore but have to satisfy some
(unification, deduction or disequality) constraints. We defined the associated
symbolic transitions in Figure 5. They mimic concrete ones. In particular, for
the communication rule, the set I of processes ready to input a message is split
into three sets: the set J of processes that accept the message t, the set K of
processes that reject the message t because t does not unify with the expected
pattern uk, and the set L that reject the message t because the condition Φl
is not fulfilled. Considering a calculus with unreliable communication would
have some consequences on the symbolic transition system. In particular, it
would simplify the Comms rule. Indeed, only the constraints corresponding to
the set J of processes (processes that accept the message) would need to be
added in C. Processes that do not accept a message do not have to satisfy any
additional condition. We believe that our NP decision procedures would also
work in this simplified setting.

Whenever (P;S; I; C) →s
G,M (P ′;S ′; I ′; C′) where (P;S; I; C) is a (ground)

symbolic configuration then (P ′;S ′; I ′; C′) is still a (ground) symbolic config-
uration. This invariant will often be useful in proofs. This is formally stated
below and proved in Appendix A.

Lemma 1. Let G = (Nloc, E) be a graph, M ⊆ Nloc, and Ks = (P;S; I; C) be
a ground symbolic configuration. If K ′s is such that Ks →s

G,M K ′s, then K ′s is a
ground symbolic configuration.

Example 7. Executing the same transitions as in Example 5 symbolically, we
reach the following configuration:

Ks = (bout(error).0cS ; ∅; I0 ∪ {u1, v2}; C)

where C, u1, v2 are defined as in Example 6.
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Comms (bout(t).P cn ∪ {bin ui[Φi].P ′i cni
| i ∈ I} ∪ P;S; I; C)

→s
G,M (bP cn ∪ {bin uk[Φk].P ′kcnk

| k ∈ K ∪ L}
∪ {bP ′jcnj

| j ∈ J} ∪ P;S; I ′; C′)
where:

• bP ′cn′ ∈ P implies that (n, n′) 6∈ E or P ′ is not of the form
in u′[Φ′].Q′,

• I = J ]K ] L and (ni, n) ∈ E for every i ∈ I,
I indexes the set of processes that are ready to input a messages. I
is split into three distinct subsets: J for processes that will accept
the message, K for processes that will reject it because it does
match the expected form ui, and L for processes that will reject
it because the test fails.

• C′ = C ∧ {t = uj ∧ Φj | j ∈ J} ∧ {∀(var(uk) r rvar(C)) . t 6=
uk | k ∈ K} ∧ {t = ulαl ∧ ¬Φlαl | l ∈ L} where αl is a renaming
of var(ul) r rvar(C) by fresh variables,

• I ′ = I ∪ {t} when (n, nI) ∈ E for some nI ∈ M, and I ′ = I
otherwise.

Ins (bin u[Φ].P cn ∪ P;S; I; C) →s
G,M (bP cn ∪ P;S; I; C ∧ I 
 u ∧ Φ)

if (nI , n) ∈ E for some nI ∈M

Stores (bstore(t).P cn ∪ P;S; I; C) →s
G,M (bP cn ∪ P; btcn ∪ S; I; C)

Read-Thens (bread u then P else Qcn ∪ P;S; I; C)
→s
G,M (bP cn ∪ P;S; I; C ∧ t = u)

where btcn ∈ S

Read-Elses (bread u then P else Qcn ∪ P;S; I; C)
→s
G,M (bQcn ∪ P;S; I; C ∧ {∀X . t 6= u | btcn ∈ S})

where X = var(u) r rvar(C)

If-Thens (bif Φ then P else Qcn ∪ P;S; I; C)→s
G,M (bP cn ∪ P;S; I; C ∧ Φ)

If-Elses (bif Φ then P else Qcn ∪ P;S; I; C)→s
G,M (bQcn ∪ P;S; I; C ∧ ¬Φ)

Pars (bP1 | P2cn ∪ P;S; I; C) →s
G,M (bP1cn ∪ bP2cn ∪ P;S; I; C)

Repls (b!P cn ∪ P;S; I; C) →s
G,M (bPαcn ∪ b!P cn ∪ P;S; I; C)

where α is a renaming of the bound variables of P that are not in rvar(C).

News (bnew m.P cn ∪ P;S; I; C) →s
G,M (bP{m′

/m}cn ∪ P;S; I; C)
where m′ is a fresh name

Figure 5: Symbolic transition system.
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Figure 6: Diagrams illustrating Proposition 1 (left) and Proposition 2 (right).

3.3. Soundness and completeness

We show that our symbolic transition system reflects exactly the concrete
transition system, i.e., each concrete execution of a process is captured by one of
the symbolic executions (see Figure 6). More precisely, a concrete configuration
is represented by a symbolic configuration if it is one of its instances, called
concretization.

Definition 3 (θ-concretization). A concretization of a symbolic configura-
tion Ks = (Ps;Ss; Is; C) is a concrete configuration Kc = (P;S; I) such that
there exists a solution θ of C and, furthermore, Psθ = P, Ssθ = S, Isθ = I.
We say that Kc is a θ-concretization of Ks.

Note that the θ-concretization of a ground symbolic configuration is a ground
concrete configuration. Now, we show that each concrete transition can be
matched by a symbolic one.

Proposition 1 (completeness). Let G = (Nloc, E) be a graph andM⊆ Nloc.
Let Ks = (Ps;Ss; Is; C) be a ground symbolic configuration and θ be a solution
of C. Let Kc be the θ-concretization of Ks. Let K ′c be a concrete configuration
such that Kc →G,M K ′c. Then there exists a ground symbolic configuration K ′s
and a substitution θ′ such that:

• K ′c is the θ′-concretization of K ′s, and

• Ks →s
G,M K ′s.

The proof is performed by studying each rule of the concrete transition sys-
tem, showing that the corresponding symbolic rule covers all possible cases. In
particular, disequality constraints allow to faithfully model cases where nodes
reject a message because the message does not match the expected pattern.
Conversely, we have that each symbolic transition can be instantiated in a con-
crete one.
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Proposition 2 (soundness). Let G = (Nloc, E) be a graph and M ⊆ Nloc.
Let Ks = (Ps;Ss; Is; C) and K ′s = (P ′s;S ′s; I ′s; C′) be two ground symbolic con-
figurations such that Ks →s

G,M K ′s. Let θ′ be a solution of C′ and θ be the
restriction of θ′ to rvar(C). Let Kc be the θ-concretization of Ks. There exists
a ground concrete configuration K ′c such that:

• Kc →G,M K ′c, and

• K ′c is the θ′-concretization of K ′s.

The proof is again obtained by inspection of the rules. We deduce from these
two propositions that checking for a concrete attack can be reduced to checking
for a symbolic one.

Theorem 3. Let G = (Nloc, E) be a graph and M⊆ Nloc. Let K = (P[ ];S; I)
be a ground concrete configuration with a hole, and Φ be a formula. There is an
M-attack on K and Φ for graph G if, and only if,

(P[if Φ then out(error)];S; I; ∅) →s∗
G,M (bout(u)cn ∪ Ps;Ss; Is; C)

and the constraint system C ∧ u = error has a solution.

Proof. We show the two directions separately.
(⇒) First, let us suppose that there is an attack on K and Φ for graph G. By
definition of an attack, there exists a concrete configuration K ′ such that:

• K ′ is of the form (bout(error)cn ∪ P ′;S ′; I ′), and

• K →∗G K ′.

By applying Proposition 1 recursively, we deduce that there exists a ground
symbolic configuration K ′s and a substitution θ′ such that:

• (P[if Φ then out(error) else 0];S; I; ∅)→s∗
G K ′s, and

• K ′ is the θ′-concretization of Ks.

Consequently, K ′s is of the form (bout(u)cn∪P ′s;S ′s; I ′s; C′), θ′ is a solution of C′,
and uθ′ = error. Hence we have that θ′ is a solution of C′ ∧ u = error.

(⇐) Conversely, assume that

Ks = (P[if Φ then out(error) else 0];S; I; ∅) →s∗
G (bout(u)cn∪Ps;Ss; Is; C) = K ′s

and the constraint system C ∧ u = error has a solution. Let θ′ be a solution of
C ∧ u = error. Note that, since K ′s is a ground symbolic configuration (thanks to
Lemma 1), we have that var(u) ⊆ rvar(C). Hence, we have that θ′ is a solution
of C and uθ′ = error.

First note that Ks is a ground symbolic configuration whose concretization
is K = (P[if Φ then out(error) else 0];S; I). Thanks to Lemma 1, we know that
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the symbolic configurations involved in this derivation are ground. Hence, by
applying recursively Proposition 2, we know that there exists a ground concrete
configuration K ′ such that:

• K →∗G K ′, and

• K ′ is the θ′-concretization of K ′s.

Moreover, since uθ′ = error, we easily deduce that K ′ = (bout(error)cn ∪
Psθ′;Ssθ′; Isθ′). Hence, there is an attack on K and Φ for graph G. �

Note that our result holds for any signature, for any choice of predicates,
and for processes possibly with replication. Of course, it then remains to decide
the existence of a constraint system that has a solution.

Example 8. Consider our former example of an attack on SRP, with initial
configuration K0. We can reach the configuration Ks, and the constraint sys-
tem C has a solution σ for graph G0 (cf. Example 6), so there is an {nI}-attack
on K0 for G0.

In the remaining of the paper, our goal is to show how to solve
the resulting constraint systems. We restrict our attention to the
fixed signature (S1,F1) (defined in Example 1) and the logic Lroute

(defined in Section 2.2). We also assume the associated deduction
system ` defined in Figure 1.

4. Turning constraint systems into solved forms

It has been shown in [14] that the existence of a solution of a constraint
system (with only deduction constraints) can be reduced to the existence of a
solution of a solved constraint system, where right-hand-sides of the constraints
are just variables. However, the result of [14] assumes that the deduction con-
straints have finite left-hand sides and does not allow one to deal with equality
and disequality tests and formulas of Lroute.

In this section, we show how the existence of a solution for a constraint sys-
tem (without unification constraint) can be reduced to the existence of a solution
for a solved deduction constraint system together with disequality constraints
and formulas, for our extended signature. We do not consider unification con-
straints since we will see that we can easily get rid of them by first computing
a mgu.
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4.1. Simplification rules

We say that a constraint system C is a deduction constraint system if all
of its constraints are deduction constraints. Such a system is in solved form if
C = T1 
 x1 ∧ . . . ∧ Tn 
 xn where x1, . . . , xn are distinct variables. It has
been shown in [14] that the existence of a solution for a deduction constraint
system with finite left-hand sides can be reduced to the existence of a solution
for a solved deduction constraint system by applying the transformation rules
presented in Figure 7.

R1 C ∧ T 
 u  C if T ∪ {x | (T ′ 
 x) ∈ C, T ′ ( T} ` u

R2 C ∧ T 
 u  σ Cσ ∧ Tσ 
 uσ
if σ = mgu(t, v), t ∈ St(T ), v ∈ St(u), t 6= v, t, v not variables

R3 C ∧ T 
 u  σ Cσ ∧ Tσ 
 uσ
if σ = mgu(t1, t2), t1, t2 ∈ St(T ), t1 6= t2, t1, t2 not variables

R′3 C ∧ T 
 u  σ Cσ ∧ Tσ 
 uσ if σ = mgu(t2, t3),
{|t1|}t2 , priv(t3) ∈ St(T ), t2 6= t3, t2 or t3 (or both) is a variable

R4 C ∧ T 
 u  ⊥ if var(T ∪ {u}) = ∅ and T 6` u

Rf C ∧ T 
 f(u, v)  C ∧ T 
 u ∧ T 
 v
for f ∈ {〈〉, ::, hmac, { } , {| |} , J K }

Figure 7: Simplification rules

The only difference between the rules presented in Figure 7 and those pro-
posed in [14] is in the rule Rf . We adapt this rule in order to deal with hmac
and lists. All the rules are indexed by a substitution. When there is no in-
dex then the identity substitution is implicitly assumed. We write C  n

σ C′
if there are C1, . . . , Cn with n ≥ 1, C′ = Cn, C  σ1

C1  σ2
· · ·  σn

Cn, and
σ = σn ◦ σn−1 ◦ · · · ◦ σ1. We write C  ∗σ C′ if C  n

σ C′ for some n ≥ 1, or if
C′ = C and σ is the identity substitution.

However, the result of [14] assumes that the deduction constraints are of the
form T 
 u where T is a finite set of terms. We have extended this result to
the case where T contains an infinite set of names. For this, we introduce the
notion of a special constraint system (C, I0) where I0 is an infinite set of names.
Moreover, we assume that those names do not occur in C, i.e., St(C) ∩ I0 = ∅
where St(C) represents the set of subterms that occur in C.

Definition 4 (special constraint system). Let C = T0 
 u0 ∧ . . . ∧ Tn 
 un
be a deduction constraint system where all left-hand sides of constraints are
finite, and I0 be an infinite set of names such that Nloc ⊆ T0 ∪ I0. We say that
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(C, I0) is a special constraint system if St(C) ∩ I0 = ∅. The deduction constraint

system CI0 associated to (C, I0) is inductively defined by

C ∧ T 
 uI0 = CI0 ∧ ((I0 ∪ T ) 
 u).

A substitution θ is a solution of a special constraint system (C, I0) if for

every T 
 u ∈ C, (T ∪ I0)θ 
 uθ, i.e., θ is a solution of CI0 .

Example 9. We retrieve the following set of deduction constraints from Exam-
ple 6:

C′′ = I0 ∪ {u1} 
 v1 ∧ I0 ∪ {u1, v2} 
 u2
The set of terms I0 represents the initial knowledge of the attacker and we

assume that I0 = Nloc ∪ I ′0 where I ′0 is a finite set of terms. This assumption
is reasonable if we consider that the names in Nloc represent IP addresses, and
that the intruder can easily create any IP address.

Let I = Nlocrnames(I ′0, S,D), and T0 = I ′0∪ (Nloc∩names(I ′0, S,D)). We
have that I0 = Nloc ∪ I ′0 = T0 ∪ I. Moreover, T0 is a finite set of terms. We
consider the following set of deduction constraints:

C1 = T0 ∪ {u1} 
 v1 ∧ T0 ∪ {u1, v2} 
 u2

We have that C1 is a deduction constraint system where all left-hand sides of
constraints are finite. Furthermore, Nloc ⊆ I ∪ T0. As St(C1) ∩ I = ∅, we have

that (C1, I) is a special constraint system. Note also that C1
I

= C′′.

We show that solving a special constraint system (C, I0) can be done by
applying our simplification rules to C.

Proposition 3. Let (C, I) be a special constraint system.

1. If C  σ C′ then CI  σ C′
I

by applying the same simplification rule, and
(C′, I) is a special constraint system.

2. If CI  σ C′s, then there exists C′ such that C′s = C′I and C  σ C′ by
applying the same simplification rule. Furthermore, we have that (C′, I)
is a special constraint system.

The proof of this proposition relies on the following lemma, which intuitively
states that adding an infinite set of disjoint names does not provide additional
deduction power to the intruder.

Lemma 2. Let T be a set of terms that contains at least one term of each sort,
u0 be a term, and I be a set of names St(T ∪{u0})∩I = ∅. If T ∪I ` u0, then
we have that T ` u0.

As shown in [14], the transformation rules terminate but the length of a
derivation might be exponential. Getting a polynomial bound on the length of
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simplification sequences can be achieved by considering a (complete) strategy
in order to avoid getting twice the same constraint. We consider the following
strategy S:

• apply R4 eagerly;

• apply the substitution rules, namely R2, R3, and R′3, up to a point, then
stop applying them at all.

