
Verifying privacy-type properties in a modular way

Myrto Arapinis ∗, Vincent Cheval † and Stéphanie Delaune†

∗School of Computer Science, University of Birmingham, UK
†LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France

Abstract—Formal methods have proved their usefulness for
analysing the security of protocols. In this setting, privacy-type
security properties (e.g. vote-privacy, anonymity, unlinkability)
that play an important role in many modern applications are
formalised using a notion of equivalence.

In this paper, we study the notion of trace equivalence
and we show how to establish such an equivalence relation
in a modular way. It is well-known that composition works
well when the processes do not share secrets. However, there
is no result allowing us to compose processes that rely on
some shared secrets such as long term keys. We show that
composition works even when the processes share secrets
provided that they satisfy some reasonable conditions. Our
composition result allows us to prove various equivalence-based
properties in a modular way, and works in a quite general
setting. In particular, we consider arbitrary cryptographic
primitives and processes that use non-trivial else branches.

As an example, we consider the ICAO e-passport standard,
and we show how the privacy guarantees of the whole ap-
plication can be derived from the privacy guarantees of its
sub-protocols.

Keywords-Anonymity and privacy; Formal methods; Secu-
rity procotols; Trace equivalence; Parallel composition

I. INTRODUCTION

With the emergence of new systems and services like

electronic IDs and passports, electronic payment systems

and loyalty schemes, electronic tickets like the Navigo pass

in Paris or the Oyster card in London, or telecommunica-

tion systems like mobile phones, new privacy and security

concerns arise. Indeed, governments, financial and transport

organisations, or telecommunication companies, all possess

and manage important amounts of information concerning

all of our everyday activities. As often reported by the

media [1]–[3], this exposes us to a number of privacy

threats. Security mechanisms should thus secure the offered

services, ensuring the confidentiality of the gathered data

and enhancing the privacy of users’ identity and behaviour.

To this effect, many cryptographic protocols have been

designed to prevent third parties from identifying messages

as coming from a particular user. For example, mobile phone

operators identify mobile phones using temporary identities

that are periodically and securely updated to prevent mobile

phones from being traceable. The electronic passports also

include mechanisms that do not let the passport’s chip

disclose private information to external users. However,

the design of protocols that meet particular security re-

quirements is a notoriously difficult and error prone task.

Indeed, numerous deployed protocols have subsequently

been found to be flawed. For example, the BAC protocol

of electronic passports makes it possible to recognise a

previously observed passport, potentially enabling tracking

passport holders [4], [5].

In this context, formal methods have proved their useful-

ness for precisely analysing the security guarantees provided

by a protocol. Several techniques have been developed

for [6], [7], and successfully applied to the analysis of

cryptographic protocols [5], [8]. For example, a flaw has

been discovered (see [9]) in the Single-Sign-On protocol

used e.g. by Google Apps. It has been shown that a malicious

application could very easily access any other application

(e.g. Gmail or Google Calendar) of their users. This flaw

has been found when analysing the protocol using formal

methods, abstracting messages by a term algebra and using

the AVISPA platform [10]. However, existing techniques for

analysing protocols with respect to privacy-type properties

(e.g. [7], [11]), consider protocols to be executed in isolation,

i.e. without taking into account other protocols which may

be running in parallel. But in reality many applications run

in parallel and the underlying protocols may interact in

unexpected ways if cryptographic material is shared amongst

them. This situation can arise if, for example, a user chooses

the same password for two different network services, or a

server uses the same key for different protocols.

Furthermore, real life protocols are usually complex

and composed of several sub-protocols that rely on the

same cryptographic material. For example, the UMTS stan-

dard [12]–[14] specifies tens of sub-protocols running in

parallel in 3G mobile phone systems. And, while one may

hope to automatically verify each of these sub-protocols

in isolation, it is unrealistic to expect that the whole suite

of protocols can be automatically checked. Indeed, due to

computational constraints, existing tools and techniques do

not scale up well to such large systems, and it is often the

case that the sub-components have to be considered and

analysed independently.

Unfortunately, security proofs of network services or

protocols considered in isolation, do not carry over when

they share keys or passwords. Consider for example the two

naive protocols:

P : A → S : {A}r
pk(S) Q : A → S : {Na}rpk(S)

S → A : Na

In protocol P , the agent A simply identifies himself to the

server S by sending him his identity encrypted under S’s

public key (using a probabilistic encryption scheme). In

protocol Q, the agent sends some fresh nonce Na encrypted

under S’s public key. The server S acknowledges A’s

message by forwarding A’s nonce. While P executed alone

guarantees A’s anonymity, it is not the case when the

protocol Q is run in parallel. Indeed, an adversary may use Q
as an oracle to decrypt any message. More realistic examples

illustrating interactions between protocols can be found in

e.g. [15].

In order to enable verification of complex real life sys-

tems, composition theorems for modular reasoning about

security and privacy are therefore desirable. They may allow

one to deduce security guarantees for a complex protocol,

from the security guarantees of the individual sub-protocols.

The goal of our paper is to study the composition of

protocols with respect to privacy-type properties.

Related work: There are a number of papers studying

the secure composition of security protocols in the symbolic

model (e.g. [16], [17]) and in the computational model

(e.g. [18], [19]). Our result clearly belongs to the first

approach.

Actually, many results have been established for trace-

based security property, e.g. [16], [20], [21]. A result closely

related to ours is the one of S. Ciobaca and V. Cortier [17].

Their result holds for any cryptographic primitives that can

be modelled using equational theories, and their main result

transforms any attack trace of the combined protocol into an

attack trace of one of the individual protocols. This allows

various ways of combining protocols such as sequentially

or in parallel, possibly with inner replications. However,

the major difference with our result is that they consider

trace-based security properties, and more precisely secrecy

(encoded as a reachability property).

Regarding equivalence-based properties, it has been

shown that composition works for resistance against guess-

ing attacks in the passive case without any additional hy-

pothesis [22], and in the active case when the protocols

are tagged [22], [23]. However, these composition results

assume that passwords are the only shared secrets and are

not well-suited to analyse privacy-type properties such as

anonymity and unlinkability.

Our work is also related to those of Canetti et al. who,

in the context of computational models, study universal

composability of protocols [18]. This approach consists of

defining for each sub-protocol an ideal functionality and then

showing that a certain implementation securely emulates

the ideal functionality. Since this initial work, the universal

composability framework has been improved in several

ways, e.g. with joint states [24], without pre-established

session identifiers [19].

Our contributions: While most existing papers study-

ing compositionality of protocols consider trace-based prop-

erties (covering confidentiality and authentication require-

ments), our work tackles the compositionality problem with

respect to privacy-type properties which are usually ex-

pressed as equivalences between processes. Roughly, two

processes P and Q are equivalent (P ≈ Q) if no process O
can observe any difference between the processes P and Q.

We identify sufficient conditions of disjointness under

which protocols can “safely” be executed in parallel. In

particular, we require protocols run in parallel not to use the

same primitives. Our theorems hold for arbitrary primitives

that can be modelled by a set of equations, and can thus

handle composition of protocols relying on symmetric and

asymmetric encryption schemes, hash functions, signatures,

zero knowledge proofs, message authentication codes, des-

ignated verifier proofs, exclusive or, etc.

We first state a composition result that also allows the

protocols considered to share the usual cryptographic primi-

tives of symmetric and asymmetric encryption, hashing, and

signing, provided that these primitives are tagged and that

public and verification keys are not derivable. In this setting,

we are able to establish a strong result that basically says

that the disjoint scenario is equivalent to the shared one. This

allows us to go back to the disjoint case (with no shared

keys) for which composition works unsurprisingly well.

Then, we further relax this condition. A second theorem

shows that it is possible to compose protocols that share

public and verification keys even if those are known by

the attacker, provided that they are given to him from the

beginning. However, in our setting such a sequence has to

be finite, and thus our result can only be applied in presence

of a bounded number of public shared keys. This is not a

real limitation for the analysis of the e-passport application,

but this could lead us to an unrealisitic situation for some

other applications.

In both cases, we show that whenever processes P and Q
(resp. P ′ and Q′) satisfy the corresponding disjointness

property, we can derive that P and Q running in parallel un-

der the composition context C[] are equivalent to P ′ and Q′

running in parallel under the composition context C′[], i.e.

C[P | Q] ≈ C′[P ′ | Q′]

from the equivalences C[P] ≈ C′[P ′] and C[Q] ≈ C′[Q′].
The composition context under which two processes are

composed contains the shared keys possibly under some

replications.

We illustrate the application of our results on a case

study. We consider the protocols specified in the e-passport

application [13], and show how the privacy guarantees of

the whole application can be derived from the privacy guar-

antees of the individual e-passport protocols. However, due

to the limitations of our composition results, our analysis is

performed on the tagged version of the protocols. Moreover,

2

in its current form, our results do not allow us to deal with

sequential composition, thus the BAC protocol used in the

e-passport application for key establishment is modeled in

an abstract way. We consider that the keys are “securely”

pre-shared.

Due to lack of space, proofs are omitted, but they can be

found in [25].

