
Asynchronous cellular automata and logic for

pomsets without auto-concurrency

�

Manfred Droste

Institut f�ur Algebra

Technische Universit�at Dresden

D-01062 Dresden

droste@math.tu-dresden.de

Paul Gastin

LIAFA

Universit�e Paris 7

2, place Jussieu

F-75251 Paris Cedex 05

Paul.Gastin@liafa.ibp.fr

September 5, 1997

Abstract

This paper extends to pomsets without auto-concurrency the fun-

damental notion of asynchronous cellular automata (ACA) which was

originally introduced for traces by Zielonka. We generalize to pom-

sets the notion of asynchronous mapping introduced by Zielonka and

we show how to construct a deterministic ACA from an asynchronous

mapping. Our main result generalizes B�uchi's theorem for �nite words

to a class of pomsets without auto-concurrency which satisfy a natural

axiom. This axiom ensures that an asynchronous cellular automaton

works on the pomset as a concurrent read and exclusive owner write

machine. More precisely, we prove the equivalence between non de-

terministic ACA, deterministic ACA and monadic second order logic

for this class of pomsets.

1 Introduction

In a distributed system, some events may occur concurrently, meaning that

they may occur in any order or simultaneously or even that their executions

may overlap. This is the case in particular when two events use independent

�

This research was partly carried out during a stay of the second author in Dresden.

1

resources. On the other hand, some events may causally depend on each

other. For instance, the receiving of a message must follow its sending.

Therefore, a distributed behavior may be abstracted as a pomset, that is a set

of events together with a partial order which describes causal dependencies

of events and with a labeling function. In this paper, we mainly deal with

pomsets without auto-concurrency: concurrent events must have di�erent

labels. These pomsets are called semi-words in [14, 3]. For studies how

general pomsets can be used to represent parallel processes and how they

can be composed, we refer the reader e.g. to [13, 8].

There are several ways to describe the behaviors of a system. For in-

stance, logic formulas are suited for speci�cation purposes. Depending on

the properties we have to express, we can use various logics such as temporal

logics, �rst order logics or (monadic) second order logics. On the other hand,

transition systems are often used to give more operational descriptions. In

this paper, we will concentrate on these two kinds of descriptions of systems.

When dealing with distributed systems, it is natural to look for transition

systems which faithfully re
ect the concurrency. For instance, Petri nets are

a widely studied class of such transition systems. Asynchronous cellular

automata (ACA) form another fundamental class of transition systems with

built-in concurrency. They were introduced for traces by Zielonka [16, 17].

Mazurkiewicz introduced traces in order to describe the behaviors of one-safe

Petri nets [10, 11]. A trace is a pomset where the partial order is dictated

by a static dependence relation over the actions of the system.

The primary aim of this work is to generalize the notion of ACA so that

they can work on pomsets without auto-concurrency. There are several pos-

sible de�nitions for such ACA. In Section 3, we give a natural de�nition of

ACA which intuitively run over the Hasse diagrams of pomsets. We investi-

gate the closure of this class of automata under boolean operations. We also

discuss possible alternative de�nitions.

Asynchronous mappings have proven to be a basic tool to construct ACA

for traces [2]. In Section 4, we give a de�nition of asynchronous mappings

for general pomsets. We show that a pomset language recognized by an

asynchronous mapping can be accepted by a deterministic ACA.

The rest of this paper is devoted to the equivalence between ACA and

monadic second order (MSO) logic for pomsets. We prove in Section 5 that

from a (non deterministic) ACA one can construct a MSO formula which

de�nes precisely the pomset language accepted by the automaton. In Sec-

tion 6, we prove the converse for the special subclass of pomsets for which

the ACA works as a concurrent read and exclusive owner write (CROW)

machine. These pomsets are called CROW-pomsets. More precisely, from a

MSO formula we construct a deterministic ACA which accepts precisely the

2

CROW-pomsets de�ned by the formula. Therefore, for CROW-pomsets, we

have the equivalence between MSO logic, deterministic ACA and non deter-

ministic ACA. This result is crucial since it opens the way of model checking

for distributed systems whose behaviors are described as CROW-pomsets.

Note that the CROW assumption for pomsets is satis�ed for a large

class of systems. For instance, a stably concurrent automaton A [7] de�nes

dynamic dependencies between actions of a system, whence it generalizes

the static dependencies on actions used for traces. With the computation

sequences of a stably concurrent automaton A, one can associate dependence

orders [1]. These dependence orders are pomsets which generalize traces but

are special cases of pomsets without auto-concurrency. Under the assumption

that the automaton A is stably concurrent and forwardly weakly preserves

dependency, these dependence orders satisfy the CROWaxiom. Therefore, as

a consequence of our results, we obtain a new, Zielonka-type characterization

of the recognizable languages of concurrency monoids studied in [7].

An extended abstract of this work already appeared in [6].

2 Preliminaries

2.1 Pomsets

Let � be a �nite set, called alphabet. A pomset over � is (an isomorphism

class of) a �nite labeled partial order t = (V;�; �) where V is a �nite set of

vertices,� is the partial order on V and � : V �! � is the labeling function.

The empty pomset (;; ;; ;) will be denoted by 1.

Let s = (V

s

;�

s

; �

s

) and t = (V

t

;�

t

; �

t

) be two pomsets. We say that s

is a pre�x of t, denoted by s � t if s is (isomorphic to) a downward closed

subpomset of t, that is, if V

s

is a downward closed subset of V

t

(i.e. V

s

� V

t

and

for all u; v 2 V

t

, u �

t

v and v 2 V

s

imply u 2 V

s

) and �

s

is the restriction of

�

t

to V

s

(i.e.�

s

=�

t

\V

s

�V

s

) and �

s

is the restriction of �

t

to V

s

. The pre�x

order relation is a partial order on the set of pomsets. In the following, we will

identify a downward closed subset of vertices with the corresponding pre�x

of the pomset. Let s

1

= (V

s

1

;�

s

1

; �

s

1

) and s

2

= (V

s

2

;�

s

2

; �

s

2

) be two pre�xes

of a pomset t = (V

t

;�

t

; �

t

). Then, V

s

1

[V

s

2

is a downward closed subset of V

t

and the corresponding pre�x of t is s

1

[s

2

= (V

s

1

[V

s

2

;�

s

1

[�

s

2

; �

s

1

[�

s

2

)

where �

s

1

[�

s

2

is the labeling which coincides with �

s

1

on V

s

1

and with �

s

2

on V

s

2

(note that �

s

1

and �

s

2

aggree on V

s

1

\ V

s

2

).

