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Categories and Subject Descriptors: H.2.3 [Database Management]: Data Manipulation Languages; H.4.1 [Information Systems Applications]:
Office Automation—Workflow Management

1. INTRODUCTION

There has recently been a proliferation of workflow specification languages, notably data-centric, in response to the
need to support increasingly ubiquitous processes centered around databases. Prominent examples include e-commerce
systems, enterprise business processes, health-care and scientific workflows. Comparing workflow specification lan-
guages is intrinsically difficult because of the diversity of formalisms and the lack of a standard yardstick for expres-
siveness. In this paper, we develop a flexible framework for comparing workflow specification languages, in which
the pertinent aspects to be taken into account are defined by views. We use it to compare the expressiveness of several
workflow specification mechanisms based on automata, pre/post conditions, and temporal constraints.

Consider a system that evolves in time as a result of internal computations or interactions with the rest of the world.
Fundamentally, a workflow specification imposes constraints on this evolution. There are numerous approaches for
specifying such constraints. Perhaps the most popular consists of specifying a set of abstract states of the system and
imposing state transition constraints, in the spirit of a BPEL program [BPEL ]. Another, more declarative approach is
to define a set of tasks equipped with pre/post conditions, such as IBM’s Business Artifact model (see Related Work).
Artifact systems may also impose constraints by temporal formulas on the history of the run ([Hull 2009]).

The richness and variety of these approaches renders their comparison difficult. In particular, little is known of their
relative expressive power. This is the main focus of the present paper.

We argue that a very useful approach for comparing workflow specification languages is provided by the notion
of workflow view. More broadly, the notion of view is essential in the context of workflows, and the need to provide
different views of workflows is pervasive. For example, views can be used to explain a workflow or provide customized
interfaces for different classes of stakeholders, for convenience or privacy considerations. The interaction of workflows
and contractual obligations are also conveniently specified by views. The design of complex workflows naturally
proceeds by refinement of abstracted views. Views can be used at runtime for surveillance, error detection, diagnosis,
or to capture continuous query subscriptions. The abstraction mechanism provided by views is also essential in static
analysis and verification.

Depending on the specific needs, a workflow view might retain information about some abstract state of the system
and its evolution, about some particular events and their sequencing, about the entire history of the system so far, or
a combination of these and other aspects. Even if not made explicit, a view is often the starting point in the design
of workflow specifications. This further motivates using views to bridge the gap between different specification lan-
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guages. To see how this might be done, consider a workflowW specified by tasks and pre/post conditions and another
workflowW ′ specified as a state-transition system, both pertaining to the same application. One way to render the two
workflows comparable is to define a view of W as a state-transition system compatible with W ′. This can be done by
defining states using queries on the current instance and state transitions induced by the tasks. To make the comparison
meaningful, the view of W should retain in states the information relevant to the semantics of the application, restruc-
tured to make it compatible with the representation used in W ′. More generally, views may be used to map given
workflow models to an entirely different model appropriate for the comparison. We will formalize the general notion
of view and introduce a form of bisimulation over views to capture the fact that one workflow simulates another.

In our formal development, we mostly use the Active XML model [Abiteboul et al. 2008], which provides seamless
integration of complex data and processes. To describe system evolution (in the absence of workflow constraints),
we use a core model called Basic Active XML (BAXML for short). BAXML documents are abstractions of XML
with embedded service calls. A BAXML document is a forest of unordered, unranked trees, whose internal nodes are
labeled with tags from a finite alphabet and whose leaves are labeled with tags, data values, or function symbols. The
document evolves as a result of function calls that initiate new sub-tasks, and returns results of function calls (using
some local rewritings). The functions can be internal or external, the latter modeling interaction with the environment.
For example, a BAXML document is shown in Figure 1. Documents are subject to static constraints specified by a
DTD and a Boolean combination of tree-patterns. Note that this already provides some form of control on the execution
flow, since a function call can be activated, or its result returned, only if the resulting instance does not violate the static
constraints. Indeed, we will see that this already provides very powerful means to enforce workflow constraints.

BAXML provides a very natural framework for specifying runs of systems in which tasks correspond to evolving
documents, and function calls are seen as requests to carry out sub-tasks. With the core model in place, we con-
sider three ways of augmenting BAXML with explicit workflow control, corresponding to three important workflow
specification paradigms:

Automata. The automata are non-deterministic finite-state transition systems, in which states have associated tree
pattern formulas with free variables acting as parameters. A transition into a state can only occur if its associated
formula is true. In addition, the automaton may constrain the values of the parameters in consecutive states.
Guards. These are pre-conditions controlling the firing of function calls and the return of their answers. This
control mechanism was introduced in [Abiteboul et al. 2008], where the results concern verification of temporal
properties of such systems.
Temporal properties. These are expressed in a temporal logic with tree patterns and Past LTL operators. A temporal
formula constrains the next instance based on the history of the run.

Although presented here in the context of BAXML, these extensions capture the essential aspects of the three
specification paradigms regardless of the specific underlying data model.

Our main results concern the relative power of BAXML and its extensions as workflow specification languages.
When we insist that they generate exactly the same runs, the three extensions turn out to be incomparable. More
interestingly, we then consider a more permissive and realistic notion of equivalence in which a view allows to hide
portions of the data and some of the functions, thus providing more leeway in simulating one workflow by another.
Surprisingly, we show that the core BAXML alone is largely capable to simulate the three specification mechanisms
based on guards, automata, and temporal properties. This indicates the considerable power of static constraints to
simulate apparently much richer workflow control mechanisms. Of course, specifications using guards, automata, and
temporal properties are typically much more readable than their equivalent specifications in BAXML using hidden
functions and static constraints.

The above results show the usefulness of seeing a workflow abstractly as a constraint on the runs of an underlying
system, decoupled from the specific approach for defining the constraint. It also demonstrates the effectiveness of
views in comparing workflows and worklow specification languages. Although the above languages are formalized in
a specific Active XML context, we believe that the results demonstrate the wide applicability of the approach beyond
this particular setting. In particular, the proofs provide general insight into when and how specifications based on
automata, guards, and temporal constraints can simulate each other.

After settling the relative expressiveness of the languages using BAXML as a common core, we finally consider
IBM’s business artifact model, which uses a different paradigm based on the relational model and services equipped
with first-order pre/post conditions. Relying once again on the views framework, we compare BAXML to the business
artifact model, as formalized in [Deutsch et al. 2009]. We prove that BAXML can simulate artifacts, but the converse
is false. The first result uses views mapping XML to relations and functions to services, so that artifacts become
views of BAXML systems. For the negative result we use views retaining just the trace of function and service calls
from the BAXML and the artifact system. This is a powerful result, since it extends to any views exposing more
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information than the function/service traces. The latter results demonstrate once again the flexibility and power of the
views approach to comparing workflows.

Related work Workflow modeling and specification has traditionally been process centric (e.g., [Georgakopoulos et al.
1995; van der Aalst 2004]). This has been captured in the workflows community by flowcharts, Petri nets [van der
Aalst 1998; van der Aalst and ter Hofstede 2002; Adam et al. 1998], and state charts [Harel 1987; Mok and Paper
2002]. The comparison of such systems using the notion of bisimulation is considered in [Milner 1989; van Benthem
1976]. More recently, data-centric workflows have been considered in [Wang and Kumar 2005], and in particular the
artifact model of IBM [Nigam and Caswell 2003]. Verification for such models is considered in [Gerede et al. 2007;
Gerede and Su 2007; Bhattacharya et al. 2007; Deutsch et al. 2009; Fritz et al. 2009]. The comparison of such systems
is considered in [Calvanese et al. 2009] using the notion of dominance, which focuses on the input/output pairs of
the workflows. Other models in the same spirit include the Vortex workflow framework [Hull et al. 1999; Dong et al.
1999; Hull et al. 2000], the OWL-S proposal [McIlraith et al. 2001; Martin et al. 2003] as well as some work on
semantic Web services [Narayanan and McIlraith 2002]. The article [Deutsch et al. 2007] (building on [Spielmann
2003; Abiteboul et al. 2000]), considers the verification of properties of data-centric workflows specified in LTL-FO,
first-order logic extended with linear-time temporal logic operators. Similar extensions have been previously used in
various contexts [Emerson 1990; Abiteboul et al. 1996; Spielmann 2003]. Apart from the work on verification of
BAXML with guards mentioned above [Abiteboul et al. 2008], most other work on static analysis on XML (with data
values) deals with documents that do not evolve in time, e.g., [Fan and Libkin 2001; Arenas et al. 2002; Alon et al.
2003]. This motivated studies of automata and logics on strings and trees over infinite alphabets [Neven et al. 2004;
Demri and Lazić 2009; Bojanczyk et al. 2006]. See [Segoufin 2007] for a survey on related issues.

A survey on Active XML may be found in [Abiteboul et al. 2008]. In [Abiteboul et al. 2009], active XML docu-
ments are used to capture data and workflow management activities in distributed settings, in the spirit of the artifact
approach. The study of the interplay between queries and sequencing in the artifact approach was the driving motiva-
tion of the present work.

This paper is the extended version of the conference article [Abiteboul et al. 2011]. It differs from the latter by
including the full technical development, including the proofs.

Organization The paper is organized as follows. We introduce the view-based framework for comparing workflow
languages in Section 2. The BAXML model and the workflow languages are presented in Sections 3 and 4. Their
expressive power with respect to different views is compared in Section 5. In Section 6 we compare BAXML with a
variant of IBM’s business artifacts, and show that BAXML can simulate artifacts, but the converse is false. We end
with brief conclusions.

2. VIEWS AND SIMULATIONS

In this section, we introduce an abstract framework for workflows and views of workflows. We then use it to compare
workflows.

Workflow Systems and Languages. The model for workflows we consider is quite general. Intuitively, a workflow
system describes the infinite tree of the possible runs of a particular system. More formally, the nodes of a workflow
system are labeled by states from an infinite set Q∞ and the edges by events from an infinite set E∞ (Q∞∩E∞ = ∅).
For example, a state of a workflow system may be an instance of a relational database or an XML document. It
may also include various other relevant information such as the state of an automaton controlling the workflow, or
historical information such as the prefix of the run leading up to it. A typical event may consist of the activation of a
task, including its parameters. The presence of data explains why the sets Q∞ and E∞ are taken to be infinite.

The workflow systems we consider include two particular events, namely block and ε, both in E∞, whose role we
explain briefly. First consider block. For uniformity, it is convenient to assume that all runs are infinite. To this end, we
use the distinguished event block to signal that the system has reached a terminal state that repeats forever (so once a
system blocks, it remains blocked).

On the other hand, the ε event corresponds to the classical notion of silent transition. Its meaning is best explained
in the context of a view (to be formally defined further), which defines the observable portion of states and events. In
particular, it may hide information about states as well as events in the source system. For a transition in the source
system, if the event is (even partially) visible in the view or if the state of the view changes, the transition is observable
in the view. On the other hand, it may be the case that both the event and the state change are invisible in the view. So,
although there has been a transition in the workflow system, nothing can be observed in the view. This is modeled by
a silent transition, indicated by the special event ε. Observe that, unlike for blocking transitions, an ε transition may be
followed in the view by non-ε (visible) transitions, in which the state may change.
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More formally:
Definition 2.1. [Workflow System] A workflow system is a tuple WS = (N,n0, δ, q0, λN , λδ) where:

— (N,n0, δ) is a tree with root n0, nodes N , edges δ.
— all maximal paths from n0 are infinite.
— λN is a function from N to Q∞, and λN (n0) = q0.
— λδ is a function from δ to E∞.
— for each (n, n′) ∈ δ, if λδ((n, n

′)) = ε then λN (n) = λN (n′).
— for each (n, n′) ∈ δ, if λδ((n, n

′)) = block then n′ is the only child of n and λN (n) = λN (n′). Moreover, n′ has
only one outgoing edge also labeled block.
The edges in δ are also called transitions of the workflow, and q0 is called its initial state.
Finally, a workflow language W consists of an infinite set of expressions, called workflow specifications. For ex-

ample, BAXML, and its extensions with guards, automata, and temporal constraints, defined in Section 4, are all
workflow languages. Given a workflow language W and W ∈ W, the semantics of W is a workflow system (i.e., the
tree of runs defined by W ) and is denoted by [W ]W, or [W ] when W is understood.

Views of Workflow Systems. We next formalize the notion of view of a workflow system. We will argue that this
is an essential unifying tool for understanding diverse workflow models. In the present paper, we rely heavily on the
notion of view in order to compare workflow languages.

A view V is a mapping on Q∞ ∪ E∞, such that V (Q∞) ⊆ Q∞, V (E∞) ⊆ E∞, V (ε) = ε, and V (e) = block
iff e = block. This mapping is extended to workflow systems as follows. Let WS = (N,n0, δ, q0, λN , λδ) and V be a
view. Then V (WS) is defined1 as (N,n0, δ, V (q0), λN ◦ V, λδ ◦ V ). We say that the view V is well-defined for WS if
V (WS) is a workflow system.

Note that, by definition of the mapping, the properties of blocking transitions are automatically preserved. Note also
that, by definition of well-defined workflow systems, for each (n, n′) ∈ δ, if V (λδ((n, n

′))) = ε then V (λN (n)) =
V (λN (n′)).

Simulation of Workflows

We next consider the comparison of workflow systems and workflow languages based on the concept of view. We use
a variant of bisimulation [Milner 1989] (that we call w-bisimulation). Of course, many other semantics for comparison
are possible. We refrain from attempting a taxonomy of such semantics, and instead settle on one definition that is
quite general and adequate for our purposes.

In our semantics, we wish to be able to capture silent transitions as well as infinite branches of such transitions.
Given a workflow system as above, for each e ∈ E − {ε}, we define the relation e

→ on nodes by n e
→ m if there is a

sequence of transitions from n to m, all of which are silent except for the last one, which is labeled e.
Informally, the silent transitions are seen as partial internal computation that do not have impact on the possible

observable reachable events. The choices made during the internal computation may be different, but the visible
transitions at the end of sequences of silent transitions are the same.

Definition 2.2. [w-bisimulation] Let WSi = (N i, ni
0, δ

i, q0, λ
i
N , λ

i
δ), i ∈ {1, 2}, be two workflow systems (with

the same initial state). A relation B from N 1 to N2 is a w-bisimulation of WS1 and WS2 if B(n1
0, n

2
0) and for each

n1, n2 such that B(n1, n2) the following hold:
— λ1

N (n1) = λ2
N (n2).

— For each event e 6= ε, if there exists n′
1 such that n1

e
→ n′

1 in WS1 then there exists n′
2 such that n2

e
→ n′

2 in WS2

and B(n′
1, n

′
2),

— For each event e 6= ε, if there exists n′
2 such that n2

e
→ n′

2 in WS2 then there exists n′
1 such that n1

e
→ n′

1 in WS1

and B(n′
1, n

′
2).

— there is an infinite path of silent transitions from n1 in WS1 iff there is an infinite path of silent transitions from n2

in WS2.
We denote by WS1 ∼ WS2 the fact that there exists a w-bisimulation of WS1 and WS2.

The last condition captures the intuition that progress from a given state along a path in the simulated system
must imply progress from the corresponding state along a path in the simulating system, where progress means the
occurrence of a non-silent event. We note that there are well-known notions of bisimulation related to ours, such as

1Composition is applied left-to-right.
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weak-bisimulation and observation-congruence equivalence, motivated by distributed algebra [Milner 1989]. These
differ from w-bisimulation in their treatment of silent transitions. For example, infinite paths of silent transitions are
relevant to w-simulation but are ignored in weak bisimulation. It can be seen that observation-congruence equivalence
implies w-bisimulation, but weak bisimulation and w-bisimulation are incomparable.

Clearly,∼ is an equivalence relation. Observe that views preserve w-bisimulation. More precisely, let WS1 ∼ WS2.
Then for each view V ,

(*) V (WS1) is well-defined iff V (WS2) is well-defined, in which case V (WS1) ∼ V (WS2).
Equivalence of workflow systems as previously defined essentially requires the two systems to have the same set of

states and events. However, in general we wish to compare workflow systems whose states and events may be very
different. In order to make them comparable, we use views mapping the states and events of each system to a common,
possibly new set of states and events. Intuitively, these represent abstractions extracting the observable information
relevant to the comparison. The views may also involve substantial restructuring, thus extending classical database
views.

Suppose we wish to compare languages W1 and W2. To compare workflow specifications in W1 and W2, we use
sets of views V1 and V2 that map the states and events of W1 and W2 to a common set.

Definition 2.3. [Simulation] Let W1,W2 be workflow languages and V1,V2 be sets of views. The language W2

simulates W1 with respect to (V1,V2), denoted by W1 ↪→(V1,V2) W2, if for each W1 ∈ W1 and V1 ∈ V1 such that
V1(W1) is well-defined, there exist W2 ∈W2 and V2 ∈ V2 such V2(W2) is well-defined and V1(W1) ∼ V2(W2).

Remark 2.4. Note that the definition of simulation does not require effective construction of the simulating work-
flow specification. However, all our positive simulation results are constructive. The negative result in Theorem 6.9
also concerns effective simulation.

For sets of views V,V′, we define V ◦ V′ = {V ◦ V ′ | V ∈ V, V ′ ∈ V′}. Intuitively, a view V ◦ V ′ is coarser than
V (or equivalently, V is more refined than V ◦ V ′).

The following key lemma is a straightforward consequence of (*). It states that the relation ↪→ is stable under
composition of views.

LEMMA 2.5. [Composition Lemma] Let W1 and W2 be workflow languages and V1,V2 and V be sets of views. If
W1 ↪→(V1,V2) W2 then W1 ↪→(V1◦V,V2◦V) W2.