II. MODELS FOR SECURITY PROTOCOLS

In this section, we introduce the cryptographic process

calculus that we will use for describing protocols. This

calculus is close to the applied pi calculus as defined in [26].

However, we use a slightly different syntax and we give

a non-compositional semantics that is easier to manipulate

than its compositional counterpart as defined in [26].

A. Messages

A protocol consists of some agents communicating on

a network. The messages sent by the agents are modelled

using an abstract term algebra. For this, we assume an

infinite set of names N which is split into the set B =
{a, b, k, n, . . .} of names of base type (which are used

for representing keys, nonces, . . .) and the set Ch =
{c, c1, ch, ch1, . . .} of names of channel type (which are

used to name communication channels). We also consider

a set of variables X = {x, y, . . .}, and a signature Σ
consisting of a finite set of function symbols. We rely on

a sort system for terms. The details of the sort system are

unimportant, as long as the base type differ from the channel

type. Moreover, we consider in addition the type seed. This

is a subsort of the base type, and we will assume that this

set only contains atomic data, i.e. variables and names. As

in the applied pi calculus, we suppose that function symbols

only operate on and return terms of base type.

Terms are defined as names, variables, and function sym-

bols applied to other terms. Let N ⊆ N and X ⊆ X , the set

of terms built from N and X by applying function symbols

in Σ is denoted by T (Σ,N∪X). Of course function symbol

application must respect sorts and arities. We write fv (u)
(resp. fn(u)) for the set of variables (resp. names) occurring

in a term u. A term is ground if it does not contain any

variable.

To model algebraic properties of cryptographic primitives,

we define an equational theory by a finite set E of equations

u = v with u, v ∈ T (Σ,X), i.e. u, v do not contain names.

We define =E to be the smallest equivalence relation on

terms, that contains E and that is closed under application

of function symbols and substitutions of terms for variables.

Example 1: Consider the following signature Σ0:

{sdec, senc, adec, aenc, pk, 〈 〉, proj1, proj2, sign, check, vk, h}

The function symbols sdec, senc (resp. adec and aenc) of

arity 2 represent symmetric (resp. asymmetric) decryption

and encryption. Pairing is modelled using a symbol of

arity 2, denoted 〈 〉, and projection functions denoted proj1
and proj2. We consider also signatures and hashes. We

denote by pk(sk) (resp. vk(sk)) the public key (resp. the

verification key) associated to the private key sk . Moreover,

we consider that the function symbols pk and vk take as

argument a term of type seed.

Then, we consider the equational theory E0, defined by

the following equations (i ∈ {1, 2}):

sdec(senc(x, y), y) = x adec(aenc(x, pk(y)), y) = x
proji(〈x1, x2〉) = xi check(sign(x, y), vk(y)) = x

To make a message m extractable from a signature

sign(m, k), typically one would just attach the message m
to the signature using the pairing function symbol, i.e.

〈m, sign(m, k)〉. Then, such a signature can be checked

using the operator check when the verification key is known.

Let u1 = senc(proj2(〈a, b〉), k) and u2 = senc(b, k). We

have that the terms u1 and u2 are equal modulo E0, written

u1 =E0
u2, while obviously the syntactic equality u1 = u2

does not hold.

B. Processes

Plain processes are built up in a similar way to plain

processes in applied pi calculus. The grammar of the plain

processes is as follows:

P,Q := 0
P | Q
new n.P
!P
if u1 = u2 then P else Q
in(u, x).P
out(u, v).Q

where u is a term of channel type (i.e. a name or a variable),

u1, u2 are terms having the same type, x is a variable, v is a

term, and n is a name. The terms u1, u2 and v may contain

variables.

As usual, names and variables have scopes, which are

delimited by restrictions and by inputs. We write fv (P),
bv(P), fn(P) and bn(P) for the sets of free and bound

variables, and free and bound names of a plain process P
respectively.

Extended processes add a set of restricted names E , and

a sequence of messages Φ.

Definition 1: An extended process A is a triple (E ;P ; Φ):

• E is a set of names that represents the names that are

restricted in P and Φ;

• P is a multiset of plain processes where null processes

are removed and such that fv (P) = ∅;

• Φ = {w1 ⊲ u1, . . . , wn ⊲ un} where u1, . . . , un are

ground terms, and w1, . . . , wn are variables.

3

We write dom(Φ) the domain of Φ, i.e. dom(Φ) =
{w1, . . . , wn}. We write fn(A) and bn(A) for the sets of

free and bound names of an extended process A. Given

A = (E ;P ; Φ), we have that fn(A) = fn(P) r E , and

bn(A) = bn(P) ∪ E .

For the sake of clarity, we often omit brackets and the

null process. For instance, we write k1, out(c, u) instead

of {k1} and {out(c, u).0}. When there is no “else”, it

means “else 0”; and we sometimes write

if (u1 = u2 ∧ u′

1 = u′

2) then P else Q

instead of nested conditionals. Moreover, we often write P
instead of (∅;P ; ∅).

Example 2: As an illustrative example, consider the pro-

cess Ai = new skS .(Pi | Q) that has been informally

introduced in Section I. We have that:

• Pi = new r.out(c, aenc(〈r, id i〉, pk(skS))), and

• Q = in(c, x).out(c, proj2(adec(x, skS))).

The first component generates a fresh random number r, and

publishes the message aenc(〈r, id i〉, pk(skS)) containing its

identity id i by sending it on the public channel c. The second

component receives a message on c, uses the private key skS
to decrypt it, and sends the second part of the resulting

plaintext on c.

The semantics is given by a set of labelled rules (see

Figure 1) that allows one to reason about processes that

interact with their environment. This defines the relation
ℓ
−→

where ℓ is either an input, an output, or a silent action τ .

Note that the sent messages of base type are exclusively

stored in the frame and not in the labels (the outputs are

made by “reference”).

Example 3: Let Ai be the extended process defined in

Example 2. We have that:

Ai
τ
−→

τ
−→

τ
−→

νw1.out(c,w1)
−−−−−−−−−→ ({skS , r};Q;w1 ⊲ aenc(〈r, id i〉, pk(skS)))
in(c,w1)
−−−−−→

({skS , r};out(c,Mi);w1 ⊲ aenc(〈r, id i〉, pk(skS)))
νw2.out(c,w2)
−−−−−−−−−→ ({skS , r}; 0; Φi)

def
= A′

i

with Mi = proj2(adec(aenc(〈r, id i〉, pk(skS)), skS)) and

Φi = {w1 ⊲ aenc(〈r, id i〉, pk(sk s)), w2 ⊲ Mi}. Note that

Mi =E0
id i.

The three first steps are performed using the rules NEW

and PAR. Then, we used the rules OUT-T and IN. We denote

by A′

i the resulting extended process.

Notations: Let A be the alphabet of actions (in our case

this alphabet is infinite and contains the special symbol τ).

For every w ∈ A∗, the relation
w
−→ on processes is defined

in the usual way. For s ∈ (A r {τ})∗, the relation
s
⇒ on

processes is defined by: A
s
⇒ B if, and only if there exists

w ∈ A∗ such that A
w
−→ B and s is obtained by erasing all

occurrences of τ .

III. FORMALISING PRIVACY-TYPE SECURITY PROPERTIES

Many interesting security properties, in particular privacy-

type properties such as those studied in [5], [27], [28], are

formalised using behavioural equivalence. We will review

some of them in Section III-B using the notion of trace

equivalence.

A. Trace equivalence

Before defining trace equivalence, we introduce the notion

of static equivalence that compares sequences of messages,

a notion of intruder’s knowledge that has been extensively

studied (e.g. [29]).

To represent the knowledge of an attacker (who may have

observed a sequence of messages u1, . . . , un), we use the

concept of frame. A frame φ = new E .Φ consists of a finite

set E of restricted names (those initially unknown to the

attacker), and a substitution Φ of the form:

{w1 ⊲ u1, . . . , wn ⊲ un} with dom(Φ) = {w1, . . . , wn}

The variables enable us to refer to each ui and we always

assume that the terms ui are ground. The names E are bound

in φ and can be renamed. Moreover names that do not appear

in Φ can be added or removed from E . In particular, we

can always assume that two frames share the same set of

restricted names.

Two frames are considered equivalent when the attacker

cannot detect the difference between the two situations they

represent, that is, his ability to distinguish whether two

recipes M and N produce the same term does not depend

on the frame.

Definition 2: We say that two frames φ1 = new E .Φ1 and

φ2 = new E .Φ2 are statically equivalent, φ1 ∼ φ2, when

dom(Φ1) = dom(Φ2), and for all terms M,N such that

fn(M,N) ∩ E = ∅, we have that MΦ1 =E NΦ1, if and

only if, MΦ2 =E NΦ2.