Let t = (V;�; �) be a pomset. The downward closure of a vertex v is

denoted by #v = fu 2 V j u � vg. The strict downward closure of a vertex v

is denoted by +v = #v n fvg. Since #v and +v are downward closed subsets

3

of V , we will identify these sets with the corresponding pre�xes of t.

Let �

1

; : : : ;�

n

be pairwise disjoint alphabets and let � = �

1

_

[
� � �

_

[
�

n

.

Intuitively, we can view [n] = f1; : : : ; ng as a set of labels of sequential

processes and �

1

; : : : ;�

n

as the sets of actions of these sequential processes.

Let p : � �! [n] be the mapping which associates with each letter a 2 � the

process p(a) 2 [n] which executes the letter a, i.e. a 2 �

p(a)

.

Let t = (V;�; �) be a pomset. We say that a vertex v covers a vertex u,

denoted by u �< v, if u < v and there is no vertex w such that u < w < v.

We say that two vertices u; v 2 V are concurrent, denoted by u k v, if

u 6� v and u 6� v. We may see the covering relation as the description of

the interactions between the processes. More precisely, we consider that an

event v 2 V reads the states of the processes p � �(fu j u �< vg) and writes

in the process p � �(v). We will not allow concurrent writes, therefore two

concurrent events u k v must write in di�erent process p � �(u) 6= p � �(v).

This leads to the following de�nition.

A (�

1

; : : : ;�

n

)-pomset is a pomset t = (V;�; �) for which �

�1

(�

i

) is

totally ordered for all 1 � i � n. The set of (�

1

; : : : ;�

n

)-pomsets will be

denoted by P(�

1

; : : : ;�

n

). Note that with this notation the set P(�) is the

set of words over �. Another special case which will come into play later is

when the sets �

1

; : : : ;�

n

are all singletons.

For A � �, we denote by @

A

(t) = #�

�1

(A) the least pre�x of a pomset t

which contains all letters from A. Note that @

A

(t) =

S

vj�(v)2A

#v. For a 2 �

and i 2 [n], we will use the following simpli�ed notations: @

a

(t) = @

fag

(t)

and @

i

(t) = @

�

i

(t).

Note that if �

�1

(A) is totally ordered then @

A

(t) is either empty or has

exactly one maximal vertex. In particular, if t is a (�

1

; : : : ;�

n

)-pomset then

@

i

(t) is either empty or has exactly one maximal vertex.

2.2 Traces

We recall now basic de�nitions for Mazurkiewicz traces which will be needed

in this paper. The reader is referred to [5] for a general presentation of traces.

A dependence alphabet is a pair (�;D) where � is a �nite alphabet

and D � � � � is a re
exive and symmetric relation over � called the

dependence relation. Intuitively, two dependent actions (a; b) 2 D must be

executed sequentially while two independent actions (a; b) =2 D may occur

concurrently. More formally, one considers the congruence relation � over

the free monoid �

�

generated by the relation f(ab; ba) j (a; b) =2 Dg. A trace

is simply an equivalence class of words for the congruence �. The trace

monoid is then the quotient M (�;D) = �

�

= �.

4

We give now an equivalent de�nition of traces which is more adequate

in our context. Basically, a trace can be seen as a pomset which satis�es

additional requirements. More precisely, we will see that a trace over the

dependence alphabet (�;D) is a pomset t = (V;�; �) such that for all vertices

u; v 2 V ,

(�(u); �(v)) 2 D =) u � v _ v � u (1)

u �< v =) (�(u); �(v)) 2 D (2)

Indeed, let t = (V;�; �) be a pomset satisfying conditions (1) and (2). Note

that a linearization of t may be identi�ed with a word of �

�

. The set of

linearizations of t is precisely a trace, that is, an equivalence class for �.

Hence, with a pomset t satisfying (1) and (2), one can associate a trace '(t).

Conversely, a word u 2 �

�

de�nes a labeled linear order (V

u

;�

u

; �

u

) over the

occurrences of actions of u: V

u

= f(a; i) j 1 � i � juj

a

g (juj

a

denotes the

number of occurrences of a in u), (a; i) �

u

(b; j) if the i-th a occurs before

the j-th b in u and �

u

((a; i)) = a. Since two equivalent words u � v have

the same set of occurrences of actions (V

u

= V

v

), we can associate with a

trace [u] the pomset ([u]) = (V

u

;

T

v�u

�

v

; �

u

). One can check that ([u])

satis�es conditions (1) and (2) and that and ' are inverse bijections. This

explains why the two de�nitions are equivalent.

We will now de�ne recognizable trace languages. A trace automaton is a

quadruple A = (Q;T; I; F) where Q is a �nite set of states, I � Q is the set

of initial states, F � Q is the set of �nal states and T � Q���Q is the set

of transitions which veri�es the diamond property: for all (a; b) 2 ��� nD

and q; q

0

; q

00

2 Q, if (q; a; q

0

) 2 T and (q

0

; b; q

00

) 2 T then there exists some

�q

0

2 Q such that (q; b; �q

0

) 2 T and (�q

0

; a; q

00

) 2 T . A word w = a

1

� � � a

n

2 �

�

is accepted byA if there is a run q

0

; a

1

; q

1

; : : : ; a

n

; q

n

such that q

0

2 I, q

n

2 F

and (q

i�1

; a

i

; q

i

) 2 T for all 1 � i � n. A trace t 2 M (�;D) is accepted by

A if some linear extension of t is accepted by A. Note that, thanks to the

diamond property of a trace automaton, if some linear extension of a trace

is accepted by A then all linear extensions of t are accepted by A. A trace

language L � M (�;D) is recognizable if it is the set of traces accepted by

some trace automaton.

3 Asynchronous Cellular Automata

In this section, we introduce asynchronous cellular automata (ACA) over

(�

1

; : : : ;�

n

)-pomsets and we study the closure properties of ACA under

boolean operations. We give several examples of ACA and we discuss possible

variations of the de�nition.

5

De�nition 3.1 A (�

1

; : : : ;�

n

)-ACA (asynchronous cellular automaton) is

a tuple

A = ((Q

i

)

i2[n]

; (�

a;J

)

a2�;J�[n]

; F)

where

1. for all i 2 [n], Q

i

is a �nite set of local states for process i,

2. for all a 2 � and J � [n], �

a;J

:

Q

i2J

Q

i

�! P(Q

p(a)

) is a transition

function,

3. F �

S

J�[n]

Q

i2J

Q

i

is the set of accepting states.

The automaton is deterministic if all transition functions are deterministic,

i.e. if j�

a;J

((q

i

)

i2J

)j � 1 for all a 2 �, J � [n] and (q

i

)

i2J

2

Q

i2J

Q

i

.