The Composition Lemma allows to relate simulations relative to different classes of views. It says that simulation
relative to given views implies simulation relative to any coarser views. This provides a tool for proving both positive
and negative simulation results.

A useful version of the above lemma is the following, combining composition and transitivity.
LEMMA 2.6. Let W1,W2,W3 be workflow languages, and V1,V2,V3 and V be sets of views. If W1 ↪→(V1,V2◦V)

W2 and W2 ↪→(V2,V3) W3, then W1 ↪→(V1,V3◦V) W3.

As we will see, the version of transitivity provided by the above is routinely used in proofs that combine multiple
stages of simulation.

3. THE BASIC AXML MODEL

In this section we present BAXML, the Basic AXML model. This is essentially a simplified version of the GAXML
model of [Abiteboul et al. 2008], obtained by stripping it of the control provided by call and return guards of functions
(all such guards are set to true). We consider such control later as one of the workflow specification mechanisms. The
section may be skipped by readers familiar with the GAXML model.

We begin with an informal overview of the model, then provide more details. To illustrate our definitions, we use a
simplified version of the Mail Order example of [Abiteboul et al. 2008]. The purpose of the Mail Order system is to
fetch and process individual mail orders. The system accesses a catalog subtree providing the price for each product.
Each order follows a simple workflow whereby a customer is first billed, a payment is received and, if the payment is
in the right amount, the ordered product is delivered.

BAXML documents are abstractions of XML with embedded service calls. A BAXML document is a forest of
unordered, unranked trees, whose internal nodes are labeled with tags from a finite alphabet and whose leaves are
labeled with tags, data values, or function symbols. More precisely, a function symbol !f indicates a node where
function f can be called, and a function symbol ?f indicates that a call to f has been made but the answer has not
yet been returned. For example, a BAXML document is shown in Figure 1. The BAXML document may be subject
to static constraints specified by a DTD, as well as Boolean combinations of tree patterns. For example, the negation
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of the pattern in Figure 2 (a) says that an Order ID uniquely determines the product and customer names. In patterns,
double edges denote descendant and single edges the child relation.

A BAXML document evolves as a result of making function calls and receiving their results. A call can be made and
an answer can be returned at any point, as long as the resulting instance satisfies the static constraints. The argument
of the call is specified by a query on the document, producing a forest. The query may refer to the node at which the
call is made (denoted by self ), so the location of the call in the document is important. When a call is made at node
x labeled !f, its label changes from !f to ?f. The result of a call consists of another BAXML document, so a forest,
whose trees are added as siblings of the node x where the call was made. After the answer of the call at node x is
returned, x may be kept (in which case its label reverts to !f) or x may be deleted. This is specified by the schema, for
each function f. If calls to !f are kept, f is called continuous, otherwise it is non-continuous (this is specified in the
schema).

For example, consider the MailOrder function in Figure 1. Intuitively, its role is to fetch new mail orders from
customers. For instance, one result of a call to !MailOrder may consist of the subtree with root MailOrder in
Figure 1. Since the function is processed externally, the semantics of its evaluation is not known. We call such a
function external. Its specification consists of its input query and a DTD constraining the allowed answers. In addition
to external functions, there are functions processed internally by the BAXML system. These are called internal. For
example, Bill is such a function. When a call to Bill is made at a node x labeled !Bill, the label of x turns
to ?Bill (to indicate that a call has been made whose answer is still pending) and the call is processed internally.
Specifically, the call generates a new BAXML document (a workspace) that evolves under function calls and returns.
The answer can be returned at any point when the workspace contains no running calls (i.e. no nodes labeled ?g for
some g) and the resulting instance satisfies the static constraints. The contents of the result is specified by a return
query that applies to the workspace. For example, the answer to a call to Bill can be returned once payment has
been received. The answer, specified by the return query, provides the product paid for and amount of payment (see
Example 3.1).

Once the result of a call has been returned, the BAXML document of the corresponding workspace is removed. In
order for the result to be returned at the correct location (next to node x), a mapping called eval is maintained between
nodes where calls have been made and BAXML document corresponding to the workspaces (e.g., see Figure 5). The
system evolves by repeated function calls and answer returns, occurring one at a time non-deterministically. This may
reach a blocking instance in which no function can be called and no result can be returned, or may continue forever,
leading to an infinite run. For example, runs of the Mail Order system are always infinite since new mail orders can
always be fetched. For uniformity, we make all runs infinite by repeating blocking instances forever.

We now describe the BAXML model in more detail. We assume given the following disjoint infinite sets: nodes
N (denoted by n,m), tags Σ (denoted by a, b, c, . . .), function names F, data values D (denoted by α, β, . . .) data
variables V (denoted by X,Y, Z, . . .), possibly with subscripts. In the model, trees are unranked and unordered.

For each function name f, we also use the symbols !f and ?f, called function symbols, and denote by F ! the set
{!f | f ∈ F} and by F? the set {?f | f ∈ F}. As described above, !f labels a node where a call to function f can
be made (possible call), and ?f labels a node where a call to f has been made and some result is expected (running
call). When a call to f is made at a node x labeled !f, the label changes from !f to ?f. After the answer of the call
at node x is returned, the node x may be kept or the node x may be deleted. If x is kept, its label changes from ?f
back to !f. If calls to !f are kept, f is called continuous, otherwise it is non-continuous. For example, the role of the
MailOrder function in Figure 1 is to indefinitely fetch new mail orders from customers, so MailOrder is specified
to be continuous. On the other hand, the function !Bill occurring in a MailOrder is meant to be called only once,
in order to carry out the billing task. Once the task is finished, the call can be removed. Therefore, Bill is specified
to be non-continuous.

Main

Catalog

Product

Pname

Canon

Price

120

Product

Pname

Nikon

Price

199

Product

Pname

Sony

Price

175

!Mailorder MailOrder

Order-Id

1234567

Cname

Serge

Pname

Nikon

!Bill !Deliver !Reject

Fig. 1: A BAXML document.
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A BAXML document is a tree whose internal nodes are labeled with tags in Σ and whose leaves are labeled by
either tags, function symbols, or data values. A BAXML forest is a set of BAXML trees. An example of BAXML
document is given in Figure 1.

To avoid repetitions of isomorphic sibling subtrees, we define the notion of reduced tree. A tree is reduced if
it contains no distinct isomorphic sibling subtrees without running calls ?f. We henceforth assume that all trees
considered are reduced, unless stated otherwise. However, note that the forest of an instance may generally contain
multiple isomorphic trees.

Patterns. We use patterns as the basis for our query language, and later in the specification of workflow constraints
and temporal properties. A pattern is a forest of tree-patterns. A tree-pattern is a tree whose edges are labeled by
child (/) or descendant (//) where descendant is reflexive. Nodes are labeled by tags if they are internal, and by tags,
function symbols, or variables if they are leafs. In addition, nodes may be labeled by wildcard (*), which can map to
any tag. A constraint consisting of a Boolean combination of (in)equalities between the variables and/or data constants
may also be given. In particular, we can specify joins (equality of data values). A tree-pattern is evaluated over a tree
in the straightforward way. The definition of the evaluation of patterns over forests extends the above in the natural
way. An example is given in Figure 2 (a). The pattern shown there expresses the fact that the value Order-Id is not
a key. It does not hold on the BAXML document of Figure 1. (Indeed, it is natural to require that Order-Id be a
key).

We sometimes use patterns that are evaluated relative to a specified node in the tree. More precisely, a relative
pattern is a pair (P , self ) where P is a pattern and self is a node of P . A relative pattern (P , self ) is evaluated on a
pair (F, n) where F is a forest and n is a node of F . Such a pattern forces the node self in the pattern to be mapped to
n. Figure 2 (b) provides an example of a relative pattern. The pattern shown there checks that a product that has been
ordered occurs in the catalog. It holds in the BAXML document of Figure 1 when evaluated at the unique node labeled
!Bill.

We also consider Boolean combinations of (relative) patterns. The (relative) patterns are matched independently of
each other and the Boolean operators have their standard meaning. If a variable X occurs in two different patterns P
and P ′ of the Boolean combination then it is quantified existentially in P and P ′, independently of each other.

It will be useful to occasionally consider parameterized patterns, in which some variables are designated as free. Let
P (X̄) be a pattern with free variables X̄, and ν an assignment of data values to X̄. A BAXML forest I satisfies P (X̄)
for assignment ν, denoted by I, ν |= P (X̄), if I satisfies the pattern P (ν(X̄)) obtained by replacing each variable in
X̄ by its value under ν.

Main

MailOrder

Order-Id

X

Cname

Y

Pname

Z

MailOrder

Order-Id

X

Cname

Y’

Pname

Z’
Y 6= Y’ or Z 6= Z’

(a)

Main

Product

Pname

X

MailOrder

Pname

X

self

(b)

Fig. 2: Two patterns

For convenience, we sometimes use a self-explanatory XPath-like notation to specify simple patterns.
Queries. As previously mentioned, patterns are used in queries, as shown next. A query is a finite union of rules of

the form Body→ Head, where Body and Head are patterns and Head contains no descendant edges and no constants,
and all its variables occur in Body. In each tree of Head, all variables occur under a designated constructor node,
specifying a form of nesting. When evaluated on a forest, the matchings of Body define a set of valuations of the
variables. The answer for the rule is obtained by replacing, in each tree of Head, the subtree rooted at the constructor
node with the forest obtained by instantiating the variables in the subtree with all their matchings provided by the
Body. The answer to the query is the union of the answers for each rule. As for patterns, we may consider queries
evaluated relative to a specified node in the input tree. A relative query is defined like a query, except that the bodies
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of its rules are relative patterns (P , self ). An example of a relative query (with a single rule) is given in Figure 3 (the
notation self :!Bill means that the node self must be labeled !Bill). The label of the constructor node (indicated by
brackets) is Process-bill.

Main

Catalog

Product

Pname

X

Price

Y

MailOrder

Pname

X

self: !Bill

{Process-bill}

Pname

X

Amount

Y

!Invoice

Fig. 3: Example of a relative query

Consider the evaluation of the query of Figure 3 on the BAXML document of Figure 1 at the unique node labeled
!Bill. There is a unique matching of the Body pattern and the result is the Head pattern of the query with X replaced
by Nikon and Y by 199 (without brackets for Process-bill).

DTD. Trees used by a BAXML system may be constrained using DTDs and Boolean combinations of patterns. For
DTDs, we use a typing mechanism that restricts, for each tag a ∈ Σ, the labels of children that a-nodes may have. As
our trees are unordered we use Boolean combinations of statements of the form |b| ≥ k for b ∈ Σ∪F ! ∪F? ∪ {dom},
k a non-negative integer, and dom a symbol indicating the presence of a data value. Validity of trees and of forests
relative to a DTD is defined in the standard way.

Schemas and instances. A BAXML schema S is a tuple (Φint,Φext,∆) where (i) the set Φint contains a finite set
of internal function specifications, (ii) the set Φext contains a finite set of external function specifications, and (iii) ∆
consists of a DTD and a Boolean combination of patterns providing static constraints on instances of the schema. For
instance, the negation of the pattern in Figure 2 (a) states that Order-Id uniquely determines the mail order.

We next detail Φint and Φext. For each f ∈ F, let af be a new distinct label in Σ. Intuitively, af labels the roots of
all workspaces resulting from calls to f. The specification of a function f of Φint indicates whether f is continuous or
not, provides its argument query , and return query . The role of the argument query is to define the initial state of the
workspace generated by the call to f. The argument query is a relative query. When the query is evaluated, self binds
to the node at which the call !f is made. The return query applies to the current state of the workspace corresponding
to the call. Thus, it is a query in which every tree pattern occurring in the body of a rule is rooted at af. .

Example 3.1. We continue with our running example. The function Bill used in Figure 1 is specified as follows.
It is internal and non-continuous. The argument query is the query in Figure 3. The return query of Bill is:

aBill

Payment

Pname

X

Amount

Y

−→ {Paid}

Pname

X

Amount

Y

Intuitively, this makes sense assuming that the function Invoice returns a tree of the form:
Payment

Pname

p

Amount

a

where p is the product name and a the amount of payment.
Each function f in Φext is specified similarly, except that the return query is missing. In addition, a DTD ∆f

constrains the answers returned by f (the DTD assumes a virtual root under which the answer forest is placed).
Intuitively, an external call can return any answer satisfying ∆f at any time, as long as the resulting instance also
satisfies the global static constraints ∆. For example, MailOrder is external, since its role is to fetch orders from an
external user.

An instance I over a BAXML schema S = (Φint,Φext,∆) is a pair (T, eval), where T is a BAXML forest and eval
an injective function over the set of nodes in T labeled with ?f for some f ∈ Φint such that: (i) for each n with label
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Process-Bill

Pname

Nikon

Price

199

!Invoice

Fig. 4: Answer of the query in Figure 3 applied to the instance in Figure 1

?f, eval(n) is a tree in T with root label af (its workspace), and (ii) every tree in T with root label af is eval(n) for
some n labeled ?f. An instance of S is valid if it satisfies ∆. More precisely, each tree in the forest making up the
instance satisfies the DTD of ∆, and the instance as a whole satisfies the Boolean combination of patterns of ∆.

Runs. Let I = (T, eval) and I ′ = (T′, eval′) be instances of a BAXML schema S = (Φint,Φext,∆). The instance
I ′ is a possible next instance of I iff I ′ is obtained from I by making a function call or by receiving the answer to an
existing call. We refer to the latter as an event. More precisely, an event is an expression of the form !f(F ) or ?f(G),
where:

— f is a function;
— F is the forest consisting of the result of applying the argument query of f to T, at some node labeled !f;
—G is the forest consisting of the answer to a running call ?f at some node n. More precisely, if f is internal, G is

the result of applying the return query of f to eval(n). If f is external, G is any forest satisfying the DTD ∆f for
answers of f.

For technical reasons, we also use two special events, init that only generates the initial instance, and block, whose
use will be clear shortly. Initial instances of BAXML schemas are defined below. We denote by I `e I

′ the fact that I ′
is a possible next instance of I caused by event e.

We now provide more details. Consider I = (T, eval) and an event !f(F ), resulting from a call to !f at some node
n of T. The next instance, if it exists, is the instance I ′ = (T′, eval′) satisfying ∆, obtained as follows:

— change the label of n to ?f
— if f is internal, add to the graph of eval the pair (n, T ′) where T ′ is a tree consisting of a root af connected to all

trees in F (the result of evaluating the argument query of f on input (T, n)).

If the resulting instance does not satisfy ∆, there is no next instance under the event !f(F ).
Now consider an event ?f(G), resulting from returning the answer G of a running call ?f at some node n of T.

Recall that, if f is internal and eval(n) contains no running function calls, G is the result of applying the return query
of f to eval(n). If f is external, G is any forest satisfying ∆f. Then the instance I ′ is obtained as follows:

— add all trees in G as siblings to n
— if f is internal, remove (n, eval(n)) from the graph of eval and the tree eval(n) from T

— if f is non-continuous, remove the node n from T

— if f is continuous, change the label of n from ?f to !f.

If the resulting instance does not satisfy ∆, then there is no next instance under the event ?f(G).
Figure 5 shows a possible next instance for the instance of Figure 1 after an internal call has been made to !Bill.

The node associated with this internal call is denoted by n. Recall the specification of Bill from Example 3.1. The
argument query of Bill is the query in Figure 3. For each homomorphism from the body (left pattern) of Figure 3
to the document such that the node labeled self is associated with n, a valuation of the variables is defined. In this
example, there is one homomorphism defining the following valuation : X = Nikon and Y = 199. The answer of the
query is built by applying the previous valuation to the variable in the head of the query (the right part). The answer
is described in Figure 4. The workspace of the function Bill is built by placing the answer from Figure 4 under a
new root n′ labeled aBill. This workspace is added to the current instance and the function eval is updated by setting
eval(n) = n′. The resulting instance is shown in Figure 5, where the dotted arrow represents the function eval.

We will typically be interested in runs of such systems. An initial instance of schema S is an instance of S consisting
of a single tree whose root is not a function call and for which there is no running call. For runs, we use a variation
of the model of [Abiteboul et al. 2008]. A prerun of a schema S is a finite sequence {(Ii, ei)}0≤i≤n, such that (i) for
each i, Ii satisfies the static constraints ∆, (ii) e0 = init, and (iii) for each i > 0, Ii−1 `ei

Ii. Intuitively, e0 generates
the initial instance I0. A run is an infinite sequence ρ = {(Ii, ei)}i≥0 such that each finite prefix of ρ is a prerun of
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Main

Catalog

· · ·

!Mailorder MailOrder

Order-Id

1234567

Cname

Serge

Pname

Nikon

?Bill !Deliver !Reject

aBill

Process-bill

Pname

Nikon

Amount

199

! Invoice

Fig. 5: An instance with an eval link

R

T

A1 A2 . . . Ak !fτ

. . . . . . T

A1 A2 . . . Ak !fτ

Fig. 6: Relation adorned with some functions

S, or there is a finite prefix (I0, e0), ..., (In, en) of ρ that is a maximal prerun2 of S; and for each i > n, Ii = In and
ei = block. In the first case the run is called nonblocking; in the second case it is called blocking.

Thus, we force all runs to be infinite by repeating forever a blocking instance from which no legal transition is
possible, if such an instance is reached (the non-existence of a legal transition from the blocking instance is ensured
by the maximality condition in the definition).