Assuming that all the constraints are uncolored at the beginning.

• Consider the uncolored constraint with the largest right-hand side. Either
color it or apply Rf to it.

• When the system is entirely colored, apply R1.

For deduction constraint systems with finite left-hand sides, the strategy S
is complete and yields derivations of polynomial length (see Section 4.7 in [14]).
It remains to show that the procedure also works for special constraint systems.

4.2. Soundness, completeness, and termination

The proof of Theorem 4 is mainly an adaptation of the result in [14] and relies
on Proposition 3. This theorem shows that when solving a special constraint
system (C, I0), it is sufficient to apply the transformation rules to C.

Theorem 4. Let (C0, I0) be a special constraint system, and Φ be a set of for-
mulas and disequality constraints,

1. (Soundness) If C0  ∗σ C′ by a derivation in S for some C′ and some
substitution σ, and if θ is a solution for Φσ and (C′, I0), then θ ◦ σ is a
solution for Φ and (C0, I0).

2. (Completeness) If θ is a solution for (C0, I0) and Φ, then there exists a
deduction constraint system C′ in solved form and substitutions σ, θ′ such
that θ = θ′ ◦ σ, C0  ∗σ C′ by a derivation in S, and θ′ is a solution for
(C′, I0) and Φσ.

3. (Termination/Complexity) If C0  n
σ C′ by a derivation in S for some de-

duction constraint system C′ and some substitution σ, then n is polynomi-
ally bounded in the size of C0. Moreover, we have that St(C′) ⊆ St(C0σ) ⊆
St(C0)σ.

Proof. We show the three items separately.

Soundness. If C0  ∗σ C′, then by applying Proposition 3 inductively, we get that

C0
I0  ∗σ C′

I0
. By hypothesis, we have that θ is a solution of Φσ and (C′, I0). In

particular, we have that θ is a solution of C′I0 . Thanks to Theorem 4.3 in [14]
(straightforwardly extended to constraint systems with infinite number of names

in the left-hand sides), we deduce that θ ◦ σ is a solution of C0
I0

. Hence, we
have that θ ◦ σ is a solution for Φ and (C0, I0).
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Completeness. Let θ be a solution for (C0, I0) and Φ. In particular, we have

that θ is a solution of C0
I0

and Φ. By applying Theorem 4.3 in [14], there exists
a constraint system Cs in solved form and substitutions σ, θ′ such that θ = θ′◦σ,

C0
I0  ∗σ C′s by a derivation in S, and θ′ is a solution for C′s and Φσ. By applying

Proposition 3 recursively, we get that there exists C′ such that C′s = C′I0 , and
C0  ∗σ C′. Hence, we have that θ′ is a solution of (C′, I0). Furthermore, C′ is

in solved form, since C′I0 is in solved form. We know that the series of rules

applied in the derivation C0  ∗σ C′ is the same as in derivation C0
I0  ∗σ C′s.

Moreover, the right-hand sides of the constraints in CI0 and C are the same for
any C. Hence, we have that the derivation C0  ∗σ C′ is in S.

Termination/Complexity. First, the strategy yields derivations of polynomial
length (see Section 4.7 in [14]). Now, it remains to show that St(C′) ⊆ St(C0σ) ⊆
St(C0)σ. First, we can show that var(C0σ) = var(C′) when C′ 6= ⊥ (by induction
on the length of the derivation). We will use this result to prove the second
inclusion.

We show the two inclusions by induction on the length of the derivation C0  n
σ C′.

Base case: n = 0. The result trivially holds.

Induction step: n > 1. In such a case, we have that C0  n−1
σ1
C1, C1  σ2

C′,
and σ = σ2 ◦ σ1. By induction hypothesis, we have that St(C1) ⊆ St(C0σ1) ⊆
St(C0)σ1. We distinguish two cases depending on the simplification rules in-
volved in C1  σ2

C′. For the rules R1, R4, and R5, we have that St(C′) ⊆ St(C1)
and σ2 is the identity. Hence, we easily conclude:

St(C′) ⊆ St(C1) ⊆ St(C0σ1) = St(C0σ) ⊆ St(C0)σ1 = St(C0)σ.

For the rules R2, R3, and R′3, we have that St(C′) = St(C1σ2). Moreover, we
can show that St(C1σ2) ⊆ St(C1)σ2 (see Lemma 4 in Appendix B). By relying
on our induction hypothesis, we have that St(C1)σ2 ⊆ St(C0)σ. Hence, we can
conclude for the first inclusion. We have that:

St(C′) = St(C1σ2) ⊆ St(C1)σ2 ⊆ St(C0)σ ⊆ St(C0σ).

We have that dom(σ2) ⊆ var(C1) since σ2 = mgu(t1, t2) with t1, t2 ∈ St(C1).
Hence,

⋃
x∈var(C1) St(xσ2) ⊆ St(C1σ2) ⊆ St(C1)σ2 (thanks to Lemma 4). We

have that:

St(C0σ) ⊆ St(C0σ1σ2) ⊆ St(C0σ1)σ2 ∪
⋃
x∈var(C0σ1)

St(xσ2)

= St(C0σ1)σ2 ∪
⋃
x∈var(C1) St(xσ2)

⊆ St(C0σ1)σ2 ∪ St(C1)σ2
⊆ St(C0σ1)σ2 by induction hypothesis
⊆ St(C0)σ by induction hypothesis

�

Example 10. Consider our former example of a special constraint system, i.e.,
(C1, I) (see Example 9), we can simplify the constraint system C1 following strat-
egy S:
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• R2,R3,R
′
3: C1  ∗σ C2 with C2 = C1σ where σ = {id/xid

, xa::xl/xL
},

• Rf : (C2, I) ∗ (C3, I) with

C3 =



T0σ ∪ {u1σ} 
 req ∧ T0σ ∪ {u1σ, v2σ} 
 rep ∧
T0σ ∪ {u1σ} 
 S ∧ T0σ ∪ {u1σ, v2σ} 
 D ∧
T0σ ∪ {u1σ} 
 D ∧ T0σ ∪ {u1σ, v2σ} 
 S ∧
T0σ ∪ {u1σ} 
 id ∧ T0σ ∪ {u1σ, v2σ} 
 id ∧
T0σ ∪ {u1σ} 
 xa ∧ T0σ ∪ {u1σ, v2σ} 
 xa ∧
T0σ ∪ {u1σ} 
 xl ∧ T0σ ∪ {u1σ, v2σ} 
 xl ∧
T0σ ∪ {u1σ} 
 hmac(〈req, S,D, id〉,KSD) ∧
T0σ ∪ {u1σ, v2σ} 
 hmac(〈rep, D, S, id , xa :: xl〉,KSD)

• R1: (C3, I) ∗ (C′, I) with C′ in solved form defined as follows:

C′ = T0 ∪ {u1} 
 xa ∧ T0 ∪ {u1} 
 xl

Let Φ = ΦD ∧ΦS ∧ ¬route(xL) (with ΦD and ΦS defined in Example 6). In
order to find a solution for C, it is equivalent to find a solution for (C1, I) and

Φσ = check(D,xa) ∧ checkl(S, xa :: xl) ∧ ¬loop(xa :: xl) ∧ ¬route(xa :: xl).

The constraint system (C′, I) is in solved form, and we have that the substitu-
tion θ defined in Example 6 is such that θ = θ′ ◦ σ where θ′ = {X/xa ,

[W ;S]/xl
} is

a solution of (C′, I) and Φσ.

5. Bounding the size of minimal solutions for solved forms

Applying the technique described in the previous section, we are left to decide
the existence of a solution for a constraint system C in solved form together with
disequality constraints and formulas of Lroute. In this section, we show how to
bound the size of a minimal solution for solved constraint systems.

5.1. Bounding variables which are not of sort loc or lists

We first prove that given any solution of C, the variables which are not
of sort loc or lists can be instantiated by any fresh name, still preserving the
solution.

Lemma 3. Let (C, I) be a special constraint system in solved form, Φ1 be a
formula of Lroute, Φ2 be a set of disequality constraints, and G = (Nloc, E) be
a graph. Consider σ a solution of (C, I) ∧ Φ1 ∧ Φ2 for graph G. There is a
solution σ′ of (C, I) ∧ Φ1 ∧ Φ2 for graph G such that:

• xσ′ = xσ for every variable x of sort loc or lists;

• xσ′ ∈ I otherwise.
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Proof. Since (C, I) is a special constraint system in solved form, we have that

C = T1 
 x1 ∧ . . . ∧ Tn 
 xn

where:

• x1, . . . , xn are distinct variables, and

• var((C, I) ∧ Φ1 ∧ Φ2) = {x1, . . . , xn} = rvar(C).

We show the result by induction on:

µ(σ) = #{x ∈ rvar(C) | x is neither of sort loc nor of sort lists ∧ xσ /∈ I}.

Base case: µ(σ) = 0. In such a case, since rvar(C) contains all the variables
that occur in the constraint system, we easily conclude. The substitution σ is
already of the right form.

Induction step: µ(σ) > 0. Let i0 be the maximal index 1 ≤ i0 ≤ n such that
xi0σ 6∈ I and xi0 is not of sort loc or lists. Let a be a name in I that does
not occur elsewhere. Let σ′ = τ ∪ {xi0 7→ a} where τ = σ|X with X =
dom(σ) r {xi0}. Clearly, we have that µ(σ′) < µ(σ). In order to conclude, it
remains to show that σ′ is a solution of (C, I) ∧ Φ1 ∧ Φ2.

1. We show that σ′ is a solution of (C, I). For every i < i0, since σ is a
solution of (C, I), we have that Tiσ ∪ I ` xiσ. Since xi0 does not occur in
this constraint, we also have that Tiσ

′ ∪ I ` xiσ′. Since a ∈ I, we have
that Ti0σ

′ ∪ I ` xi0σ′.
For every i > i0, according to the definition of i0, either xi is of sort loc
or lists, or xiσ ∈ I. In the first case, as for every term t of sort loc or lists,
Nloc ` t, we have that Nloc ` xiσ. In the second case, I ` xiσ. Hence, in
both cases, we have that Tiσ

′ ∪ I ` xiσ′.
2. We show that σ′ is a solution of Φ1. All the variables appearing in Φ1 are

of type loc or lists. Hence, we have that Φ1σ = Φ1σ
′. This allows us to

conclude.

3. Lastly, we show that σ′ is a solution of Φ2. Let ∀Y.u 6= v be a disequality
constraint in Φ2. Assume w.l.o.g. that dom(σ) ∩ Y = ∅. Since σ is a
solution of ∀Y.u 6= v, we know that uσ and vσ are not unifiable.
Assume by contradiction that there exists a substitution θ′ such that
uσ′θ′ = vσ′θ′ (i.e., σ′ does not satisfy ∀Y.u 6= v). We can assume w.l.o.g.
that uσ′θ′ and vσ′θ′ are ground terms, and xi0 6∈ dom(θ′). In such a case,
we have that:

(uσ′)θ′ = ((uτ){xi0 7→ a})θ′ = ((uτ)θ′){xi0 7→ a}
(vσ′)θ′ = ((vτ){xi0 7→ a})θ′ = ((vτ)θ′){xi0 7→ a}

Since a is fresh, we deduce that (uτ)θ′ = (vτ)θ′. Hence, we have also that:

((uτ)θ′){xi0 7→ xi0σ} = ((vτ)θ′){xi0 7→ xi0σ}

i.e., uσθ′ = vσθ′. This contradicts the fact that uσ and vσ are not unifi-
able.

29



Hence, σ′ is a solution of (C, I) ∧ Φ1 ∧ Φ2. �

5.2. Bounding variables of sort loc or lists

We then show that it is possible to find a solution in which lists are poly-
nomially bounded. We need to prove two separate propositions, according to
whether the network topology is fixed or not. The proofs of these propositions
use the fact that disequality constraints can be satisfied using fresh node names
and that the predicates of the logic Lroute check only a finite number of nodes.

5.2.1. Case of a fixed topology

In case the network topology is fixed, we show that we can bound the size
of an attack, where the bound depends on the size of the graph and the size of
the constraints.

Proposition 4. Let (C, I) be a special constraint system in solved form, Φ1 be
a conjunction of atomic formulas of Lroute, Φ2 be a set of disequality constraints,
and G = (Nloc, E) be a graph. If there is a solution of (C, I) ∧ Φ1 ∧ Φ2 for G,
then there exists a solution σ of (C, I) ∧ Φ1 ∧ Φ2 for G that is polynomially
bounded in the size of Φ1,Φ2 and E.

In particular, we show that, if there is a solution of (C, I) ∧ Φ1 ∧ Φ2 for
graph G, then there exists a substitution σ such that σ is a solution of (C, I) ∧
Φ1 ∧ Φ2 for G, and variables of sort lists are instantiated by lists of length at
most M where M is a bound that depends on Φ2, Φ1, and E.

To prove this result, we consider a smallest solution σ of (C, I) ∧ Φ1 ∧ Φ2

for G (i.e., a solution that minimizes the length of the lists that occur in img(σ)),
and we assume that there exists a variable x` of sort lists such that x`σ is a list
of length greater than M . We built a solution σ′ (smaller that σ) by changing
only the value of x`σ in order to reduce its length, preserving the satisfiability
of our constraints. We build x`σ

′ by first marking the names we want to keep
in x`σ obtaining a marked list, i.e., a list in which some elements are marked.

For instance, in order to ensure that a loop predicate will still be satisfied,
two names are actually sufficient, whereas for a checkl predicate, three names
are needed. Note that, to satisfy a positive occurrence of a route predicate, we
know that the list contains at most #E names (since names in the list have
to be distinct), thus we know that the variable x` is not involved in a positive
occurrence of a route predicate. We also have to keep some names to take the
disequality constraints into account.

Then, we consider the list extracted from x`σ by keeping the marked names
plus an additional one, and we consider variations of this extracted list. Note
that the length of this extracted list is bounded by the size of the graph and
the size of the constraints.

Definition 5 (variation). Let l′ be marked list in which at least one of its
element is not marked. A variation of l′ = [a′1; . . . ; a′n] is a list l = [a1; . . . ; an]
such that:

30



• there exists 1 ≤ j0 ≤ n such that a′j0 is not marked and aj0 is a fresh
name,

• for all 1 ≤ i ≤ n such that i 6= j0, we have that ai = a′i.

Actually, instantiating x` by any variation of this extracted list allows us to
ensure that our constraints are still satisfied.

5.3. Case of an a priori unknown topology

In case the network topology is not fixed, we show that we can bound the size
of an attack. More precisely, we show that if there is an attack on an arbitrary
graph, then it is possible to find a polynomially bounded attack, on a possibly
slightly different graph.

Proposition 5. Let (C, I) be a special constraint system in solved form, Φ1 be a
conjunction of atomic formulas of Lroute, Φ2 be a set of disequality constraints. If
there is a solution of (C, I)∧Φ1∧Φ2 for the graph G = (Nloc, E), then there exists
a graph G′ = (Nloc, E

′) and a substitution σ such that σ is a solution of (C, I)∧
Φ1 ∧Φ2 for G′, and σ is polynomially bounded in the size of Φ1 and Φ2. More-
over, we have that G′ coincides with G on V = {n | ∃n′ such that (n, n′) ∈ E},
i.e., E = {(n1, n2) ∈ E′ | n1, n2 ∈ V }.