Example 4: Let A′

1 (resp. A′

2) be the extended process

described in Example 3 and φ1 (resp. φ2) be its associated

frame, i.e. φi = new {skS , r}.Φi with i ∈ {1, 2}. We

have that φ1 6∼ φ2. Indeed, the test w2
?
= id1 can be used

to distinguish the two frames. The test holds in φ1 since

w2Φ1 = M1 =E0
id1, whereas it does not hold in φ2 since

w2Φ2 = M2 =E0
= id2 6=E0

id1. However, we have that:

new {skS, r}.{w1 ⊲ aenc(〈r, id1〉, pk(skS))}
∼

new {skS , r}.{w1 ⊲ aenc(〈r, id2〉, pk(skS))}.

4

(E ; {if u = v then Q1 else Q2} ⊎ P ; Φ)
τ
−→ (E ;Q1 ⊎ P ; Φ) if u =E v (THEN)

(E ; {if u = v then Q1 else Q2} ⊎ P ; Φ)
τ
−→ (E ;Q2 ⊎ P ; Φ) if u 6=E v (ELSE)

(E ; {out(p, u).Q1;in(p, x).Q2} ⊎ P ; Φ)
τ
−→ (E ;Q1 ⊎Q2{x 7→ u} ⊎ P ; Φ) (COMM)

(E ; {in(p, x).Q} ⊎ P ; Φ)
in(p,M)
−−−−−→ (E ;Q{x 7→ u} ⊎ P ; Φ) (IN)

if p 6∈ E , MΦ = u, fv(M) ⊆ dom(Φ) and fn(M) ∩ E = ∅

(E ; {out(p, u).Q} ⊎ P ; Φ)
νwn.out(p,wn)
−−−−−−−−−→ (E ;Q ⊎ P ; Φ ∪ {wn ⊲ u}) (OUT-T)

if p 6∈ E , u is a term of base type, and wn is a variable such that n = |Φ|+ 1

(E ; {out(p, c).Q} ⊎ P ; Φ)
out(p,c)
−−−−−→ (E ;Q ⊎ P ; Φ) if p, c 6∈ E (OUT-CH)

(E ; {out(p, c).Q} ⊎ P ; Φ)
νch.out(p,ch)
−−−−−−−−−→ (E ; (Q ⊎ P){c 7→ ch}; Φ) (OPEN-CH)

if p 6∈ E , c ∈ E , ch is a fresh channel name

(E ; {new k.Q} ⊎ P ; Φ)
τ
−→ (E ∪ {n};Q{k 7→ n} ⊎ P ; Φ) (NEW)

if n is a fresh name with the same type as k

(E ; {!Q} ⊎ P ; Φ)
τ
−→ (E ; {!Q;Q} ⊎ P ; Φ) (REPL)

(E ; {P1 | P2} ⊎ P ; Φ)
τ
−→ (E ; {P1, P2} ⊎ P ; Φ) (PAR)

where p, c are channel names, u, v are ground terms, and x is a variable.

Figure 1. Semantics

For every extended process A = (E ;P ; Φ), we define its

set of traces, each trace consisting in a sequence of actions

together with the sequence of sent messages:

trace(A) = {(tr,new E ′.Φ′) | A
tr
⇒ (E ′;P ′; Φ′)

for some process (E ′;P ′; Φ′)}.

Two processes are trace equivalent if, whatever the mes-

sages they received (built upon previously sent messages),

the resulting sequences of messages are in static equivalence.

Definition 3: Let A and B be two extended processes,

A ⊑ B if for every (tr, φ) ∈ trace(A) such that bn(tr) ∩
(fn(B)∪bn(B)) = ∅, there exists (tr′, φ′) ∈ trace(B) such

that tr = tr′ and φ ∼ φ′. Two closed extended processes A
and B are trace equivalent, denoted by A ≈ B, if A ⊑ B
and B ⊑ A.

Example 5: Consider the following trace:

tr = νw1.out(c, w1) · in(c, w1) · νw2.out(c, w2).

We have that (tr, φ1) ∈ trace(A1), and the only trace

(tr′, φ′) ∈ trace(A2) that satisfies tr = tr′ leads to the

frame φ2 for which we have seen that φ1 6∼ φ2 (see

Example 4). This allows us to conclude that A1 6≈ A2.

We do not consider α-renaming on processes, but renam-

ing of bound names is taken into account in the definition of

static equivalence (Definition 2), and also via the condition

bn(tr) ∩ (fn(B) ∪ bn(B)) = ∅ in the definition of trace

equivalence (Definition 3).

Example 6: Consider the two extended processes:

A = ({a};out(c, a).in(a, x); ∅)
B = ({b};out(c, b).in(b, x); ∅)

where a and b are both channel names. Of course, these

two extended processes are trace equivalent since they are

actually equal up to α-renaming.

According to our semantics, we have that:

({a};out(c, a).in(a, x); ∅)
νb.out(c,b)
−−−−−−−→ ({a};in(b, x); ∅).

It is not possible to fire the same transition, i.e. νb.out(c, b),
from B since the name b occurs in the process B and

the rule OPEN-CH requires us to choose a fresh channel

name. Actually, the extended process B does not have to

mimic such a trace tr = νb.out(c, b). Indeed, we have that

bn(tr) = {b} and fn(B) ∪ bn(B) = {b, c}. Thus, we have

that bn(tr) ∩ (fn(B) ∪ bn(B)) 6= ∅.

Note that the extended process A can also performed the

following transition:

({a};out(c, a).in(a, x); ∅)
νd.out(c,d)
−−−−−−−→ ({a};in(d, x); ∅).

Since {d} ∩ (fn(B) ∪ bn(B)) = ∅, the process B has to

mimic this trace tr′ = νd.out(c, d), and the process B can

do it. We have that:

({b};out(c, b).in(b, x); ∅)
νd.out(c,d)
−−−−−−−→ ({b};in(d, x); ∅).

5

B. Some examples

The definitions we present here are informal ones, and

we refer the reader to [5] for detailed formal definitions. In

Section VI, we will illustrate these definitions through the

e-passport application.

Strong anonymity: Anonymity is informally defined by

the ISO/IEC standard 15408 [30] as the property ensuring

that a user may use a service or a resource without dis-

closing the user’s identity. Formally, strong anonymity has

been defined to hold [5] when an outside observer cannot

tell the difference between a system in which the user with a

publicly known identity id0 executes the analysed protocol,

from the system where id0 is not present at all.

Following this formal definition of anonymity, the pro-

tocol introduced in Section I considered in isolation, i.e.

P = new r.out(c, aenc(〈r, id〉, pk(skS))), is said to satisfy

strong anonymity if the following equivalence holds:

new skS . ((!new id . !P) | !P{id0/id})
≈

new skS .(!new id . !P)

In other words, anonymity is satisfied if an observer

cannot tell if the user id0 (known to the attacker) has been

executing the protocol P or not.

Strong unlinkability: Unlinkability is informally de-

fined by the ISO/IEC standard 15408 [30] as the property

ensuring that a user may make multiple uses of a service

or a resource without others being able to link these uses

together. Formally, strong unlinkability has been defined to

hold [5] when a system in which the analysed protocol can

be executed by each user multiple times looks the same to

an outside observer that the system in which the analysed

protocol can be executed by each user at most once.

Again, we can formalise this property for the protocol P
when considered in isolation using an equivalence:

new skS . (!new id . !P) ≈ new skS .(!new id . P)

In other words, unlinkability is satisfied if an observer cannot

tell if the users can execute multiple or at most once the

protocol P .

IV. COMPOSITION RESULT: A SIMPLE SETTING

Even if a protocol is secure for an unbounded number of

sessions, there is no guarantee if the protocol is executed in

an environment where other protocols sharing some common

keys are executed. The interaction with the other protocols

may dramatically damage the security of the former proto-

col. This is a well-known fact that has been already observed

for trace-based security properties e.g. [16], [17], and that

remains true for privacy-type properties.

An attacker may take advantage of a protocol Q to break

anonymity of another protocol P that has been proved secure

in isolation. This can happen for instance if the security

of P relies on the secrecy of a particular shared key that is

revealed by the protocol Q.

A. Sharing primitives

Actually, even if shared keys are not revealed, the in-

teraction of two protocols using common primitives may

compromise their security.

Example 7: Consider the processes Pi with i ∈ {1, 2}
as defined in Example 2. The equivalence expressing the

anonymity of P (for one session) holds. We have that

new skS .P1 ≈ new skS .P2 whereas the equivalence ex-

pressing the anonymity of P in presence of Q does not

hold anymore. We have that:

new skS .
(

P1 | Q
)

6≈ new skS .
(

P2 | Q
)

Intuitively, the security of P is ensured by the fact that its

identity id is encrypted using the public key pk(skS) whose

associated private key skS is kept secret. However, Q can

be used as an oracle to decrypt a ciphertext that comes from

the process P , and thus Q can be used to reveal the identity

hidden in the ciphertext.

To avoid a ciphertext from a process to be decrypted by

another one, we can consider processes that use disjoint

primitives. However, this is an unnecessarily restrictive

condition. So, we consider protocols that may share some

cryptographic primitives provided they are tagged.