Semantics with and without aborts. We next discuss a subtle difference between the semantics adopted here and that
of [Abiteboul et al. 2008]. According to our semantics, if a prerun reaches an instance from which every transition
leads to a violation of the static constraints, the prerun blocks forever in that instance, generating a blocking run.
In contrast, the semantics of [Abiteboul et al. 2008] allows blocking runs only if no transition exists at all (whether
leading to a valid instance or not). If there are possible transitions but they all lead to constraint violations, the prerun
is discarded. Intuitively, this amounts to aborting the run. We refer to this as the semantics of runs with aborts, and
to the one we follow in this paper as the semantics of runs (without aborts). Note that in our semantics, every prerun
is extensible to a (possibly blocking) run, whereas this is not the case in the semantics with aborts. Furthermore, as
shown next, in the semantics with aborts it is undecidable if a given prerun can be extended to an infinite run. This is
a main motivation for our choice of the semantics without aborts.

THEOREM 3.2. Let S be a BAXML schema and ρ a prerun of S. Under the semantics with aborts, it is undecidable
whether ρ is the prefix of a run of S. Furthermore, this remains undecidable even for nonrecursive3 DTDs.

PROOF. The proof for arbitrary DTDs is trivial by the undecidability of satisfiability of static constraints [David
2008]. The proof for nonrecursive DTDs is by reduction of the implication problem for functional and inclusion
dependencies (FDs and IDs), known to be undecidable (see [Abiteboul et al. 1995]).

Let R be a relation with k attributes, Γ a set of FDs and IDs over R, and F an FD over R. We construct a BAXML
schema S and an initial instance I0 such that Γ 6|= F iff there is a valid run from I0. We represent relation R with
attributes A1 · · ·Ak in the standard way, as a tree rooted at R. Relation R, together with some additional functions
whose role will become apparent, is depicted in Figure 6. Clearly, this structure can be enforced by the DTD.

Static constraints can easily require satisfaction of the FDs in Γ and violation of F . In order to check that the
inclusion dependencies of Γ are satisfied, we use one internal, non-continuous function fτ for each τ ∈ Γ. One
occurrence of each fτ is attached to each tuple ofR, as in Figure 6. The functions fτ always return the empty answer.
Static constraints require the following:

(i) there is at most one occurrence of ?fτ for each τ ,
(ii) whenever ?fτ occurs, the ID τ is satisfied for the tuple to which ?fτ is attached.

The constraint (i) is expressed by conjunctions of negations of patterns as in (i) of Figure 7, and (ii) is enforced by
the conjunction of patterns as in (ii) of the same figure, illustrating the case when τ = R[Ai] ⊆ R[Aj ].

Finally, the global DTD specifies a root r, under which one can find either a subtree rooted at R of the shape above,
or one external, non-continuous function !h. Thus, the instance I0 consisting of the root r with child !h is a possible

2There is no (I ′, e′) where (I0, e0), ..., (In, en)(I′, e′) is a prerun of S.
3A DTD is recursive if there is a cycle in the graph that has an edge from tag a to b if the DTD allows b to label a child of a node labeled a.
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R

T

A1

x1

· · · Ak

xk

?fτ

T

A1

y1

· · · Ak

yk

?fτ

W

i
xi 6= yi

(i)

R

?fτ

−→ R

T

Ai

x

?fτ

T

Aj

x

(ii)

Fig. 7: (i) Pattern whose negation forbids two activated calls and (ii) ensuring satisfaction of [Ai] ⊆ [Aj ]

initial instance. Note that every valid run of S must end in a blocking instance, in which no function calls occur.
Clearly, there exists such a valid run from I0 iff the function h can return a tree R witnessing that Γ 6|= F .

4. WORKFLOW CONSTRAINTS

In this section, we introduce three ways of enriching the BAXML model with workflow constraints: (i) function call
and return guards (yielding the GAXML model), (ii) an automaton model (yielding the AAXML model), and (iii)
temporal constraints (yielding the TAXML model). Each corresponds to a very natural way of expressing constraints
on the evolution of a system. We study and compare these mechanisms in the next sections.

We begin by considering an abstract notion of workflow constraint. A workflow constraint W over a BAXML
schema S is a prefix-closed property of preruns of S. For a prerun ρ of S, we denote by ρ |= W the fact that ρ satisfies
W . We denote by S|W the workflow specification defined by S constrained by W . A run of S|W is an infinite
sequence ρ = {(Ii, ei)}i≥0 such that: each finite prefix of ρ is a prerun of S that satisfies W, or there is a finite prefix
(I0, e0), ..., (In, en) of ρ that is a maximal prerun of S satisfying W; and for each i > n, Ii = In and ei = block. In
the first case the run is called nonblocking; in the second case it is called blocking.

Observe that nonblocking runs of S|W are particular nonblocking runs of S. Also, a sequence {(Ii, ei)}i≥0 may be
a blocking run of S|W but not a blocking run of S. (This is because all transitions that are possible according to S are
forbidden by W .) The set of runs of S|W is denoted by runs(S|W ).

A main goal of the paper is to compare the descriptive power of different formalisms for specifying workflow
constraints. To this end, we consider the workflow languages G (for call guards), A (for automata), and T (for temporal
formulas), defined next.

Call and return guards

Recall the Mail Order example, in which processing an order requires executing some tasks in a desired sequence
(order, bill, pay, deliver). Since tasks in BAXML are initiated by function calls, one convenient workflow specification
mechanism is to attach guards to function calls. For instance, the guard of !Deliver, shown in Figure 8, might
require that the ordered product must have been paid in the correct amount. Similarly, it is useful to control when the
answer of an internal function may be returned. This can be done by providing return guards.

Let S = (Φint,Φext,∆) be a BAXML schema. A guard assignment over S is a pair γ = (γc, γr), where:

— γc, the call guard assignment, is a mapping from the functions of S to Boolean combinations of relative patterns
over S. A call to f can only be activated at node n of instance I = (T, eval) if γc(f) holds on (T, n).

— γr, the return guard assignment, is a mapping from the functions of S which is true for external functions and a
Boolean combination of tree patterns rooted at af for each internal function f. The result of a call to f at node n of
instance I = (T, eval) is returned only when γr(f) is satisfied on eval(n). Return guards constrain only internal
functions.

A prerun ρ = (I0, e0), ..., (In, en) of S satisfies γ = (γc, γr), denoted ρ |= γ, if for each transition Ii−1 `ei
Ii, if

the transition results from a function call to !f at node u the guard γc(f) holds in (Ii−1, u), and if the transition results
from the return of an internal function call ?f at node u, γr(f) holds in evali−1(u). Observe that these constraints
involve consecutive instances only.

The set of all guard workflow constraints is denoted by G. A GAXML schema is an expression S|γ, for some γ ∈ G.
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γc(Reject)
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Pname
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self

γc(Deliver)

Fig. 8: Call guards of Reject and Deliver.

qinit p i ie pe

d de

r re

Fig. 9: Example of pattern automaton

Example 4.1. Figure 8 shows call guards for some functions in the Mail Order example. The call guard of function
Bill is given in Figure 2(b) (this checks that the ordered product is available). The call guard of Invoice is true.
In the same example, the return guard of function Bill is:

aBill

Payment

indicating that payment has been received, so billing is completed.

Pattern automata

We next consider workflows based on automata. The states of the automaton are defined using pattern queries. The
automaton has no final states, since BAXML (like AXML) does not have a built-in notion of successful computation.

A pattern automaton is a tuple (Q, qinit, δ,Υ) where:

—Q is a finite set of states, qinit ∈ Q, and each q ∈ Q has an associated set of variables Xq ;
— For each q ∈ Q, Υ(q) is a Boolean combination of parameterized patterns whose set of free variables equals X q ;
— the transition function δ is a partial function from Q×Q such that δ(q, q′) is a Boolean combination of equalities

of variables amongXq and Xq′ .

To simplify the presentation, we assume without loss of generality that Xq and Xq′ have no variables in common.
Let A be the set of pattern automata. An AAXML schema is an expression S|A for a BAXML schema S andA ∈ A.

A prerun ρ = {(Ii, ei)}i≤n of S satisfies an automaton constraint A, denoted by ρ |= A, if there exists a sequence
{(qi, νi)}i≤n, where q0 = qinit and νi is a valuation of Xqi

, such that for each i ≤ n:
(1) Ii, νi |= Υ(qi),
(2) νi(Xqi

) ∪ νi+1(Xqi+1
) |= δ(qi, qi+1).

Intuitively, the state of such an automaton after reading a finite sequence ρ of instances is a pair (q, ν) where ν is
a valuation of the variables in Xq . Note that the automaton is non-deterministic both with respect to the state and the
valuation of its variables.
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Example 4.2. An automaton for our running example is represented in Figure 9. The edges represent the pairs for
which δ is defined, and the patterns in Υ check the following:

— Υ(qinit) checks nothing.
— Υ(p) checks that the call to Bill has been activated and the product is in the catalog:

Main

Product

Pname

X

MailOrder

Pname

X

?Bill

— Υ(i) checks that the call to Invoice in the workspace of Bill has been activated:
aBill

? Invoice

— Υ(ie) checks that the call to Invoice in the workspace of Bill has returned a payment:
aBill

Payment

— Υ(pe) checks that the call to Bill has returned a payment:
Main

Paid

— Υ(d) checks that the call to Deliver is activated and the amount brought by Bill is the same as the price of the
item that has been ordered.

Main

Product

Pname

X

Price

Y

MailOrder

Paid

Pname

X

Amount

Y

?Deliver

— Υ(de) checks that the call to Deliver has been returned.
¬ Main

?Deliver

— Υ(r) checks that the call to Reject is activated and the amount brought by !Bill is different from the price of
the item that has been ordered:

Main

Product

Pname

X

Price

Y

MailOrder

Paid

Pname

X

Amount

Y’

?Reject

Y 6= Y’
— Υ(re) checks that the call to Reject has been returned for the MailOrder (there is no active call to Reject): .

¬ Main

? Reject

We note that in some specification models, such as state-charts [Harel 1987], states are defined in a hierarchical
manner, i.e. entering a state may trigger a more refined state-transition sub-system. Other systems further extend this
with recursion [Alur et al. 2005]. Although not done here, one could extend our formalism to capture such hierarchical
or recursive states.
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Past-Tree-LTL

Finally, we consider workflow constraints specified using temporal formulas. Intuitively, these state, given a particular
history, whether a given transition is allowed. The language is a variant of Tree-LTL [Abiteboul et al. 2008] using only
past LTL operators, that we call Past-Tree-LTL. It is obtained from classical propositional LTL (e.g., see [Emerson
1990]) by interpreting each proposition as a parameterized tree pattern P (X̄) where X̄ is a subset of its variables,
designated as global. All global variables are treated as free in the patterns and are quantified existentially at the
end. The past temporal operators are X−1 (previously), S (since) and G−1 (always previously). The semantics of the
different operators is inductively defined as follows:

— (I0, e0), . . . , (In, en) |= ϕ, where ϕ is a pattern iff In satisfies ϕ.
— (I0, e0), . . . , (In, en) |= ϕ1 ∧ ϕ2 iff (I0, e0), . . . , (In, en) |= ϕ1 and (I0, e0), . . . , (In, en) |= ϕ2

— (I0, e0), . . . , (In, en) |= ϕ1 ∨ ϕ2 iff (I0, e0), . . . , (In, en) |= ϕ1 or (I0, e0), . . . , (In, en) |= ϕ2

— (I0, e0), . . . , (In, en) |= ¬ϕ iff (I0, e0), . . . , (In, en) 6|= ϕ
— (I0, e0), . . . , (In, en) |= X−1ϕ iff (I0, e0), . . . , (In−1, en−1) |= ϕ
— (I0, e0), . . . , (In, en) |= ϕSψ iff (I0, e0), . . . , (Ij , ej) |= ψ for some j ≤ n and ϕ holds in (I0, e0), . . . , (Ik , ek) for

every k, j < k ≤ n
— (I0, e0), . . . , (In, en) |= G−1ϕ iff (I0, e0), . . . , (Ij , ej) |= ϕ for each j, 0 ≤ j ≤ n.

In summary, a Past-Tree-LTL formula is of the form ∃Xψ(X) where ψ uses only the temporal operators X−1 and S,
and X is the set of global variables of the parameterized patterns interpreting the propositions. The set of Past-Tree-
LTL formulas is denoted by T. A TAXML schema is an expression S|θ for S a BAXML schema and θ ∈ T. A prerun
ρ satisfies ∃Xψ(X) if ρ satisfies ψ(ν(X)) for some valuation ν of the global variables X in the active domain of ρ.

The choice to existentially quantify the global free variables appears natural for specifying workflow transition
constraints. Observe that such variables are quantified universally in the language Tree-LTL of [Abiteboul et al. 2008],
used to specify properties of all runs. However, the model checking approach of [Abiteboul et al. 2008] is based
on checking unsatisfiability of the negation of Tree-LTL formulas, whose global variables then become existentially
quantified.

Example 4.3. To illustrate Past-Tree-LTL constraints, consider the description of valid transitions in the MailOrder
example. This can be specified by a Past-Tree-LTL conjunctive formula:

G−1(ψ?Bill ∧ X−1(ψ!Bill) =⇒ X−1(ψγc(Bill)))
∧ G−1(ψ?Invoice =⇒ X−1ψ?Bill)
∧ G−1(ψPayment =⇒ X−1ψ?Invoice)
∧ G−1(ψPaid ∧ ψ!Deliver,!Reject =⇒ X−1ψ?Payment)
∧ G−1(ψ?Deliver =⇒ X−1ψγc(Deliver))

∧ G−1(ψ?Reject =⇒ X−1ψγc(Reject))
∧ G−1(ψfinish-Deliver =⇒ X−1ψ?Deliver)
∧ G−1(ψfinish-Reject =⇒ X−1ψ?Reject)

We detail next the formulas used above:

— The formula ψγc(Bill) checks that the call guard of Bill is true:

Main

Product

Pname

X

MailOrder

Pname

X

!Bill

— The formula ψ!Bill checks that the call to Bill is not activated:

Main

!Bill

— The formula ψ?Bill checks that the function call to Bill is activated:
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Main

?Bill

— The formula ψ?Invoice checks that the call to Invoice is activated:
aBill

? Invoice

— The formula ψPayment checks that the call to Bill has been returned:
aBill

Payment

— The formula ψPaid checks that the call to Bill has been returned:
Main

Paid

— The formula ψ!Deliver,!Reject checks that the calls to Deliver and Reject are not yet activated:
Main

!Reject !Deliver

— The formula ψ?Deliver checks that the call to Deliver is activated:
Main

?Deliver

— The formula ψγc(Deliver) checks that the call guard of Deliver is true:
Main

Product

Pname

X

Price

Y

MailOrder

Paid

Pname

X

Amount

Y

!Deliver

— The formula ψ?Reject checks that the call to Reject is activated:
Main

?Reject

— The formula ψγc(Reject) checks that the call guard of Reject is true:
Main

Product

Pname

X

Price

Y

MailOrder

Paid

Pname

X

Amount

Y’

!Reject

Y 6= Y’

— The formula ψfinish-Deliver checks that Deliver has returned by checking that the function calls to Deliver and
Bill no longer appear in the document:

¬ Main

!Deliver

V

¬ Main

?Deliver

V

¬ Main

!Bill

V

¬ Main

?Bill

— Finally, the formula ψfinish-Reject checks that Reject has returned by checking that the function calls to Reject
and Bill no longer appear in the document:
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¬ Main

!Reject

V

¬ Main

?Reject

V

¬ Main

!Bill

V

¬ Main

?Bill

Checking workflow constraints

The following establishes the complexity of testing workflow constraints.
THEOREM 4.4. For a fixed BAXML schema S and a fixed W where W ∈ {G,A,T}, it is decidable in PTIME

whether a given prerun ρ of S satisfies W .

PROOF. Let S|W be a workflow schema and ρ = (Ii), 1 ≤ i ≤ n be a prerun of S. Note first that we can check
that I0 verifies the constraints of S and those imposed on initial instances by W in PTIME with respect to |I0|. For
γ ∈ G, it is clear that one can further check, for each i < n, whether the transition from Ii to Ii+1 satisfies γ in PTIME
with respect to |Ii| + |Ii+1|. Consider an automaton A = (Q, qinit, δ,Υ). To check that ρ satisfies A, we define by
induction on i auxiliary relations Ri

q for each state q ∈ Q as follows. For i = 0, all Rq are empty except Rqinit
that

contains all valuations ν ofXqinit
for which I0, ν |= Υ(qinit). For i > 0,Ri

q contains all valuations ν of X̄q for which
there exists a sequence (qj , νj), j ≤ i, where q0 = qinit, qi = q, ν = νi, and for each j < i, νj is a valuation of Xqj

,
such that:
(1) Ij , νj |= Υ(qj),
(2) νj(Xqj

) ∪ νj+1(Xqj+1
) |= δ(qj , qj+1).

It is clear that for each i, the relations {Ri+1
q | q ∈ Q} can be computed from Ii+1 and {Ri

q | q ∈ Q} in polynomial
time. Moreover, the size of the relations Ri+1

q remains polynomial in the number of data values occurring in the entire
prefix (Ij), 0 ≤ j ≤ i+ 1. Therefore, the set of relations {Rn

q | q ∈ Q} can be constructed in time polynomial in |ρ|.
Finally, ρ satisfies A iff some relation Rn

q is nonempty for some q.
Finally, consider T. Let θ be a Past-Tree-LTL formula ∃Xψ(X). We must check that for some valuation ν of X

to data values in ρ, ρ satisfies θν = ψ(ν). Observe that θν has no global variables. Let θ0
ν be a Past-LTL proposi-

tional formula from which θν is obtained by interpreting the propositions by Boolean pattern formulas. To each truth
assignment of the propositions, one can assign a symbol. Let Σ be this set of symbols. There exists an automaton
A0 with alphabet Σ, that is equivalent to θ0

ν . From A0 it is straightforward to construct a tree-pattern automaton Aν

such that S|θν and S|Aν have the same runs. Using the earlier result for automata, we can check that ρ satisfies Aν in
polynomial time. Moreover, it can be seen that the polynomial bound is independent of ν. Since there are polynomially
many ν (for fixed ψ), it can be checked in PTIME whether ρ satisfies ψ.