The proof follows the same lines as the proof of Proposition 4. However, we
can not consider the size of the graph to bound the size of the lists. This is used
in the proof of Proposition 4 to deal with the case of route that occur positively
in the formula. Here, we rely on the fact that we can change the graph to solve
this problem, and we consider ubiquitous graphs.

Definition 6 (ubiquitous graph). Let G = (Nloc, E) be a finite graph (i.e.,
such that E is finite). Consider the sets of nodes V = {n | ∃n′ such that (n, n′) ∈
E}, and Vubi ⊆ Nloc r V . The graph (Nloc, E ∪Eubi) where Eubi = {(a, b) | a ∈
V ∪ Vubi, b ∈ Vubi} is called the ubiquitous graph associated to G and Vubi.

Moreover, we consider ubiquitous variations instead of variations. This is
needed to satisfy a formula route that occurs positively.

Definition 7 (ubiquitous variation). Let l′ be a marked list and n be the
number of unmarked elements in l′. Let Vubi be a set of nodes such that #Vubi >
n and names in Vubi do not occur in l′. A ubiquitous variation according to Vubi
of l′ = [a′1; . . . ; a′n] is a list l = [a1; . . . ; an] such that:

• for all 1 ≤ i ≤ n such that a′i is not marked, ai ∈ Vubi,

• for all 1 ≤ i ≤ n such that a′i is marked, ai = a′i.

Moreover we require that the ubiquitous nodes of l are all distinct.
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6. Decidability results

We are now ready to prove our two main decidability results.

Theorem 1. Let K = (P[ ];S; I) be an initial concrete configuration with a
hole, M ⊆ Nloc be a finite set of nodes, and Φ ∈ Lroute be a formula. Deciding
whether there exists a graph G = (Nloc, E) such that there is an M-attack
on K and Φ for the topology G is NP-complete.

Theorem 2. Let K = (P[ ];S; I) be an initial concrete configuration with a
hole, G = (Nloc, E) be a finite graph, M ⊆ Nloc be a finite set of nodes, and
Φ ∈ Lroute be a formula. Deciding whether there exists anM-attack on K and Φ
for the topology G is NP-complete.

Note that Theorem 1 does not imply Theorem 2 and reciprocally. Theo-
rems 1 and 2 ensure in particular that we can decide whether a routing protocol
like SRP can guarantee that any route accepted by the source is indeed a route
(a path) in the network (which can be fixed by the user or discovered by the
procedure). The NP-hardness of the existence of an attack comes from the NP-
hardness of the existence of a solution for deduction constraint systems [32].
The (NP) decision procedures proposed for proving Theorems 1 and 2 involve
several steps, with many common ingredients.

Step 1. Applying Theorem 3, it is sufficient to decide whether there exists
a sequence of symbolic transitions (and if G is not fixed then we guess which
nodes occuring in P are connected by an edge in G).

(P[if Φ then out(error)];S; I; ∅) →s∗
G,M (bout(u)cn ∪ Ps;Ss; Is; C)

such that C ∧ u = error admits a solution for the graph G. Since processes
contain no replication and involve communication between a finite number of
nodes, it is possible to guess the sequence of symbolic transitions yielding an
attack (by guessing also the edges between the nodes that are either in M or
involved in a communication step) and the resulting configuration stays of size
polynomially bounded by the size of the initial configuration. Moreover, any
left-hand-side of a deduction constraint in C is of the form T ∪Nloc where T is a
finite set of terms. It then remains to decide the existence of a solution for our
class of constraint systems.

Step 2. We first get rid of unification constraints by computing a mgu of the set
of equality constraints. Then applying Theorem 4, we deduce that it is sufficient
to decide the existence of a solution for constraint systems in solved form, by
(non-deterministically) guessing a polynomial sequence of transformation rules
that yields a solved constrain system.

Step 3. We then show how to decide the existence of a solution for a constraint
system, where each deduction constraint is solved, that is of the form T 
 x. It

32



is not straightforward like in [14] since we are left with (non solved) disequal-
ity constraints and formulas. Since the system is in solved form and applying
Lemma 3, we can replace any variable that are not of sort loc or lists by any
fresh name. Then the key step consists in guessing a small solution. Proposi-
tions 4 and 5 (depending on whether the graph is fixed or not) ensure that the
size of a minimal attack is polynomially bounded in the size of the constraint
system (and in the size of the graph when it is fixed), which also bounds the
total number of names that are used. We can therefore guess the instantiation
of the variables of sort loc and lists.

These three steps describe a (non-deterministic) procedure for deciding the
existence of an attack on any concrete configuration.

Complexity. Assume given a constraint system C = C1 ∧ C2 ∧ C3 ∧ C4 where
C1, C2, C3, C4 are respectively the sets of unification constraints, deduction con-
straints, disequality constraints and formulas. We first apply an mgu of the
unification constraints in C1, the size of the constraint system obtained is poly-
nomial in the size of C, so we can assume that C1 is empty. Then, by Theorem 4,
we can apply (non-deterministically) a polynomial number of simplification rules
and get a constraint system C2σ ∧C3σ ∧C4σ where C2σ is in solved form. Then,
as shown in the proofs of Propositions 5 and 4, we can actually bound the size
of a minimal solution polynomially in C2 ∧ C3 ∧ C4.

7. Applications

7.1. Routing protocol SRP applied to DSR

Our decision procedure allows us to retrieve the attack on the protocol SRP
applied to DSR, mentioned in Example 5. Indeed, consider the formal model of
SRP applied to DSR (defined in Section 2.3) and of its desired property (defined
in Example 5). We would first guess the graph G0 defined in Example 3. Exe-
cuting symbolically (non deterministically) the process modeling SRP applied to
DSR, we would obtain the symbolic configuration of Example 7. Applying our
transformation rules, we would then (non deterministically) obtain a solved con-
straint system (see Example 10). We can finally guess the (bounded) solution
θ′ = {X/xa ,

[W ;S]/xl
}.

7.2. Routing protocol SDMSR

The secured routing protocol SDMSR introduced in [8] is a multipath routing
protocol that can be modeled in our framework. Its aim is to find several paths
leading from the source S to the destination D. To achieve this, the intermediate
nodes may process the same request several times. This protocol is based on
two authentication mechanisms: RSA signatures and signatures based on hash
chains. The purpose of the latter scheme is to decrease computation time. For
the sake of simplicity, we describe the protocol without this mechanism. The
description in [8] does not really state whether neighbor verification is performed
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in the protocol. To avoid straightforward attacks, we assume that this is the
case: each node checks whether the received information is consistent with its
knowledge of the network.

To discover a route to the destination, the source constructs a request packet
and broadcasts it to its neighbors. The request packet contains its name S, the
name of the destination D, an identifier of the request id , a list containing the
beginning of a route to D, and a signature over the content of the request,
computed with the private key priv(S). The source then waits for a reply con-
taining a route to D signed by one of his neighbors, and checks that this route
is plausible.

The process executed by a source node S initiating the search of a route
towards a destination node D is

Pinit(S,D) = new id .out(u1).in u2[ΦS ].null

where

 u1 = 〈req, S,D, id , S :: [], J〈req, S,D, id〉Kpriv(S)〉
u2 = 〈rep, D, S, id , xA, xL, J〈rep, D, S, id , xL〉Kpriv(xA)〉
ΦS = check(S, xA) ∧ checkl(S, xL)

The names of the intermediate nodes are accumulated in the route request
packet. Intermediate nodes relay the request over the network, except if they
have already seen a shorter one. In order to simplify the presentation, we con-
sider that they relay all requests as long as they contain different routes. An
intermediate node also checks that the received request is correctly authenti-
cated by checking the attached signature. Below, V ∈ Nloc, xS , xa and xD are
variables of sort loc whereas xr is a variable of sort lists and xid is a variable of
sort terms. The process executed by an intermediate node V when forwarding
a request is as follows:

Preq(V ) = in w1[ΦV ].read t then null else (store(t).out(w2))

where


w1 = 〈req, xS , xD, xid , xa :: xr, J〈req, xS , xD, xid〉Kpriv(xS)〉
ΦV = check(V, xa)
t = 〈xS , xD, xid , xa :: xr〉
w2 = 〈req, xS , xD, xid , V :: xa :: xr, J〈req, xS , xD, xid〉Kpriv(xS)〉

When the request reaches the destination D, he checks that the request
comes from one of his neighbors, has a correct signature, and that the list of
accumulated nodes does not contain a loop. Then, the destination D constructs
a route reply, in particular it computes a signature over the route accumulated
in the request packet with its private key priv(D). He then sends the reply
back over the network. The process executed by the destination node D is
Pdest(D) = in v1[ΦD].out(v2).null where:

v1 = 〈req, xS , D, xid , xb :: xl, J〈req, xS , D, xid〉Kpriv(xS)〉
ΦD = check(D,xb) ∧ ¬loop(xb :: xl)
v2 = 〈rep, D, xS , xid , D,D :: xb :: xl, J〈rep, D, xS , xid , D :: xb :: xl〉Kpriv(D)〉
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Then, the reply travels along the route back to S. The intermediate nodes
check that the signature in the reply packet is correct, and that the route is
plausible, before forwarding it. Each node replaces the signature in the reply
packet by its own signature. The process executed by an intermediate node V
when forwarding a reply is the following one:

Prep(V ) = in w′[Φ′V ].out(w′′).null

where

 w′ = 〈rep, xD, xS , xid , xa, xr, J〈rep, xD, xS , xid , xr〉Kpriv(xa)〉
Φ′V = checkl(V, xr) ∧ check(V, xa)
w′′ = 〈rep, xD, xS , xid , V, xr, J〈rep, xD, xS , xid , xr〉Kpriv(V )〉

We have found that SDMSR is subject to the same kind of attack as SRP
applied to DSR. Consider the same graph G0 as for the attack we described on
SRP. Let

K0 = (bPinit(S,D)cS | bPdest(D)cD; ∅; I0)

The attack scenario is the following one. The source S sends a route request
towards D. The request reaches the node nI . Thus, the attacker receives
the following message: 〈req, S,D, id , S :: [], J〈req, S,D, id〉Kpriv(S)〉. The attacker
then broadcasts the following message in the name of X:

〈req, S,D, id, [X;W ; I;S], J〈req, S,D, id〉Kpriv(S)〉.

Since D is a neighbor of nI , it will hear the transmission. In addition, the list
of nodes [X;W ; I;S] ends with X, which is also a neighbor of D, and does not
contain any loop, and signature J〈req, S,D, id〉Kpriv(S) is valid. Consequently, the
destination D will process this request and will send the following route reply
back to S:

〈rep, D, S, id , D, [D;X;W ; I;S], J〈rep, D, S, id , [D;X;W ; I;S]〉Kpriv(D)〉.

The attacker will put its own signature J〈rep, D, S, id , [D;X;W ; I;S]〉Kpriv(nI)

instead of the signature of D, and it will send the resulting message to S.

To model security in our model, we replace in Pinit the process null by a hole
and we check whether the formula ¬route(xL) holds. Applying our procedure
to the initial configuration K0, we can reach the configuration

Ks = (bout(error).0cS ; ∅; I0 ∪ {u1, v2}; C)

where

C =

{
I0 ∪ {u1} 
 v1 ∧ ΦD ∧
I0 ∪ {u1, v2} 
 u2 ∧ ΦS ∧ ¬route(xL)

}
with:

u1 = 〈req, S,D, id , S :: [], J〈req, S,D, id〉Kpriv(S)〉
u2 = 〈rep, D, S, id , xA, xL, J〈rep, D, S, id , xL〉Kpriv(xA)〉
ΦD = check(D,xb) ∧ ¬loop(xb :: xl)
ΦS = check(S, xA) ∧ checkl(S, xL)
v1 = 〈req, xS , D, xid , xb :: xl, J〈req, xS , D, xid〉Kpriv(xS)〉
v2 = 〈rep, D, xS , xid , D,D :: xb :: xl, J〈rep, D, xS , xid , D :: xb :: xl〉Kpriv(D)〉
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and the constraint system C has a solution

θ = {id/xid
, S/xS

, nI/xA
,X/xb

, [W ;nI ;S]/xl
, [D;X;W ;nI ;S]/xL

}

for graph G0, so there is an {nI}-attack on K0 for G0. We therefore retrieve the
attack mentioned above, that we have discovered while analysing the protocol.

7.3. Other routing protocols

The model of processes we propose includes the possibility for nodes to store
information in some memory. We can therefore model routing protocols based
on routing tables, such as SAODV [37], SEAD [17] and ARAN [33]. However,
in such protocols, the actual found route is not sent to the source node but
depends on the internal states of the nodes. Security properties such as route
validity can thus not be expressed using our route predicate.

We have modeled route validity in Example 5 for the protocol SRP applied to
DSR. The same modeling can be applied to most source routing protocols such
as Ariadne [18], endairA [11], SRDP [23], BISS [12]. However, source routing
protocols may also perform recursive tests. Such tests are typically performed
either by the source or the destination and aim at securing respectively the
request or reply phase. These tests can not yet be included in our decision
procedures.

8. Conclusion

Using our symbolic semantics, we have shown that, for general processes
that can broadcast and perform some correctness checks in addition to the usual
pattern matching, existence of an attack can be reduced to existence of a solution
for (generalized) constraint systems. Our result holds for a bounded number
of sessions and an unbounded number of node names. As an illustration, for a
large class of processes without replication (that captures e.g., routing protocols
SRP applied on DSR, SDMSR,...), we have proved that the existence of an
attack is NP-complete. In particular, we generalize existing works on solving
constraint systems to properties like the validity of a route and to protocols with
broadcasting. Our result enables us to both decide the existence of a network
topology that would lead to an attack, and also to automatically discover
whether a particular network topology may allow malicious nodes to mount an
attack.

As future work and in order to model protocols, we plan to extend our re-
sults to protocols that perform recursive tests or make use of recursive functions.
Since our results reuse existing techniques such as constraint solving, we believe
that our procedure could be implemented in existing tools after a few adapta-
tions. Another extension would be to model mobility during the execution of
the protocol. This would allows us to consider changes in the network topology
and to analyze the security of route updates. This requires modelling of an
appropriate security property.
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Appendix A. Symbolic semantics

We show in Lemma 1 that the result of a transition from a ground symbolic
configuration is also a ground symbolic configuration, in particular the set of
constraints obtained is a constraint system. This lemma will be useful to show
that our transition system is complete (Proposition 1) and sound (Proposition 2)
when considering ground configurations.

Lemma 1. Let G = (Nloc, E) be a graph, M ⊆ Nloc, and Ks = (P;S; I; C) be
a ground symbolic configuration. If K ′s is such that Ks →s

G,M K ′s, then K ′s is a
ground symbolic configuration.

Proof. Since Ks is a symbolic configuration, we have that C is a constraint
system and T ⊆ I for every T 
 u ∈ C. Moreover, since Ks is ground, we
have that var(I) ∪ fv(P) ∪ var(S) ⊆ rvar(C). Let K ′s = (P ′;S ′; I ′; C′) and
G = (V,E). To prove the result, we do a case analysis on the transition rule
involved in Ks →s

G,M K ′s. Note that the result is straightforward for the rules
Stores, Pars, Repls, and News. Indeed, in these cases, we have that C′ = C,
I ′ = I, and fv(P)∪ var(S) = fv(P ′)∪ var(S ′). Now, we consider the remaining
rules in turn.

• Rule Read-Thens. We have that:

(bread u then P else Qcn ∪Q;S; I; C)→s
G,M (bP cn ∪Q;S; I; C ∧ t = u)

where btcn ∈ S.