In order to explain how a (�

1

; : : : ;�

n

)-ACA accepts a (�

1

; : : : ;�

n

)-

pomset, we need to introduce �rst some new notations. Let t = (V;�; �)

be a (�

1

; : : : ;�

n

)-pomset and let v 2 V be a vertex in t. We de�ne the

write domain of v by W (v) = p ��(v) and the read domain of v as the set of

processes of vertices covered by v: R(v) = p � �(fu 2 V j u �< vg). We also

denote by max(t) the set of maximal vertices of t and by F (t) = p��(max(t))

the set of processes corresponding to these maximal vertices.

Intuitively, in order to perform an event v, the ACA reads the label �(v)

and the present states of the processes in R(v) and according to its transition

function �

�(v);R(v)

determines the new state of the process W (v). At the end

of its run, the ACA collects the states of the maximal processes in F (t) in

order to decide whether the run is accepted or rejected. The formal de�nition

is given below.

Note that if i 2 R(v) then @

i

(+v) is non empty, whence has only one

maximal vertex which will be identi�ed with @

i

(+v) in De�nition 3.2. Simi-

larly, if i 2 F (t) then @

i

(t) is non empty and will also be identi�ed with its

maximum vertex.

De�nition 3.2 Let A = ((Q

i

)

i2[n]

; (�

a;J

)

a2�;J�[n]

; F) be a (�

1

; : : : ;�

n

)-ACA

and let t = (V;�; �) be a (�

1

; : : : ;�

n

)-pomset. A run of A over t is a

mapping r : V �!

S

i2[n]

Q

i

such that for all v 2 V ,

r(v) 2 �

�(v);R(v)

�

r(@

i

(+v))

i2R(v)

�

The run r is accepted if its �nal maximal state f(r) = r(@

i

(t))

i2F (t)

is in the

accepting set F .

Finally, a (�

1

; : : : ;�

n

)-pomset t is accepted by A if there is some accept-

ing run of A on t. The set of (�

1

; : : : ;�

n

)-pomsets accepted by A is denoted

by L(A).

6

Note that, there is a natural bijection between f@

i

(+v) j i 2 R(v)g and

fu 2 V j u �< vg. Hence, in order to lighten the notation, we may also write

r(v) 2 �

�(v);R(v)

((r(u))

u�<v

)

Similarly, the acceptance condition can also be written f(r) = (r(u))

u2max(t)

2

F . The notations adopted in De�nition 3.2, also more complex, are more

suitable to the discussion of alternative de�nitions given in Remark 3.3.

As a �rst example, we will give a deterministic (�

1

; : : : ;�

n

)-ACA which

accepts precisely the set of (�

1

; : : : ;�

n

)-pomsets satisfying condition (2) of

Section 2.2. More precisely, let (�;D) be a dependence alphabet with � =

�

1

_

[
� � �

_

[
�

n

. We de�ne the (�

1

; : : : ;�

n

)-ACAA = ((Q

i

)

i2[n]

; (�

a;J

)

a2�;J�[n]

; F)

where Q

i

= �

i

[f?g for all i 2 [n] and

�

a;J

((q

j

)

j2J

) =

(

a if q

j

6= ? and (a; q

j

) 2 D for all j 2 J

? otherwise

for all a 2 � and J � [n]. Finally, the set of accepting states is F =

S

J�[n]

Q

i2J

�

i

. One can easily check that L(A) is the set of (�

1

; : : : ;�

n

)-

pomsets (V;�; �) such that for all u; v 2 V , if u �< v then (�(u); �(v)) 2 D.

For instance, if (�;D) = a b c d with �

1

= fa; bg, �

2

= fcg and

�

3

= fdg, we give below a rejecting run and an accepting run of A. In this

picture, each vertex v is labeled by the pair (�(v); r(v)). Note that, in order

to obtain the states of minimal vertices, we apply transition functions of the

form �

�(v);;

.

�

1

�

2

�

3

a;?b; b b;?

c; c

c;?

d; d d; d d; d

H

H

H

Hj

�

�

�

�*

�

�

�

�*

H

H

H

Hj

-

H

H

H

Hj

�

�

�

�

�

�

�

�

�

�:

-

�

1

�

2

�

3

a; a

b; b b; b b; b

c; c c; c

d; d d; d d; d

H

H

H

Hj

�

�

�

�*

�

�

�

�*

H

H

H

Hj

-

�

�

�

�*

-

�

�

�

�*

-

We will show now that the �rst condition for traces, stating that depen-

dent events cannot occur concurrently, cannot be accepted by a determin-

istic (�

1

; : : : ;�

n

)-ACA in general. We consider the dependence alphabet

7

(�;D) = a b c and we will denote by b

n

ac the pomset which consists

of a chain of n occurrences of b followed two concurrent events labeled a and

c:

a

b b b b b

c

- - -

�

�*

H

Hj

Note that this pomset is actually a trace. Let L = fb

n

ac j n > 0g and assume

that L � L(A) for some deterministic (fa; bg; fcg)-ACAA (or (fag; fbg; fcg)-

ACA A). We denote by p

n

; q

n

; s

n

the states associated respectively with the

events a; c and with the last occurrence of b in the accepting run of A over

b

n

ac. Since A is deterministic, the run for b

n

ac must be

a; p

nb; s

1

b; s

2

b; s

3

b; s

n�1

b; s

n

c; q

n

- - - -

H

H

Hj

Now, since there are only �nitely many states, we must have s

n

= s

m

for

some 0 < n < m. Then, necessarily p

n

= p

m

and q

n

= q

m

and we deduce

that

a; p

mb; s

1

b; s

2

b; s

n

b; s

n+1

b; s

m

c; q

n

-

H

H

Hj

- -

is an accepting run of A. Therefore, A accepts a pomset which does not

satisfy condition (1). This shows both that the language L and the set

of pomsets satisfying the �rst condition of traces cannot be accepted by a

deterministic (fa; bg; fcg)-ACA (or (fag; fbg; fcg)-ACA).

As a third example, we give a non deterministic (�

1

;�

2

)-ACA which

accepts L. Let Q

1

= f1; 2; 3g, Q

2

= f1g, F = f(3; 1)g and de�ne the

transition functions by

�

b;;

= f1g �

b;f1g

(1) = f1; 2g

�

a;f1g

(2) = f3g �

c;f1g

(2) = f1g

Then, the pomset b

n

ac is accepted by the run

a; 3
b; 1 b; 1 b; 1 b; 1 b; 2

c; 1

- - - -

H

H

H

Hj

We can easily check that this automaton accepts precisely the language L.