Remark 4.5. The complexity analysis in Theorem 4.4 assumes a fixed workflow schema. It is easily seen that the
combined complexity (with respect to both prerun and schema) is upper-bounded by EXPTIME.

A more difficult decision problem is checking the existence of a valid transition extending the current prerun. Indeed,
this is undecidable even for BAXML schemas with no workflow constraints (with either flavor of the abort semantics).
The difficulty arises from the power of external functions. Indeed, without external functions it suffices to test all
possible call activations and returns. However, the problem becomes decidable for bounded trees.

THEOREM 4.6. (i) It is undecidable, given a BAXML schema S and a prerun ρ of S, whether ρ is blocking.
(ii) It is undecidable, given a BAXML schema S with non-recursive DTD and a prerun ρ of S, whether ρ is blocking.

PROOF. (i) The undecidability is due to the external functions. We have to test whether there is some returned data
that would be valid for the static constraints. This is undecidable because of the undecidability of the satisfiability of
Boolean combinations of tree patterns under arbitrary DTDs [David 2008].

(ii) For each non-activated function call !f, it is sufficient to test it directly, and similarly for the return of an internal
function call. Let ?f be an activated external function call. The problem of the possible return of ?f can be reduced
to the satisfiability of a Boolean combination of patterns by an instance satisfying a non-recursive DTD, which is
decidable [David 2008]. First, the DTD of the answer of the function f is rewritten to take into account the sibling
trees of the function call ?f and the DTD of the schema. The rewritten DTD τ ′ ensures in particular that (∗) for a
returned forest F , there exists a forest F ′ having the same multiset of the labels of roots as F and any tree of F ′ is
isomorphic to a sibling of ?f. Intuitively, the construction of the Boolean combination of patterns is done by looking
for patterns that can extend prefixes of patterns of the static constraints already mapped into the current instance. The
extraction of the Boolean combination ϕ′ from the static constraints is done as follows: Each pattern P is rewritten as
a disjunction ∨ϕP,P ′ (ν), where P ′ is a prefix of P and ν a valuation of the variables of P ′. A formula ϕP,P ′(ν) is in
the disjunction iff there is a mapping of P ′(ν) in the instance I that can be extended to each node n of P not in P ′ but
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whose parent is in P ′, such that n can be mapped to ?f. The definition of ϕP,P ′(ν) is the conjunction of subpatterns
[n]P (ν). A pattern [n]P is defined as follows:

— If the incoming edge to n is a child edge, then [n]P is the subtree rooted at n.
— If the incoming edge to n is a descendant edge, then [n]P is a root labeled with ∗ and its only subtree is the subtree

rooted at n. The edge between the root and the subtree is a descendant edge.

If P and P ′ are equal then ϕP,P (ν) is set to true.
The formula ϕ′ is satisfiable for reduced trees under τ ′ iff the function ?f can return.

5. EXPRESSIVENESS

In this section we compare the expressive power of BAXML, GAXML, AAXML, and TAXML, using the framework
developed in Section 2. We begin by comparing the languages relative to views retaining full information about the
current BAXML document, that we refer to as identity views. We then consider a more permissive version allowing to
hide some of the data and functions, thus providing more leeway for simulations.

Workflow system semantics. We begin by casting the semantics of BAXML, GAXML, AAXML, and TAXML in
terms of the workflow systems described in Section 2. For each specification S (for BAXML) or S|W (for GAXML,
AAXML and TAXML), the nodes of the workflow system are the finite prefixes of runs of S or S|W . The root is
the empty prefix, and its state label is the empty instance. The state label for each node other than the root is the last
instance in the prefix. For each non-root node ν, there is an edge labeled e from ν to node ν ′ if ν′ extends ν with a
single instance by event e that is a function call or the return of a such a call. The root has an outgoing edge to each
node consisting of a prefix of length one, labeled by a distinguished event init. Thus, transitions from the root simply
provide the initial instances of runs, and the infinite paths starting from children of the root correspond to the runs of
S|W . Because of the semantics of blocking runs, each path is extensible to an infinite path.

Note that there are alternative choices of workflow system semantics, and different goals may require different
choices. For example, for AAXML it may be natural to retain in the state, information on the current state of the
associated automaton together with the valuation of its parameters. This would simplify defining views where such
states are included in the observables.

5.1. Comparison with identity views

We first compare BAXML, GAXML, AAXML, and TAXML relative to the identity view on the states and events
of the workflow system (denoted id), thus preserving full information on the system. Observe that if a language W2

simulates W1 with respect to (id, id), this means that for each W1 in W1, there exists W2 in W2, such that W1 ∼W2,
i.e., W1 and W2 have exactly the same runs. So, this is a very strong requirement. Note also, that since id is the most
refined possible view of a workflow system, existence of simulation with respect to id would imply, by Lemma 2.5,
the existence of simulation with respect to any coarser view. Unfortunately (but not surprisingly), the three extensions
of BAXML models are incomparable relative to the identity view.

Given workflow specifications W1 and W2, we denote by W1 ≡W2 the fact that W1 and W2 have the same sets of
runs.

THEOREM 5.1. The workflow languages GAXML, AAXML and TAXML are incomparable relative to ↪→(id,id).

We prove the theorem by a sequence of lemmas. The first two state that GAXML 6↪→(id,id) {AAXML, TAXML}
(by showing that there is a GAXML schema for which no AAXML or TAXML schema has the same set of runs). In
both cases, we use the fact that, over data-free schemas (fixed vocabulary), the runs accepted by automata and by Past-
Tree-LTL formulas are closed under equivalence with respect to homomorphism. (homomorphisms apply here just to
the forests of the instances and ignore the mappings eval). Indeed, this follows from the fact that allowed transitions
between instances depend in both cases only on the patterns satisfied by the instances, and satisfaction of patterns is
preserved under homomorphism of data-free instances. Note that this is not the case for GAXML, as illustrated by the
example constructed in the proof of the next lemma.

LEMMA 5.2. GAXML 6↪→(id,id) AAXML. In other words, there exists a GAXML schema S|γ for which there is no
AAXML schema S′|A such that S|γ ≡ S′|A.

PROOF. We describe a GAXML schema S|γ for which no AAXML schema has the same set of runs. The DTD
of S imposes that its initial instance consists of a tree of root r with five children labeled by function calls to some
internal functions f1, ...,f4 and end. The argument query of each fi yields f for some internal function f and its
return guard is false. The argument query of f produces some internal function g and its return guard is also false.
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Instance I Instance J Instance K
r

?f1 ?f2 ?f3 ?f4 ?end

r

?f1 ?f2 ?f3 ?f4 ?end

r

?f1 ?f2 ?f3 ?f4 ?end
af1

?f

af2

?f

af3

?f

af4

?f

af1

?f

af2

?f

af3

?f

af4

?f

af1

?f

af2

?f

af3

?f

af4

?f
af

?g

af

?g

af

!g

af

!g

af af

?g

af

!g

af

!g

af

?g

af

?g

af

?g

af

!g

Fig. 10: Instances I , J and K.

Function g returns the empty message (its return guard is true). Function end has an empty argument query and a
return guard that is false. In γc, all call guards are true except for g that is: end must not be active.

Consider a prerun ρ0 of S|γ resulting from the following transitions:
(1) call all functions fi, 1 ≤ i ≤ 4;
(2) call all functions f in the workspaces of the fi;
(3) call 2 of the functions g in the workspaces of the functions f;
(4) call function end.
Clearly, this sequence of transitions is allowed by S|γ. Let I be the resulting instance. Now consider two transitions
from I :
(i) return one of the two running calls to g, yielding instance J ;

(ii) activate one of the two calls !g, yielding instance K.
Note that transition (i) is allowed by S|γ whereas (ii) is not because the guard of g is false in I . Let ρJ and ρK be the
extensions of ρ0 with transition (i) and (ii), respectively. Note that ρJ and ρK are homomorphically equivalent. The
instances I , J and K are represented in Figure 10.

Now suppose that there is an AAXML schema S ′|A equivalent to S|γ. Since ρJ is a prerun of S|γ, it must also be
a prerun of S′|A. Since runs satisfying AAXML schemas are closed under homomorphic equivalence, ρK must also
be a prerun of S′|A. This contradicts the equivalence with S|γ, since ρK is not a prerun of S|γ.

Finally, note that it is necessary to have four initial functions f1, . . . ,f4, yielding four occurrences of g in I . Indeed,
if there are only three initial functions (so three 3 g’s in I) , it is easy to see that the instances K and J are no longer
guaranteed to be homomorphically equivalent.

Observe that the proof does not use relative patterns in guards.
LEMMA 5.3. GAXML 6↪→(id,id) TAXML. In other words, there exists a GAXML schema S|γ for which there is no

TAXML schema S′|θ such that S|γ ≡ S′|θ.

PROOF. This follows by a similar observation as above: the set of runs definable by a Past-Tree-LTL formula
is closed under equivalence with respect to homomorphism (without data values). This is because the satisfaction
of a Past-Tree-LTL formula by a prerun is determined by the patterns satisfied by each instance in the prerun, and
homomorphic instances satisfy the same patterns. The details are straightforward and omitted.

The next two lemmas state that GAXML cannot simulate AAXML or TAXML. In both cases, we use the fact that
the history of the computation is not recorded in the current instance.

LEMMA 5.4. AAXML 6↪→(id,id) GAXML. In other words, there exists an AAXML schema S|A for which there is
no GAXML schema S′|γ such that S|A ≡ S′|γ.

PROOF. Consider the following AAXML schema S|A. The DTD of S enforces that the initial instance consists of
one of the function calls !f or !g under the root, where f and g are non-continuous internal functions. There are no
data values. A call to f returns !g and a call to g never returns (so all runs are blocking). The automaton A enforces
that we start in a state qinit (with formula true), move to qcall-f (with formula stating that ?f is a child of the root),
move to qend (with formula true). This imposes that if we start with f, we call f, receive !g, then call g and block;
but if we start with g, we immediately block. Now suppose towards a contradiction that there exists a schema S ′ and
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a guard constraint γ so that S ′|γ ≡ S|A. Observe that in the run starting from f under the root, we reach an instance
I that consists only of g under the root and then g is called in I . Now use I as an initial instance. Then the guard of g
allows calling g from I , a contradiction.

LEMMA 5.5. TAXML 6↪→(id,id) GAXML. In other words, there exists a TAXML schema S|θ for which there is no
GAXML schema S′|γ such that S|θ ≡ S′|γ.

PROOF. The proof is the same as for AAXML 6↪→(id,id) GAXML, where instead of the automaton A we use a
constraint θ ∈ T stating that the initial instance has !f under the root.

LEMMA 5.6. TAXML 6↪→(id,id) AAXML. In other words, there exists a TAXML schema S|θ for which there is no
AAXML schema S′|A such that S|θ ≡ S′|A.

PROOF. The proof is based on the fact that a Past-Tree-LTL formula can “remember" a data value even after
it disappears from the instance, using an existentially quantified global variable, while this is not possible for an
automaton (all parameters of a state must occur in the present instance). Specifically, consider a TAXML schema S|θ
whose initial document consists of a single function call !f under root r. A call to f produces a workspace consisting
of an external function call !g that returns a single data value. The function f returns a call to another external function
!h that again returns a single data value. The Past-Tree-LTL formula θ imposes the following sequence of calls and
returns:

(1) f is called
(2) g is called
(3) g returns a value u
(4) f returns !h
(5) h is called and returns the same value u returned in step (3).

Now suppose that there exists an AAXML schema S ′|A describing the same sequence. The state of A after step
(4) cannot have any parameters, since the current instance has no data value. ThenA cannot impose that the data value
returned in step (5) is the same as that in (3). Thus, no such automaton exists.

The next lemma uses the fact that LTL is weaker than automata on finite words [Libkin 2004].

LEMMA 5.7. AAXML 6↪→(id,id) TAXML. In other words, there exists an AAXML schema S|A for which there is no
TAXML schema S′|θ such that S|A ≡ S′|θ.

PROOF. We use the following AAXML schema S|A . The DTD states that the root is r and it has two children,
namely !f or ?f and !g or ?g. The function f is a continuous internal function that returns an empty answer. The
function g never returns. From qinit, the automaton enforces that f is called, returns its answer, and is called again to
get to a state qchoice. In that state, one can either return f and go back to qinit or call g and get to state qblock. Consider
the four possible instances of S. We denote them by the symbols a (children of r are !f, !g), b (they are ?f, !g), c
(they are ?f, ?g), and d (they are !f,?g). Observe that the set of preruns of S|A is the prefix-closureL of the language
{(ab)2nc | n ≥ 0}. Note that L cannot be expressed by FO on words because it is not counter free [Diekert and Gastin
2008], so it can neither be expressed by LTL [Libkin 2004]. Now suppose, towards a contradiction, that there exists
a Past-Tree-LTL schema S ′|θ equivalent to S|A. We show that we can construct from S ′|θ an LTL formula ϕ that
defines L. Apart from θ itself, the formula ϕ must capture the valid transitions among instances, as well as the DTD
∆ of S′. Thus, ϕ is the conjunction of the following LTL formulas:

ψθ obtained from θ by replacing each pattern p by the disjunction of the symbols corresponding to the instances
satisfying p (for example, for the pattern stating the existence of ?f, the disjunction is b ∨ d), and replacing Past-
LTL operators with LTL ones;

ψ` is the conjunction of constraints on consecutive instances defining the transition relation ` (for example, one such
constraint is G(a→ X(b ∨ d)));

ψ∆ Note that ∆ must allow instances a, b, c that appear in runs of S|A. Thus, ∆ defines either {a, b, c}, the set of
instances of S′|θ, or {a, b, c, d}. If ∆ defines {a, b, c}, then ψ∆ is G(a ∨ b ∨ c). If ∆ defines {a, b, c, d}, then ψ∆

is true.

Let ϕ = ψθ ∧ ψ` ∧ ψ∆. It is easy to check that ϕ is an LTL formula defining L, contradiction.

This concludes the proof of Theorem 5.1.
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5.2. Comparison with projection views

Given the negative result of Theorem 5.1, we next consider simulation relative to views allowing more leeway in
the simulating system. Specifically, the view remains the identity on the simulated system, but allows the simulating
system to use additional data and functions. We refer to the latter as a projection view and denote the class of projection
views by π.

Specifically, let S be a BAXML schema and Σ0 (Σ0 ⊂ Σ) and F0 (F0 ⊂ F) be subsets of the tags and functions of
S (the visible symbols) such that, in every instance satisfying the DTD of S, whenever a node has tag a 6∈ Σ0, none of
its descendants has a label in Σ0 or in F0. Note that, since the view used for the simulated schema is the identity, the
visible tags and functions used in the simulation results are precisely those of that schema.

The projection4 πΣ0,F0
([S]) is defined as follows. For a state I of [S] (and for any instance), the projection is

obtained by removing all nodes whose label is a tag not in Σ0 or a function not in F0 and their descendants. We
also remove the workspaces whose corresponding function calls have been projected out. The projection of an event
!f(F ) is ε for f 6∈ F0 and !f(πΣ0 ,F0

(F )) for f ∈ F0, and similarly for ?f(F ). In addition, all projections preserve the
special events init and block. The projection view is defined in the same way for BAXML augmented with constraints
(GAXML, AAXML, and TAXML).

Our main result is that, with projection views, the powerful control mechanisms of GAXML can be simulated by
BAXML alone. For AAXML and TAXML, we need a minor restriction forbidding the presence of sibling calls to the
same external function, i.e. the occurrence of two sibling nodes labeled ?f, for the same external function f (this can
be enforced by the DTD). We denote these restrictions by AAXMLsib and TAXMLsib.

THEOREM 5.8. W ↪→(id,π) BAXML for W ∈ {GAXML,TAXMLsib,AAXMLsib}.

PROOF. We describe the three simulations needed to establish the result.

Simulation of GAXML by BAXML

We present the simulation in two stages: first, we demonstrate that the return guards can be removed from GAXML
schema without losing expressiveness. Then, we demonstrate that a GAXML schema where all return guards are true
can be simulated by a BAXML schema. We denote the set of GAXML schemas whose return guards are set to true by
GAXMLno-ret.

LEMMA 5.9. GAXML ↪→(id,π) GAXMLno-ret.

PROOF. We explain how we can remove the return guards of GAXML schemas.
Consider a GAXML schema S|γ. Due to Lemma 2.5 (Composition Lemma), and the fact that the set π of views is

closed under composition, it is sufficient to show how to eliminate the return guards one function at a time.
Let f be an internal function of S|γ. Intuitively, we simulate the check of the return guard of a workspace of ?f

using a function call !check-rgf in the same workspace, whose call guard checks the return guard of f. We wish to
ensure the following property, while maintaining the requirements of w-bisimulation:

(+) the call to ?f can return only if the call to !check-rgf has been activated in its workspace (signaling satisfaction
of the return guard) and no other transition visible in the workspace occurred in the meantime.
Enforcing (+) involves several subtleties, which we discuss in some detail in this first simulation proof. The same

subtleties are addressed implicitly in the other simulations.
We explain how (+) is enforced in several stages. We begin with a first attempt, that will have to be refined in order

to satisfy the requirements of w-bisimulation.
Recall that, by definition, the answer of a call to f cannot be returned as long as the workspace of the call to f

contains active function calls. Consider the following modification of the GAXML schema S|γ:
(i) the set of functions is augmented with an internal, non-continuous function check-rgf with empty answer, whose

call guard checks that the return guard of f holds, and that the workspace of the call to f contains no active function
calls;

(ii) the argument query of f is modified so that its initial workspace contains a call to !check-rgf ;
(iii) for every function g, its call guard γc(g) is replaced by γc(g) ∧ α where α checks that, if !g occurs in a workspace

of f, then !check-rgf also occurs in the same workspace (this can be done with relative patterns);
(iv) the return query of f is augmented with the rule

af//!check-rgf −→ {error}

4Recall that [S] denotes the semantics of S, i.e. the workflow system it defines.
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(v) the set of constraints of S is augmented to forbid the occurrence of error.
(vi) the return guard of f is set to true;

Let S1|γ1 be the resulting GAXMLno-ret schema. It easily seen that, whenever the answer of a call to f is returned in
S1|γ1, the return guard of f in S|γ is satisfied. Indeed, (ii) ensures that !check-rgf occurs initially in the workspace
of the call, (iv) and (v) ensure that the answer cannot be returned before !check-rgf is activated, the call guard of
check-rgf ensures that the return guard of f in S|γ holds when check-rgf is activated, and (iii) together with
the call guard of check-rgf ensure that no transition may occur in the workspace after check-rgf is activated.