First we have that C′ is a constraint system. Indeed, monotonicity is still
satisfied by C′. Moreover, we have that var(t) ⊆ var(S) ⊆ rvar(C) (since
Ks is ground). Hence, C′ satisfies the origination property. Since I ′ = I
and the deduction constraints are the same in C and C′, we have that
T ⊆ I ′ for every T 
 u ∈ C′. Lastly, since Ks is ground, we have that:

(fv(P ) r var(u)) ∪ fv(Q) ⊆ rvar(C).
Consequently, we have that fv(P ) ∪ fv(Q) ⊆ rvar(C) ∪ var(u), and since
rvar(C) ∪ var(u) = rvar(C ∪ {t = u}), we deduce that the resulting sym-
bolic configuration K ′s is also ground.

• Rule Read-Elses. We have that:

(bread u then P else Qcn ∪Q;S; I; C)→s
G,M (bQcn ∪Q;S; I; C ∧ Eq)

where Eq = {∀var(u) r rvar(C) . t 6= u | btcn ∈ S}.
Since no deduction or unification constraint is introduced, C′ is a constraint
system. Since I ′ = I, we also have that T ⊆ I ′ for every T 
 u ∈ C′. Since
Ks is ground, we have that fv(Q) ∪ fv(Q) ∪ var(S) ∪ var(I) ⊆ rvar(C).
Since rvar(C′) = rvar(C), we have that fv(Q)∪ fv(Q)∪ var(S)∪ var(I) ⊆
rvar(C′). The resulting configuration K ′s is ground.

40



• Rule If-Thens. We have that:

(bif Φ then P else Qcn ∪Q;S; I; C)→s
G,M (bP cn ∪Q;S; I; C ∧ Φ)

It is easy to see that C′ is still a constraint system. Moreover, since
I ′ = I and C′ r C does not contain any deduction contraint, we have
that T ⊆ I ′ for every T 
 u ∈ C′. Since Ks is ground, we have that
fv(P ) ∪ fv(Q) ∪ var(S) ∪ var(I) ⊆ rvar(C). Since rvar(C′) = rvar(C),
we have that fv(P ) ∪ fv(Q) ∪ var(S) ∪ var(I) ⊆ rvar(C′). Thus, the
configuration K ′s is ground.

• Rule If-Elses. Similar to the previous case.

• Rule Ins. We have that:

(bin u[Φ].P cn ∪Q;S; I; C)→s
G,M (bP cn ∪Q;S; I; C ∧ I 
 u ∧ Φ)

where (nI , n) ∈ E for some ni ∈M.

Since C is a constraint system and T ⊆ I for any T 
 u ∈ C, we de-
duce that C′ satisfies the monotonicity property. Since var(I) ⊆ rvar(C)
(because Ks is ground), C′ satisfies the origination property. Clearly, we
have that T ⊆ I ′ for any T 
 u ∈ C′. Lastly, since Ks is ground, we
have that: fv(P ) ∪ fv(Q) ∪ var(S) ∪ var(I) ⊆ rvar(C) ∪ var(u). Since
rvar(C′) = rvar(C) ∪ var(u), we easily deduce that the symbolic configu-
ration K ′s is ground.

• Rule Comms. We have that:

(bout(t).P cn ∪ PI ∪Q;S; I; C) →s
G,M

(bP cn ∪ PJ ∪ PK,L ∪Q;S; I ′; C ∧ CJ ∧ CK ∧ CL)

where:

– PI = {bin ui[Φi].Picni
| i ∈ I},

– PJ = {bPjcnj
| j ∈ J}

– PK,L = {bin uk[Φk].Pkcnk
| k ∈ K ∪ L}

– CJ = {t = uj ∧ Φj | j ∈ J},
– CK = {∀var(uk) r rvar(C) . t 6= uk | k ∈ K},
– CL = {t = ulαl ∧ ¬Φlαl | l ∈ L}.

bP ′cn′ ∈ Q implies that (n, n′) /∈ E or P ′ is not of the form in u′[Φ′].Q′, I =
J
⊎
K
⊎
L, (ni, n) ∈ E for any i ∈ I, αl is a renaming of var(ul)rrvar(C)

by fresh variables, and if (n, nI) ∈ E for some nI ∈ M then I ′ = I ∪ {t}
else I ′ = I.

Clearly, C′ satisfies the monotocity property. Moreover, we have that
T ⊆ I ′ for any T 
 u ∈ C′. To show that C′ satisfies the origination
property, we have to prove that var(t) ⊆ rvar(C). This is indeed the case
since Ks is ground and var(t) ⊆ fv(P). Lastly, we have to show that K ′s
is ground. Since Ks is ground, we have that:
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1. fv(PI) ⊆ rvar(C)
2. fv(P ) ∪ fv(Q) ∪ var(S) ∪ var(I) ⊆ rvar(C)
3. var(t) ⊆ rvar(C).

From 1, we deduce that fv(PJ) ∪ fv(PK,L) ⊆ rvar(C) ∪
⋃
j∈J

var(uj).

Moreover, we have that rvar(C) ∪
⋃
j∈J

var(uj) ⊆ rvar(C′).

Hence, we have that:

– fv(P ) ∪ fv(Q) ∪ fv(PJ) ∪ fv(PK,L) ⊆ rvar(C′),
– var(S ′) = var(S) ⊆ rvar(C) ⊆ rvar(C′),
– var(I ′) ⊆ var(I) ∪ var(t) ⊆ rvar(C) ⊆ rvar(C′).

We easily conclude that K ′s is a ground symbolic configuration. �

We now show that a concrete transition corresponds to a symbolic transition.

Proposition 1 (completeness). Let G = (Nloc, E) be a graph andM⊆ Nloc.
Let Ks = (Ps;Ss; Is; C) be a ground symbolic configuration and θ be a solution
of C. Let Kc be the θ-concretization of Ks. Let K ′c be a concrete configuration
such that Kc →G,M K ′c. Then there exists a ground symbolic configuration K ′s
and a substitution θ′ such that:

• K ′c is the θ′-concretization of K ′s, and

• Ks →s
G,M K ′s.

Proof. Let Kc = (P;S; I). We distinguish cases depending on which transition
is applied to Kc. We show that there exists a symbolic configuration K ′s such
that K ′c is the θ′-concretization of K ′s and Ks →s

G,M K ′s. Thanks to Lemma 1,
we easily deduce that K ′s is ground.

• Rule Par. We have that:

Kc = (bP1|P2cn ∪Q;S; I)→G,M (bP1cn ∪ bP2cn ∪Q;S; I) = K ′c

Since Ks is a symbolic configuration whose θ-concretization is Kc, we have
that Ks = (bP s1 |P s2 cn ∪ Qs;Ss; Is; C) with Qsθ = Q, Ssθ = S, Isθ = I,
P s1 θ = P1, and P s2 θ = P2. Let K ′s = (bP s1 cn ∪ bP s2 cn ∪ Qs;Ss; Is; C). We
have that Ks →s

G,M K ′s (with the Pars rule), θ is a solution of C and K ′c
is the θ-concretization of K ′s.

• Rule Repl. We have that:

Kc = (b!P cn ∪Q;S; I)→G,M (bPαcn ∪ b!P cn ∪Q;S; I) = K ′c

where α is a fresh renaming of the bound variables in P . Since Ks is a
symbolic configuration whose θ-concretization is Kc, we have that Ks =
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(b!Pscn ∪ Qs;Ss; Is; C) with Qsθ = Q, Ssθ = S, Isθ = I and Psθ = P .
Note that α is also a renaming of the variables in bv(Ps) r rvar(C). Let
K ′s = (bPsαcn ∪ b!Pscn ∪Qs;Ss; Is; C). We have that Ks →s

G,M K ′s (with
the Repls rule) and θ is a solution of C. It remains to show that K ′c is
the θ-concretization of K ′s. Since the variables introduced by α are fresh,
we have that img(α) ∩ dom(θ) = ∅, and since Psθ = P , we have that
dom(α) ∩ dom(θ) = ∅. Hence we have that (Psα)θ = (Psθ)α = Pα. This
allows us to conclude.

• Rule New. We have that:

Kc = (bnew m.P cn ∪Q;S; I)→G,M (bP{m′
/m}cn ∪Q;S; I) = K ′c

where m′ is a fresh name.

Since Ks is a symbolic configuration whose θ-concretization is Kc, we have
that Ks = (bnew m.Pscn∪Qs;Ss; Is; C) with Qsθ = Q, Ssθ = S, Isθ = I,
and Psθ = P . Let K ′s = (bPs{m

′
/m}cn ∪ Qs;Ss; Is; C). We have that

Ks →s
G,M K ′s (with the News rule), θ is a solution of C and K ′c is the

θ-concretization of K ′s.

• Rule Store. We have that:

Kc = (bstore(t).P cn ∪Q;S; I)→G,M (bP cn ∪Q; btcn ∪ S; I) = K ′c

Since Ks is a symbolic configuration whose θ-concretization is Kc, we
have that Ks = (bstore(ts).Pscn ∪ Qs;Ss; Is; C) with Qsθ = Q, Ssθ = S,
Isθ = I, Psθ = P and tsθ = t. Let K ′s = (bPscn ∪ Qs; btscn ∪ Ss; Is; C).
We have that Ks →s

G,M K ′s (with the Stores rule), θ is a solution of C
and K ′c is the θ-concretization of K ′s.

• Rule Read-Then. We have that:

(bread u then P else QcnQ; btcn ∪ S; I)→G,M (bPσcn ∪Q; btcn ∪ S; I)

where σ = mgu(t, u).

Note that t is ground since Kc is a ground concrete configuration, and
thus we have that uσ = t. Since Ks is a symbolic configuration whose
θ-concretization is Kc, we have that Ks = (bread us then Ps else Qscn ∪
Qs; btscn ∪ Ss; Is; C) with Qsθ = Q, usθ = u, tsθ = t, Psθ = P , Qsθ = Q,
Ssθ = S and Isθ = I. Let K ′s = (bPscn ∪ Qs; btscn ∪ Ss; Is; C ∧ ts = us).
We have that Ks →s

G,M K ′s (with the Read-Thens rule). Let θ′ = θ∪σ.
To show that θ′ is a solution of C, it remains to prove that (tsθ)σ = (usθ)σ.
Actually, we have that (tsθ)σ = tσ = t = uσ = (usθ)σ. Lastly, we have
that Psθ

′ = (Psθ)σ = Pσ. Since Ks is a ground symbolic configuration,
we have that fv(Qs) ∪ var(Ss) ∪ var(Is) ⊆ rvar(C) = dom(θ). Thus
Qsθ′ = Qsθ = Q, Ssθ′ = Ssθ = S, and Isθ′ = Isθ = I. Hence, we have
that K ′c is the θ′-concretization of K ′s.
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• Rule Read-Else. We have that:

(bread u then P else Qcn ∪Q;S; I)→G,M (bQcn ∪Q;S; I)

and for all btcn ∈ S we have that mgu(t, u) = ⊥.

Since Ks is a symbolic configuration whose θ-concretization is Kc, we
have that Ks = (bread us then Ps else Qscn ∪ Qs;Ss; Is; C) with usθ = u,
Psθ = P , Qsθ = Q, Qsθ = Q, Ssθ = S, and Isθ = I.

Let K ′s = (bQscn ∪Qs;Ss; Is; C′) where C′ = C ∧{∀var(us)r rvar(C).ts 6=
us | btscn ∈ S}. We have that Ks →s

G,M K ′s (with the Read-Elses rule).
Now, let us show that θ is a solution of C′. Let ∀var(us)r rvar(C).ts 6= us
be a disequation in C′ r C. We have that usθ = u, tsθ = t for some term
t such that btcn ∈ S, and mgu(t, u) = ⊥. Thus, θ is also a solution of this
constraint, and more generally θ is a solution of C′. Now, it is easy to see
that K ′c is the θ-concretization of K ′s.

• Rule If-Then. We have that:

Kc = (bif Φ then P else Qcn ∪Q;S; I)→G,M (bP cn ∪Q;S; I) = K ′c

and [[Φ]]G = 1.

Since Ks is a symbolic configuration whose θ-concretization is Kc, we
have that Ks = (bif Φs then Ps else Qscn ∪ Qs;Ss; Is; C) with Φsθ = Φ,
Psθ = P , Qsθ = Q, Qsθ = Q, Ssθ = S, and Isθ = I.

Let K ′s = (bPscn ∪ Qs;Ss; Is; C ∧ Φs). We have that Ks →s
G,M K ′s (with

the If-Thens rule). By hypothesis, we have that θ is a solution of C,
and as [[Φsθ]]G = [[Φ]]G is true, we easily deduce that θ is a solution of
C′ = C ∧Φs. Lastly, it is easy to see that K ′c is the θ-concretization of K ′s.

• Rule If-Else. Similar to the previous case.

• Rule In. We have that:

Kc = (bin u[Φ].P cn ∪Q;S; I)→G,M (bPσcn ∪Q;S; I) = K ′c

with (nI , n) ∈ E for some nI ∈M, σ = mgu(t, u), I ` t and [[Φσ]]G = 1.

Since Ks is a symbolic configuration whose θ-concretization is Kc, we
have that Ks = (bin us[Φs].Pscn ∪ Qs;Ss; Is; C) with usθ = u, Φsθ = Φ,
Psθ = P , Qsθ = Q, Ssθ = S, and Isθ = I. Let K ′s = (bPscn ∪
Qs;Ss; Is; C′) where C′ = C ∧ Is 
 us ∧ Φs. We have that Ks →s

G,M K ′s
(with the Ins rule). Let θ′ = θ ∪ σ. By hypothesis, we have that θ is a
solution of C. To show that θ′ is a solution of C′, it remains to establish
that:

– (Isθ)σ ` (usθ)σ: We have that (Isθ)σ = Iσ = I since var(I) = ∅,
and (usθ)σ = uσ = t. Since by hypothesis, we have that I ` t, we
easily conclude.
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– [[(Φsθ)σ]]G = 1. Actually, we have that (Φsθ)σ = Φσ. Since, by
hypothesis, we have that [[Φσ]]G = 1, we easily conclude.

Hence, we have that θ′ is a solution of C′. It is easy to see that K ′c is the
θ′-concretization of K ′s.

• Rule Comm. We have that

Kc = (bout(t).P cn ∪ {bin uj [Φj ].Pjcnj
| j ∈ J} ∪ Q;S; I)

→G,M (bP cn ∪ bPjσjcnj
} ∪ Q;S; I ′) = K ′c

where:

– σj = mgu(t, uj), (n, nj) ∈ E, and [[Φjσj ]]G = 1 for any j ∈ J ,

– if (n, nI) ∈ E for some nI ∈M then I ′ = I ∪ {t} else I ′ = I.

Moreover, we know that bP ′cn′ ∈ Q implies that:

– (n, n′) 6∈ E, or

– P ′ is not of the form in u′[Φ′].Q′, or

– P ′ = in u′[Φ′].Q′ and (mgu(t, u′) = ⊥ or [[Φ′mgu(t, u′)]]G = 0).