8

We do not know whether condition (1) for traces can be accepted by a

non deterministic (�

1

; : : : ;�

n

)-ACA for general dependence alphabets. We

only expect the answer to be negative.

Nevertheless, for the simple dependence alphabet (�;D) = a b c,

it is possible to accept precisely the set of traces as shown in our last example.

We consider the processes �

1

= fag, �

2

= fbg and �

3

= fcg. The sets of

states of the (�

1

;�

2

;�

3

)-ACA A are Q

1

= Q

2

= Q

3

= fa; bg� fb; cg and all

possible combination of states are accepting. Intuitively, a state (x; y) claims

that among a and b (resp. c and b) the next event will be x (resp. y). The

transition functions are the following:

�

b;;

= �

b;f1g

((b; b)) = �

b;f2g

((b; b)) = �

b;f3g

((b; b))

= �

b;f1;3g

((b; c); (a; b)) = f(b; b); (a; b); (b; c); (a; c)g

�

a;f1g

((a; b)) = �

a;f2g

((a; b)) = f(a; b); (b; b)g

�

a;f1g

((a; c)) = �

a;f2g

((a; c)) = f(a; c); (b; c)g

�

c;f2g

((b; c)) = �

c;f3g

((b; c)) = f(b; c); (b; b)g

�

c;f2g

((a; c)) = �

c;f3g

((a; c)) = f(a; c); (a; b)g

Here is a run of this automaton:

a; (a; c) a; (b; c)

b; (a; c) b; (b; b) b; (b; c) b; (a; b)

c; (a; b) c; (b; b)

�

�

�*

P

P

P

P

Pq

-

H

H

Hj

�

�

�

�

�1

-

H

H

Hj �

�

�*

It is easy to see that all traces starting with b can be accepted byA. Although

less trivial, the converse is also true. Therefore, L(A) is the set of traces

starting with b. By changing the initial condition of the automaton, we can

recognize all traces starting with a or with c or with a and c. For instance, if

we set �

b;;

= ; and �

a;;

= f(a; b); (b; b)g we accept all traces starting with a.

As usual with automata, it is easy to see that deterministic (�

1

; : : : ;�

n

)-

ACA are closed under complement (one only has to complement the set of

accepting states) and that deterministic or non deterministic (�

1

; : : : ;�

n

)-

ACA are closed under union and intersection (one uses classical direct prod-

uct constructions, completing �rst the automata for the union).

We conclude this section with a few remarks. First, the covering of pom-

sets by the chains formed by the �xed sequential processes is crucial in the

de�nition of asynchronous cellular automata. It allows us to use a �xed

number of local states and to determine the read and write domains of the

9

actions using the labeling and the covering relation. The weakest covering

is when each �

i

is a singleton. In this case we have a set of local states

per letter as in the asynchronous cellular automata for traces [17, 2]. Note

that, even with this trivial covering, our de�nition is not the same as that

of Zielonka for traces. Mainly, in our de�nition, a run of the ACA is over

the Hasse diagram of the pomset whereas with Zielonka's ACA for traces, a

run is in fact over the dependence graph of the trace. A dependence graph

is an intermediary representation of a trace between its Hasse diagram and

its partial order. This intermediary representation is possible thanks to the

existence of a static dependence relation over actions. More precisely, our

de�nition of ACA for pomsets and that of Zielonka for traces di�er in three

respects. First, Zielonka's de�nition uses a global initial state which in our

case is coded in the transition functions of the form �

x;;

. Second, our tran-

sition functions only read the states of the processes covered by the current

action whereas in Zielonka's de�nition a �xed set of processes is read even

if the last executions of some of these processes are far below the current

action. Third, we only read the states of maximal processes to determine

whether a run is successful whereas in Zielonka's de�nition the states of all

processes are collected globally to decide acceptance.

Remark 3.3 As discussed below, one could give several alternative de�-

nitions of accepting runs. One of these variants corresponds precisely to

asynchronous cellular automata for traces.

1. First, one can change the set of processes read by transition functions.

In the de�nition above, a transition only reads the processes covered by

the current vertex. On the contrary, one can allow to read all processes

which occur in the past of the current vertex by using R

occur

(v) =

p � �(fu 2 V j u < vg) instead of R(v). The run r should then satisfy

the relation

r(v) 2 �

�(v);R

occur

(v)

�

r(@

i

(+v))

i2R

occur

(v)

�

In the de�nition of ACA for traces, we use the trivial covering of �

by singletons and we identify processes with letters of �. Then, we

consider a �xed dependence (symmetric and re
exive) relation D on

� and we use R

trace

(v) = fa 2 � j (a; �(v)) 2 Dg instead of R(v).

This static approach enforces the use of an initial state ?. Indeed, for

some a 2 R

trace

(v), the pre�x @

a

(+v) may be empty and thus cannot

be identi�ed with a vertex of the trace. Thus we de�ne r(1) = ? where

1 denotes the empty trace.

10

2. Second, one can change the acceptance condition. In the de�nition

above, we only read the �nal state of the maximal processes. One

can read the �nal state of all occurring processes by using F

occur

(t) =

p � �(V) instead of F (t) = p � �(max(t)). The accepting condition is

then changed to f

occur

(r) = r(@

i

(t))

i2F

occur

(t)

2 F . For traces, we read

the �nal state of all processes by using F

trace

(t) = � instead of F (t).

The accepting condition is then f

trace

(r) = r(@

a

(t))

a2�

2 F . Again we

need the initial state ? and the convention r(1) = ? when some pre�x

@

a

(t) is empty.

Note that all these variants are not necessarily equivalent. For instance,

with �

1

= fag and �

2

= fb; cg, the set of pomsets consisting of an arbi-

trary sequence of a's followed by one b can be accepted with a deterministic

(�

1

;�

2

)-ACA using De�nition 3.2 whereas it can only be accepted by a non

deterministic (�

1

;�

2

)-ACA if we read the �nal states of all occurring pro-

cesses to determine acceptance. Nevertheless, we will see in Sections 4 and 6

that under some assumptions, these variants are equivalent. In particular,

this is true for traces.

4 Asynchronous mapping

Asynchronous mappings were introduced in [2] in order to simplify the con-

struction of ACA for traces. Here we generalize this notion to pomsets. The

domain of an asynchronous mapping must be a pre�x closed subset of pom-

sets, that is a subset Q of pomsets such that for all pairs of pomsets s and

t, if s � t and t 2 Q then s 2 Q. For instance, P(�

1

; : : : ;�

n

) and M (�;D)

are pre�x closed sets of pomsets.