While S1|γ1 seems to satisfy the intuition of the desired simulation, it is not quite satisfactory. Consider the view
V ∈ π for which the visible functions and tags are those ofS, and consider the workflow systems [S|γ] and V ([S1|γ1]).
We would like to have a w-bisimulation relation B from [S|γ] to V ([S1|γ1]). In particular, if [S|γ] has no blocking
states, neither should V ([S1|γ1]). However, the above construction may yield blocking states in [S1|γ1] (so also in
V ([S1|γ1])), even if no such states occur in [S|γ]. This is due to the fact that the activation of !check-rgf nonde-
terministically freezes the workspace in its current state. Although the return guard of f is satisfied at that point, the
constraints of S may prohibit the instance resulting from the return, thus inhibiting it. This may result in a blocking
state in [S1|γ1], even if no such state occurs in [S|γ].

To deal with the issue of blocking states, we must allow unblocking a workspace in which !check-rgf has been
activated, and repeating the process. Note that we cannot simply make !check-rgf continuous, because the presence
of !check-rgf prevents the return of the answer, by (iv). Instead, we can introduce an intermediate function, say
rg-okf , that is returned by check-rgf and can in turn generate another call !check-rgf . In more detail, let
rg-okf be an internal, non-continuous function, and modifycheck-rgf so that its answer returns the call !rg-okf .
The call guard of !rg-okf is true and its answer returns a call !check-rgf . Let S2|γ2 be the resulting schema. It is
clear that S2|γ2 prevents the undesired blocking encountered in S1|γ1.

However, we are not quite done, because the repeated trials yield in V ([S2|γ2]) infinite sequences of silent transi-
tions. These are due to infinite alternations of calls to !check-rgf and !rg-okf , without any intermediate visible
function call or return. This violates the definition of w-bisimulation for [S|γ] and V ([S2|γ2]), since no such sequences
exist in [S|γ] (in fact [S|γ] has no silent transitions at all). To circumvent this problem, we wish to ensure that some
visible transition occurs between each return of the answer to ?check-rgf (yielding !rg-okf ) and the next call
to !rg-okf . Since attempts at returning the answer to f need only be made when no visible active calls exist in the
workspace, it is sufficient to require the occurrence of at least one visible function call return. To detect such returns,
we use a new auxiliary function return, and modify the answer queries of all visible functions so that every answer
contains a call to !return. To allow visible functions to be activated following the activation of !check-rgf , we
remove the requirement imposed by (iii) above that their call guards require the presence of !check-rgf . However,
now we must ensure that the answer of f is not returned until !check-rgf is again activated, checking that the return
guard of f still holds. This can be done by inhibiting the return of the answer of f while !return is present, similarly
to (iv)-(v) above. In more detail, we modify S2|γ2 as follows:

(a) add the function return as an internal, non-continuous function returning the empty answer, and whose call guard
requires the presence of !check-rgf ;

(b) modify the return queries of all visible functions so that their answer includes a call !return;
(c) restore the original guards of visible functions (undo (iii) above);
(d) modify the call guard of rg-okf to require the presence of !return;
(e) augment the call guard of check-rgf to require the absence of !return or ?return.
(f) add to the answer query of f the rule:

af//!returnf −→ {error}

Let the resulting schema be S3|γ3. Note that, due to (b), the new function return affects the entire instance, not just
the workspaces of f. When it occurs outside a workspace of f, its call guard cannot hold, so the call is never activated.
Its presence is however harmless because it does not cause transitions and is not visible in V ([S3|γ3]).

We claim that S|γ and V (S3|γ3) are now w-bisimilar. More precisely, let B be the relation from the nodes of [S|γ]
to those of V ([S3|γ3]) defined as follows. Recall that both [S|γ] and V ([S3|γ3]) have as root the empty run, which we
denote ρ∅. The relation B is the smallest relation satisfying the following:

—B(ρ∅, ρ∅)

— if B(s1, q1) and s1
e
→ s2, q1

e
→ q2 for some visible event e, then B(s2, q2).

From the above discussion it follows that B is a w-bisimulation relation. This completes the proof.
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!rg-okf ,!g

· · ·
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?return, !check-rgf
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return of g

call of g

call of check-rgf

Fig. 11: Tree illustrating some of the possible actions in the simulation of the return of the function f in Example 5.10

Example 5.10. To illustrate the construction in the previous proof, we consider the following simple example.
Let S|γ be a GAXML schema, and suppose an instance I is reached that contains an activated call to a function f.
Suppose the workspace of f consists of just one unactivated function call to a visible function, !g. We assume that the
return guard of f and the call guard of g are satisfied by I . Figure 11 gives an overview of the possible sequences of
function calls and returns in the simulation of S|γ by S3|γ3.

We next show that GAXML without return guards can be simulated by BAXML.

LEMMA 5.11. GAXMLno-ret ↪→(id,π) BAXML.

PROOF. Let S|γ be a GAXMLno-ret schema. We construct a BAXML schema S ′ that simulates S|γ. Intuitively,
we check the guard of f by adding to the argument query of f additional rules that check satisfaction of each pattern

22



of γc(f) and insert a corresponding tag in the workspace, signaling satisfaction of the pattern. Specifically, for each
pattern P of γc(f), we add to the argument query of f a rule P → {satP } where satP is a new tag. Note that, if P
is a relative pattern, self is mapped to the same node when it is viewed as the body of a relative query. Finally, the
DTD of the workspace is modified to allow only subsets of tags satP corresponding to truth assignments satisfying
γc(f). This ensures that !f can only be activated if γc(f) is satisfied. Remark that this construction works only for
internal functions, as external function calls do not produce a workspace. To deal with external functions, the schema
is first modified to ensure that every new occurrence of an external call !f is accompanied by a sibling !lockf . This
is done using the DTDs (including those of answers to external functions), as well as by modifying the answer queries
of internal functions by adding to every occurrence of !f a sibling !lockf .

The function !lockf is internal, non-continuous, and returns the empty answer. It has several roles:
— checking satisfaction of the guard of f; this is done as above, using the workspace of lockf ;
— checking that the static constraints would be satisfied after the activation of !f. This is done by rewriting the con-

straints in order to allow mapping ?f to ?f or to ?lockf and !f to !lockf .
Static constraints require that !f can only be activated if it has a sibling ?lockf , ensuring that its guard and con-
straints are true. In addition, ?lockf acts as a lock disallowing any action other than the activation of the sibling !f.
Specifically, we must prevent the following actions as long as ?lockf is present:
— activation of another call !lockg for an external function g; this is prevented by having the call guard of each

function lockg prohibit the existence of any other active call ?lockh in the instance.
— activation of an internal function; to prevent this, we add a new, internal, non-continous function activated

and modify the argument queries of all internal functions in order to force the inclusion of a call !activated in
their answer. A constraint prohibits the simultaneous occurrence of !activated and ?lockf in the instance. The
function activated returns the empty answer.

— return of a function call; similarly to the proof of Lemma 5.9, we add a new internal, non-continuous function
return and modify the return queries of internal functions and the return DTD’s of external functions so that their
answers contain a call !return. A constraint prevents ?lockf and !return from occurring simultaneously. The
function return returns the empty answer.

Let S′ be the resulting BAXML schema. Let V ∈ π be the projection view for which the visible tags and events are
those of S (and recall that init and block, are always visible). As in the proof of Lemma 5.9, let B be the smallest
relation from the nodes of [S|γ] to those of V ([S ′]) satisfying the following:
—B(ρ∅, ρ∅)

— if B(s1, q1) and s1
e
→ s2, q1

e
→ q2 for some visible event5 e, then B(s2, q2).

A straightforward case analysis shows that B is a w-bisimulation relation from [S|γ] to V ([S ′]). The only non-trivial
aspect of the simulation concerns the functions lockf . It is critical to note that every activation of !lockf leads to a
successful call to !f (so a visible event). This ensures that no extraneous blocking occurs in S ′, and also that there are
no infinite chains of silent transitions. Thus, B is indeed a w-bisimulation.

In summary, we have shown that
GAXML ↪→(id,π) GAXMLno-ret

and GAXMLno-ret ↪→(id,π) BAXML

By Lemma 2.6 it follows that GAXML ↪→(id,π) BAXML. Since this is the first application of the lemma, we explain
it in detail. The lemma is applied with V1 = V2 = id and V = V3 = π. Since π = id ◦ π we have that GAXML
↪→(V1,V2◦V) GAXMLno-ret and GAXMLno-ret ↪→(V2,V3) BAXML. By Lemma 2.6, GAXML ↪→(V1,V3◦V) BAXML.
Since π ◦ π = π it follows that GAXML ↪→(id,π) BAXML.

Simulation of AAXMLsib by BAXML

Let S|A be an AAXMLsib schema with functions F0 and tags Σ0. We outline the construction of a GAXML schema
S′|γ that simulates S|A relative to projection views. Since GAXML can be simulated by BAXML relative to projection
views, and since projection is coarser than the identity on GAXML, Lemma 2.6 implies that AAXMLsib can be
simulated by BAXML.

5Recall that init and block are always visible events.
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Without loss of generality, we can assume that the static constraints of S consist just of a DTD. Indeed, the data con-
straints can be easily pushed into the pattern automatonA. As described in the proof of Theorem 4.4, the satisfaction of
an automatonA by a prerun can be checked incrementally by maintaining the states of the automaton reachable in the
prerun, together with the valuations of their parameters. The simulation by a GAXML schema essentially implements
the same incremental check. Thus, S ′|γ must alternate the simulation of events of S|A (function calls and returns)
with validity checks and updates of the state and valuation information of A. The simulation is quite intricate and we
outline the main points, providing intuition on the more subtle aspects.

The representation and maintenance of the state and valuation information forA is straightforward. We use a subtree
with root states, and one child !q for each state q of A. Valuations of X̄q are kept in adjacent subtrees, each with root
label Vq . The current valuations are marked by a function !current (internal, noncontinuous, with empty answer).
An evaluation of !q returns a new set of valuations, also subtrees with root Vq , but now marked with another function
!new. The update is completed by having the functions !current vanish and the functions !new turn into !current.
One update round is controlled by a function update whose activation enables the update and blocks all transitions
not involved in the update. Other locks ensure that update can be activated only when the simulation of one transition
of S is completed. We can also enforce that the update round is performed only once between transitions.

The main difficulty in the simulation concerns the function calls and returns, and their timing relative to the update
round outlined above. Specifically, the following raise technically intricate points:

(i) ensuring that validity of a function call or return is checked for each event (in particular, this requires preventing
multiple transitions skipping intermediate validity checks and state/valuation updates)

(ii) checking validity of a candidate event of S with respect to the DTD and A without actually carrying out the event
(in particular, one must prevent infinite branches of ε-transitions caused by unsuccessful guesses of the next valid
event)

The sequencing needed for (i) and (ii) is enforced by a locking mechanism implemented by auxiliary functions.
Before outlining the main aspects of the simulation, we make some useful technical remarks.

Valid automata transitions vs. static constraints Given the current state/valuation information forA and a next instance
I of S, validity with respect to A of the transition to I can be expressed in S ′ by a formula ϕnext. The formula ϕnext
is the disjunction ∨q,q′ ψnext(q, q

′), where q and q′ are states of A, and ψnext(q, q
′) checks that q is a current state, the

formula Υ(q′) holds, and the equality constraints between some valuation of X̄q and a possible next valuation of X̄q′

provided by Υ(q′) are satisfied. Note that ϕnext is not directly expressible as a static constraint in S ′, because these
are Boolean combination of independent patterns, whereas ϕnext uses parameterized patterns sharing free variables.
To overcome this gap, some pre-processing is needed for each transition. Specifically, for a formula ϕnext with free
variables X, candidate valuations for X are generated and the patterns in ϕnext are augmented so that X is bound
in all patterns to the same valuation. The generation of the candidate valuations depends on the action leading to the
transition (we omit the details). This reduces evaluation of ϕnext to evaluation of a Boolean combination of independent
patterns, so a static constraint of S ′. In the following, we will use for simplicity ϕnext as a static constraint, bearing
in mind that its evaluation requires the above pre-processing phase. Parameterized queries used in the automaton A
yield another difficulty for the initial state. To ensure that the initial document satisfies the parametrized query of the
initial state, we assume that there is only one valuation of the initial state represented in the initial document. This way
the parametrized query can be simulated by a Boolean combination of patterns. The other valuations are built at the
beginning of the simulation by the activation and the return of a function call !init-valuation.

Rewriting patterns The patterns used in S|A have to be rewritten when used in S ′|γ. Indeed, since an instance I ′ of
S′ contains the corresponding instance I in S|A, a pattern can be satisfied in I ′ and not in I . The main problem is due
to descendant branches and the wildcard used in patterns. To resolve this, each tag in Σ0 used in I ′ is adorned with a
child labeled real. The patterns are rewritten using these markings, to ensure that each pattern of S|A used in S ′|γ is
mapped to nodes in I rather than to hidden nodes used in the simulation.

Rewriting queries The simulation introduces new data values in the trees. These data values can be matched by patterns
in the queries, such as q = ∗//$x. To avoid this, we first ensure by static constraints that each node labeled by a tag
appearing in the projected trees has a child labeled real, as explained previously. Queries are rewritten in order to
access only data values accessible using nodes having a child labeled real.

Extending GAXML with global return guards In our simulation, we allow return guards that can check a global property
of the instance. This is an extension of GAXML, since in GAXML return guards of function calls are only able to
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check properties of the workspace. In our context, we can simulate global return guards. This is done by adding to
the workspace of each function f using a global return guard γr(f) a function check-return-guardf . The call
guard of this function is γr(f). The new local return guard of f simply checks that check-return-guardf has
returned. This works in the context of our simulation because we only use it on reachable instances I of S|γ in which
satisfaction of γr(f) implies that the return of the corresponding call to f leads to the only valid transition. Note
that otherwise, a reevaluation of check-return-guardwould have to be done after each other valid transition by
using a mechanism like in the proof of GAXML without return guard.

We next outline the simulation of the events of S|A, making use of the above observations. In all cases, the simula-
tion involves the following steps:

(1) Acquire a lock for a function call or return. The lock initiates an attempt to carry out the associated event.
(2) Check that the event corresponding to the lock would result in a valid transition of S|A.
(3) In the affirmative, the locked event is carried out and the lock released. Otherwise, the lock is also released, but

in a manner that prevents another locking attempt before a valid event occurs. This prevents infinite branches of
ε-transitions.

We now describe the specific simulation used for the activation of a function call, the return of an internal function
call, and the return of an external function call.

Activation of a function call The activation of an internal function !f is controlled using a sibling function !lockf .
As described above, this has a dual role: it acts as a lock, and it checks whether the activation of !f would re-
sult in a transition allowed by the automaton. If so, it returns a function call !activate-f. Otherwise, it returns
!notactivate-f. The call !f cannot be activated unless !activate-f occurs as a sibling. The functions !lockf

and !activate-f also prevent other transitions from occurring during the attempt to activate !f. To this end, one can
guarantee that there is at most one node labeled ?lockf , (for some f) in an instance, i.e. at most one lock. This is en-
forced by the guard of lockf . Moreover, no active function call can return its answer while ?lockf , !activate-f,
or ?activate-f occur. As described in the proof of Lemma 5.11 , it is easy to ensure that every occurrence of !f is
always accompanied by a sibling !lockf following each visible transition.

To ensure that !f is activated whenever !activate-f is activated, the guard of activate-f ensures that this
function cannot be called while it still has a sibling !f. The function call !notactivate-f ensures that !lockf

cannot be called more than once between two valid transitions. It is activated during the maintenance phase and
returns !lockf (needed for the next attempt to call !f, following another transition). The constraints impose that
activate-f handshakes with the lock for the maintenance of the states and valuations.

Figure 12 summarizes the possible sequences of activations in the simulation of an internal call to f. The role
of the function wf,a will be explained shortly. The nodes represent the functions that occur as siblings of the node
labeled ?f or !f. . The possible sequences for an external call are the same except the function wf,a is replaced by
certificatef,a.

Return of an internal function call We describe the simulation in several stages. The basic locking mechanism is
simple. The lock initiating an attempted return of a function call ?f is implemented using a function !lockw present
in the workspace. If the call return to ?f would result in a valid transition, the lock is released and the result is returned.
Otherwise, the lock is released and another function !wait is activated in order to inhibit any locking attempt until
another transition has been successfully completed.