Tagging is a syntactic transformation that consists in

assigning to each protocol an identifier (e.g. the protocol’s

name) that should appear in any encrypted message. Many

relevant equational theories are not so easy to tag (e.g.

exclusive or). So, we consider the fix common equational

theory (Σ0,E0) defined in Example 1, and we explain how

to transform any process built on a signature Σ (possibly

larger that Σ0) into a well-tagged process. For this, we define

Σtag
c

= {tagc, untagc} where tagc and untagc are two

function symbols of arity 1 that we will use for tagging.

The role of the tagc function is to tag its argument with

the tag c. The role of the untagc function is to remove the

tag. To model this interaction between tagc and untagc, we

consider the equational theory:

Etag
c
= {untagc(tagc(x)) = x}.

For our composition results, we will assume that the pro-

cesses PA and PB that we want to compose are built

on (Σa ∪ Σ0,Ea ∪ E0) and (Σb ∪ Σ0,Eb ∪ E0), where

(Σa,Ea), (Σb,Eb) and (Σ0,E0) are disjoint signatures that

are also disjoint from (Σtag
a
,Etag

a
) and (Σtag

b
,Etag

b
). The

signature Σ0 contains the function symbols that can be used

by the two processes and that have to be tagged. We denote

by Σ+
c = Σc ∪ Σtag

c
and E+

c = Ec ∪ Etag
c

with c ∈ {a, b}.

6

Definition 4: Let u be a term built on Σc ∪ Σ0 (c ∈
{a, b}). The c-tagged version of u, denoted [u]c, is defined

as follows:

[u]c
def
= u when u is a name or a variable

[senc(u, v)]c
def
= senc(tagc([u]c), [v]c)

[aenc(u, v)]c
def
= aenc(tagc([u]c), [v]c)

[sign(u, v)]c
def
= sign(tagc([u]c), [v]c)

[h(u)]c
def
= h(tagc([u]c))

[sdec(u, v)]c
def
= untagc(sdec([u]c, [v]c))

[adec(u, v)]c
def
= untagc(adec([u]c, [v]c))

[check(u, v)]c
def
= untagc(check([u]c, [v]c))

[f(u1, . . . , un)]c
def
= f([u1]c, . . . , [un]c) otherwise.

Note that we do not tag the pairing function symbol

(this is actually useless), and we do not tag the pk and vk

function symbols. Actually, tagging pk and vk would greatly

help us to establish our results and would also avoid us to

introduce some additional assumptions, but this would lead

us to consider an unrealistic modelling for asymmetric keys.

Some of the difficulties encountered with asymmetric keys

will be discussed in Section V.

Furthermore, note that tagging preserves equality between

terms (modulo the equational theory E+
c ∪ E0). Actually,

for any terms u, v built on (Σc ∪ Σ0,Ec ∪ E0), we have

that u =E
+
c ∪E0

v if and only if [u]c =E
+
c ∪E0

[v]c. In this

paper, we state our composition results directly on the tagged

version of the protocols, and consequently, we do not need

to rely on this property. However, this property points out

that tagging the terms occurring in a protocol should not

modify its behavior in a fundamental way.

Example 8: Consider ui = aenc(〈r, id i〉, pk(skS)) with

i ∈ {1, 2} and v = proj2(adec(x, skS)). We have that

[ui]a = aenc(taga(〈r, id i〉), pk(skS)), whereas [v]b =
proj2(untagb(adec(x, skS))).

Before extending the notion of tagging to processes, we

have to express the tests that are performed by an agent when

he receives a message that is supposed to be tagged. This

is the purpose of testc(u) that represents the tests which

ensure that every projection and every untagging performed

by an agent during the computation of u is successful.

Definition 5: Let u be a term built on Σ+
c ∪Σ0 with c ∈

{a, b}. We define testc(u) as follows:

testc(u)
def
= testc(u1) ∧ testc(u2) ∧ tagc(untagc(u)) = u

when u = g(u1, u2) with g ∈ {sdec, adec, check}

testc(u)
def
= testc(u1) ∧ u1 = 〈proj1(u1), proj2(u1)〉

when u = proji(u1) with i ∈ {1, 2}

testc(u)
def
= true when u is a name or a variable

testc(u)
def
= testc(u1) ∧ . . . ∧ testc(un)

otherwise, u = f(u1, . . . , un).

Intuitively, the purpose of testc(u) is to check whether

the term u is properly tagged, i.e. whether u is the result of

the tagging operation []c. Actually, this test also allows the

process to check that the cryptographic primitives sdec, adec

and check (the destructor symbols) succeed. This induces a

small change between the behavior of a protocol and its

tagged version. Indeed, whereas the term u = sdec(a, b) is

a message that a protocol could accept, this term will not

satisfy the test testc(u) and will be rejected by the tagged

version of the protocol. This behavior is very similar to one

where the destructors in Σ0 are modeled using rewrite rules

instead of equations. Note that our composition results are

stated on the tagged version of the protocols, and thus, in

this paper, we do not have to worry so much about this

aspect.

Example 9: Again, consider ui = aenc(〈r, id i〉, pk(skS))
with i ∈ {1, 2} and v = proj2(adec(x, skS)). We have that:

testa([ui]a) = true

testb([v]b) = tagb(untagb(adec(x, skS))) = adec(x, skS)
∧ 〈proj1(v

′), proj2(v
′)〉 = v′

where v′ = untagb(adec(x, skS)).

Let A = (E ;P ; Φ) be a process built on Σc ∪ Σ0 with

c ∈ {a, b} such that P = {P1, . . . , Pℓ}, and Φ = {w1 ⊲

u1, . . . , wn ⊲ un}. The c-tagged version of the process A,

denoted [A]c, is the process (E ; [P]c; [Φ]c) where [P]c =
{[P1]c, . . . , [Pℓ]c}, and

[Φ]c = {w1 ⊲ [u1]c, . . . , wn ⊲ [un]c}.

For plain processes, the transformation [P]c is defined as

follows:

[0]c
def
= 0 [!P]c

def
= ![P]c [new k.P]c

def
= new k.[P]c

[P | Q]c
def
= [P]c | [Q]c [in(u, x).P]c

def
= in(u, x).[P]c

[out(u, v).Q]c
def
= if testc([v]c) then out(u, [v]c).[Q]c

[if u1 = u2 then P else Q]c
def
=

if ϕ then (if [u1]c = [u2]c then [P]c else [Q]c)
else 0

where ϕ = testc([u1]c) ∧ testc([u2]c)

Roughly, instead of simply outputting a term v, a process

will first perform some tests to check that the term is

correctly tagged and it will output its c-tagged version [v]c.

For a conditional, the process will first check that the

terms u1 and u2 are correctly tagged before checking that

the test is satisfied.

Example 10: Consider the processes Pi and Q defined in

Example 2.

[Pi]a = new r.out(c, aenc(taga(〈r, id i〉), pk(skS)))

[Q]b = in(c, x).if testb([v]b) thenout(c, [v]b)

7

where [v]b (resp. testb([v]b)) have been defined in Example 8

(resp. Example 9).

Note that the tag will prevent the process Q from de-

crypting the ciphertext that has been output by Pi. Thus,

the equivalence expressing the anonymity of [Pi]a now holds

even in the presence of [Q]b. We have that:

new skS .
(

[P1]a | [Q]b) ≈ new skS .
(

[P2]a | [Q]b).

This is a non-trivial equivalence that can actually be derived

from the equivalence new skS .[P1]a ≈ new skS .[P2]a using

our composition result (Corollary 1).

B. Composition context

As already mentioned, we want to establish a composition

result between processes that share the signature (Σ0,E0)
and also share some keys. Thus, we introduce the notion of

composition context that will help us describe under which

keys the composition has to be done. Note that a composition

context may contain several holes, parallel operators, and

nested replications. This is needed to express privacy-type

properties as those described in Section III-B.

Definition 6: A composition context C is defined by the

following grammar where n is a name of base type.

C,C1, C2 := | new n. C | !C | C1|C2

We only allow names of base type (typically keys) to be

shared between processes through the composition context.

In particular, they are not allowed to share a private channel

even if each process can use its own private channels

to communicate internally. We also suppose w.l.o.g. that

names occurring in C are distinct. A composition context

may contain several holes. We can index them to avoid

confusion. We write C[P1, . . . , Pℓ] (or shortly C[P]) the

process obtained by filling the ith hole with the process Pi

(or the ith process of the sequence P). We will also use

P | Q to represent the sequence of processes obtained by

putting in parallel the processes of the sequences P and Q
componentwise.

Example 11: In Section III-B, we have seen that unlink-

ability of P can be modelled using the equivalence:

new skS .
(

!new id .!P
)

≈ new skS .
(

!new id .P
)

.

The composition contexts used to express this property are:

• C[] = new skS .
(

!new id . !
)

, and

• C′[] = new skS .
(

!new id .
)

.