Since Ks is a symbolic configuration whose θ-concretization is Kc, we have
that Ks = (bout(ts).Pscn ∪ {bin usj [Φsj ].P sj cnj

|j ∈ J} ∪ Qs;Ss; Is; C) with
tsθ = t, Psθ = P , Isθ = I, Ssθ = S, Qsθ = Q and for any j ∈ J , we have
that usjθ = uj , Φsjθ = Φj , and P sj θ = Pj . Let

– PsK,L = {bin usk[Φsk].P sk cnk
∈ Qs | (nk, n) ∈ E},

– Q′s be such that Qs = PsK,L ]Q′s,
– K = {k | bin usk[Φsk].P sk cnk

∈ PsK,L and mgu(tsθ, u
s
kθ) = ⊥},

– L = {l | bin usl [Φsl ].P sl cnl
∈ PsK,L and σ′l = mgu(tsθ, u

s
l θ) exists, and

¬[[(Φsl θ)σ
′
l]]G = 1}.

We have that PsK,L = {bin usk[Φsk].P sk cnk
∈ PsK,L | k ∈ K ∪ L}.

Let K ′s = (bPscn ∪ PsJ ∪ PsK,L ∪Q′s;Ss; I ′s; C′) where:

– PsJ = {bP sj cnj
| j ∈ J},

– C′ = C ∧ CJ ∧ CK ∧ CL,

– CJ = {ts = usj ∧ Φsj | j ∈ J},
– CK = {∀var(uk) r rvar(C) . ts 6= usk | k ∈ K},
– CL = {ts = uslαl ∧ ¬Φslαl | l ∈ L} where αl is a renaming of var(usl )r

rvar(C) by fresh variables,

– I ′s = Is ∪ {t} if (n, nI) ∈ E and I ′s = Is otherwise.
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Clearly, we have that Ks →s
G,M K ′s. To conclude, it remains to show that

there exists a substitution θ′ that is a solution of C′ and such that K ′c is
the θ′-concretization of K ′s.

Let σJ =
⋃
j∈J σj . Let σL =

⋃
l∈L σl where σl = mgu(t, (usl θ)αl) for any

l ∈ L (Note that σ′l = σl ◦ αl). Let θ′ = θ ∪ σ where σ = σJ ∪ σL. By
hypothesis, we have that θ is a solution of C. To show that θ′ is a solution
of C′ = C ∧ CJ ∧ CK ∧ CL, it remains to establish that:

– θ′ is a solution of CJ , i.e., tsθ
′ = usjθ

′ for any j ∈ J . We have that
tsθ
′ = (tsθ)σ = tσ = t (since t is ground). Moreover, for any j ∈ J ,

we have that (usjθ
′) = (usjθ)σ = (usjθ)σj = ujσj = t.

– θ′ is a solution of CK , i.e., θ′ satisfies ∀var(uk)r rvar(C) . ts 6= usk for
any k ∈ K. This is true since θ′ = θ ∪ σ and mgu(tsθ, u

s
kθ) = ⊥ for

any k ∈ K.

– θ′ is a solution of CL, i.e., tsθ
′ = (uslαl)θ

′ and [[(Φslαl)θ
′]]G = 0 for

any l ∈ L. We have that tsθ
′ = (tsθ)σ = tσ = t and (uslαl)θ

′ =
((uslαl)θ)σl = ((usl θ)αl)σl = t (by definition of σl). Moreover we
have that (Φslαl)θ

′ = ((Φslαl)θ)σl = ((Φsl θ)αl)σl = (Φsl θ)σ
′
l. Hence,

we have that [[(Φslαl)θ
′]]G = 0 for any l ∈ L.

Lastly, it remains to verify that K ′c is the θ′-concretization of K ′s. Indeed,
we have that:

– Psθ
′ = (Psθ)σ = Psθ = P ,

– P sj θ
′ = (P sj θ)σ = (P sj θ)σj = Pjσj for any j ∈ J ,

– (PsK,L ∪Q′s)θ′ = Qsθ′ = (Qsθ)σ = Qsθ = Q,

– Ssθ′ = (Ssθ)σ = Ssθ = S,

– I ′sθ′ = (I ′sθ)σ = I ′sθ = I ′.

This allows us to conclude. �

Proposition 2 (soundness). Let G = (Nloc, E) be a graph and M ⊆ Nloc.
Let Ks = (Ps;Ss; Is; C) and K ′s = (P ′s;S ′s; I ′s; C′) be two ground symbolic con-
figurations such that Ks →s

G,M K ′s. Let θ′ be a solution of C′ and θ be the
restriction of θ′ to rvar(C). Let Kc be the θ-concretization of Ks. There exists
a ground concrete configuration K ′c such that:

• Kc →G,M K ′c, and

• K ′c is the θ′-concretization of K ′s.

Proof. As taking a transition can only add constraints to the constraint system C
and since θ′ is a solution of C′, it also satisfies the constraints in C. Furthermore,
θ is the restriction of θ′ to rvar(C), so θ is a solution of C. Let Kc be the θ-
concretization of Ks and K ′c be the θ′-concretization of K ′s. It remains to show
that Kc →G,M K ′c. We distinguish several cases, depending on the rule involved
in the transition Ks →s

G,M K ′s.
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• Rule Pars. We have that:

(bP s1 |P s2 cn ∪Qs;Ss; Is; C)→s
G,M (bP s1 cn ∪ bP s2 cn ∪Qs;Ss; Is; C)

Since K ′c (resp. Kc) is the θ′-concretization (resp. θ-concretization) of K ′s
(resp. Ks), we have that:

– K ′c = (bP s1 θ′cn ∪ bP s2 θ′cn ∪Qsθ′;Ssθ′; Isθ′),
– Kc = (bP s1 θ|P s2 θcn ∪Qsθ;Ssθ; Isθ).

Since C′ = C, we have that θ′ = θ, and thus Kc →G,M K ′c (by the Par
rule).

• Rule Repls. We have that:

(b!Pscn ∪Qs;Ss; Is; C)→s
G,M (bPsαscn ∪ b!Pscn ∪Qs;Ss; Is; C)

where αs is a renaming of the bound variables of Ps that are not in rvar(C).
Since K ′c (resp. Kc) is the θ′-concretization (resp. θ-concretization) of K ′s
(resp. Ks), we have that:

– K ′c = (b(Psαs)θ′cn ∪ b!Psθ′cn ∪Qsθ′;Ssθ′; Isθ′),
– Kc = (b!Psθcn ∪Qsθ;Ssθ; Isθ).

Since C′ = C, we have that θ′ = θ. To show that Kc →G,M K ′c (by the
Repl rule), it remains to prove that:

– (Psθ)αs = (Psαs)θ. This equality comes from the fact dom(θ) ∩
dom(αs) = ∅.

– αs is a renaming of bv(Psθ). This is due to the fact that αs is
renaming of the bound variables of Ps that are not in rvar(C) and
dom(θ) = rvar(C).

• Rule News. We have that:

(bnew m.Pscn ∪Qs;Ss; Is; C)→s
G,M (bPs{m

′
/m}cn ∪Qs;Ss; Is; C)

where m′ is a fresh name.

As in the previous cases, we have thatK ′c (resp. Kc) is the θ′-concretization
(resp. θ-concretization) of K ′s (resp. Ks). Moreover, since C′ = C, we have
that θ′ = θ. Hence, we have that:

– K ′c = (b((Ps{m
′
/m})θ)cn ∪Qsθ;Ssθ; Isθ),

– Kc = (bnew m.Psθcn ∪Qsθ;Ssθ; Isθ).

As in the previous case, since m′ is a fresh name and (Psθ){m
′
/m} =

(Ps{m
′
/m})θ, we have that Kc →G,M K ′c (by the New rule).
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• Rule Stores. We have that:

(bstore(ts).Pscn ∪Qs;Ss; Is; C)→s
G,M (bPscn ∪Qs; btscn ∪ Ss; Is; C)

Since K ′c (resp. Kc) is the θ′-concretization (resp. θ-concretization) of K ′s
(resp. Ks), we have that:

– Kc = (bstore(tsθ).(Psθ)cn ∪Qsθ;Ssθ; Isθ),
– K ′c = (bPsθ′cn ∪Qsθ′; btsθ′cn ∪ Ssθ′; Isθ′).

Since C′ = C, we have that θ′ = θ, and thus Kc →G,M K ′c (by the Store
rule).

• Rule Read-Thens. We have that:

(bread us then Ps else Qscn ∪Qs; btscn ∪ Ss; Is; C)
→s
G,M (bPscn ∪Qs; btscn ∪ Ss; Is; C ∧ ts = us)

Since K ′c (resp. Kc) is the θ′-concretization (resp. θ-concretization) of K ′s
(resp. Ks), we have that:

– K ′c = (bPsθ′cn ∪Qsθ′; btsθ′cn ∪ Ssθ′; Isθ′),
– Kc = (bread usθ then Psθ else Qsθcn ∪Qsθ; btsθcn ∪ Ssθ; Isθ).

Since θ′ is a solution of C′, we have tsθ
′ = usθ

′. Moreover, since θ is the
restriction of θ′ to rvar(C), we have that θ′ = θ∪σ for some substitution σ.
We have that (tsθ)σ = (usθ)σ. Since tsθ is a ground term, actually we
have that σ = mgu(tsθ, usθ). Hence, we have that:

Kc →G,M (b(Psθ)σcn ∪Qsθ; btsθcn ∪ Ssθ; Isθ)

by the Read-Then rule. Since Ks is a ground symbolic configuration,
we know that var(Is) ∪ fv(Qs) ∪ var(btscn ∪ Ss) ⊆ dom(θ), and thus,
Kc →G,M K ′c (by the Read-Then rule).

• Rule Read-Elses. We have that:

Ks = (bread us then Ps else Qscn ∪Qs;Ss; Is; C)
→s
G,M (bQscn ∪Qs;Ss; Is; C ∧ Eq) = K ′s

where Eq = {∀var(us) r rvar(C) . ts 6= us | btscn ∈ Ss}.
Since K ′c (resp. Kc) is the θ′-concretization (resp. θ-concretization) of K ′s
(resp. Ks), we have that:

– Kc = (bread usθ then Psθ else Qsθcn ∪Qsθ;Ssθ; Isθ),
– K ′c = (bQsθ′cn ∪Qsθ′;Ssθ′; Isθ′).
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Since rvar(C′) = rvar(C), we have that θ′ = θ. Moreover, since θ is a
solution of C′, we have that usθ is not unifiable with tsθ for any btscn ∈ Ss.
In other words, mgu(usθ, t) = ⊥ for any t such that btcn ∈ Ssθ. Hence,
we have that Kc →G,M K ′c by the Read-Else rule.

• Rule If-Thens. We have that:

Ks = (bif Φs then Ps else Qscn ∪Qs;Ss; Is; C)
→s
G,M (bPscn ∪Qs;Ss; Is; C ∧ Φs) = K ′s

Since K ′c (resp. Kc) is the θ′-concretization (resp. θ-concretization) of K ′s
(resp. Ks), we have that:

– Kc = (bif Φsθ then Psθ else Qsθcn ∪Qsθ;Ssθ; Isθ),
– K ′c = (bPsθcn ∪Qsθ;Ssθ; Isθ).

Since rvar(C′) = rvar(C), we have that θ′ = θ. Moreover, since θ is a
solution of C′, we have that [[Φsθ]] = 1. Hence, we have that Kc →G,M K ′c
by the If-Then rule.

• Rule If-Elses. This case is similar to the previous one.

• Rule Ins. We have that:

(bin us[Φs].Pscn ∪Qs;Ss; Is; C)→s
G,M (bPscn ∪Qs;Ss; Is; C′)

where C′ = C ∧ Is 
 us ∧ Φs and (nI , n) ∈ E for some nI ∈M.

Since K ′c (resp. Kc) is the θ′-concretization (resp. θ-concretization) of K ′s
(resp. Ks), we have that:

– Kc = (bin usθ[Φsθ].Psθcn ∪Qsθ;Ssθ; Isθ),
– K ′c = (bPsθ′cn ∪Qsθ′;Ssθ′; Isθ′).

Since θ′ is a solution of C′, we have that Isθ′ ` usθ′ and [[Φsθ
′]]G = 1.

Moreover, we know that there exists a substitution σ such that θ′ = θ ∪ σ
with dom(σ) = var(usθ). We have that usθ

′ is a ground term, and thus
mgu(usθ

′, usθ) = σ. Lastly, since Ks is a ground symbolic configuration,
we have that fv(Qs)∪ var(Ss)∪ var(Is) ⊆ dom(θ), and thus Qsθ′ = Qsθ,
Ssθ′ = Ssθ, and Isθ′ = Isθ. Hence, we have that Kc →G,M K ′c by the In
rule.

• Rule Comms. We have that:

(PsI∪bout(ts).Pscn∪Qs;Ss; Is; C)→s
G,M (PsJ∪PsK,L∪bPscn∪Qs;Ss; I ′s; C′)

where:

– PsI = {bin usi [Φsi ].P si cni
| (ni, n) ∈ E, i ∈ I},
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– I = J ]K ] L,

– PsJ = {bP sj cnj
| j ∈ J},

– PsK,L = {bin uk[Φsk].P sk cnk
| k ∈ K ] L},

– C′ = C ∧ CJ ∧ CK ∧ CL,

– CJ = {ts = usj ∧ Φsj | j ∈ J},
– CK = {∀y ∈ var(usk) r rvar(C) . ts 6= usk | k ∈ K},
– CL = {ts = uslαl ∧ ¬Φslαl | l ∈ L} where αl is a renaming of var(usl )r

rvar(C) by fresh variables.

– I ′s = Is∪{ts} if (n, nI) ∈ E for some nI ∈M and I ′s = Is otherwise.

Moreover, bQscn′ ∈ Qs implies that (n, n′) /∈ E or Qs is not of the form
in u′s[Φ

′
s].Q

′
s. We have also that (ni, n) ∈ E for every i ∈ I.

Since K ′c (resp. Kc) is the θ′-concretization (resp. θ-concretization) of K ′s
(resp. Ks), we have that:

– Kc = (PsI θ ∪ bout(tsθ).Psθcn ∪Qsθ;Ssθ; Isθ),
– K ′c = (PsJθ′ ∪ PsK,Lθ′ ∪ bPsθ′cn ∪Qsθ′;Ssθ′; I ′sθ′).

To conclude, it remains to show that Kc →G,M K ′c. First, by using the
fact that Ks is a ground symbolic configuration, we have that:

– Ssθ′ = Ssθ,
– if (n, nI) ∈ E for some nI ∈M then I ′sθ′ = Isθ′∪{tsθ′} = Isθ∪{tsθ}.

Otherwise, we have that I ′sθ′ = Isθ.
– Psθ

′ = Psθ, Qsθ′ = Qsθ, and PsK,Lθ′ = PsK,Lθ (thanks to the renam-
ing αl).

Note also that the processes in Qsθ are not of the right form to evolve by
receiving a message from the node n. Thus, to show that Kc →G K ′c, it
remains to prove that J = J ′ where

J ′ =

 bin usi [Φsi ].P si cni ∈ PsI ,
i σj = mgu(tθ, usi θ) exists ,

(n, ni) ∈ E, [[(Φsi θ)σi]]G = 1

 .

We prove the two inclusions separately. Let σ be the substitution such
that θ′ = θ ∪ σ. For any i ∈ J , we denote by σi the restriction of σ to the
variables var(usi ), whereas for any i ∈ L, σi is the restriction of σ to the
variables var(usiαi). Lastly, dom(σi) = ∅ when i ∈ K. Hence, we have
that σ =

⋃
i∈I σi.