Checking validity of the call return is much more complex. It is carried out using the workspace of an auxiliary
function checkf,a that is a sibling to ?f (here a is the tag of the parent of ?f, needed to check the DTD). A difficulty
is to make sure the activated occurrence of checkf,a is indeed a sibling of the call ?f whose workspace is locked
(recall that patterns cannot detect the link between a call and its workspace). Assume for the moment that this is
achieved. Then checkf,a works as follows. First, it generates in its workspace a copy of its sibling subtrees, (these
are “almost" isomorphic copies of the originals, keeping sufficient information for checking validity, see below). This
copy is initiated by the activation of copy-sibling appearing in the workspace of checkf,a. Next, it generates in
the same workspace the answer to the locked call ?f. In the following stage, four functions are used to test satisfaction
or violation of the DTD (ok-dtd and notok-dtd) and the automaton constraint (ok-A and notok-A) by the
result. Specifically, for the first two the test is done using the DTD of S ′ and for the last two using their guards. To
test satisfaction of the automaton constraint using guards, the formula ϕnext has to be rewritten into a disjunction of
formulas, each of which decomposes the patterns into a part that applies to the workspace of checkf,a (mimicking
the subtree rooted at the parent of the call ?checkf,a, labeled a) and another to the rest of the instance. If the result is
positive (the transition is valid) then a flag ok-return is turned on in the workspace of ?f. The guards and constraints
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!f !notactivate-f

return of lockf

call of lockf

Fig. 12: Some of the actions for the simulation of the activation of the call to f

then force the answer to the call ?f to be returned, and ?checkf,a returns the empty answer. If the result is negative,
the function !wait is activated in the workspace of ?f (see above), and These functions are used to allow a new check
of this function after a valid transition as detailed be.

We next explain how to generate !checkf,a as a sibling of the call ?f whose workspace is locked. The process
starts at the time when !f is activated. We ensure that each function call !f has as a sibling a call !wf,a (where a is
the tag of the parent of the function call). When the call to !f is made, its workspace includes a function !init that
uniquely marks the most recent function call (and later vanishes). Additionally, a new identifier α is generated in the
workspace of ?f (more on this in the next paragraph). Then the function !wf,a is called and copies the identifier α from
the workspace of ?f marked by !init. Note that the only function call !wf,a without a sibling !f is the sibling of the
most recently activated call ?f. Once the simulation of the call to !f is completed, !init vanishes but the workspaces
of ?f and ?wf,a remain linked by the identifier α. When the return of the call ?f is simulated, the call ?wf,a sharing the
same id α with the workspace of ?f returns as answer the desired function call !checkf,a. If due to a lock the return
of f is disallowed, the call to !wf,a has to be activated again. The function checkf,a returns the function calls !wf,a

and !reinitialize. The second function ensures that its sibling !f has as sibling !wf,a after the reinitialization.
The identifier α in the previous paragraph can easily be generated by an external function that returns a new value.

If one wishes to avoid using external functions in the simulation, the identifier can be represented by a chain of calls
to two internal functions, encoding the binary representation of an integer. The bookkeeping is more complicated in
this case, since comparing identifiers is no longer an atomic operation. In particular, identifiers have to be destroyed
and reconstructed (details omitted). Moreover, the identifiers have to be refreshed after each valid transition to ensure
that the size of each instance of the simulation remains polynomial in the size of the current instance.
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Recall that one of the roles of !checkf,a is to copy the relevant sibling subtrees of ?f. We explain briefly how this
is done. We enforce that each tag of Σ0 has a child function call !copy-to. As remarked earlier, the copy performed
loses some information. The loss concerns the exact number of sibling calls ?g to an internal function g. Indeed, it is
not possible to fully replicate this information because of the limitations of patterns. Fortunately, multiple occurrences
of sibling calls to the same function are not relevant when they occur as internal nodes in sibling subtrees of ?f. Thus,
only one representative of such calls is copied. This does not affect the simulation, since trees with activated function
calls cannot be merged, and patterns cannot count such occurrences. For calls ?g occurring as siblings of ?f, their
number is relevant to satisfaction of the DTD after the call return, but only up to the maximum integer used in the
DTD of S. The number of occurrences up to this maximum can be signaled using additional function calls whose
activation is constrained by the DTD of S ′. For example, the DTD may stipulate that a function !eq(?g=m) may be
activated iff the number of occurrences of siblings ?g is m.

Copying a tree is done by mutually recursive calls between functions residing in the source tree (copy-to,
in-progress, copy-values-to, done-to) and in the target tree (copy-from, copy-values-from,
done-from). The copy is done in a depth-first manner. The copy-to indicates the parent node to copy. The func-
tion call !copy-from copies this node with child labeled !copy-from. The function call !in-progress indicates
that copying is in progress for the subtrees of the parent node of this call. The function call copy-values-to in-
dicates that the function calls and the sibling values of this function have to be copied. It implies that the subtrees are
entirely copied, which is signaled by the function !done. The copy of the function calls is tricky, since copying the
activated function calls has to be done before the others (to guarantee that partially copied subtrees are not merged).
The function calls !done-from and !done-to are reinitialized to !copy-to after each valid transition.

Figure 13 summarizes the tree of actions done to check the return of a call. At each node, we represent the function
calls siblings of the call ?f, the function calls in the workspace of ?f and the function calls in the workspace of
checkf,a when it is in the simulation.

Return of an external function call This is the most subtle part of the simulation. Observe first that it is not possible to
take a lock using a marker returned by an external function call ?f, because two calls to ?f at different locations in
the document may return exactly the same forest and be indistinguishable by the constraints of the GAXML schema.
Moreover, it is not possible to take a lock prior to the return of ?f, because one cannot know if ?f can return an answer
satisfying the constraints (recall that this is undecidable, see proof of Theorem 4.6). If a lock is taken when ?f cannot
return, this leads to a blocking run in an instance of S ′|γ whose projection in S|A is not blocking, which violates
the definition of simulation. Instead, the idea of our simulation is to use, for every call ?f to an external function, an
associated sibling call to an internal function certificatef,a such that:

(i) if ?f may return, then ?certificatef,a may return a flag !returnf . The function !returnf compels ?f to
return and also acts as a lock preventing other transitions until the next cleaning stage.

(ii) the call ?certificatef,a may remain activated until the next cleaning stage, in which case ?f is not allowed to
return. During the cleaning stage, the call ?certificatef,a returns and is reactivated.

Note that, even if ?f can return, ?certificatef,a does not necessarily return, unless the return of ?f is the only
possible next transition. Otherwise, the cleaning stage may be reached without a return of ?certificatef,a or ?f,
by simulating some other transition. If ?certificatef,a does not return and the cleaning stage is not reached, then
the run is blocking, both in S|A and in S ′|γ.

We next elaborate on (i). To mimick ?f, the function certificatef,a uses in its workspace an external control
function fakef . The workspace also contains additional information so that ?fakef may return in the context of
the workspace iff ?f may return in the context of its original location. Specifically, the workspace contains a copy
of the sibling subtrees of ?f (this is done as in the previous simulation). In addition, it contains information on the
evaluation of the patterns in ϕnext on the portion of the current instance excluding the siblings of ?f. The partial
evaluations of the patterns together with the siblings allow expressing within the workspace constraints on the return
of ?certificatef,a that are equivalent to those on the return of ?f (the DTD and valid transition in A). This
ensures that ?fakef may return iff ?f may return. If ?fakef returns, then ?certificatef,a returns the flag
!returnf as desired. To prevent multiple returns to ?fakef at different locations in the document, the answer to
?fakef contains a flag !return-fake-f that is not allowed to appear twice in the document. To ensure this, the
workspace of ?certificatef,a also contains a unique id (generated by an external function). A constraint forbids
two occurrences of !return-fake-f with distinct workspace id’s. Note that the id technique could not be used to
implement directly a lock for the return of ?f, because such an id could not be erased from the instance and this could
lead to faulty simulations. Indeed, the id’s could inhibit merging of subtrees whose projections would otherwise be
merged.
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Fig. 13: Some of the actions in the simulation of the return of the call to the internal function f
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Fig. 14: Some of the actions for the simulation of the return of the call of the external function f

Finally, if ?certificatef,a does not return during the current round, its workspace is reconstructed during the
cleaning stage in order to reflect changes in the instance.

Figure 14 summarizes the tree of actions performed to check the return of an external call. At each node, we repre-
sent the function calls occurring as sibling of the call ?f, then the function calls in the workspace of certificatef,a

when it exists.

Example 5.12. We illustrate the main elements of the above simulation using a simple example. Consider the
following AAXML schema S|A. Its static constraints consist of the following DTD:

r −→ |b| = 1 ∧ |c| = 1

b −→ |a| = 1 ∨ |!f| = 1 ∨ |?f| = 1

S has one internal function f, whose argument and return queries always produce a single node labeled a. The
automaton A has three states, s0, s1, s2, with no associated variables. The initial state is s0 and there are transitions
from s0 to s1 and from s1 to s2. The formula associated with the initial state s0 checks for the presence of !f ,
the formula for s1 checks for the presence of ?f and the formula for s2 checks for the absence of ?f. Thus, the
only possible sequence of events is the activation of !f and the return of ?f. We describe how the two transitions
are simulated by the GAXML schema S ′|γ with global return guards constructed in the proof. The initial AAXML
instance is the following:

r

b

!f
The shape of the initial document for S|A is ensured by a pattern associated with s0 (having the same tree represen-

tation as the instance above). The corresponding initial instance for the GAXML schema S ′|γ is the following: This
is enforced by the static constraints of S ′. For readability, we omit in figures the function calls copy-to introduced
in the full proof to facilitate copying trees in the simulation (they should appear under every visible node). Also, all
visible nodes are circled.
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r

real states

! s 0 ! s 1 ! s 2 ! init-valuation Vs0

!current

b

real !f ! lock f

The simulation consists of the following steps.

(1) Call and return of !init-valuation. This function returns the valuations for the variables associated with s0.
In this example, it returns the empty valuation, since s0 has no associated variables.

r

real states

! s 0 ! s 1 ! s 2 Vs0

!current

b

real !f ! lock f

(2) Call and return of !lockf . This function takes a lock on the system and checks if the activation of !f is allowed by
the constraints of S|A. In our example, the activation is possible and the call to lockf returns !activate-f.

r

real states

!s 0 !s 1 !s 2 Vs0

!current

b

real !f !w f,b !activate-f

(3) Call of !f.

r

real states

!s 0 !s 1 !s 2 Vs0

!current

b

real ?f !w f,b !activate-f

af

real a

real

!lockw !wait !init !identifier

(4) The next few steps prepare the return of the call ?f. First, a fresh identifier for the workspace is created by a call
to the external function identifier. For more clarity, we use an integer to represent the identifier.

r

real states

!s 0 !s 1 !s 2 Vs0

!current

b

real ?f !w f,b !activate-f

af

real a

real

!lockw !wait !init identifier

1

(5) A call of !wf,b copies the identifier of the workspace af using the fact that !init occurs in it.
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r

real states

!s 0 !s 1 !s 2 Vs0

!current

b

real ?f ?w f,b !activate-f

af

real a

real

!lockw !wait !init identifier

1

awf,b

identifier

1

(6) The workspace of f is cleaned by activating and returning the function call !init.

r

real states

!s 0 !s 1 !s 2 Vs0

!current

b

real ?f ?w f,b !activate-f

af

real a

real

!lockw !wait identifier

1

awf,b

identifier

1

(7) Call of activate-f. This internal function can return only if there is no function call to current and there is
some function call to new. This completes the simulation of the activation of f. It is followed by the simulation
of the transition of the automaton, from s0 to s1.

r

real states

!s 0 !s 1 !s 2 Vs0

!current

b

real ?f ?w f,b ?activate-f

af

real a

real

!lockw !wait identifier

1

awf,b

identifier

1

aactivate-f

(8) In the general simulation, the function calls !s0, !s1, !s2 are activated and returned to create new valuations for
the associated variables. Since in our example there are no variables associated to states, the empty valuation
corresponding to the state s1 is represented by the subtree Vs1

with the function call !new.

r

real states

!s 0 !s 1 !s 2 Vs0

!current

Vs1

!new

b

real ?f ?w f,b ?activate-f

af

real a

real

!lockw !wait identifier

1

awf,b

identifier

1

aactivate-f
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(9) The preceding valuations are marked as deleted. This is done by the call and return of the function current. In
the example, the only such call occurs under the node labeled Vs0

.

r

real states

!s 0 !s 1 !s 2 Vs0
Vs1

!new

b

real ?f ?w f,b ?activate-f

af

real a

real

!lockw !wait identifier

1

awf,b

identifier

1

aactivate-f

(10) ?activate-f can return only if there are no function calls to current but there is some function call to new.
r

real states

!s 0 !s 1 !s 2 Vs0
Vs1

!new

b

real ?f ?w f,b

af

real a

real

!lockw !wait identifier

1

awf,b

identifier

1

(11) The simulation of the first transition is completed by calling and returning the function call !new in order to obtain
a function call !current.

r

real states

!s 0 !s 1 !s 2 Vs0
Vs1

!current

b

real ?f ?w f,b

af

real a

real

!lockw !wait identifier

1

awf,b

identifier

1

(12) The next steps simulate the return of ?f. The first step is the activation of !lockw in the workspace of f.
r

real states

!s 0 !s 1 !s 2 Vs0
Vs1

!current

b

real ?f ?w f,b

af

real a

real

?lockw !wait identifier

1

awf,b

identifier

1

alockw

(13) The function call wf,b associated with f returns by using the identifier of the workspace of f and the fact that the
workspace of f has an activated function call ?lockw.
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r

real states

!s 0 !s 1 !s 2 Vs0
Vs1

!current

b

real ?f !check f,b

af

real a

real

?lockw !wait identifier

1

alockw

(14) The function call checkf,b is activated to check that the return of f would be compatible with the constraints
given by S|A (the tag ā is an invisible clone of a).

r

real states

!s 0 !s 1 !s 2 Vs0
Vs1

!current

b

real ?f ?check f,b

af

real a

real

?lockw !wait identifier

1

acheckf,b

!ok-dtd !notok-dtd !ok-A !notok-A !copy-forest ā identifier

1

alockw

(15) First, the sibling subtrees of checkf,b are copied in its workspace using the function copy-to under each
visible tag and the function copy-forest in the workspace of checkf,b (recall that the functions copy-to
are omitted in the figures for readability, but are present under every visible node). In our example, the forest is
empty.

r

real states

!s 0 !s 1 !s 2 Vs0
Vs1

!current

b

real ?f ?check f,b

af

real a

real

?lockw !wait identifier

1

acheckf,b

!ok-dtd !notok-dtd !ok-A !notok-A ā identifier

1

alockw

(16) Using the copied subtrees, the siblings of checkf,b and the return of f built from the initial workspace, it is
possible to check the correctness of the return of f for the DTD and the transition constraints. In our example,
both are satisfied after the return. Then, !ok-dtd and ok-A are called and return ok-dtd and ok-A, respectively
(details omitted).

r

real states

!s 0 !s 1 !s 2 Vs0
Vs1

!current

b

real ?f ?check f,b

af

real a

real

?lockw !wait identifier

1

acheckf,b

ok-dtd !notok-dtd ok-A !notok-A ā identifier

1

alockw
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(17) The function call ?lockw returns the tag ok-return because of the presence of the labels ok-A and ok-DTD and
using the common identifier found in the workspaces of ?f and ?checkf,b.

r

real states

!s 0 !s 1 !s 2 Vs0
Vs1

!current

b

real ?f ?check f,b

af

real a

real

ok-return !wait identifier

1

acheckf,b

ok-dtd !notok-dtd ok-A !notok-A ā identifier

1

(18) The function call ?checkf,b returns.
r

real states

!s 0 !s 1 !s 2 Vs0
Vs1

!current

b

real ?f

af

real a

real

ok-return !wait identifier

1

(19) The function call ?f returns because of the presence of the label ok-return in its workspace and the absence of
?checkf,b.

r

real states

!s 0 !s 1 !s 2 Vs0
Vs1

!current

b

real !return a

real

(20) The update of the state of the automaton begins as before. The function return plays the role of activate-f
previously. It can return only if there is a call to new but no call to current.

r

real states

!s 0 !s 1 !s 2 Vs0
Vs1

!current

b

real ?return a

real

areturn

(21) The functions !s0, !s1, !s2 are called and returned to obtain an empty valuation of s2. The previous valuation is
removed by calling and returning !current.

r

real states

!s 0 !s 1 !s 2 Vs0
Vs1

Vs2

!new

b

real ?return a

real

areturn

(22) The function call ?return returns.
r

real states

!s 0 !s 1 !s 2 Vs0
Vs1

Vs2

!new

b

real a

real
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(23) The update of the state is completed by calling !new, which returns !current.
r

real states

!s 0 !s 1 !s 2 Vs0
Vs1

Vs2

!current

b

real a

real

This completes the simulation of the two transitions.

Simulation of TAXMLsib by BAXML

This follows from the simulation of AAXMLsib by GAXML and from Theorem 5.14, noting that the simulation of
TAXML by AAXML does not introduce sibling calls to the same external function.

This concludes the proof of Theorem 5.8.

Remark 5.13. Theorem 5.8 shows that BAXML and GAXML can simulate AAXMLsib and TAXMLsib with
respect to projection views. The converse is obviously false. Indeed, to see that BAXML (or GAXML) cannot be
simulated by AAXMLsib or TAXMLsib, it is enough to consider a BAXML schema that produces an instance with
two sibling calls to the same external function. By definition, such a schema cannot be simulated by AAXMLsib or
TAXMLsib.

For AAXML and TAXML, we have the following.

THEOREM 5.14. AAXML ↪→(id,π) TAXML and TAXML ↪→(id,π) AAXML.