Since the name id does not occur in the process Q (see

Example 2), it is quite easy to see that C[Q] ≈ C′[Q].
Unlinkability of P in presence of the process Q will be

modelled as C[P | Q] ≈ C′[P | Q], i.e.:

new skS .
(

!new id . !(P | Q)
)

≈ new skS .
(

!new id .(P | Q)
)

Taking into account the fact that id does not occur in the

process Q, the relation above is equivalent to:

new skS .!
(

(new id .!P) | Q
)

≈ new skS .!
(

(new id .P
)

| Q
)

Note that in a composition context a replication may occur

in the scope of some restrictions and this is needed to express

many interesting privacy-type properties. Considering com-

position in a simpler setting where only a bounded number

of keys k̃ are shared (as done in e.g. [31]), would not allow

us to establish unlinkability in a modular way, but only some

results of the form:

new k̃.P1 ≈ new k̃.P2 ⇒

new k̃. (P1 | Q) ≈ new k̃. (P2 | Q)

assuming that processes P1, P2, and Q satisfy some addi-

tional conditions.

Now, we have introduced composition under replication,

but have to formalise the notion of revealing a shared key.

The names that occur in the composition context represent

the names that are shared between the two processes that

we want to compose. Since those names may occur under a

replication, we have to consider renaming and formalise this

notion of revealing accordingly. This is the purpose of the

second part of Definition 7. Actually, in order to compose

protocols in presence of public shared keys, we have to

model those keys using the first component of a process

(so that their public counterpart may occur in the third

component of the process, i.e. the frame). For those keys,

this notion of revealing can be modeled in a very similar

way. This is the purpose of the first part of Definition 7

which will be useful to state our second composition result

(see Section V).

Definition 7: Let C be a composition context, A be an

extended process of the form (E ;C[P1, . . . , Pℓ]; Φ), and

key ∈ {n, pk(n), vk(n) | n ∈ E or n occurs in C}. We say

that the extended process A reveals the shared key key when:

Either fn(key) ∈ E , and

• A
w
⇒ (E ′;P ′; Φ′) for some (E ′;P ′; Φ′); and

• MΦ′ =E key for some M such that fv(M) ⊆ dom(Φ′)
and fn(M) ∩ E ′ = ∅.

Or, we have that fn(key) occurs in C, the i0
th hole is in the

scope of new fn(key), and

• (E ∪ {s};C[P+
1 , . . . , P+

ℓ]; Φ)
w
⇒ (E ′;P ′; Φ′) with

P+
i0

def
= Pi0 | in(c, x).if x = key thenout(c, s)

and P+
i

def
= Pi if i 6= i0; and

• MΦ′ =E s for some M such that fv (M) ⊆ dom(Φ′)
and fn(M) ∩ E ′ = ∅

where c is a fresh public channel name, and s is a fresh

name of base type.

Example 12: Consider the composition context C[] =
new skS . . The extended process (∅;C[P]; ∅) with P

8

as described in Section III-B does not reveal the

keys skS , pk(skS) and vk(skS). Indeed, let key ∈
{skS , pk(skS), vk(skS)}, we have that

({s};C[P | in(c, x).if x = key thenout(c, s)]; ∅)

cannot reach a configuration from which s will be derivable

by the attacker.

C. Going back to the disjoint case

It is well-know that parallel composition works when

processes do not share any secret, the so-called disjoint case.

A first idea to establish a composition result is to see under

which conditions we can go back to the disjoint case. In

this section, we will see that this is indeed possible provided

that processes are tagged and only share some keys that will

never be revealed.

Theorem 1: Let C be a composition context, and PA

(resp. PB) be two sequences of plain processes built

on the signature Σa ∪ Σ0 (resp Σb ∪ Σ0). Assume that

C[[PA]a] and C[[PB]b] do not reveal any shared key in

{k, pk(k), vk(k) | k occurs in C}. We have that:

C[[PA]a | [PB]b] ≈ C[[PA]a] | C[[PB]b].

Proof: (sketch) Consider S = (∅;C[[PA]a | [PB]b]; ∅)
and D = (∅;C[[PA]a] | C[[PB]b]; ∅). Actually, we can show

that any trace (tr, φD) ∈ trace(D) can be mapped to a trace

(tr, φS) ∈ trace(S) such that φD ∼ φS and conversely.

Note that even if the resulting frames φS and φD are not

syntactically equal, we can show that they are in static

equivalence and the computation performed by the attacker

in both executions are exactly the same, namely tr.

For this, we consider the transformation δ on terms whose

purpose is to replace the occurrences of the shared keys

that come from PB by some fresh names in order to

ensure disjointness. However, we do not want to replace

any occurrence of a shared key. Thus, we have to identify

those that come from PB .

For instance, assume that the following term u =
senc(tagb(senc(taga(na), k)), k) has been output by the

process PB = in(c, x).out(c, senc(tagb(x), k)). The pur-

pose of δ is to replace the occurrences of the shared k that

“comes from PB” by a fresh key k′. Actually, we have that:

δ(u) = senc(tagb(senc(taga(na), k)), k
′).

Then the proof can go through thanks to some nice

properties that are enjoyed by this transformation δ. In

particular, we have that:

• this transformation preserves the equality tests per-

formed by each process: “δ(u) = δ(v) ⇔ u = v”.

• this transformation preserves deducibility in the sense

that for any message u that the attacker can obtain

from φS , we can show that its counterpart δ(u) can be

obtained using “δ(φS) = φD” using the same recipe

(and conversely).

This result as well as the way we proceed to prove it are

close to the one proved in [17]. However, we generalise it

in several ways. First, we combine the results of [17] so

that we are able to deal with disjoint equational theories

together with a common equational theory. Moreover, for

the common theory, we consider also pairing and asymmet-

ric primitives. Due to the way tagging is performed, the

asymmetric primitives add some difficulties. Second, since

we want a composition result for trace equivalence, we have

to map any trace of D to a trace of S (and conversely),

and we also have to ensure that the resulting sequence of

messages are in static equivalence. Third, we consider a

process algebra that allows us to express disequality tests

(i.e. non-trivial else branches).

Note that, we have to ensure that shared keys are never

revealed. This is needed for symmetric keys, but as men-

tioned in the hypothesis of the proposition, this is also

required for public keys and verification keys. As we will see

in Example 15, this hypothesis is necessary for this result

to hold, but we will show how to relax it and still get a

composition result (see Section V).

D. A first composition result

The result stated in Theorem 1 allows us to go back to

the disjoint case for which composition works quite well.

Hence, as a corollary, we are now able to state our first

composition result.

Corollary 1: Let C and C′ be two composition con-

texts. Let PA, P ′

A (resp. PB , P ′

B) be two sequences

of plain processes built on the signature Σa ∪ Σ0

(resp. Σb ∪ Σ0). Assume that C[[PA]a] and C[[PB]b]
(resp. C′[[P ′

A]a] and C′[[P ′

B]b]) do not reveal any

shared key in {k, pk(k), vk(k) | k occurs in C} (resp.

{k, pk(k), vk(k) | k occurs in C′}). We have that:

C[[PA]a] ≈ C′[[P ′

A]a]

C[[PB]b] ≈ C′[[P ′

B]b]

C[[PA]a | [PB]b] ≈ C′[[P ′

A]a | [P ′

B]b]

Proof: (sketch) This composition result is proved in

three main steps.

1) We have that the equivalences C[[PA]a] ≈ C′[[P ′

A]a]
and C[[PB]b] ≈ C′[[P ′

B]b] hold on the signatures

(Σ+
a ∪ Σ0,E

+
a ∪ E0) and (Σ+

b ∪ Σ0,E
+
b ∪ E0) re-

spectively. It is relatively easy to show that the same

equivalences also hold on the augmented signature

(Σ+
a ∪ Σ+

b ∪ Σ0,E
+
a ∪ E+

b ∪ E0).

9

2) Then, relying on these two equivalences, we can show

that:

C[[PA]a] | C[[PB]b] ≈ C′[[P ′

A]a] | C
′[[P ′

B]b].

This corresponds to composition in the disjoint case

(no shared key). This is a well-know fact that actually

holds in many cryptographic calculus.

3) Then, we apply Theorem 1 on both sides of the

equivalence, and we obtain the expected result:

C[[PA]a | [PB]b] ≈ C′[[P ′

A]a | [P ′

B]b].

V. COMPOSITION IN PRESENCE OF PROCESSES THAT

REVEAL SHARED KEYS

In the previous section, we presented a first composition

result. However, this result does not hold as soon as some

shared keys are revealed: such a key can be a symmetric

shared key, the private part of an asymmetric key pair, but

also the public part of an asymmetric key pair. In this section,

we will see that we can relax this condition by allowing

shared keys to be revealed from the beginning.

A. Some additional difficulties

First, as shown by the example below, we do not want

public keys to be revealed (for the first time) during the

execution of the protocol.

Example 13: We consider a slightly different version of

the process Pi introduced in Example 2. Basically, we

remove the random r inside the encryption and we consider

its well-tagged version. We consider the following processes:

[P ′

i]a
def
= out(c, aenc(taga(id i), pk(skS))) i ∈ {1, 2}

Consider the composition context C[] = new skS . .

Note that, the equivalence C[[P ′

1]a] ≈ C[[P ′

2]a] still holds

in this setting. Assume now that [P ′

i]a is executed in the

presence of the well-tagged process Qpk = out(c, pk(skS)).
Clearly, the equivalence expressing the anonymity of [P ′

i]a
does not hold anymore. We have that:

C[[P ′

1]a | Qpk] 6≈ C[[P ′

2]a | Qpk].