De�nition 4.1 Let Q be a pre�x closed set of pomsets and let S be a �nite

set. A mapping � : Q �! S is asynchronous if for all t = (V;�; �) 2 Q,

1. for all vertices v 2 V , the value �(#v) is uniquely determined by �(+v)

and �(v).

2. for all A;B � �, the value �(@

A[B

(t)) is uniquely determined by

�(@

A

(t)) and �(@

B

(t)).

A language L � Q is recognized by an asynchronous mapping � : Q �! S if

L = �

�1

(�(L)).

Remark 4.2 The de�nition of asynchronous mappings is valid for arbi-

trary pomsets and does not depend on the existence of sequential processes

11

(�

1

; : : : ;�

n

) in the pomsets. The de�nition of asynchronous cellular au-

tomata requires at least that each set of vertices labeled with the same letter

forms a chain. This simple and weak property is not even required for asyn-

chronous mappings.

Proposition 4.3 Let Q � P(�

1

; : : : ;�

n

) be a pre�x closed set of

(�

1

; : : : ;�

n

)-pomsets. Let L � Q be a language of (�

1

; : : : ;�

n

)-pomsets

recognized by some asynchronous mapping � : Q �! S. Then there exists

a deterministic (�

1

; : : : ;�

n

)-asynchronous cellular automaton A such that

L(A) \Q = L.

Proof: This proof follows the same ideas as the corresponding one for

traces. Assume that � : Q �! S recognizes the language L � Q. We de�ne

a deterministic (�

1

; : : : ;�

n

)-ACA A as follows.

1. For all i 2 [n], let Q

i

= S,

2. For all a 2 �, J � [n] and (q

i

)

i2J

2 S

J

, let

�

a;J

((q

i

)

i2J

) = f�(t) j t 2 Q; t = #v for some v such that

�(v) = a;R(v) = J and �(@

�

i

(+v)) = q

i

for all i 2 Jg

3. F = f�(@

�

i

(t))

i2F (t)

j t 2 Lg.

Claim 1: A is deterministic.

Indeed, let a 2 �, J � [n] and (q

i

)

i2J

2 S

J

. Choose t = #v and t

0

= #v

0

in Q with �(v) = �(v

0

), R(v) = J = R(v

0

) and �(@

�

i

(+v)) = q

i

= �(@

�

i

(+v

0

))

for all i 2 J . We have +v = @

([

i2J

�

i

)

(+v) and +v

0

= @

([

i2J

�

i

)

(+v

0

). Hence,

using the de�nition of asynchronous mappings we deduce �(+v) = �(+v

0

)

and since �(v) = �(v

0

) it follows �(t) = �(#v) = �(#v

0

) = �(t

0

) which proves

the claim.

Claim 2: Let t = (V;�; �) 2 Q be a (�

1

; : : : ;�

n

)-pomset. Then, the

mapping r : V �!

S

i2[n]

Q

i

de�ned by r(v) = �(#v) is the run of A on t.

One only has to check that this mapping r full�ls the condition of De�ni-

tion 3.2. This follows directly from the de�nition of the transition functions

of A.

Claim 3: L(A) \Q = L.

Note �rst that t = @

([

i2F (t)

�

i

)

(t) for all t 2 Q. Now assume that t 2 L(A).

Then for the unique run r of A on t, we have f(r) 2 F and there exists t

0

2 L

12

such that F (t) = F (t

0

) and �(@

�

i

(t)) = �(@

�

i

(t

0

)) for all i 2 F (t) = F (t

0

).

Since � is asynchronous, it follows �(t) = �(t

0

). Therefore, t 2 �

�1

(�(L)) = L

which proves one inclusion. The converse is trivial. 2

Remark 4.4 Proposition 4.3 holds also for the alternative de�nitions of ac-

cepting runs discussed in Remark 3.3. The proofs remain essentially the

same. One only has to change accordingly the de�nitions of the transition

functions and of the �nal set.

Note that, for trace languages, the converse of Proposition 4.3 is also true

implying that all alternative de�nitions of ACA are equivalent for traces. In-

deed, it is easy to show that a trace language accepted by an ACA is a

recognizable trace language, whatever alternative chosen for accepting runs.

Moreover, if L is a recognizable trace language, the existence of an asyn-

chronous mapping which recognizes L was proven in [2]. Finally, as men-

tioned above, from this asynchronous mapping one can easily get an ACA

which accepts L, whatever alternative chosen for accepting runs.

The equivalence between alternative de�nitions of accepting runs will be

extended to a more general class of pomsets in Section 6. On the other hand,

in the general setting of P(�

1

; : : : ;�

n

), the converse of Proposition 4.3 is still

open.

5 From ACA to MSOL

In this section, we will de�ne monadic second order (MSO) formulas and

their interpretations over pomsets. We will then prove that for all ACA A

(deterministic or not), there exists a MSO formula which de�nes the language

accepted by A.

Let � be a �nite alphabet. The MSO language over � that we con-

sider consists of the unary predicates (P

a

)

a2�

, a binary predicate R, �rst or-

der variables x; y; z; : : : , monadic second order variables X;Y;Z; : : : , boolean

connectives :;_;^;�!; ! and quanti�ers 9;8. A sentence is a formula

without free variables. For instance, the following formulas are �rst order

and MSO sentences respectively.

'

1

::= 9x(P

a

(x) ^ 8y(R(x; y) �! :P

b

(y)))

'

2

::= 9X9Y (8x(x 2 X _ x 2 Y) ^ 9x x 2 X ^ 9y y 2 Y

^8x8y(x 2 X ^ y 2 Y �! :R(x; y) ^ :R(y; x))

13

A pomset t = (V;�; �) can be seen as an interpretation of this MSO

language as follows: the domain is the set V of vertices, i.e. �rst order vari-

ables range over vertices and MSO variables range over sets of vertices; for

all a 2 �, P

a

(x) means �(x) = a and R(x; y) means x � y. We say that

a pomset t satis�es a sentence ', denoted by t j= ', when ' is true for the

interpretation de�ned by t. The set of pomsets which satisfy a sentence '

is denoted by L('). For instance, L('

1

) is the set of pomsets which have a

vertex labeled by a with no vertex labeled by b above and L('

2

) is the set of

non connected pomsets.