First, we show that J ⊆ J ′. Let i ∈ J . We know that bin usi [Φsi ].P si cni ∈
PsI , (n, ni) ∈ E, and since θ′ is a solution of C′, we have that tθ′ = usi θ

′

and [[Φsi θ
′]]G = 1. Since tθ′ = usi θ

′ and θ is the restriction of θ on the
variables rvar(C), we deduce that σi = mgu(tθ, usi θ) exists. Since tθ is a
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ground term, we have that σi = σi. Lastly, we have that Φsi θ
′ = (Φsi θ)σ =

(Φsi θ)σi = (Φsi θ)σi. This allows us to conclude that i ∈ J ′.
Now, we show that J ′ ⊆ J . Let i ∈ J ′. By definition of J ′, we know
that bin usi [Φ

s
i ].P

s
i cni

∈ PsI , (n, ni) ∈ E, σi = mgu(tθ, usi θ) exists, and
[[(Φsi θ)σi]]G = 1. Hence, we have that i ∈ I. In order to conclude that
i ∈ J , it is sufficient to show that i 6∈ K and i 6∈ L.

1. i 6∈ K. By contradiction, assume that i ∈ K. Since θ′ is a solu-
tion of C′, we have that θ′ satisfies the constraint ∀y ∈ var(usi ) r
rvar(C) . ts 6= usi . This implies that tsθ and usi θ are not unifiable
This is impossible since we know that σi = mgu(tθ, usi θ) exists. Con-
tradiction. Hence, we deduce that i 6∈ K.

2. i 6∈ L. By contradiction, assume that i ∈ L. Since θ′ is a solution
of C′, we have that t = (usiαi)θ

′ and [[(Φsiαi)θ
′]]G = 0. Actually, we

have that:
(usiαi)θ

′ = ((usiαi)θ)σi = ((usi θ)αi)σi.

Hence, we have that σi = αiσi. We have also that:

(Φsiαi)θ
′ = ((Φsiαi)θ)σi = ((Φsi θ)αi)σi.

We deduce that [[(Φsi θ)σi]]G = 0. Contradiction. Hence, we have that
i 6∈ L.

This allows us to conclude. �

Appendix B. Turning constraint systems into solved forms

Lemma 2. Let T be a set of terms that contains at least one term of each sort,
u0 be a term, and I be a set of names St(T ∪{u0})∩I = ∅. If T ∪I ` u0, then
we have that T ` u0.

Proof. Let π be a proof of T ∪ I ` u0. Let δ be the operation replacing each
name in I by a term in T of the same sort. The operation δ is extended to terms
and substitutions in the obvious way. We show by induction on π that there
exists a proof π′ of (T ∪ I)δ ` u0δ. Since St(T ∪ {u0}) ∩ I = ∅, and Iδ ⊆ T ,
this allows us to conclude that T ` u0.

Base case: π is reduced to the application of an axiom rule. In such a case, we
have that u0 ∈ T ∪ I and thus there exists a proof π′ of (T ∪ I)δ ` u0δ that is
also reduced to an axiom rule.

Induction step: π ends with an instance of another inference rule. Suppose that
the last inference rule R applied in π is of the form

T ∪ I ` v1 . . . T ∪ I ` vn
T ∪ I ` v0
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Let π1, . . . , πn be the direct subproofs of π. For each i ∈ {1, . . . , n}, we have that
the root of πi is labeled with T ∪ I ` ui for some term ui. Moreover, we know
that there exists a substitution θ such that ui = viθ for each i ∈ {0, 1, . . . , n}.
Thanks to our induction hypothesis, we have that there exist π′1, . . . , π

′
n such

that π′i is a proof of (T ∪ I)δ ` uiδ. Actually, by inspection of our inference
system, it is easy to see that uiδ = (viθ)δ = vi(θδ) for each i ∈ {0, 1, . . . , n}.
Hence, we can apply the rule R on π′1, . . . , π

′
n. Let π′ be the resulting proof tree.

Since v0θ
′ = v0(θδ) = (v0θ)δ = u0δ. We have that π′ is a proof of (T∪I)δ ` u0δ.

�

Proposition 3. Let (C, I) be a special constraint system.

1. If C  σ C′ then CI  σ C′
I

by applying the same simplification rule, and
(C′, I) is a special constraint system.

2. If CI  σ C′s, then there exists C′ such that C′s = C′I and C  σ C′ by
applying the same simplification rule. Furthermore, we have that (C′, I)
is a special constraint system.

Proof. We show the two items separately.

1). We reason by case study over the simplification rule used in C  σ C′.
Rule R1. In such a case, we have that C = C′ ∧ T 
 u and T ∪ {x | (T ′ 
 x) ∈
C, T ′ ( T} ` u. Consequently, CI = C′I ∧ T ∪ I 
 u. Furthermore, we have
that

{x | (T ′ 
 x) ∈ CI , T ′ ( T ∪ I} = {x | (T ′ 
 x) ∈ C, T ′ ( T}.

Hence we have that T ∪ I ∪ {x | (T ′ 
 x) ∈ CI , T ′ ( T ∪ I} ` u, and thus

CI  σ C′
I

with R1. Lastly, since St(C′) ⊆ St(C), we easily deduce that (C′, I)
is a special constraint system.

Rule R2. In such a case, we have that C = C0 ∧ T 
 u, C′ = C0σ ∧ Tσ 
 uσ
for some C0, T , u, and σ where σ = mgu(t, v) with t ∈ St(T ), v ∈ St(u),

t 6= v, and t, v not variables. Hence, we have that CI = C0
I ∧ T ∪ I 
 u and

CI  σ C0
I
σ∧ (T ∪I)σ 
 uσ = C′I using R2. Lastly, as St(C)∩I = ∅, for every

x ∈ dom(σ), we have that St(xσ)∩I = ∅. Hence, we deduce that St(Cσ)∩I = ∅,
and so (C′, I) is a special constraint system.

Rule R3 and R′3. These two cases are similar to the previous one.

Rule Rf . In such a case, we have that C = C0∧T 
 f(u, v), and C′ = C0∧T 
 u∧
T 
 v for some C0, T , f, u, and v. Hence, we have that CI = C0

I∧T∪I 
 f(u, v),

and thus CI  σ C0
I ∧T ∪I 
 u∧T ∪I 
 v using Rf . Lastly, as St(C′) ⊆ St(C),

we easily deduce that (C′, I) is a special constraint system.

Rule R4. In such a case, we have that C′ = ⊥, and C = C0 ∧ T 
 u, for some
C0, T and u such that var(T ∪ {u}) = ∅ and T 6` u. Hence, we have that

CI = C0
I ∧ T ∪ I 
 u and var(T ∪ I ∪ {u}) = ∅. Thanks to Lemma 2 and

relying on the fact that (C, I) is a special constraint system, we also have that
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T ∪ I 6` u. Thus, we have that CI  ⊥ = ⊥I using R4 and (⊥, I) is a special
constraint system.

2) We reason by case study over the simplification rule used in CI  σ C′s.

Rule R1. In such a case, we have that CI = C′s ∧ T 
 u and T ∪ {x | (T ′ 


x) ∈ CI , T ′ ( T} ` u for some C′s, T , and u. By definition of CI , we deduce

that there exists C′ such that C = C′ ∧ T ′ 
 u, with C′I = C′s, and T = T ′ ∪ I.
Furthermore, we have that

{x | (T ′ 
 x) ∈ CI , T ′ ( T ∪ I} = {x | (T ′ 
 x) ∈ C, T ′ ( T}.

Consequently, we have that T ′ ∪ I ∪ {x | (T ′ 
 x) ∈ C, T ′ ( T} ` u. As (C, I)
is a special constraint system, we have that St(C) ∩ I = ∅, so we can apply
Lemma 2, we obtain that T ′ ∪ {x | (T ′ 
 x) ∈ C, T ′ ( T} ` u. We obtain
that C  C′ using R1. Lastly, we have that St(C′) ⊆ St(C), and thus we easily
deduce that (C′, I) is a special constraint system.

Rule R2. In such a case, we have that CI = C0s ∧ Ts 
 u, C′s = C0sσ ∧ Tsσ 
 uσ
for some C0s , Ts, u, and σ where σ = mgu(t, v), t ∈ St(Ts), v ∈ St(u), t 6= v,
t, v not variables. In such a case, we know that there exist C0 and T such that

C = C0 ∧ T 
 u, Ts = T ∪ I, and C0s = C0
I
. In order to apply R2 to C, it

remains to show that t ∈ St(T ). Since, we already know that t ∈ St(Ts), we
have to show that t /∈ St(I) = I. By contradiction, suppose that t ∈ I. In
such a case, in order to have tσ = vσ, v has to be a variable. This yields to a

contradiction. Hence, we have that C  σ C0σ ∧ Tσ 
 uσ
def
= C′ and C′I = C′s

Lastly, as St(C) ∩ I = ∅, for every x ∈ dom(σ), we have that St(xσ) ∩ I = ∅.
This allows us to conclude that (C′, I) is a special constraint system.

Rule R3, R′3. These two cases are similar to the previous one.

Rule Rf . In such a case, we have that CI = C0s ∧Ts 
 f(u, v), and C′s = C0s ∧Ts 

u∧Ts 
 v for some C0s , Ts, f, u, and v. By definition of CI , there exists C0, and

T such that C = C0 ∧ T 
 f(u, v), C0s = C0
I
, and Ts = T ∪ I. Consequently,

using Rf , we have that

C  C0 ∧ T 
 u ∧ T 
 v def
= C′.

Furthermore, we have that C′I = C′s. Lastly, we have that St(C′) ⊆ St(C). This
allows us to deduce that (C′, I) is a special constraint system.

Rule R4. In such a case, we have that C′s = ⊥, and CI = C0s ∧ Ts 
 u, for some

C0s , Ts, and u such that var(Ts ∪ {u}) = ∅ and Ts 6` u. By definition of CI ,

there exists C0, and T such that C = C0 ∧ T 
 u, C0s = C0
I
, and Ts = T ∪ I.

Consequently, we have that var(T ∪ {u}) = ∅ and T 6` u. Hence, we can

apply R4, and we obtain that C  ⊥ def
= C′. Lastly, it is easy to see that (C′, I)

is a special constraint system, and C′I = C′s. �
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Delete P ∪ {s = s} =⇒ P

Dec. P ∪ {f(s1, . . . , sn) = f(t1, . . . , tn)} =⇒ P ∪ {s1 = t1, . . . , sn = tn}

Conf. P ∪ {f(s1, . . . , sn) = g(t1, . . . , tk)} =⇒ ⊥ if f 6= g

Coal. P ∪ {x = y} =⇒ P{x 7→ y} ∪ {x = y} if x, y ∈ var(P ) and x 6= y

Check P ∪ {x1 = s1[x2], . . . , xn = sn[x1]} =⇒ ⊥
if si /∈ X for some i ∈ [1 . . . n]

Merge P ∪ {x = s, x = t} =⇒ P ∪ {x = s, s = t}if 0 < |s| ≤ |t|

Figure B.8: Rules for DAG syntactic unification

Lemma 4. Let T be a set of terms and P be a set of equations between terms
in St(T ) with σ = mgu(P ). We have that St(Tσ) ⊆ St(T )σ.

Proof. We use the rules for DAG syntactic unification given in Figure B.8.
Applying these rules on P results in a set of equations P ′ = {x1 = t1, . . . , xn =
tn} in DAG solved form (see [22]). By definition of a DAG solved form, we have
that:

• xi 6= xj for all 1 ≤ i < j ≤ n,

• xi /∈ var(tj) for all 1 ≤ i < j ≤ n.

Let σ = {x1 7→ t1, . . . , xn 7→ tn}. By inspection of the rules in Figure B.8,
we can show by induction on the length of the derivation from P to P ′ that
St(P ′)σ ⊆ St(P )σ. Since St(P ) ⊆ St(T ), we easily deduce that St(ti)σ ⊆
St(T )σ for every 1 ≤ i ≤ n.

Let u ∈ St(Tσ), we show that there exists t ∈ St(T ) such that u = tσ.
Either there exists v a subterm of T such that u = vσ, and we conclude, or
there exists xi ∈ dom(σ) such that u is a subterm of xiσ. In that case, let
i0 = max{i | u ∈ St(xiσ)}.

• Either u ∈ St(ti0)σ ⊆ St(T )σ, and we conclude.

• Or u ∈ St(xσ) for some x ∈ var(ti0) ∩ dom(σ). By definition of a DAG
solved form, we have that var(ti0)∩dom(σ) ⊆ {xi0+1, . . . , xn}. Hence, we
have that u ∈ St(xjσ) for some j > i0. This yields to a contradiction. �

Appendix C. Bounding the size of minimal solutions for solved forms

In this appendix, we give a full proof of Proposition 4 (see Appendix C.2).
We also explain how to adapt the proof of Proposition 4 to prove Proposition 5
(see Appendix C.3).
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Appendix C.1. A preliminary result

Let S be a set, we denote by #S the cardinal of S. Let u be a term. We
denote by |u|d the maximal depth of a variable in u. The lemma below is useful
to bound the depth of variables after application of a substitution.

Lemma 5. Let T be a set of terms, P be a set of equations between terms in
T and σ = mgu(P ). For every variable x ∈ St(T ), we have that:

|xσ|d ≤ #dom(σ) ·max{|t|d | t ∈ T}.

Proof. We use the rules for DAG syntactic unification given in Figure B.8.
Applying these rules on P results in a set of equations representing a most
general unifier of P in DAG solved form (see [22]): σ = {x1 = t1, . . . , xn = tn}.
By definition of a DAG solved form, we have that:

• xi 6= xj for all 1 ≤ i < j ≤ n,

• xi /∈ var(tj) for all 1 ≤ i < j ≤ n.

Hence, we have that |xσ|d < |t1|d+ . . .+ |tn|d. Furthermore, by inspection of the
rules, we can see that each ti is a subterm (modulo a non-bijective renaming of
the variables) of T . For every 1 ≤ i ≤ n, we have that |ti|d ≤ max{|t|d | t ∈ T}.
Since n = #dom(σ), we deduce that |xσ|d < #dom(σ) ·max{|t|d | t ∈ T}. �

Appendix C.2. Case of a fixed topology

We first consider the case where the topology is fixed.

Definition 8 (extracted list). An extracted list from a list l = [a1; . . . ; an]
is a list [ai1 ; . . . ; aik ] such that 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n with 0 ≤ k ≤ n.

We prove that we can find a solution in which lists are polynomially bounded.
In the case where the network topology is fixed, the bound depends on the size
of the graph, i.e., its number of edges. Let l be a list, we denote by |l|` the
length of l.

Proposition 4. Let (C, I) be a special constraint system in solved form, Φ1 be
a conjunction of atomic formulas of Lroute, Φ2 be a set of disequality constraints,
and G = (Nloc, E) be a graph. If there is a solution of (C, I) ∧ Φ1 ∧ Φ2 for G,
then there exists a solution σ of (C, I) ∧ Φ1 ∧ Φ2 for G that is polynomially
bounded in the size of Φ1,Φ2 and E.

Proof. We write Φ2 =
∧
n
∀Yn.un 6= vn, and

Φ1 =
∧
i

±icheck(ai, bi)∧
∧
j

pj∧
k

±jk checkl(cjk , lj)∧
∧
l

±l route(rl)∧
∧
h

±h loop(ph)
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with ± ∈ {+,−}, ai, bi, cjk are of sort loc, lj , rl, ph are terms of sort lists, un, vn
are terms and Yn are sets of variables.

In the following, we denote:

• N the maximal depth of a variable in the disequality constraints,

• k the maximal number of variables in a disequality constraint,

• C the number of constraints ±checkl in Φ1,

• L the number of constraints loop in Φ1,

• R the number of constraints ¬route in Φ1, and

• M = max(kN + 3C + L+R+ 3,#E).