Actually, the knowledge of pk(skS) will allow the attacker

to distinguish the message emitted by [P ′

1]a from the one

emitted by [P ′

2]a.

To avoid the problem mentioned above, we will assume

that shared keys that are revealed have to be revealed from

the very beginning. This hypothesis seems indeed reasonable

since the purpose of a public key is in general to be disclosed

at the beginning, or eventually never revealed to an outsider.

Note that the previous example is not a counter-example

anymore if we analyse the equivalence expressing the

anonymity of [P ′

i]a assuming that pk(skS) is known by

the attacker from the beginning. The fact that pk(skS) is

revealed during the execution of Qpk will not give any

additional power to the attacker.

Example 14: We consider again the process Pi as pre-

sented in Example 2 with an additional output to reveal the

public key pk(skS) at the very beginning. Basically, we con-

sider the well-tagged process P ′′

i

def
= out(c, pk(skS)).[Pi]a.

We have that C[P ′′

1] ≈ C[P ′′

2] with C[] = new skS . .

Now, the presence of Qpk will not prevent this equivalence

to hold. Indeed, we have that:

C[P ′′

1 | Qpk] ≈ C[P ′′

2 | Qpk].

This hypothesis that states that shared keys are either

known from the beginning or never revealed during the

execution of the protocol is reasonable, and seems to be

sufficient to establish a composition result. However, this

complicates a bit the setting. In particular, as illustrated in

Example 15, there is no hope to obtain a result as the one

stated in Theorem 1. The situation where the processes share

some keys is not equivalent in this setting to the situation

where the processes do not share any key.

Example 15: Consider the processes P ′′

i and Qpk used

in Example 14. We have seen that composition works under

the composition context C = new skS . . However, we have

that (i ∈ {1, 2}):

C[P ′′

i | Qpk] 6≈ C[P ′′

i] | C[Qpk].

Indeed, on the left-hand side, the same public-key will be

output twice whereas the process on the right-hand side will

emit two different public keys. The attacker will observe

such a difference. The strong result stated in Theorem 1

allowing us to easily make the link between the joint state

case and the disjoint case does not hold anymore.

The problems encountered for composing processes that

reveal shared keys are due to the fact that we do not want to

tag the function symbols pk and vk that are used to model

asymmetric keys: such a tagging scheme would lead us to

an unrealistic modelling of asymmetric keys.

B. Composition result

We now consider public keys and verifications keys that

can be made public from the beginning through an initial

frame Φ0 that will represent the initial knowledge of the

attacker. As illustrated in Section V-A, we cannot rely on

Theorem 1 anymore to establish our composition result. We

will still go back to the disjoint case but we have to explain

how a trace corresponding to the situation where processes

share some keys is transformed and mapped to a trace

that models the disjoint case. We cannot simply consider

the identity transformation as it was done to establish the

previous result. The sets of traces issued by both situations

are not the same anymore.

10

Theorem 2: Let PA, P ′

A (resp. PB , P ′

B) be two sequences

of plain processes built over Σa ∪ Σ0 (resp. Σb ∪ Σ0).

Let K0 be a finite set of names of base type, and C
and C′ be two composition contexts. Let Φ0 = {w1 ⊲

f1(k1), . . . , wn ⊲ fn(kn)} with fi ∈ {pk, vk}, and ki ∈ K0

for any i ∈ {1, . . . , n}.

Assume that (K0;C[[PA]a]; Φ0) and (K0;C[[PB]b]; Φ0)
(resp. (K0;C

′[[P ′

A]a]; Φ0), and (K0;C
′[[P ′

B]b]; Φ0)):

• do not reveal any shared key in {k, pk(k), vk(k) | k ∈
K0} unless if the key occurs explicitly in Φ0; and

• do not reveal any shared key in C (resp. C′);

Lastly, we assume that processes PA, P ′

A and PB , P ′

B do

not use variables of channel type. We have that:

(K0;C[[PA]a]; Φ0) ≈ (K0;C
′[[P ′

A]a]; Φ0)

(K0;C[[PB]b]; Φ0) ≈ (K0;C
′[[P ′

B]b]; Φ0)

(K0;C[[PA]a | [PB]b]; Φ0) ≈ (K0;C
′[[P ′

A]a | [P ′

B]b]; Φ0)

Proof: (sketch) Actually, the two first steps are quite

similar to the two first steps of the proof of Corollary 1, but

we renamed the channel names that occur in PA, P ′

A (resp.

PB, P ′

B) before to compose these processes. This, together

with our additional hypothesis on the variables of channel

type, will allow us to identify easily whether a given action

has been performed by PA or PB (resp. P ′

A or P ′

B).

Then, consider a trace (tr, φS) issued by

S = (K0;C[[PA]a | [PB]b]; Φ0).

First, we show that a similar trace (tr′, φD) is also issued by

D = (K0;C[[PA]a] | C[[PB]b]; Φ0) (where channel names

have been renamed). Actually, the processes along these two

traces will be very similar (up to a transformation similar to

the δ transformation used in the proof of Corollary 1 and a

renaming on the channel names) but the labels involved in tr′

have to be changed. Indeed, as soon as a message u will

involve a public key in a “deducible position”, the attacker

will not be able to produce u and δ(u) using the same recipe.

The way the recipe has to be changed depends in particular

on whether the action has been initiated by PA or PB .

Second, relying on our hypothesis, we know that there

exists (tr′, φ′

D) issued by

D′ = (K0;C
′[[P ′

A]a] | C
′[[P ′

B]b]; Φ0)

where again channel names have been renamed.

However, to conclude, we have to go back to the process

S′ = (K0;C
′[[P ′

A]a | [P ′

B]b]; Φ0). This can be done by

applying the reverse of the transformation δ on each process

that occurs in the trace, but again the labels that occur in tr′

have to be changed. Moreover, we have to ensure that this

change will allow one to retrieve the original sequence tr.

For this, we use the fact that the actions of PA (resp. PB) are

mimicked by P ′

A (resp. P ′

B) (this is enforced by the way we

have renamed channel names). Actually, some complications

appear when an internal communication is performed on a

public channel (this is indeed allowed by the semantics), but

this problem can be solved by replacing such an internal step

with two visible actions (an output followed by an input)

having a clearly identifiable origin.

VI. APPLICATION: E-PASSPORT

We illustrate the usefulness of our composition results

on the e-passport application. An electronic passport (or e-

passport) is a paper passport with an RFID chip that stores

the critical information printed on the passport. The Inter-

national Civil Aviation Organisation (ICAO) standard [32]

specifies the communication protocols that are used to access

these information.

A. Protocols description

The information stored in the chip is organised in data

groups (dg1 to dg19). For example, dg5 contains a JPEG

copy of the displayed picture, and dg7 contains the displayed

signature. The verification key vk(skP) of the passport,

together with its certificate sign(vk(skP), skDS) issued by

the Document Signer authority are stored in dg15. The

corresponding signing key skP is stored in a tamper resistant

memory, and cannot be read or copied. For authentication

purposes, a hash of all the dgs together with a signature on

this hash value issued by the Document Signer authority are

stored in a separate file, the Security Object Document:

sod
def
= 〈sign(h(dg1, . . . , dg19), skDS), h(dg1, . . . , dg19)〉.

The ICAO standard specifies several protocols through

which these information can be accessed. First, the Basic

Access Control (BAC) protocol establishes sessions keys

ksenc and ksmac to prevent skimming and eavesdropping

on the subsequent communication with the e-passport. Once

the BAC protocol has been successfully executed, the reader

gains access to the information stored in the RFID tag

through the Passive Authentication and the Active Authen-

tication protocols that can be executed in any order (see

Figure 2).

The Passive Authentication (PA) protocol is an authentica-

tion mechanism that proves that the content of the RFID chip

is authentic. Through PA the reader retrieves the information

stored in the dgs and the sod . It then verifies that the hash

value stored in the sod corresponds to the one signed by the

Document Signer authority. It further checks that this hash

value is consistent with the received dgs.

The Active Authentication (AA) protocol is an authentica-

tion mechanism that prevents cloning of the passport chip.

It relies on the fact that the secret key skP of the passport

cannot be read or copied. The reader sends a random

challenge to the passport, that has to return a signature on

11

Passport Tag

ksenc, ksmac, skP

Reader

ksenc, ksmac, vk(skP)

xenc← senc(read, ksenc)
xmac← mac(xenc, ksmac)

〈xenc, xmac〉

yenc← senc(〈dg
1
, . . . , dg

19
, sod〉, ksenc)

ymac← mac(yenc, ksmac)

〈yenc, ymac〉

Passport Tag

ksenc, ksmac, skP

Reader

ksenc, ksmac, vk(skP)

new rnd
xenc← senc(〈init, rnd〉, ksenc))
xmac← mac(xenc, ksmac)

〈xenc, xmac〉

new nce
sigma ← sign(〈nce , rnd〉, skP)
yenc← senc(sigma, ksenc)
ymac← mac(yenc, ksmac)

〈yenc, ymac〉

Figure 2. Passive and Active Authentication protocols

this challenge using its private signature key skP . The reader

can then verify using the verification key vk(skP) that the

signature was built using the expected passport key.