In order to make the formulas more readable, we will write x � y for

R(x; y) and �(x) = a for P

a

(x). For instance, the formula '

1

will be written

9x(�(x) = a ^ 8y(x � y �! �(y) 6= b)). Moreover, we will use several

abbreviations which can be easily translated in our MSO language. For

instance, we will write

x < y for x � y ^ :y � x

x �< y for x < y ^ :9z(x < z ^ z < y)

�(x) 2 A for

_

a2A

�(x) = a

p � �(x) = p � �(y) for

_

1�i�n

(�(x) 2 �

i

^ �(y) 2 �

i

)

X \ Y = ; for :9x(x 2 X ^ x 2 Y)

Note that the language de�ned by a formula can contain pomsets with

auto-concurrency (concurrent vertices with the same label). We do not need

to put restrictions on the pomsets de�ned by a formula because all restric-

tions we need can be described by MSO formulas. For instance the set

P(�

1

; : : : ;�

n

) of (�

1

; : : : ;�

n

)-pomsets is de�ned by the formula

'

(�

1

;::: ;�

n

)

::= 8x8y(p � �(x) = p � �(y) �! (x � y _ y � x))

and the set M (�;D) of traces over a dependence alphabet is de�ned by the

formula

8x8y [(�(x); �(y)) 2 D �! (x � y _ y � x)] ^ [x �< y �! (�(x); �(y)) 2 D]

where �(x); �(y)) 2 D stands for the formula

W

(a;b)2D

(�(x) = a ^ �(y) = b).

We are now ready to state

Theorem 5.1 Let � = �

1

_

[
� � �

_

[
�

n

and let A be a possibly non deterministic

(�

1

; : : : ;�

n

)-ACA. There exists an MSO formula ' over � such that

L(') = L(A):

14

Proof:

LetA = ((Q

i

)

i2[n]

; (�

a;J

)

a2�;J�[n]

; F) be a (�

1

; : : : ;�

n

)-ACA.We will con-

struct a MSO formula which will be satis�ed exactly by those (�

1

; : : : ;�

n

)-

pomsets accepted by A. Let k be the number of states in

S

i2[n]

Q

i

. We may

assume that

S

i2[n]

Q

i

= [k] = f1; : : : ; kg. The following formula claims the

existence of an accepting run of the automaton.

 ::= 9X

1

: : :9X

k

�

partition(X

1

; : : : ;X

k

) ^

�

8x transition(x)

�

^ accepted

�

We will now explain this formula and give the sub-formulas partition, tran-

sition and accepted. A run over a pomset t = (V;�; �) is coded by the

MSO variables X

1

; : : : ;X

k

. More precisely, X

i

stands for the set of vertices

mapped on the state i by the run. The formula partition(X

1

; : : : ;X

k

) makes

sure that the MSO variables X

1

; : : : ;X

k

do describe a mapping from V to

S

i2[n]

Q

i

.

partition(X

1

; : : : ;X

k

) ::=

0

@

8x

_

i2[k]

x 2 X

i

1

A

^

^

1�i 6=j�k

X

i

\X

j

= ;

!

Then, we have to claim that this labeling of vertices by states agrees with

the transition functions of the automaton.

transition(x) ::=

_

�

�(x) = a ^ x 2 X

q

^ 8y (y �< x �! p � �(y) 2 J)

^

^

i2J

9y (y �< x ^ p � �(y) = i ^ y 2 X

q

i

)

�

where the disjunction ranges over all letters a 2 �, states q 2 Q

p(a)

, subsets

J � [n] and tuples (q

i

)

i2J

2

Q

i2J

Q

i

such that q 2 �

a;J

((q

i

)

i2J

).

It remains to state that the run reaches a �nal state of the automaton.

accepted ::=

_

(f

i

)

i2J

2F

�

8x

�

(:9y x < y) �! p � �(x) 2 J

�

^

^

i2J

9x

�

(:9y x < y) ^ p � �(x) = i ^ x 2 X

f

i

�

�

In fact, the formula describes an accepting run of the automaton

only for (�

1

; : : : ;�

n

)-pomsets. Therefore, we need in addition the formula

'

(�

1

;::: ;�

n

)

described above. Finally, the theorem follows from the

Claim:

L('

(�

1

;::: ;�

n

)

^) = L(A)

2

15

Remark 5.2 Clearly, Theorem 5.1 holds also for the alternative de�nitions

of accepting runs described in Remark 3.3. The proof is essentially the same.

One only has to change the formulas transition and accepted accordingly.

The converse of Theorem 5.1 does not hold in general as shown by a

simple example due to Dietrich Kuske [9]: the �rst order sentence stating

that every a is covered by a b cannot be checked by a (non deterministic)

(�

1

; : : : ;�

n

)-ACA if a and b belong to di�erent processes.

6 From MSOL to deterministic ACA

In this section, we prove that the converse of Theorem 5.1 holds for the

special subclass of (�

1

; : : : ;�

n

)-pomsets which satisfy the CROW axiom

de�ned below.

De�nition 6.1 A (�

1

; : : : ;�

n

)-pomset t = (V;�; �) satis�es the Concur-

rent Read and Exclusive Owner Write (CROW) axiom if for all x; y; z 2 V ,

x �< y ^ x < z ^ y k z =) p � �(x) 6= p � �(z) (3)

The set of (�

1

; : : : ;�

n

)-pomsets which satisfy the CROW axiom is denoted

by CROW (�

1

; : : : ;�

n

).

A possible interpretation of this axiom is to think of the ACA as a Con-

current Read and Exlusive Owner Write (CROW) machine. More precisely,

we consider n processes whose sets of actions are �

1

; : : : ;�

n

respectively.

Each process has a memory which can be read by all actions but can be

written by its own actions only (Owner Write). We allow concurrent reads of

memories but no concurrent writes. As quoted in Section 2.1, this restriction

is already enforced by the very de�nition of (�

1

; : : : ;�

n

)-pomsets. Without

further restrictions, two concurrent events may respectively read from and

write to the same location. This is the case when there exist two concurrent

events y k z such that z writes in the memory of some process i (p��(z) = i)

and y reads the memory of this process i (p � �(x) = i for some x �< y).

This is precisely the situation which is forbidden by the CROW axiom.

Theorem 6.2 Let � = �

1

_

[
� � �

_

[
�

n

and let ' be a MSO formula over �.

There exists a deterministic (�

1

; : : : ;�

n

)-ACA A such that

L(') \ CROW (�

1

; : : : ;�

n

) = L(A) \ CROW (�

1

; : : : ;�

n

):

16

In order to prove this theorem, one can use an induction on the structure

of the formula. Disjunction and existential quanti�cation are easily dealt with

when non deterministic ACA are allowed. On the other hand, complement

is easy for deterministic ACA. Whence the core of such an approach is the

determinization of ACA. For this problem, starting from a non deterministic

ACA A, one can directly construct an asynchronous mapping which accepts

the language L(A) and then use Proposition 4.3. This construction is similar

to that of [12] and uses the asynchronous time stamping � of Cori, Metivier

and Zielonka [2] but the proofs are more involved. In particular, it is known

that for traces the mapping � is asynchronous by itself [2, 4] but this is

not the case for CROW (�

1

; : : : ;�

n

)-pomsets. Here we give a simpler proof

which uses Zielonka's theorem. For this, we �rst map CROW-pomsets into

traces by simply changing the labeling.