We show that, if there is a solution of (C, I) ∧ Φ1 ∧ Φ2 for graph G, then there
exists a substitution σ such that σ is a solution of (C, I) ∧ Φ1 ∧ Φ2 for G, and

• for all variables x of sort lists, |xσ|` ≤M , and

• xσ ∈ I ∪ Nloc otherwise.

First, we have that xσ ∈ Nloc when x is a variable of sort loc. Moreover,
thanks to Lemma 3, we can assume that xσ ∈ I when x is a variable that is
neither of sort loc nor of type lists. Now, among these solutions, consider a
smallest solution σ of (C, I) ∧ Φ1 ∧ Φ2 for G, where the size of a solution σ is
given by |σ| = |x1σ|` + . . . + |xnσ|` where x1, . . . , xn are the variables of sort
lists that occur in (C, I) ∧ Φ1 ∧ Φ2.

If |xσ|` ≤ M for all variables x of sort lists, then we easily conclude. Oth-
erwise, there exists a variable x` of sort lists such that the length of x`σ is
greater than M . We are going to show that we can build σ′ from σ, solution of
(C, I) ∧ Φ1 ∧ Φ2 for G, smaller than σ. More specifically, we build σ′ such that
for all x 6= x`, xσ

′ = xσ, and |x`σ′|` ≤M < |x`σ|`.
We build x`σ

′ by marking the names we want to keep in the list in the
following manner:

x`σ= a1 a2 . . . akN . . . aP

We mark the first kN names in the list:

a1 a2 . . . akN . . .

We then mark the other names we want to keep in the list in the following
way:

Case of a checkl that occurs positively.

If there exists cjk such that checkl(cjk , lj) is a constraint that occurs pos-
itively in Φ1, i.e., ±jk = +, and x` ∈ var(lj). Assume that lj = d1 :: . . . ::
dp :: x`. As σ is a solution for Φ1, in particular we know that c = cjkσ appears
exactly once in ljσ, and for any l′ sublist of ljσ,
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• if l′ = a :: c :: l1, then (a, c) ∈ E.

• if l′ = c :: b :: l1, then (b, c) ∈ E.

Since c appears exactly once in ljσ, either there exists n such that c = dnσ, or
there exists m such that c = am. In the first case and if n = p, we mark a1.
In the second case, we mark am, am−1(if m > 1) and am+1(if m < P ). Any
variation of a list extracted from x`σ containing at least the marked names plus
another one satisfies the checkl condition for graph G.

a1 . . . am−1 am am+1 . . . aP

Case of a checkl that occurs negatively.

If there exists cjk such that checkl(cjk , lj) is a constraint that occurs nega-
tively in Φ1, i.e., ±jk = −, and x` ∈ var(lj). Assume that lj = b1 :: . . . :: bp :: x`.
As σ is a solution for Φ1, we can have three different cases depending on c = cjkσ:

• c does not appear in ljσ: for every n,m, bnσ 6= c and am 6= c. In that
case, we mark nothing.

• c appears at least twice in ljσ. In that case, we choose two occurrences
of c and we mark them when they appear in x`σ.

a1 . . . c . . . c . . . aP

• c appears once in ljσ, but one of his neighbors in the list is not a neighbor
of it in the graph. For example, c = ai and (ai, ai+1) /∈ E. We mark c
and this false neighbor when they appear in x`σ.

a1 . . . ai ai+1 . . . aM

Any variation of a list extracted from x`σ containing at least the marked
names plus another one satisfies the ¬checkl condition for graph G.

Case of a loop that occurs positively.

If there exists h such that loop(ph) is a constraint that occurs positively in
Φ1, i.e., ±h = +, and x` ∈ var(ph). Assume ph = b1 :: . . . :: bp :: x`. Then there
exists a name c repeated in phσ. We mark two occurrences of such a c, when
they appear in x`σ.

a1 . . . c . . . c . . . aP

Any variation of a list extracted from x`σ containing at least the marked
names plus another one satisfies the loop condition for graph G. Indeed, the
condition does not depend on the graph.
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Case of a loop that occurs negatively.

If there exists h such that loop(ph) occurs negatively in Φ1, i.e., ±h = −,
and x` ∈ var(ph). Assume that ph = b1 :: . . . :: bp :: x`. Removing nodes from
the list preserves this condition, so any extracted list of x`σ satisfies the ¬loop
condition. Moreover, as a variation of a list is built with a fresh constant, any
variation of a list extracted from x`σ satisfies the condition.

Case of a route that occurs negatively.

If there exists rl such that route(rl) occurs negatively in Φ1, i.e., ±l = −,
and x` ∈ var(rl). Assume that rl = b1 :: . . . :: bp :: x`. As σ is a solution for Φ1,
we can have two different cases:

• There exists a name c repeated in rlσ. Then we mark two occurrences of
such a c, when they appear in x`σ.

• There exists a sublist l of rlσ such that l = c :: d :: l1 and (c, d) /∈ E. We
mark c and d if they appear in x`σ.

a1 . . . c d . . . aP

Any variation of a list extracted from x`σ containing at least the marked names
plus another one satisfies the ¬route condition for G.

Case of a route that occurs positively.

If there exists rl such that route(rl) occurs positively in Φ1, i.e., ±l = +, and
x` ∈ var(rl). Assume that rl = b1 :: . . . :: bp :: x`. Write rlσ = c1 :: . . . :: cn.
As σ is a solution for Φ1 in G, for every 0 < i < n, (ci, ci+1) ∈ E and for every
i 6= j, ci 6= cj . Consequently, |rlσ|` ≤ #E, and as |x`σ|` ≤ |rlσ|`, we have that
|x`σ|` ≤ #E. But our hypothesis tells us that |x`σ|` > M ≥ #E. So there is
no positive route condition on x`.

We count the number of marked names. We have marked the first kN
names in the list. For each constraint ±checkl, we mark at most 3 names in
the list. Suppose there are several constraints ¬route(l) with x` sublist of l.
Either ¬route(x`σ) holds, and we can mark two names in x`σ which will make
all the ¬route constraints true; or the constraint is satisfied by marking one
name for each constraint. Thus, we need only mark max(R, 2) names when
R ≥ 1 and 0 otherwise. Thus, in any case, it is sufficient to mark R + 1 names
in x`σ. Similarly, it is sufficient to mark L+ 1 names in x`σ to satisfy the loop
constraints. The number of names marked in the list is at most

kN + 3C + (R+ 1) + (L+ 1) ≤M.

Consider l1 extracted from x`σ by keeping only the marked names in x`σ and
the first unmarked name. Such an unmarked name exists, because |x`σ|` ≥M .
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Let l2 be the variation of l1 replacing the first unmarked name with a fresh con-
stant a`. For each condition considered above, l2 satisfies it, as it is a variation
of a list extracted from x`σ containing the marked names.

Let σ0 be the substitution such that xσ0 = xσ for every x ∈ dom(σ)r {x`},
and xσ = x otherwise. Let σ′ = σ0 ∪ {x` 7→ l2}. By hypothesis, σ is a solution
of Φ1 for G, so by construction, σ′ is a solution of Φ1 for G. Now, it remains
for us to show that σ′ is a solution of (C, I) and Φ2.

Deduction constraints. Consider a deduction constraint Ti ` xi in C. Ei-
ther xi is of sort loc or lists, which means that Nloc ` xiσ′, thus Tiσ

′ ∪ I ⊆
T0 ∪I ` xiσ′. Or xi is not of sort loc or lists, so in particular xi ∈ dom(σ)r x`,
and xiσ

′ = xiσ ∈ I ∪ Nloc, so again Tiσ
′ ∪ I ⊆ T0 ∪ I ` xiσ′. Hence, in both

cases, we have that Tiσ
′ ∪ I ` xiσ′. Consequently, σ′ is a solution of (C, I).

Disequality constraints. Consider a disequality constraint ∀Y.u 6= v ∈ Φ2.
We assume w.l.o.g. that dom(σ)∩Y = ∅. We have to show that uσ′ and vσ′ are
not unifiable. We distinguish two cases. Either uσ0 and vσ0 are not unifiable,
but in such a case, we easily deduce that uσ′ and vσ′ are not unifiable too. This
allows us to conclude. Otherwise, let µ = mgu(uσ0, vσ0).

If dom(µ) ⊆ Y , let τ = {x` 7→ x`σ} ◦ µ. We have that:

(uσ)τ = ((uσ0){x` 7→ x`σ})τ = (uσ0µ){x` 7→ x`σ}
(vσ)τ = ((vσ0){x` 7→ x`σ})τ = (vσ0µ){x` 7→ x`σ}.

Hence, we deduce that uσ and vσ are unifiable, and we obtain a contradiction
since σ satisfies the constraint ∀Y.u 6= v. Hence, this case is impossible.

Otherwise, there exists a term t such that µ(x`) = t, and var(t) ⊆ Y . We
apply Lemma 5 to the set T = {uσ0, vσ0}, and the set of equations P = {uσ0 =
vσ0}. We have that µ = mgu(P ). Since σ0 is ground, we get that:

|t|d ≤ #dom(µ).max(|uσ0|d, |vσ0|d)
≤ #dom(µ).max(|u|d, |v|d)
≤ kN

We reason by case over t:

• If t is not of sort lists, as σ′ is well-sorted, uσ′ and vσ′ are not unifiable.

• Suppose t = [a1; . . . ; an], with a1, . . . , an terms of sort loc. We write
t = t1@t2 with t2 ground term of maximal size, where @ denotes the
concatenation of lists. We have shown that |t1|d = |t|d ≤ kN .

We know that x`σ
′ = [b1; . . . ; bp] and there exists k′ > kN such that

bk′ = a` and a` is a name of I which does not appear anywhere else
in the constraints. Consequently, ak′ 6= a`, and so x`σ

′ 6= tθ for any
substitution θ.

Now, assume by contradiction that uσ′ and vσ′ are unifiable. This means
that there exists τ such that (uσ′)τ = (vσ′)τ . Hence, we have that τ ◦
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{x` 7→ x`σ
′} is an unifier of uσ0 and vσ0. By hypothesis, we have that

µ = mgu(uσ0, vσ0). Hence, we deduce that there exists θ′ such that
τ ◦ {x` 7→ x`σ

′} = θ′ ◦ µ. We have that:

– τ ◦ {x` 7→ x`σ
′}(x`) = x`σ

′, and

– θ′ ◦ µ(x`) = tθ′.

This leads to a contradiction.

• Suppose t = a1 :: . . . :: an :: y`, with y` ∈ Y variable of sort lists. We know
that |t|d ≤ kN , thus we must have n < kN . We reason by contradiction.
Assume that there exists θ′ such that (uσ′)θ′ = (vσ′)θ′. In the remaining
of the proof, we show that uσ and vσ are unifiable.

By hypothesis, we have that θ′ ◦ {x` 7→ x`σ
′} is an unifier of uσ0 and vσ0.

Since µ = mgu(uσ0, vσ0), we deduce that there exists ρ′ such that:

ρ′ ◦ µ = θ′ ◦ {x` 7→ x`σ
′}.

We have that x`σ
′ = (x`µ)ρ′ = tρ′. By hypothesis, we know that the

size of x`σ is greater than M ≥ kN > n. Let lt be the list obtaining
from x`σ by removing its n first elements. Let ρ0 be a substitution such
that xρ0 = xρ′ for every x ∈ dom(ρ) r {y`}, and yρ0 = y otherwise. Let
ρ = ρ0 ◦ {y` 7→ lt}. In order to conclude, it remains to show that ρ ◦ µ is
an unifier of uσ and vσ.

We have that x`σ
′ = (x`µ)ρ′ = tρ′ = aiρ

′ :: . . . anρ
′ :: y`ρ

′. Moreover, we
know that x`σ and x`σ

′ have the same first kN elements by construction,
and n < kN . Relying on this fact to establish the last equality, we have
that:

(x`µ)ρ = tρ
= (a1 :: . . . :: an :: y`)ρ
= a1ρ :: . . . :: anρ :: lt
= a1ρ

′ :: . . . :: anρ
′ :: lt

= x`σ.

Hence, we have that ((uσ)µ)ρ = ((uσ0)µ)ρ, and ((vσ)µ)ρ = ((vσ0)µ)ρ.
We easily conclude that uσ and vσ are unifiable since we know that
(uσ0)µ = (vσ0)µ.

In all possible cases, σ′ satisfies the disequality constraint.

As a conclusion, σ′ is a solution of (C, I)∧Φ1 ∧Φ2, smaller than σ, which leads
to a contradiction. �

Appendix C.3. Case of an a priori unknown topology

In case the topology is not fixed, we show that we can bound the size of an
attack, possibly by changing the graph. The proof follows the same lines as the
proof of Proposition 4. However, we can not consider the size of the graph to
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bound the size of the lists. This is used in the proof of Proposition 4 to deal
with the case of route that occur positively in the formula. In Proposition 5, we
rely on the fact that we can change the graph to solve this problem.

Lemma 6. Let G = (Nloc, E) be a graph, (C, I) be a special constraint system,
Φ1 be a formula of Lroute, and Φ2 be a set of disequality constraints. Let σ
be a solution of (C, I) ∧ Φ1 ∧ Φ2 for G and N ′loc = Nloc ∩ names(C,Φ1,Φ2, σ).
Let G′ = (Nloc, E

′) be a graph that coincides with G on N ′loc, i.e., such that
E = {(n1, n2) | (n1, n2) ∈ E′ and n1, n2 ∈ N ′loc}. Then σ is a solution of
(C, I) ∧ Φ1 ∧ Φ2 for G′.

Proof. We show that σ satisfies each constraint in (C, I) ∧ Φ1 ∧ Φ2 when the
underlying graph is G′. First, not that σ trivially satisfies the deduction con-
straints, the disequality constraints and the loop constraints.

In order to conclude, we have to check that this result also holds for the
remaining constraints in Φ1.

• [[check(aσ, bσ)]]G = 1 if, and only if, (aσ, bσ) ∈ E. We have that [[check(aσ, bσ)]]G =
1 if, and only if, [[check(aσ, bσ)]]G′ = 1.

• [[checkl(cσ, lσ)]]G = 1 if, and only if, lσ is of sort lists, cσ appears exactly
once in lσ, and for any l′ sub-list of lσ,

– if l′ = a :: cσ :: l1, then (a, cσ) ∈ E.

– if l′ = cσ :: b :: l1, then (b, cσ) ∈ E.

As in the previous case, we easily conclude that [[checkl(cσ, lσ)]]G = 1 if,
and only if, [[checkl(cσ, lσ)]]G′ = 1.

• [[route(lσ)]]G = 1 if, and only if, lσ is of sort lists, lσ = [a1; . . . ; an], for
every 1 ≤ i < n, (ai, ai+1) ∈ E, and for every 1 ≤ i, j ≤ n, i 6= j implies
that ai 6= aj . As in the previous case, (ai, ai+1) ∈ E if, and only if,
(ai, ai+1) ∈ E′. Hence, [[route(lσ)]]G = 1 if, and only if, [[route(lσ)]]G′ = 1.

Hence, σ is a solution of (C, I) ∧ Φ1 ∧ Φ2 for G′. �

Proposition 5. Let (C, I) be a special constraint system in solved form, Φ1 be a
conjunction of atomic formulas of Lroute, Φ2 be a set of disequality constraints. If
there is a solution of (C, I)∧Φ1∧Φ2 for the graph G = (Nloc, E), then there exists
a graph G′ = (Nloc, E

′) and a substitution σ such that σ is a solution of (C, I)∧
Φ1 ∧Φ2 for G′, and σ is polynomially bounded in the size of Φ1 and Φ2. More-
over, we have that G′ coincides with G on V = {n | ∃n′ such that (n, n′) ∈ E},
i.e., E = {(n1, n2) ∈ E′ | n1, n2 ∈ V }.