B. Privacy analysis

Both protocols PA and AA rely on symmetric encryption,

message authentication codes, signatures and the verification

key generation function, to meet their security requirements.

Note that mac(m, k) can be modelled in our setting using the

hash function symbol, i.e. mac(m, k)
def
= h(〈m, k〉). More-

over, the only publicly known verification key is vk(skDS).
Thus, we can use our composition results, and in particular

Theorem 2, to reason in a modular way about the privacy

guarantees provided by the tagged version of the e-passport

application.

According to the ICAO standard, once the keys ksenc

and ksmac have been established (using the BAC protocol),

the reader can decide to execute PA and/or AA in any order.

Formally, this corresponds to the parallel composition of PA

and AA. We consider here that the keys ksenc and ksmac

are “securely” pre-shared. We consider an arbitrary number

of passports, each running an arbitrary number of times the

PA and the AA protocols. This situation can be modelled in

our calculus as follows:

P
def
= new skDS .

!new skP . new id . new sig. new pic. . . .
!new ksenc. new ksmac. (PA | AA)

where id, sig, pic, ... represent the name, the signature, the

displayed picture, etc of the e-passport owner, i.e. the data

stored in the dgs (1-14) and (16-19). The subprocesses PA

and AA model one session of the PA and AA protocol

respectively. The name skDS models the signing key of

the Document Signing authority used in all passports. Each

passport (identified by its signing key skP , the owner’s

name, picture, signature, ...) can run multiple times and in

any order the PA and AA protocols, but with different secret

session keys ksenc and ksmac, that should be established

through execution of the BAC protocol (but that we’ve

abstracted from).

1) Strong anonymity: To express strong anonymity as

formally defined in [5] and briefly discussed at Section III-B,

we will need to consider a victim’s e-passport, whose

name id0, signature sig0, picture pic0, etc. are known to

the attacker. The victim’s e-passport follows like any other e-

passport the PA and AA protocols which can be respectively

modelled by the following processes:

PA0
def
= PA{id0/id, sig0/sig, pic0/pic, . . .}

AA0
def
= AA{id0/id, sig0/sig, pic0/pic, . . .}

To formally express strong anonymity, we will consider

the following situation:

C[1, 2]
def
= ! new skP . new id. new sig. new pic. . . .

! new ksenc. new ksmac. 1

| new skP . !new ksenc. new ksmac. 2

12

where the second hole will be filled with the process

modelling the victim’s e-passport, while the first hole will

be filled with the processes modelling any other e-passport.

This system will be compared to the one where the victim’s

e-passport is not present at all. For this we consider the

following situation:

C′[]
def
= ! new skP . new id. new sig. new pic. . . .

! new ksenc. new ksmac.

whose unique hole will be filled with the processes mod-

elling any e-passport but the victim’s. In both situations, we

will consider that the secret key skDS is secret whereas its

associated verification key vk(skDS) is publicly known to the

attacker from the beginning, i.e. Φ0 = {w1 ⊲ vk(skDS)}.

To check if the tagged version of the e-passport applica-

tion preserves its users’ strong anonymity, one thus needs to

check if the following equivalence holds:

(skDS ;C[[PA]a | [AA]b, [PA0]a | [AA0]b]; Φ0)
≈

(skDS ;C
′[[PA]a | [AA]b]; Φ0)

Now, according to our Theorem 2, instead of checking the

above equivalence, one can check PA’s and AA’s guarantees

w.r.t. anonymity in isolation. In other words, the above equiv-

alence can be derived from the two following equivalences

that are simpler to check:

(skDS ;C[[PA]a, [PA0]a]; Φ0) ≈ (skDS ;C
′[[PA]a]; Φ0)

(skDS ;C[[AA]b, [AA0]b]; Φ0) ≈ (skDS ;C
′[[AA]b]; Φ0)

2) Strong unlinkability: To express strong unlinkability

as defined in [5] and briefly discussed in Section III-B, we

need on one hand to consider a system in which e-passports

can execute the PA and AA protocols multiple times, and on

the other hand a system in which e-passports can execute

the PA and AA protocols at most once. For this we consider

the two following composition contexts:

C[]
def
= !new skP . new id. new sig. new pic. . . .

!new ksenc. new ksmac.

C′[]
def
= !new skP . new id. new sig. new pic. . . .

new ksenc. new ksmac.

These two composition contexts differ on the replication

before the generation of the session keys ksenc and ksmac,

modelling in the first case an unbounded number of execu-

tions of the process that will fill the unique hole, and in the

second a unique session of the filling process.

To check if the tagged version of the e-passport applica-

tion preserves strong unlinkability, one thus needs to check:

(skDS ;C[[PA]A|[AA]b]; Φ0)≈(skDS ;C
′[[PA]a|[AA]b]; Φ0)

We can instead check whether PA and AA satisfy unlinka-

bility in isolation:

(skDS ;C[[PA]a]; Φ0) ≈ (skDS ;C
′[[PA]a]; Φ0)

(skDS ;C[[AA]b]; Φ0) ≈ (skDS ;C
′[[AA]b]; Φ0)

Then, using Theorem 2, we derive the required equivalence.

A few words on ProVerif and the analysis of the e-

passport application: To the best of our knowledge, the

ProVerif tool [7] is the only available tool for automatically

analysing equivalences, and thus for establishing privacy-

type properties as the ones presented in Section III-B. We

tried to use ProVerif to prove that the e-passport application

as a whole (both PA and AA running in parallel) satisfies

anonymity, but it failed to terminate. The problem comes

from the PA protocol. Indeed, while ProVerif fails to prove

that PA satisfies anonymity and unlinkability (ProVerif does

not terminate), it can perfectly prove that AA satisfies these

two properties.

Without results for modular reasoning we cannot exploit

the proof of anonymity and unlinkability of the AA protocol

provided by ProVerif. This reinforces the need for techniques

for modular reasoning.

To use ProVerif we need to encode the equivalences of

interest as biprocesses. We here briefly explain how we

did this for analysing the AA protocol. As discussed above,

AA satisfies strong anonymity if the following equivalence

holds:

(skDS ;C[[AA]b, [AA0]b]; Φ0) ≈ (skDS ;C
′[[AA]b]; Φ0)

Actually, this equivalence can be encoded by the following

ProVerif biprocess

AAANON

def
= ! new skP . new id. new sig. new pic. . . .

! new ksenc. new ksmac. [AA]b
| new skP . new id′. new sig′. new pic′. . . .
let id = choice[id0, id

′] in
let sig = choice[sig0, sig

′] in
let pic = choice[pic0, pic

′] in
. . .
! new ksenc. new ksmac. [AA]b

Encoding anonymity in this way, we have the left side of

the choice representing the victim e-passport (with pub-

licly known id0, sig0, pic0, . . .), while the right side rep-

resents an unknown to the attacker e-passport (with private

id′, sig′, pic′, . . .). Hence, we reduce the problem of testing

strong unlinkability to the diff-equivalence of a biprocess.

ProVerif proves that the strong anonymity property is satis-

fied by our models of the AA protocol.

Similarly, we can encode the equivalence modelling

strong unlinkability as a ProVerif biprocess. Indeed, AA

13

satisfies strong unlinkability if the following equivalence

holds:

(skDS ;C[[AA]b]; Φ0) ≈ (skDS ;C
′[[AA]b]; Φ0)

This equivalence can be encoded by the following ProVerif

biprocess

AAUNLINK

def
= !new skP1.new id1.new sig1.new pic1. . . .

!new skP2.new id2.new sig2.new pic2. . . .
let id = choice[id1, id2] in
let sig = choice[sig1, sig2] in
let pic = choice[pic1, pic2] in
. . .
new ksenc. new ksmac. [AA]b

Encoding unlinkability in this way, we have that the left

side of the choice represents a system where an e-passport

(identified by id1, sig1, pic1, . . .) may execute the proto-

col many times, while the right side represents a sys-

tem where e-passports execute the protocol at most once

(id2, sig2, pic2, . . . are always different and can be used at

most once for the execution of the protocol). Hence, we

reduce the problem of testing strong unlinkability to the diff-

equivalence of a biprocess. ProVerif proves that the strong

unlinkability property is satisfied by our models of the AA

protocol.

VII. CONCLUSION

In this paper, we investigate composition results for

privacy-type properties expressed using trace equivalence.

We have shown that secure protocols can be safely com-

posed. We consider arbitrary equational theories and we

assume that protocols may share some usual primitives

provided they are tagged. Moreover, we have to assume that

the shared keys are not revealed.

When shared keys are kept unknown during the whole

execution, we transform any trace of the composition of

two protocols under shared secrets into a trace on the

composition under no shared secrets. This allows us to go

back to the disjoint case for which composition works quite

well. However, this transformation does not work anymore

as soon as a shared key is revealed even if this key is the

public part of an asymmetric key pair, and thus cannot be

used to decrypt any ciphertext. Nevertheless, we establish

a composition result in this setting by assuming that shared

keys are either never revealed or known by the attacker from

the beginning.