Let �

0

= � � P([n]) be a new set of labels and for all i 2 [n], let

�

0

i

= �

i

�P([n]) be the associated new processes. We de�ne an embedding

g from P(�

1

; : : : ;�

n

) into P(�

0

1

; : : : ;�

0

n

) by g(V;�; �) = (V;�; �

0

) where

for all v 2 V; �

0

(v) = (�(v); R(v)). Note that g is well de�ned, since for all

i 2 [n], �

0�1

(�

0

i

) is totally ordered. Let D

0

be the dependence relation de�ned

on �

0

by

D

0

= f((a;A); (b;B)) j p(a) = p(b) _ p(a) 2 B _ p(b) 2 Ag:

Proposition 6.3

CROW (�

1

; : : : ;�

n

) = g

�1

(M (�

0

;D

0

))

Proof: We �rst prove that CROW (�

1

; : : : ;�

n

) � g

�1

(M (�

0

;D

0

)). Let

t = (V;�; �) 2 CROW (�

1

; : : : ;�

n

) and let g(t) = (V;�; �

0

). Let x; y 2 V

and assume that x �< y. Then, p��(x) 2 R(y) and it follows (�

0

(x); �

0

(y)) 2

D

0

. Now, let y; z 2 V and assume that (�

0

(y); �

0

(z)) 2 D

0

. If p � �(y) =

p � �(z) then y 6k z since t is a (�

1

; : : : ;�

n

)-pomset. Otherwise, we have for

instance p � �(z) 2 R(y). Hence, there exists x 2 V such that x �< y and

p � �(x) = p � �(z). Therefore, x and z must be ordered. Since x < z would

contradict the CROW-axiom, it follows z � x, whence z < y. Therefore,

g(t) 2 M (�

0

;D

0

) (see Section 2.2) and it follows t 2 g

�1

(M (�

0

;D

0

)).

Conversely, let t = (V;�; �) 2 g

�1

(M (�

0

;D

0

)) and let g(t) = (V;�; �

0

).

Let x; y; z 2 V be such that x �< y ^ x < z ^ y k z. By de�nition, p ��(x) 2

R(y) and (�

0

(y); �

0

(z)) 62 D

0

. Therefore, p � �(z) 62 R(y) and it follows

p � �(x) 6= p � �(z). 2

17

Proposition 6.4 Let ' be a MSO formula over �. There exists a MSO

formula '

0

over �

0

such that

L(') \ CROW (�

1

; : : : ;�

n

) = g

�1

(L('

0

) \ M (�

0

;D

0

))

Proof: Let ' be a MSO formula over �. Let '

0

be the MSO formula over

�

0

obtained from ' by substituting for atomic formulas of the form x 2 P

a

the disjunction

W

J�[n]

x 2 P

(a;J)

:

'

0

= '

2

4

_

J�[n]

x 2 P

(a;J)

,

x 2 P

a

3

5

:

Let t = (V;�; �) 2 L(') \ CROW (�

1

; : : : ;�

n

). We have g(t) = (V;�; �

0

) 2

M (�

0

;D

0

) by Proposition 6.3 and it remains to show that g(t) j= '

0

. This

is clear since �(x) = a if and only if �

0

(x) = (a; J) for some J � [n]. The

converse can be shown similarly. 2

Proposition 6.5 Let A

0

be a (deterministic) (�

0

1

; : : : ;�

0

n

)-ACA. There ex-

ists a (deterministic) (�

1

; : : : ;�

n

)-ACA A such that L(A) = g

�1

(L(A

0

)).

Proof: Let A

0

= ((Q

i

)

i2[n]

; (�

0

a

0

;J

)

a

0

2�

0

;J�[n]

; F) be a (�

0

1

; : : : ;�

0

n

)-ACA.

For all a 2 � and J � [n], let �

a;J

= �

0

(a;J);J

. We claim that the automaton

A = ((Q

i

)

i2[n]

; (�

a;J

)

a2�;J�[n]

; F) is the required (�

1

; : : : ;�

n

)-ACA.Note that

if A

0

is deterministic then so is A.

We �rst show that in order to accept a pomset in g(P(�

1

; : : : ;�

n

)) the

ACA A

0

only uses transition functions of the form �

(a;J);J

. Indeed, let t =

(V;�; �) 2 P(�

1

; : : : ;�

n

) and let g(t) = (V;�; �

0

). For all v 2 V , we have

R

0

(v) = p � �

0

(fu j u �< vg) = p � �(fu j u �< vg) = R(v). Therefore, in a

run of A

0

on g(t) the transition functions used are of the form �

0

�

0

(v);R

0

(v)

=

�

0

(�(v);R(v));R(v)

= �

�(v);R(v)

.

It follows that a mapping r : V �!

S

i2[n]

Q

i

is an accepting run of A

0

on

g(t) if and only if it is an accepting run of A on t, that is,

t 2 L(A)() g(t) 2 L(A

0

)() t 2 g

�1

(L(A

0

)):

The proposition follows. 2

Proof of Theorem 6.2: Let ' be a MSO formula over �. By Proposi-

tion 6.4, there exists a MSO formula '

0

over �

0

such that

L(') \ CROW (�

1

; : : : ;�

n

) = g

�1

(L('

0

) \ M (�

0

;D

0

)):

18

The language L('

0

) \M (�

0

;D

0

) is a recognizable trace language [15]. Hence

[2], there exists an asynchronous mapping � from M (�

0

;D

0

) into a �nite

set which recognizes L('

0

) \ M (�

0

;D

0

). By Proposition 4.3, there exists a

deterministic (�

0

1

; : : : ;�

0

n

)-ACA A

0

such that L(A

0

) \ M (�

0

;D

0

) = L('

0

) \

M (�

0

;D

0

). It follows by Proposition 6.5 that there exists a deterministic

(�

1

; : : : ;�

n

)-ACAA such that L(A) = g

�1

(L(A

0

)). Finally, applying Propo-

sition 6.3 we obtain

L(A) \ CROW (�

1

; : : : ;�

n

) = g

�1

(L(A

0

)) \ g

�1

(M (�

0

;D

0

))

= g

�1

(L(A

0

) \ M (�

0

;D

0

))

= g

�1

(L('

0

) \ M (�

0

;D

0

))

= L(') \ CROW (�

1

; : : : ;�

n

)

2

As a corollary of Theorems 5.1 and 6.2 we obtain that MSO formulas, non

deterministic (�

1

; : : : ;�

n

)-ACA and deterministic (�

1

; : : : ;�

n

)-ACA have

the same expressive power for CROW (�

1

; : : : ;�

n

)-pomsets.