PROOF. We first show that AAXML ↪→(id,π) TAXML. Let S|A be an AAXML schema with functions F0 and
tags Σ0. The broad lines of the simulation of AAXML by TAXML are similar to the simulation of AAXMLsib by
GAXML. As in the latter case, the TAXML system must enforce an alternation of transitions and maintenance of the
state/valuation information for A. This is done by a locking mechanism enforced by auxiliary functions, much like in
the simulation by GAXML. We omit the similar details and focus on returns of external function calls.

Each function call notifies its return by a function call !safe-r that belongs to its answer (this can be enforced for
external functions by their DTD). The function !safe-r works as a lock. To ensure that two sibling functions calls
?f do not return consecutively, the TAXML formula imposes that no two consecutive instances contain a function call
!safe-r. In particular, this requires the activation of !safe-rf in the instance following its first occurrence. The
validity of the return with respect to A is checked, as in the simulation by GAXML, by the constraint ϕnext, whenever
!safe-rf occurs (note that ϕnext can be used directly in the Past-Tree-LTL formula).

We next show that TAXML ↪→(id,π) AAXML. To this end, we use a variant of AAXML, denoted by AAXML∗.
The automaton model of AAXML∗ differs from AAXML as follows:

(i) the automaton is equipped with final states, and a prerun must lead to some final state in order to be accepted,
(ii) the state variables are the same for all states and remain unchanged in each transition, and

(iii) the state variables range over the active domain of the entire prerun which is the input to the automaton, rather than
just the last instance leading to that state.

We first show that TAXML can be simulated by AAXML∗, then show how AAXML∗ can be simulated by AAXML.

From TAXML to AAXML∗ Let ξ = ∃X̄ϕ(X̄) be a Past-Tree-LTL formula. Recall that each such formula is obtained
from a propositional Past-LTL formula ϕ̄ with propositions P in which each proposition p ∈ P is replaced by a
Boolean combination of parameterized patterns ψp. Using a variant of the algorithm of [Vardi 1996] for finite words,
one can construct a finite-state automatonAϕ̄ whose alphabet consists of the truth assignments to P , that is equivalent
to ϕ̄. From this we can obtain an AAXML∗ automaton Aξ equivalent to ξ as follows.

— For each truth assignment σ to P , let γσ be the Boolean combination of tree patterns obtained from the propositional
formula ∧σ(p)=1p ∧σ(p)=0 ¬p by replacing each p by ψp

— For each state q of Aϕ̄, Aξ has one state (q, σ) for each outgoing transition from q labeled σ, and transitions are
induced by those in Aϕ̄. The state formula for (q, σ) is γσ. The state variables (which are all the same) equal X̄.

— The final states of Aξ are those of the form (q, σ) where q is final in Aϕ̄.

It is easily seen that the AAXML∗ automatonAξ is equivalent to ξ.
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From AAXML∗ to AAXML We explain informally the main points in the simulation of AAXML∗ by AAXML. Consider
an AAXML∗ specification S∗|A∗. We describe an AAXML specification S|A that simulates it. Recall the differences
(i)-(iii) between the AAXML∗ and AAXML automata. The simulation by S|A is similar to the maintenance of the
set of reachable states and valuations, used in the simulation of AAXML by GAXML. Dealing with (i) and (ii) is
straightforward. To account for the final states, S|A must check that at each transition, one of the reachable states is
final. The fact that state variables are the same and do not change in A∗ is easily enforced in A using equalities among
variables of consecutive states. The most delicate part of the simulation concerns (iii), i.e. the difference in the active
domain semantics for the two models. Indeed, at any given transition in the prerun, state formulas are evaluated on
the active domain of the entire prerun. This includes values occurring in past instances and values occurring in future
instances (introduced by external functions). We discuss both in turn.

Dealing with past values is fairly straighforward. It is sufficient to ensure that at any point, the current active do-
main contains all values of previous instances in the prerun. To this end, we use a new internal, continuous function
collect, whose role is to maintain the cumulative active domain of the instances in the prerun. More precisely, the
DTD of S∗ is modified so that !collect or ?collect must occur under a node labeled values (a new tag) which
in turn occurs under the root. The argument query of collect produces all data values in the current instance, and
the answer query returns all data values in its workspace. The pattern automaton A∗ is modified as follows. For each
state p that has at least one outgoing edge, we introduce two new intermediate states, p1 and p2, with the same number
of associated variables as p. The role of p1 and p2 is to force an activation of !collect, followed by a return of
?collect, before any other transition. The state formula of p1 is Υ′(p)(Xp/Xp1

) ∧ α1, where Υ′(p)(Xp/Xp1
) is

obtained from Υ(p) by modfiying each pattern in order to force all matchings to avoid the subtree rooted at values,
and by replacing the variables Xp with Xp1

, and α1 checks the existence of ?collect. There is an edge from p to
p1 and δ(p, p1) makes all variablesXp1

equal toXp. Similarly, the state formula of p2 is Υ′(p)(Xp/Xp2
)∧α2, where

α2 checks the existence of !collect (which means that the call to collect has returned) and δ(p1, p2) makes
all variables Xp1

equal to Xp2
. Finally, for each state q of A∗ such that δ(p, q) is defined, δ(p2, q) is obtained from

δ(p, q) by replacing Xp with Xp2
. It is clear that the intermediate states ensure that the cumulative active domain of

the prerun up to the current instance is found under the node labeled values after each visible transition is simulated.
It now remains to deal with new values introduced in future instances of the prerun, relative to the current instance.

These may arise from answers to external function calls. We make use of the previous construction ensuring that
the cumulative active domain of the prerun up to the current instance is maintained under the distinguished node
labeled values. Handling future values is trickier, because the semantics requires taking these into account in previous
transitions. Dealing with this requires augmenting the state/valuation maintenance algorithm. Specifically, S|A must
decide if the current transition would be allowed had A∗ been run from the beginning on the active domain extended
with the new values. In order to do this incrementally (without re-running the automaton on the extended domain), A
must maintain some additional information summarizing the reachable states and valuations, where the latter include
values outside the current prerun. In order to do this, the key observation is that a positive pattern with a free variable
X cannot be satisfied for any value of X not in the current instance. Let @ be a new data constant, representing an
arbitrary value outside the current active domain. Consider a valuation ν of the state variables X into the cumulative
active domain augmented with @. Let us call a valuation indefinite if it maps at least one variable to @, and definite
otherwise. We can define the satisfaction of a tree pattern P (ν(Y )) in a BAXML instance, where Y ⊆ X , as follows:
if ν(Y ) is definite, then satisfaction is defined as usual; otherwise, P (ν(Y )) is not satisfied. This extends to satisfaction
of Boolean combinations of tree patterns, so of state formulas. The maintenance algorithm is now be extended to keep
states together with definite and indefinite valuations. When a transition from instance I and state p to instance J and
state q is simulated, the following is done:

(i) the set of definite valuations for p is augmented by adding, for each indefinite valuation ν of X p, all valuations
ν ◦ ν′, where ν′ maps @ to any value in the active domain of J that is not in the cumulative active domain up to I ;

(ii) the maintenance algorithm computes in the usual way the set of possible definite valuations for q, using the set of
definite valuations computed in (i) for p;

(iii) a new set of indefinite valuations is computed for q, using J and Υ(q)(X q).

Let S|A be the AXML schema implementing the extended maintenance algorithm. It is clear that S|A simulates
S∗|A∗.

From the proof of Theorem 5.14 we have the following.

COROLLARY 5.15. TAXMLsib ↪→(id,π) AAXMLsib and TAXMLsib ↪→(id,π) AAXMLsib.
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PROOF. It can be checked that the simulations described in the proof of Theorem 5.14 preserve the sibling restric-
tion on external functions.

The proofs of the above results provide insight into the simulations of the various languages, and in particular
highlight the power of imposing control using static constraints. In terms of the cost of each simulation, several
parameters can be considered: (i) the blowup in the schema size, (ii) the blowup in the instance size, (iii) the number
of silent transitions needed to simulate a single transition. For the simulations considered here, the blowup in the
schema size varies from polynomial to exponential, the blowup in the instance size from polynomial with respect to
the instance to polynomial with respect to the entire prerun, and the number of silent transitions from constant to
polynomial in the prerun (for fixed schemas). The costs for various simulations are spelled out in more detail in Figure
15.

Simulation Schema blowup Instance blowup Silent transitions
GAXML ↪→(id,π) BAXML exponential linear in instance linear in prerun
AAXMLsib ↪→(id,π) BAXML exponential polynomial in instance polynomial in prerun
TAXMLsib ↪→(id,π) BAXML exponential polynomial in prerun polynomial in prerun
TAXML ↪→(id,π) AAXML exponential polynomial in prerun polynomial in prerun
AAXML ↪→(id,π) TAXML polynomial polynomial in instance O(1)

Fig. 15: Cost of various simulations in Theorems 5.8 and 5.14

The difficulty of simulating AAXML and TAXML with sibling external function calls by BAXML (or GAXML)
lies in the fact that the constraints of AAXML and TAXML must be checked after every transition, and GAXML
cannot prevent multiple returns from sibling external function calls that skip validity checks. Indeed, as shown below,
this difficulty cannot be circumvented.

THEOREM 5.16. W 6↪→(id,π) GAXML for W ∈ {TAXML, AAXML}.

PROOF. We first show that there exists an AAXML schema with external functions that cannot be simulated by a
GAXML schema relative to a projection view. Intuitively, if there are several sibling active function calls to the same
external function, the GAXML schema is not able to impose that only one function call returns before the states of the
automaton are updated and validity of the transition is ensured.

The AAXML schema S|A is the following. We describe the shape of a run. The initial instance is a tree rooted at
r with one child labeled by a continuous function !g. The function !g returns an external, non-continuous function
call !f. Repeated calls to g and f (in alternation) generate an unbounded number of sibling calls ?f. Each function f
returns a label a. The automaton further imposes that no more than one answer to ?f be returned in a run.

We show that there is no GAXML schema simulating S|A. Assume towards a contradiction that there exists such
a schema S′|γ. Let M be the maximum integer used in the DTD of S ′. We exhibit a prerun that is valid for S ′|γ, but
whose projection is not valid for S|A. First, let ρ = (I0, e0) · · · (Im, em) be a prerun for S|A in which Im has M + 1
occurrences of ?f and em is the only return of a call ?f occurring in ρ. Let I be the instance resulting from the return
of another call ?f of Im (let e be this event). Note that ρ is a valid prerun of S|A whereas ρ.(I, e) is not. Nonetheless,
we show that ρ.(I, e) is the projection of a prerun of S ′|γ. Since S′|γ simulates S|A and ρ is a prerun of S|A, there
exists a prerun of S ′|γ with a subsequence (I ′i0 , e

′
i0

) · · · (I ′im
, e′im

) so that i0 = 0, im = m and (Ij , ej) is the projection
of (I ′ij

, e′ij
), 0 ≤ j ≤ m. In particular, I ′im−1

contains M + 2 calls to ?f, I ′im
contains M + 1 calls to ?f, and (since

calls ?f are visible), I ′im
is obtained from I ′im−1 by the return of a call to ?f, consisting of some forest F . We claim

that S′|γ allows the transition from I ′im
to I ′ in which another call to ?f returns the same forest F . Indeed, because in

the BAXML semantics isomorphic subtrees are reduced, the two occurrences of F are merged so the only difference
between Iim

and I ′ is that Iim
has M +1 calls ?f whereas I ′ hasM such calls. SinceM is the maximum integer used

in the DTD of S′, and Iim
satisfies the DTD, so does I ′. Similarly, Iim

and I ′ satisfy the same tree patterns because
the two instances are homomorphic to each other. Thus, I ′ satisfies all static constraints of S ′. Since external function
returns have no guards, the transition is valid in S ′|γ. However, the projection of I ′ is I and, as we have seen, ρ.(I, e)
is not a valid prerun of S|A. This contradicts the existence of S ′|γ.

The fact that TAXML cannot be simulated by GAXML follows from the fact that AAXML can be simulated by
TAXML (Theorem 5.14) and AAXML cannot be simulated by GAXML. The difficulty is the same as in the above
proof.
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Fig. 16: Summary of the simulation results

The simulation results of this section relative to projection views are summarized in Figure 16 (single arrows indicate
simulation only in one direction, and double arrows indicate mutual simulation).

Comparison with coarser views

We have focused in this section on simulation relative to projection views (id, π). The results obtained turn out to
be quite powerful. Indeed, by Lemma 2.5, the positive results extend to any views that are coarser than projection
views. For example, one may wish to focus on the sequence of events (function calls and returns, together with their
arguments), ignoring state information. This information can be captured by composing the views in id and π with a
view V that is the identity on events and maps every state to a fixed constant. By Lemma 2.5, the positive simulation
results shown in Figure 16 continue to hold relative to (id ◦ V, π ◦ V ).

Conversely, one may be interested in observing certain characteristics of the states in the tree of runs, ignoring event
information. Once again, this can be captured by coarser views than (id, π), so the same simulation results hold.

6. BAXML AND TUPLE ARTIFACTS

In the previous section, we compare the expressiveness of several workflow languages centered around the common
core provided by BAXML. In this section, we illustrate how views can be used to reconcile models that are otherwise
incomparable. For this, we use the views framework to compare BAXML workflows with tuple artifacts workflows,
a variant of IBM’s Business Artifacts, which uses relational databases as its underlying model. The main result is
that BAXML can simulate tuple artifacts. Indeed, tuple artifacts can be seen as views of BAXML. We will also see
that tuple artifacts cannot simulate BAXML even with respect to coarse views retaining just the traces of service and
function calls.

We first review informally the tuple artifact model, as presented in [Deutsch et al. 2009]. We denote the model by
TA. We assume an infinite data domain D. An artifact system consists of a set of artifacts and a set of services acting
on the artifacts. An artifact consists of an artifact tuple and a set of state relations. In addition, an artifact system has
an underlying database shared by all artifacts and services, that is fixed throughout a run of the system.

Each service causes a modification of one or several current artifacts. Intuitively, the focus is on the evolution of
the artifact tuples, while the state relations are used to carry auxiliary information needed by the services. A service
consists of the following:

— a pre-condition, which is an FO formula on the set of artifacts of the system and the underlying database;
— a post-condition, which is an FO formula on the set of artifacts and the database, defining, for each artifact tuple, the

values allowed in the next instance; free variables range over the infinite domain D, so they may take new values
not present in the current instance;

— for each state relation, two FO formulas defining the sets of tuples to be inserted and deleted from the state. The for-
mulas take as input the current artifact instance and the database, and are interpreted with active domain semantics.
Thus, their result is always finite.

Services are applied non-deterministically. At any given time, a service can be applied to the current instance if
its pre-condition holds and if the post-condition is satisfiable. Thus, there are two forms of non-determinism in a
transition: one stemming from the choice of service, and another from the choice of values for the next artifact tuples,
among those satisfying the post-condition. A run of an artifact system is a sequence of consecutive instances together
with the name of the service applied at each transition. (For initial instance, we take any instance whose artifact
states are empty.) As for BAXML, blocking runs are extended by repeating forever the last configuration, with the
corresponding transitions labeled by the special event block. See [Deutsch et al. 2009] for a detailed example of an
artifact system.
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The Tuple Artifact Model

We provide the definition of the tuple artifact model, adapted from [Deutsch et al. 2009]. A relational database schema
D consists of a finite set of relation symbols with specified arities. The arity of relation R is denoted by arity(R). An
instance, or interpretation, over a database schema, is a mapping associating to each relation symbol R of the schema
a finite relation over D, of arity arity(R). We assume familiarity with First-Order logic (FO) over database schemas.
Given a schema D, LD denotes the set of FO formulas over D. If ϕ(x̄) is an FO formula with free variables x̄, and ū
is a tuple overD of the same arity as x̄, we denote by ϕ(ū) the sentence obtained by substituting ū for x̄ in ϕ(x̄). Note
that, since D is infinite, an FO formula ϕ(x̄) may be satisfied by infinitely many tuples ū over D (so may define an
infinite relation). Finiteness and effective evaluation can be guaranteed by using the active domain semantics, in which
the domain is restricted to the set of elements occurring in the given instance (sometimes augmented with a specified
finite set of constants in D, which by default is empty). For an instance I , we denote its active domain by adom(I).
Unless otherwise specified, we assume active domain semantics for quantified variables and unrestricted semantics for
the free variables of a formula.

The artifact model uses a specific notion of class, schema and instance, defined next.
Definition 6.1. An artifact class is a pair C = 〈R,S〉 where R and S are two relation symbols. An instance of C

is a pair C = 〈R, S〉, where (i) R, called attribute relation, is an interpretation of R containing exactly one tuple over
D, and (ii) S, called state relation, is a finite interpretation of S over D.
We also refer to an artifact instance of class C as artifact instance, or simply artifact when the class is clear from the
context or irrelevant.

Definition 6.2. An artifact schema is a tuple
A = 〈C1, . . . ,Cn,DB〉

where each Ci = 〈Ri, Si〉 is an artifact class, DB is a relational schema, and for all i 6= j, Ci, Cj , and DB have no
relation symbols in common.

By slight abuse, we sometimes identify an artifact schema A as above with the relational schema
DBA = DB ∪ {Ri, Si | 1 ≤ i ≤ n}.

An instance of an artifact schema is a tuple of class instances, each corresponding to an artifact class, plus a database
instance:

Definition 6.3. An instance of an artifact schema
A = 〈C1, . . . ,Cn,DB〉

is a tuple A = 〈C1, . . . , Cn, DB〉, where Ci is an instance of Ci and DB is an instance of DB over D.
Again by slight abuse, we identify each instance

A = 〈C1, . . . , Cn, DB〉

of A with the relational instance DB ∪ {Ri, Si|1 ≤ i ≤ n} over schema DBA. Let A be an artifact schema and DBA

its relational schema. Given an artifact instance over A, the semantics of formulas in LA is the standard semantics on
the associated relational instance over DBA.