For the sake of simplicity, we only consider composition

assuming that the initial knowledge of the attacker contains a

bunch of names as well as some public keys and verification

keys. We believe that our result can be extended to allow

the attacker to have some non atomic messages in his initial

provided that they are well-tagged. Our composition result

allows one to consider public shared keys by giving them to

the attacker initially (using the frame Φ0). However, in our

setting (and in many others) such a sequence has to be finite

and thus we are only able to deal with a bounded number

of public shared keys. To relax this hypothesis, we probably

need to adapt our model.

For our composition result to work, we have to ensure

that protocols used disjoint primitives or at least tagged

them. However, real-world security protocols, typically do

not use tags, at least not explicitly and not necessarily in the

particular way stipulated by our composition result. Thus,

it would be interesting to relax this condition. We could

for instance use the implicit disjointness criterion developed

in [19].

We foresee composition results in a more general way. In

this paper, protocols are composed in the sense that they can

be executed in parallel in the same environment (i.e. under

the same composition context). We plan to develop compo-

sition results for privacy-type properties where protocols can

use other protocols as sub-programs. This will allow us to

analyse in a modular way key establishment protocols, and

in particular to take into account the BAC protocol in our

modular analysis of the e-passport application.

Acknowledgements. This work has been partially sup-

ported by the EPSRC projects Verifying Interoperability

Requirements in Pervasive Systems (EP/F033540/1) and

Trust Domains (TS/I002529/1), as well as the project JCJC

VIP ANR-11-JS02-006, and the grant DIGITEO API from

Région Île-de-France.

REFERENCES

[1] D. Goodin, “Defects in e-passports allow real-time tracking,”
the Register, 26th January 2010.

[2] C. Caldwell, “A pass on privacy?” the New York Times, July
17, 2005.

[3] M. Barbaro and T. Z. Jr., “A face is exposed for AOL searcher
No. 4417749,” the New York Times, August 9, 2006.

[4] T. Chothia and V. Smirnov, “A traceability attack against e-
passports,” in Proc. 14th International Conference on Finan-
cial Cryptography and Data Security (FC’10), ser. LNCS,
vol. 6052. Springer, 2010.

[5] M. Arapinis, T. Chothia, E. Ritter, and M. Ryan, “Analysing
unlinkability and anonymity using the applied pi calculus,”
in Proc. 23rd Computer Security Foundations Symposium
(CSF’10). IEEE Computer Society Press, 2010, pp. 107–
121.

[6] J. K. Millen and V. Shmatikov, “Constraint solving for
bounded-process cryptographic protocol analysis,” in Proc.
8th Conference on Computer and Communications Security
(CCS’01). ACM Press, 2001, pp. 166–175.

[7] B. Blanchet, M. Abadi, and C. Fournet, “Automated verifica-
tion of selected equivalences for security protocols,” Journal
of Logic and Algebraic Programming, vol. 75, no. 1, pp. 3–
51, 2008.

14

[8] M. Abadi, B. Blanchet, and C. Fournet, “Just fast keying
in the pi calculus,” in Proc. 13th European Symposium on
Programming Languages and Systems (ESOP’04), ser. LNCS,
vol. 2986. Springer, 2004.

[9] A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and M. L.
Tobarra, “Formal analysis of SAML 2.0 web browser single
sign-on: breaking the SAML-based single sign-on for google
apps,” in Proc. 6th ACM Workshop on Formal Methods in
Security Engineering (FMSE 2008). ACM Press, 2008, pp.
1–10.

[10] A. Armando et al., “The AVISPA Tool for the automated
validation of internet security protocols and applications,”
in Proc. 17th International Conference on Computer Aided
Verification, CAV’2005, ser. LNCS, vol. 3576. Springer,
2005, pp. 281–285.

[11] A. Tiu and J. E. Dawson, “Automating open bisimulation
checking for the spi calculus,” in Proc. 23rd Computer
Security Foundations Symposium (CSF’10). IEEE Computer
Society Press, 2010, pp. 307–321.

[12] 3GPP, “Technical specification group services and system
aspects; 3G security; cryptographic algorithm requirements
(release 10),” 3rd Generation Partnership Project, Tech. Rep.,
2011, 3GPP TS 33.105 V10.0.0.

[13] 3GPP, “Technical specification group services and system
aspects; 3G security; security architecture (release 9),” 3rd
Generation Partnership Project, Tech. Rep., 2010, 3GPP TS
33.102 V9.3.0.

[14] ——, “Technical specification group core network and termi-
nals; mobile radio interface layer 3 specification; core network
protocols; stage 3 (release 9),” 3rd Generation Partnership
Project, Tech. Rep., 2010, 3GPP TS 24.008 V9.4.0.

[15] J. Kelsey, B. Schneier, and D. Wagner, “Protocol interactions
and the chosen protocol attack.” in Proc. 5th Inter. Workshop
on Security Protocols, ser. LNCS, vol. 1361. Springer, 1997,
pp. 91–104.

[16] J. D. Guttman and F. J. Thayer, “Protocol independence
through disjoint encryption.” in Proc. 13th Computer Security
Foundations Workshop (CSFW’00). IEEE Comp. Soc. Press,
2000, pp. 24–34.

[17] Ş. Ciobâcă and V. Cortier, “Protocol composition for arbitrary
primitives,” in Proc. of the 23rd IEEE Computer Security
Foundations Symposium (CSF’10). IEEE Computer Society
Press, 2010, pp. 322–336.

[18] R. Canetti, “Universally composable security: A new
paradigm for cryptographic protocols,” in Proc. 42nd Annual
Symposium on Foundations of Computer Science (FOCS’01).
Las Vegas (Nevada, USA): IEEE Computer Society Press,
2001, pp. 136–145.

[19] R. Küsters and M. Tuengerthal, “Composition Theorems
Without Pre-Established Session Identifiers,” in Proc. 18th
Conference on Computer and Communications Security
(CCS 2011). ACM Press, 2011, pp. 41–50.

[20] S. Andova, C. Cremers, K. G. Steen, S. Mauw, S. M. lsnes,
and S. Radomirović, “A framework for compositional verifi-
cation of security protocols,” Information and Computation,
vol. 206, no. 2-4, pp. 425–459, 2008.

[21] S. Mödersheim and L. Viganò, “Secure pseudonymous chan-
nels,” in Proc. 14th European Symposium on Research in
Computer Security (ESORICS’09), ser. LNCS, vol. 5789.
Springer, 2009, pp. 337–354.

[22] S. Delaune, S. Kremer, and M. D. Ryan, “Composition of
password-based protocols,” in Proc. 21st IEEE Computer
Security Foundations Symposium (CSF’08). IEEE Computer
Society Press, 2008, pp. 239–251.

[23] C. Chevalier, S. Delaune, and S. Kremer, “Transforming
password protocols to compose,” in Proc. 31st Conference
on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’11), ser. Leibniz International
Proceedings in Informatics. Leibniz-Zentrum für Informatik,
2011, pp. 204–216.

[24] B. Barak, R. Canetti, J. Nielsen, and R. Pass, “Universally
composable protocols with relaxed set-up assumptions,” in
Proc. 45th Symposium on Foundations of Computer Science
(FOCS’04). IEEE Computer Society Press, 2004, pp. 186–
195.

[25] M. Arapinis, V. Cheval, and S. Delaune, “Verifying privacy-
type properties in a modular way,” Laboratoire Spécification
et Vérification, ENS Cachan, France, Research Report
LSV-12-03, Feb. 2012. [Online]. Available: http://www.lsv.
ens-cachan.fr/Publis/PAPERS/PDF/rr-lsv-2012-03.pdf

[26] M. Abadi and C. Fournet, “Mobile values, new names,
and secure communication,” in Proc. 28th Symposium on
Principles of Programming Languages (POPL’01). ACM
Press, 2001, pp. 104–115.

[27] S. Delaune, S. Kremer, and M. D. Ryan, “Verifying privacy-
type properties of electronic voting protocols,” Journal of
Computer Security, no. 4, pp. 435–487, Jul. 2008.

[28] M. Bruso, K. Chatzikokolakis, and J. den Hartog, “Formal
verification of privacy for RFID systems,” in Proc. 23rd
Computer Security Foundations Symposium (CSF’10). IEEE
Computer Society Press, 2010.

[29] M. Abadi and V. Cortier, “Deciding knowledge in security
protocols under equational theories,” Theoretical Computer
Science, vol. 387, no. 1-2, pp. 2–32, 2006.

[30] “ISO 15408-2: Common Criteria for Information Technology
Security Evaluation - Part 2: Security functional components,”
ISO/IEC, Final draft, July 2009.

[31] V. Cortier and S. Delaune, “Safely composing security proto-
cols,” Formal Methods in System Design, vol. 34, no. 1, pp.
1–36, Feb. 2009.

[32] “PKI for machine readable travel documents offering ICC
read-only access,” International Civil Aviation Organization,
Tech. Rep., 2004.

15