Proof. We adapt the proof of Proposition 4 by showing that there exists a
solution σ such that for every variable x of sort lists, we have that |xσ|` ≤M =
2×(kN+3C+L+R+2) where k,N,C, L, and R are defined as in Proposition 4.
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Let σ be a solution of (C, I)∧Φ1∧Φ2 for graph G and assume that there exists
a variable x` of sort lists such that |x`σ|` > M . Let Vubi be a set of M/2 fresh
nodes, i.e., names in Nloc that do not occur in C, Φ1, Φ2, and E. Consider G′

the ubiquitous graph associated to G and Vubi. Note that by definition of G′,
we have that G′ coincides with G on V = {n | ∃n′ such that (n, n′) ∈ E}. We
show that we can build σ′, a solution of (C, I)∧Φ1 ∧Φ2 for graph G′, such that
for x 6= x`, xσ

′ = xσ, and |x`σ′|` ≤M .

We build σ′ in a similar way as in the previous proof. We mark x`σ as in
the previous proof. The number of names marked in the list is at most:

kN + 3C + (R+ 1) + (L+ 1) ≤M/2.

Consider l1 extracted from x`σ by leaving exactly one unmarked name be-
tween sequences of marked names. Note that, we have no more than M/2 un-
marked names in l1. Let l2 be the ubiquitous variation of l1 according to Vubi.
The fact that we consider a ubiquitous variation allows one to satisfy the con-
straint route that occurs positively. Note that, we have no more than M/2
ubiquitous names in l2, so |l2|` ≤M .

Let σ0 be the substitution such that xσ0 = xσ for every x ∈ dom(σ)r {x`},
and xσ = x otherwise. Let σ′ = σ0 ∪ {x` 7→ l2}. By construction, we have that
the substitution σ′ satisfies Φ1. We show that σ′ is a solution of (C, I) and Φ2

for G′ as in Proposition 4. �

Appendix D. Decidability

Theorem 1. Let K = (P[ ];S; I) be an initial concrete configuration with a
hole, M ⊆ Nloc be a finite set of nodes, and Φ ∈ Lroute be a formula. Deciding
whether there exists a graph G = (Nloc, E) such that there is an M-attack
on K and Φ for the topology G is NP-complete.

Let Ks = (P[if Φ then out(error) else 0];S; I; ∅). Ks is a ground symbolic
configuration whose concretization is (P[if Φ then out(error) else 0];S; I). Let VK
be the set of names of sort loc that occur in P and M. Our decision procedure
works as follows:

Step 1. We partially guess the graph G = (Nloc, E). Actually, we guess whether
(n1, n2) ∈ E for every n1, n2 ∈ VK .
Let GK = (Nloc, EK) where EK = {(n1, n2) | (n1, n2) ∈ E and n1, n2 ∈ VK}.

Step 2. We guess a path of execution of the symbolic transition rules w.r.t. the
graph GK .

Ks →s∗
GK ,M (bout(u)cn ∪ P ′;S ′; I ′; C).
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Step 3. Let C′ = C ∧ {u = error} = C′0 ∧ Φ′1 ∧ Eq′ where C′0 is a finite set
of deduction constraints, Eq′ is a finite set of unification constraints, and Φ′1
contains disequality constraints and formulas of Lroute. Let σ be an mgu of the
equality constraints in Eq′. Let Φ1 = Φ′1σ.

Step 4. Since K is an initial configuration, we have that I = Nloc ]If for some
finite set of terms If . Let I0 = Nloc r names(P,S,Φ,M, If ). We have that

C′0σ = DI0 for some special constraint system (D, I0).

Step 5. We guess a sequence of transformation rules from D to D′ where D′ is
a constraint system in solved form. We have that:

D  ∗σ′ D′ with D′ in solved form.

Step 6. We compute the conjunctive normal form of the formula Φ1σ
′. Hence,

Φ1σ
′ is equivalent to ∧

k

φk1 ∨ · · · ∨ φkik .

We choose non-deterministically φkαk
for every k. Let Φ2 =

∧
k

φkαk
.

Step 7. Let S be the DAG size of P, S, Φ, M, and If . Let I ′0 be a finite
subset of I0 of size 2S2 × (S4 + 5S2 + 2). Guess the values of variables which
are not of sort lists in I ′0 ∪names(P,S,Φ,M, If ). Guess the values of variables
of sort lists among lists of nodes in I ′0 ∪ names(P,S,Φ,M, If ) of length at
most 2 × (S4 + 5S2 + 2). This gives us a substitution σ and we guess a graph
G = (Nloc, E) such that E ⊆ {(n1, n2) | n1, n2 ∈ I ′0 ∪ names(P,S,Φ,M, If )}
and that coincides with GK on VK , i.e:

EK = {(n1, n2) ∈ E | n1, n2 ∈ VK}.

Lastly, we check whether σ is a solution of (D′, I0) ∧ Φ2 for the graph G.

Proof. We now explain each step of our algorithm.

Step 1. We have that #VK < #names(P,M). Hence, we can guess GK whose
size is polynomially bounded.

Step 2. For every graphG′ = (Nloc, E
′) with EK = {(n1, n2) ∈ E′ | n1, n2 ∈ VK},

we have that:

(P;S; I; C)→s∗
GK ,M(P ′;S ′; I ′; C′) iff (P;S; I; C)→s∗

G′,M(P ′;S ′; I ′; C′).

So we can guess the transitions knowing only EK . Now, thanks to Theorem 3
we deduce that there is an M-attack on K and Φ for graph G if, and only if,
there is a derivation

(P[if Φ then out(error) else 0];S; I; ∅) →s∗
GK ,M (bout(u)cn ∪ Ps;Ss; Is; C)
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and the constraint system C′ = C ∧ {u = error} has a solution for graph G.
Actually, we can guess such a path. Indeed, the number of derivations

starting from configuration Ks is bounded. Actually, the length of possible
paths is bounded by the size of the protocol: as there is no replication in the
initial configuration, each transition leads to a smaller process. Moreover, the
number of configurations reachable with one symbolic transition is bounded
as well: we can first guess which process is going to evolve and which is the
corresponding transition. There is only one possible resulting configuration once
this is chosen, except for the communication transition, where we also have to
guess which neighbors will receive the message, and for the read transition,
where we have to choose which term to read.

Step 3. Let σ be an mgu of the equality constraints in C′. If σ does not exist,
then C′ has no solution. Else, C′ has a solution if, and only if, C′σ has a solution.

Step 4. First, C′0σ is a constraint system. In particular, it satisfies the origi-
nation property since application of a substitution preserves this property. We

have that C′0σ = DI0 where (D, I0) is a special constraint system.

Step 5. We apply Theorem 4. Thus, there exists a solution θ of (D, I0) and Φ1

for graph G if, and only if, there exists a special constraint system (D′, I0) in
solved form and some substitutions σ′, and θ′ such that θ = θ′ ◦ σ′, D  ∗σ′ D′
and θ′ is a solution for D′ and Φ1σ

′ for graph G.

Step 6. This step is straightforward. The formula Φ1σ
′ contains disequality

constraints and formulas of Lroute. Consequently, Φ2 =
∧
k

φkαk
, obtained from

Φ1σ
′, can be written:

Φ2 =
∧
i

∀Yi.ui 6= vi ∧
∧
j

±j check(aj , bj) ∧∧
k

∧
i

±ik checkl(cik , lk) ∧
∧
h

±h loop(ph) ∧
∧
l

±l route(rl)

Finally, we are left to decide whether there exists a solution to a solved special
constraint system (D′, I0) and a formula Φ2 as described above.

Step 7. First, we show that for any term t ∈ St(D′,Φ2), there exists t′

in St(C′,Φ′1) such that t = (t′σ)σ′. Thanks to Theorem 4, we have that

St(D′) ⊆ St(Dσ′) ⊆ St(D)σ′.

Moreover, we have that

St(Φ2) ⊆ St(Φ1σ
′) ⊆ St(Φ1)σ′ ∪

⋃
x∈var(D)

St(xσ′) ⊆ St(Φ1)σ′ ∪ St(D)σ′.

The last inclusion is a direct consequence of the inclusion St(Dσ′) ⊆ St(D)σ′.
Hence, we have that: St(D′,Φ2) ⊆ St(Φ1)σ′ ∪ St(D)σ′ ⊆ St(C′σ)σ′. By relying
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on Lemma 4, we obtain that St(C′σ) ⊆ St(C′)σ. Since names(D′,Φ2) ∩ I0 = ∅,
we deduce that

St(D′,Φ2) ⊆ St(C′)σσ′ r I0
⊆ (St(C′)σσ′ rNloc) ∪ names(P,S,Φ,M, If )

Let S be the DAG size of P, S, Φ, M, and If . By inspection of the sym-
bolic transition rules, we see that at each step, the constraint system can grow
at most of size S (because of the communication rule). Hence, we have that
#St(D′,Φ2) ≤ S2.

Let N be the maximal depth of variables in the terms of all disequality
constraints in Φ2, and k the maximal total number of variables in a disequality
constraint. We have that kN ≤ D2 where D is the DAG size of the largest
disequality constraint that occurs in D′. Since D ≤ #St(D′,Φ2), we deduce
that kN ≤ D2 ≤ S4.

Let L be the number of occurrences of a loop predicate in Φ2, R be the
number of occurrences of a route predicate in Φ2, and C be the number of
occurrences of a checkl predicate in Φ2. We have that:

L ≤ S2, R ≤ S2, and C ≤ S2.

Now, we have to show that if there exists a graph G = (Nloc, E) such that
EK = {(n1, n2) ∈ E | n1, n2 ∈ VK} and on which there is an attack, then
there exists a graph as described in Step 7 for which there is an attack and the
substitution witnessing the fact that there exists an attack is also as described
in Step 7 of our algorithm.

• Thanks to Lemma 3, we know that there is a solution where the vari-
ables which are not of sort loc or lists are substituted by names in I0
(independently of the underlying graph).

• Thanks to Proposition 5, we know that if there is a graph G = (Nloc, E)
leading to a solution, there exists a substitution σ where the size of the
instantiated variables of sort lists is bounded by M = 2× (kN + 3C+R+
L + 2) and there exists a graph G′ = (Nloc, E

′) that coincides with G on
V = {n | ∃n′ such that (n, n′) ∈ E}.
We have that: M ≤ 2×(S4+5S2+2). Hence, the number of distinct names
of sort loc in σ is bounded by #var(D′,Φ2)×M ≤ 2S2 × (S4 + 5S2 + 2).
We consider a set I ′0 having this size. So, there is a solution σ for G′ such
that names(σ) ⊆ I ′0 ∪ names(P,S,Φ,M, If ).

• Thanks to Lemma 6, we know that if σ is a solution for graph G′ =
(Nloc, E

′), then σ is also a solution for any graph G′′ = (Nloc, E
′′) that

coincides with G′ on N ′loc where N ′loc represents the names in Nloc that
occur in D′, Φ2, and σ. Note that N ′loc ⊆ I ′0 ∪ names(P,S,Φ,M, If )
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Let G′′ = (Nloc, E
′′) be the graph such that

E′′ = {(n1, n2) ∈ E′ | n1, n2 ∈ I ′0 ∪ names(P,S,Φ,M, If )}.

We have that σ is a solution for the graph G′′ and the graph G′′ is as
described in Step 7. �

We will now explain how to decide the existence of an attack given a fixed
graph G.

Theorem 2. Let K = (P[ ];S; I) be an initial concrete configuration with a
hole, G = (Nloc, E) be a finite graph, M ⊆ Nloc be a finite set of nodes, and
Φ ∈ Lroute be a formula. Deciding whether there exists anM-attack on K and Φ
for the topology G is NP-complete.

Let Ks = (P[if Φ then out(error) else 0];S; I; ∅). First, Ks is a ground symbolic
configuration whose concretization is (P[if Φ then out(error) else 0];S; I). We
write G = (Nloc, E). Let V = {n | ∃n′ such that (n, n′) ∈ E}. Our decision
procedure works as follows:

Step 1. We guess a path of execution of the symbolic transition rules w.r.t.
graph G.

Ks →s∗
G,M (bout(u)cn ∪ P ′;S ′; I ′; C).

Step 2. Let C′ ∧ {u = error} = C′0 ∧ Φ′1 ∧ Eq′ where C′0 is a finite set of deduc-
tion constraints, Eq′ is a finite set of unification constraints, and Φ′1 contains
disequality constraints and formula of Lroute. Let σ be an mgu of the equality
constraints in Eq′. Let Φ1 = Φ′1σ.

Step 3. Since K is an initial configuation, we have that I = Nloc ∪ If for some
finite set of terms If . Let I0 = Nloc r names(P,S,Φ,M, If ). We have that

C′0σ = DI0 for some special constraint system (D, I0).

Step 4. We guess a sequence of transformation rules from D to D′ where D′ is
a constraint system in solved form. We have that:

D  ∗σ′ D′ with D′ in solved form.

Step 5. We compute the conjunctive normal form of formula Φ1σ
′. Hence, Φ1σ

′

is equivalent to ∧
k

φk1 ∨ · · · ∨ φkik .

We choose non-deterministically φkαk
for every k. Let Φ2 =

∧
k

φkαk
.
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Step 6. Let S be the DAG size of P, S, Φ, M, and If . Let I ′0 be a finite
subset of I0 of size S2 ×max(S4 + 5S2 + 3,#E). Guess the values of variables
of sort lists among lists of nodes in I ′0 ∪ names(P,S,Φ,M, If ) ∪ V of length
at most max(S4 + 5S2 + 3,#E). Guess the values of the other variables, i.e.
those that are not of sort lists, in I ′0 ∪names(P,S,Φ,M, If )∪V . This gives us
a substitution σ. Lastly, we check whether σ is a solution of (D′, I0) ∧ Φ2 for
graph G.

Proof. The first five steps are the same as Steps 2 to 6 in Theorem 1. Thus,
it remains to justify Step 6 of the procedure described above. As shown in the
proof of Step 7 in Theorem 1, we have that:

• N ≤ S2 where N is the maximal depth of variables in the terms of all
disequality constraints in Φ2;

• k ≤ S2 where k is the maximal total number of variables in a disequality
constraint in Φ2;

• L ≤ S2 where L is the number of occurrences of a loop predicate in Φ2;

• C ≤ S2 where C is the number of occurrences of a checkl predicate in Φ2;

• R ≤ S2 where R is the number of occurrences of a route predicate in Φ2.

Now, we want to show that if there exists an attack for graph G, then there
is an attack captured by a substitution as described in Step 6 of our algorithm.

• Thanks to Lemma 3, we know that there is a solution where the variables
which are not of sort lists are substituted by names in I0.

• Thanks to Proposition 4, we know that if there is a solution, there exists
one, say σ, such that |xσ| ≤M for any x of type lists where:

M = max(kN + 3C + L+R+ 3,#E).

Actually, we have that M ≤ max(S4 + 5S2 + 3,#E|).
Hence, the number of distinct names of sort loc in σ is bounded by

#var(D′,Φ2)×M ≤ S2 ×max(S4 + 5S2 + 3,#E).

We consider a set I ′0 having this size. This allows us to conclude. �
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