Theorem 6.6 Let L � CROW (�

1

; : : : ;�

n

). The following are equivalent:

1. L is de�nable by a MSO formula,

2. there exists a non deterministic (�

1

; : : : ;�

n

)-ACA A such that

L = L(A) \ CROW (�

1

; : : : ;�

n

)

3. there exists a deterministic (�

1

; : : : ;�

n

)-ACA A such that

L = L(A) \ CROW (�

1

; : : : ;�

n

)

Remark 6.7 Finally, we come back to the alternative de�nitions of accept-

ing runs discussed in Remark 3.3. As a corollary of previous results, we

obtain that these alternatives are equivalent for CROW-pomsets. Indeed,

starting from a (�

1

; : : : ;�

n

)-ACA with one de�nition of accepting runs, one

�rst builds a corresponding MSOL formula ' (Remark 5.2). Then, we use

the proof of Theorem 6.2 except that when we build the ACA A

0

from an

asynchronous mapping we choose another de�nition of accepting runs (Re-

mark 4.4). Note that Proposition 6.5 holds whatever alternative de�nition

chosen for accepting runs.

19

7 Conclusion

We believe that the CROW axiom is really natural if one sees an ACA as an

abstract representation of a parallel machine where each process writes in its

own memory and can read the memories of other processes. In this case, we

have proved that deterministic ACA are closed under the boolean operations

and have the same expressive power as the MSOL. Since emptiness for ACA is

decidable when restricted to CROW (�

1

; : : : ;�

n

) pomsets, we can use ACA

to perform model checking: to check whether an implementation (an ACA)

A satis�es a speci�cation (a MSO formula)', one computes the deterministic

ACA B such that L(')\ CROW (�

1

; : : : ;�

n

) = L(B)\ CROW (�

1

; : : : ;�

n

)

and then checks for emptiness L(A) \ L(B) \ CROW (�

1

; : : : ;�

n

).

On the other hand, ACAmay be seen as an abstract representation of dis-

tributed systems communicating asynchronously. In this setting, the covering

relation x �< y can denote a message sent by x to y. If the communication

is asynchronous, the process p(x) may perform some actions concurrently to

the reception (y) of the message sent (x). In this case, the CROW axiom

is not natural anymore. Therefore, an important open problem is to know

whether the properties proved in this paper for CROW-pomsets also hold in

a more general setting.

Finally, we would like to point out that both the de�nition of asyn-

chronous mappings and of MSOL can be extended without any change to

pomsets with auto-concurrency. It would be very interesting to �nd a gen-

eral model of ACA which allows auto-concurrency. Note that it is possible

with our ACA to cope with bounded auto-concurrency by suitably relabeling

auto-concurrent vertices.

References

[1] F. Bracho, M. Droste, and D. Kuske. Dependence orders for computa-

tions of concurrent automata. Theoretical Computer Science, 174:67{96,

1997.

[2] R. Cori, Y. M�etivier, and W. Zielonka. Asynchronous mappings

and asynchronous cellular automata. Information and Computation,

106:159{202, 1993.

[3] V. Diekert. A partial trace semantics for petri nets. Theoretical Com-

puter Science, 113:87{105, 1994. Special issue of ICWLC 92, Kyoto

(Japan).

20

[4] V. Diekert and A. Muscholl. Construction of asynchronous automata.

In G. Rozenberg and V. Diekert, editors, Book of Traces, pages 249{267.

World Scienti�c, Singapore, 1995.

[5] V. Diekert and G. Rozenberg, editors. Book of Traces. World Scienti�c,

Singapore, 1995.

[6] M. Droste and P. Gastin. Asynchronous cellular automata for pomsets

without auto-concurrency. In U. Montanari and V. Sassone, editors,

Proceedings of the 7th International Conference on Concurrency Theory

(CONCUR'96), number 1119 in Lecture Notes in Computer Science,

pages 627{638. Springer Verlag, 1996.

[7] M. Droste and D. Kuske. Logical de�nability of recognizable and ape-

riodic languages in concurrency monoids. In Proceedings of CSL'95,

number 1092 in Lecture Notes in Computer Science, pages 233{251.

Springer Verlag, 1996.

[8] J.L. Gischer. The equational theory of pomsets. Theoretical Computer

Science, 61:199{224, 1988.

[9] D. Kuske. A note on �rst order logic and asynchronous cellular automata

for pomsets. Personal communication, 1997.

[10] A. Mazurkiewicz. Concurrent program schemes and their interpreta-

tions. Tech. rep. DAIMI PB 78, Aarhus University, 1977.

[11] A. Mazurkiewicz. Trace theory. In W. Brauer et al., editors, Advances

in Petri Nets'86, number 255 in Lecture Notes in Computer Science,

pages 279{324. Springer Verlag, 1987.

[12] A. Muscholl. On the complementation of B�uchi asynchronous cellular

automata. In S. Abiteboul and E. Shamir, editors, Proceedings of the

21st International Colloquium on Automata, Languages and Program-

ming (ICALP'94), number 820 in Lecture Notes in Computer Science.

Springer Verlag, 1994.

[13] V.R. Pratt. Modelling concurrency with partial orders. J. of Parallel

Programming, 15:33{71, 1987.

[14] P.H. Starke. Processes in petri nets. EIK, 17:389{416, 1981.

[15] W. Thomas. On logical de�nability of trace languages. In V. Diekert, ed-

itor, Proceedings of a workshop of the ESPRIT BRA No 3166: Algebraic

21

and Syntactic Methods in Computer Science (ASMICS), 1989, Report

TUM-I9002, Technical University of Munich, pages 172{182, 1990.

[16] W. Zielonka. Notes on �nite asynchronous automata. R.A.I.R.O. |

Informatique Th�eorique et Applications, 21:99{135, 1987.

[17] W. Zielonka. Safe executions of recognizable trace languages by asyn-

chronous automata. In A. R. Meyer et al., editors, Proceedings of

the Symposium on Logical Foundations of Computer Science (Logic at

Botik'89), number 363 in Lecture Notes in Computer Science, pages

278{289. Springer Verlag, 1989.

22