We now define the syntax of services. It will be useful to associate to each attribute relationR of an artifact schema
A a fixed sequence x̄R of distinct variables of length arity(R).

Definition 6.4. A service σ over an artifact schema A is a tuple σ = 〈π, ψ, S〉 where:
— π, called pre-condition, is a sentence in LA;
—ψ, called post-condition, is a formula in LA, with free variables
{x̄R | R is an attribute relation of an artifact class in A};

— S is a set of state rules of the form:
— S(x̄)← ϕ+

S (x̄);
—¬S(x̄)← ϕ−

S (x̄);
where S is a state relation of A, ϕ+

S (x̄) and ϕ−
S (x̄) are LA-formulas with free variables x̄ s.t. |x̄| = arity(S).

As seen below, the formulas ϕ+
S (x̄) and ϕ−

S (x̄) are used to define updates to the state relation S when the service is
applied. The formula ϕ+

S (x̄) defines the tuples to be inserted, and ϕ−
S (x̄) the tuples to be deleted (see below). If a

formula is not provided for a state relation S, the set of tuples to be inserted or deleted is taken to be empty.
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Definition 6.5. An artifact system is a pair Γ = 〈A,Σ〉, where A is an artifact schema and Σ is a non-empty set of
services over A.

We next define the semantics of services. We begin with the notion of possible successor of a given artifact instance
with respect to a service.

Definition 6.6. Let σ = 〈π, ψ, S〉 be a service over artifact schema A. Let A andA′ be instances of A. We say that
A′ is a possible successor of A with respect to σ (denoted by A σ

−→ A′) if the following hold:

(1) A |= π;
(2) A′|DB = A|DB (A and A′ agree on all relations in DB);
(3) A, ν |= ψ, where ν is the valuation of the free variables of ψ mapping x̄R to ūR for each attribute relation R of A;
(4) for each state relation S of A and tuple ū over adom(A) of arity arity(S), A′ |= S(ū) iff

A |= (ϕ+
S (ū) ∧ ¬ϕ−

S (ū)) ∨ (S(ū) ∧ ϕ+
S (ū) ∧ ϕ−

S (ū))
∨(S(ū) ∧ ¬ϕ+

S (ū) ∧ ¬ϕ−
S (ū))

where ϕ+
S (ū) and ϕ−

S (ū) are interpreted under active domain semantics, and are taken to be false if the respective
rule is not provided. Thus, the new state relation S is obtained by inserting the tuples defined by ϕ+

S and deleting
those defined by ϕ−

S , with deletion given priority over insertion in case of conflict, except for tuples previously in
S, which are preserved in case of conflict.

Note that, according to (2) in Definition 6.6, services do not update the database contents (thus, the database contents
is fixed throughout each run, although it may of course be different across runs). Instead, the data that is updatable
throughout a run is carried by the artifacts themselves, as attribute and state relations. Note that, if desired, one can
make the entire database updatable by turning it into a state. Also observe that the distinction between state and
database is only conceptual, and does not preclude implementing all relations within the same DBMS.

We next define the notion of run of an artifact system Γ = 〈A,Σ〉. An initial instance of Γ is an artifact instance
over A whose states are empty.

Definition 6.7. A prerun of an artifact system Γ = 〈A,Σ〉 is a finite sequence ρ = {(ρi, σi)}0≤i≤n where each ρi

is an artifact instance over A and each σi is a service, such that:

— ρ0 is an initial instance of Γ;
— for each i > 0, ρi−1

σi−→ ρi.

We say that a pre-run is blocking if its last configuration has no possible successor. As for BAXML, blocking runs are
extended by repeating forever the last configuration, with corresponding transitions labeled block. A run is an infinite
sequence {(ρi, σi)}i≥0 in which either every finite prefix is a prerun, or the run is obtained by extending a blocking
prerun by repeating forever the last configuration with transitions labeled block. For an artifact system, the associated
workflow system is defined from the set of runs analogously to BAXML. In particular, the states are artifact instances,
and the events are services causing state transitions or the special event block.

Workflow system semantics. The workflow system semantics of artifact systems is defined from its runs analogously
to the semantics of BAXML, GAXML, AAXML, and TAXML (Section 5). For each artifact system Γ, the nodes of
its associated workflow system are the finite prefixes of runs of Γ. The root is the empty prefix, and its state label is
the empty instance. The state label for each node other than the root is the last instance in the prefix. For each non-root
node ν, there is an edge labeled σ from ν to node ν ′ if ν′ extends ν with a single instance obtained by application of the
service σ. The root has an outgoing edge to each node consisting of a prefix of length one, labeled by a distinguished
event init. Thus, transitions from the root provide the initial instances of runs, and the infinite paths starting from
children of the root correspond to the runs of Γ. Because of the semantics of blocking runs, each path is extensible to
an infinite path.

Simulation of Tuple Artifacts by BAXML

We denote the tuple artifact model by TA. More precisely, TA is the set of all artifact system specifications, with
workflow system semantics.

In order to simulate TA with BAXML, we must define views that render the two compatible. For TA, we simply
take the identity views id. For BAXML, we consider schemas of a special form, that represent the artifact instances. .
A relation R with attributes A1, . . . , Am is naturally represented in BAXML by a subtree rooted at R, satisfying the
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DTD below, denoted by ∆R:
R → |tupR| ≥ 0
tupR → ∧

m
i=1|Ai| = 1

Ai → |dom| = 1

Given an artifact instance, we refer to the contents of the artifact relations, consisting of single tuples, as the artifact
tuples. Each service of the artifact system is modeled in BAXML by a corresponding function with the same name.
The call of a service is captured in BAXML by a call to the corresponding function.

We define the class of views used in the simulation, denoted by VTA. Each view is defined relative to a set R of tags
and a set F of function names. Intuitively, the tags in R are meant to label subtrees encoding relations, as above. We
say that a BAXML workflow system is R-relational if for each R ∈ R there exists a DTD ∆R of the above shape such
that each BAXML instance labeling a non-root state of the workflow system contains exactly one occurrence of each
tag R in R, and the subtree rooted at R satisfies ∆R. The view VR,F in VTA is defined as follows. If the workflow
system is not R-relational, then all state labels are mapped to ∅ and all edge labels are mapped to ε (these workflow
systems are irrelevant because they are not used in the simulation). If the workflow system is R-relational, the view is
defined as follows:
— BAXML instances labeling non-root states are mapped to the relational instance represented by the subtrees rooted

at labels in R;
— events consisting of calls to functions in F are mapped to the name of the function;
— the init event is preserved; and,
— all other events are mapped to ε.

The main result is the following.
THEOREM 6.8. TA ↪→(id,VTA) BAXML. In other words, for each TA system Γ there exists a BAXML schema S

and a view V ∈ VTA such that [Γ] ∼ V ([S]).

PROOF. We show that TA can be simulated by GAXML. This suffices, because BAXML can simulate GAXML.
In more detail, suppose that TA ↪→(id,VTA) GAXML. By Theorem 5.8, GAXML ↪→(id,π) BAXML. By Lemma 2.6,
(since VTA = id◦VTA) TA ↪→(id,π◦VTA) BAXML. From the definitions of π and VTA, it is clear that π◦VTA ⊆ VTA.
Thus, TA ↪→(id,VTA) BAXML.

We sketch the simulation of TA by GAXML for artifact systems with only one artifact class with a single state and
database relation, and a single service. This is sufficient to capture the salient elements of the simulation. As discussed
in [Deutsch et al. 2009], an arbitrary TA system can be easily represented by such a restricted system.

Suppose the artifact system has an artifact tuple with k attributes A1, . . . , Ak, a database relation DB, and a state
relation S. The unique service has pre-condition π, postcondition ψ, and state formulas ϕ+

S and ϕ−
S . Relations will

be represented in the simulating GAXML system in the standard way, by subtrees of bounded depth (see Section 6).
The database relation is a fixed subtree in the main document, while the state and artifact tuple are represented in
workspaces of function calls, which facilitates updating their values. More specifically, the state is represented and
updated using the workspaces of two function calls that alternate between carrying the current state and computing the
next state.

An application of the service requires simulating the following:
(1) evaluating the pre-condition π on the database, current state and current artifact tuple.
(2) evaluating the FO formulas ϕ+

S and ϕ−
S and generating the new S in the workspace of one of the two functions

mentioned above.
(3) non-deterministically generating a new candidate artifact tuple and verifying satisfaction of the postcondition ψ.

The bookkeeping needed to enforce the above sequencing can be straightforwardly done with auxiliary functions.
There are two delicate points: the evaluation of an FO formula, and simulating (3) so that all qualified next artifact
tuples can be generated and failed attempts do not lead to spurious blocking or infinite chains of ε-transitions. Recall
that in general there are infinitely many new candidate artifact tuples, because new values can come from the infinite
domainD.

Evaluating an FO formula. We first elaborate on the evaluation of FO formulas. Recall that the formulas ϕ+
S , ϕ−

S ,
and π are interpreted with active domain semantics. Consider an FO formula written using ∧,¬, ∃. The formula is
evaluated by structural recursion on its syntax tree. Given standard representations of the result of two subformulas,
it is easy to compute the relation obtained by applying ∧ and ∃. Applying ¬ is trickier. For conciseness, we illustrate
how to compute the complement of a unary relation P with respect to the active domain (this can be easily extended
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to arbitrary arity). The relation P is represented by a subtree with root labeled P , satisfying the DTD
P → |dom| ≥ 0.

The complement is constructed as follows. First, a call to a function !checkP generates the current active domain,
where each value is adorned with two functions !in-P and !not-in-P. More precisely, the argument query of
!checkP is shown in Figure 17 and its initial workspace is of the form shown in Figure 18. In this example, a data
value is denoted by αi (the role of !p̄ will be explained shortly).

The functions in-P and not-in-P are internal. The call guard of in-P, shown in Figure 19, verifies that the
value adjacent to the call is in P , whereas the guard of not-in-P checks that the value is not in P (so the guard
of not-in-P is the negation of the guard of in-P). The functions in-P and not-in-P return, respectively, a
label in and a label not-in. The role of the function !p̄ is dual. First, its guard ensures that for each value, one of its
siblings !in-P or !not-in-P has been called and has been returned. To this end, its guard forbids the presence of
two siblings !/?in-P and !/?not-in-P. Second, its argument query computes the complement of P , by collecting
the values with a sibling not-in. The argument query of p̄ is shown in Figure 20.

Generating the new artifact tuple. Like the state, the artifact tuple is represented and updated using the workspaces
of two functions that alternate between carrying the current value and computing the new value of the artifact tuple.
Recall that generally there are infinitely many candidates for the next artifact tuple, since the free variables of the
post-condition range over the infinite domain D. Observe that satisfaction of the post-condition is invariant under the
following equivalence relation on k-tuples over D: 〈a1, . . . , ak〉 ≡ 〈b1, . . . , bk〉 iff for all i, j:
— ai = aj iff bi = bj ,
— if either ai or bi is in the active domain, then ai = bi.
To each equivalence class corresponds a type specifying the values for the coordinates that belong to the active domain,
and the equality type for the coordinates whose values are not in the active domain. It is straightforward to nondeter-
ministically construct a relation containing one representative tuple for each equivalence class. Specifically, internal
function calls are used to generate the values of the coordinates in the active domain, and external functions to gen-
erate values for the coordinates outside the active domain. The equality type for the latter is imposed by constraints.
In addition, each tuple is adorned with a function call whose role is to evaluate the post-condition ψ for the tuple,
returning ok in the affirmative and not-ok in the negative. Since ψ is in FO, this can be done similarly to the above. The
functions evaluating ψ for each tuple are called non-deterministically, and a simple locking mechanism ensures that
(i) the functions are evaluated completely one at a time, and (ii) function activations are blocked in the current round
as soon as one of them returns ok. The new artifact tuple is the unique one marked ok. It can be easily checked that
every candidate tuple can be generated in this manner by some computation path. If there is no such tuple, the artifact
system blocks, and so does the simulation.

Thus, BAXML can simulate TA. In fact, since the view used for TA is the identity, tuple artifacts themselves
can be seen as views of BAXML systems. The simulation yields a BAXML schema polynomial in the TA schema,
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BAXML instances polynomial in the TA instances, and polynomially many silent transitions (with respect to the
current instance), to simulate in BAXML one transition of TA.

Conversely, we will show that, in a strong sense, TA cannot effectively simulate BAXML. We use coarse views that
retain just the names of function calls in BAXML and of service calls in TA (modulo a projection). Such views are
natural because the traces of function and service calls largely capture the sequencing of events central to workflows.
We will prove a strong negative result for such views. Intuitively, the problem in simulating BAXML with TA is due
to the fact that BAXML can read a large structure (for example an entire relation represented as an XML document)
by a single function call. On the other hand, tuple artifacts can only read one tuple at a time, so the simulation requires
a loop. This loop may lead to an infinite sequence of ε-transitions (imagine a denial-of-service attack in which the
attacker keeps sending new tuples). But if no such sequence of ε-transitions occurs in the BAXML system, this is not
a correct simulation.

More precisely, the views we use are defined as follows:
States. For both BAXML and TA, all states are mapped to a constant state (so all information about the states is
lost);
Events. For BAXML, active calls ?g are mapped to ε and calls !g are mapped to g or to ε (so some function calls
can be hidden); for TA, a service σ is mapped to σ or to ε (so again, some services can be hidden).

We denote the above class of views of BAXML systems by Vfun and of TA systems by Vserv.
Recall that the definition of simulation does not require effective construction of the simulating schema (even though

all our positive simulation results are constructive). We can show that one cannot effectively construct a TA specifica-
tion simulating a given BAXML schema, with respect to the above views.

THEOREM 6.9. There is no algorithm that, given as input a BAXML schemaW1 and a view V1 ∈ Vfun produces a
TA schemaW2 with a view V2 ∈ Vserv such that V1([W1]) ∼ V2([W2]). Moreover, this holds even for BAXML schemas
of bounded depth.

PROOF. The proof is based on a reduction from the implication problem for functional and inclusion dependencies
(FDs and IDs), known to be undecidable. Specifically, we consider instances of the implication problem of the form
∆ |= f , where ∆ is a set of FDs and IDs, and f an FD. We consider a BAXML schema S whose initial instance
consists of a single external function !e under the root. The function returns a tree representing an arbitrary finite
relation, of the form shown in Figure 6. Specifically, each tuple is adorned with one function !fτ for each ID τ in ∆.
Additionally, there is one function !g under the root R. The call guard of each fτ checks that the ID τ is violated for
the sibling tuple. Satisfaction of the FDs in ∆, and violation of f, are ensured by static constraints. The guard of !g
simply checks that the relation returned by the call to !e is non-empty.

We consider the view VS retaining all functions. It is easy to check that ∆ 6|= f iff there is a blocking run of S whose
view under VS is ρ = init.e.g.(block)ω (we ignore the constant state). Indeed, since no function !fτ can be called, all
IDs in ∆ are satisfied. Recall that satisfaction of the FDs in ∆ and violation of f are ensured by the constraints. Thus,
the non-empty instance returned by e satisfies ∆ and violates f.

Now suppose towards a contradiction that one can effectively construct, for each BAXML schema as above, a
corresponding artifact system Γ with a view VΓ ∈ Vserv so that VS([S]) ∼ VΓ([Γ]). By definition, the first event in
both [S] and [Γ] is init. Also, in [S] there is a unique edge labeled init, leading to the node whose state is root/!e.
Let T!e be the subtree of [S] rooted at that node. By definition of ∼, VS(T!e) must be w-bisimilar to V (T ) for every
subtree T ∈ Tinit, where Tinit consists of the subtrees of [Γ] whose roots have incoming edge init. In other words, Γ
must simulate S regardless of its database. In particular, this must be the case for the empty database. Thus, let T∅ be
the subtree in Tinit corresponding to the empty database. From the above it follows that VS(T!e) ∼ VΓ(T∅).

Recall that ∆ 6|= f iff VS(T!e) contains a path from the root labeled e.g.block. Since VS(T!e) ∼ VΓ(T∅), this
happens iff VΓ(T∅) contains a path from the root labeled ε∗.e.ε∗.g.ε∗.block. By definition of ∼, since VS(T!e) has no
infinite branches of ε-transitions (in fact no ε-transitions at all), VΓ(T∅) may not have infinite branches of ε-transitions.
Also note that T∅ is finitely branching, modulo isomorphism (this is because in artifact systems, each transition other
than init generates only finitely many non-isomorphic states from each given state). It follows that from each given
node, the set of lengths of ε-paths originating at that node is bounded (otherwise, an easy induction shows that there
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must be an infinite path of ε-transitions from that node). This allows to effectively generate a breadth-first expansion
of VΓ(T∅) (modulo isomorphism) until the first 3 non-ε transitions occur along all branches. This allows deciding if a
path labeled ε∗.e.ε∗.g.ε∗.block starting from the root exists in VΓ(T∅), and provides a procedure for testing whether
∆ |= f .

Remark 6.10. By Lemma 2.5 (applied to effective simulations), the negative result of Theorem 6.9 extends to any
views that expose more information than those above.

7. CONCLUSION

This paper makes a dual contribution. First, it proposes a flexible framework for comparing distinct workflow models
by means of views extracting a common set of observable states and events, and a natural notion of simulation. Second,
it uses this framework to compare concrete languages capturing some of the main workflow specification paradigms:
automata, temporal constraints, and pre-and-post conditions. These were first investigated using as a common core
BAXML, where the integration of XML and embedded function calls allows to naturally support a wide range of data-
centered tasks. We proved the surprising result that the static constraints of BAXML are alone sufficient to simulate
the three apparently much richer workflow specification languages mentioned earlier. Beyond the specifics of the
XML-based model, the results provide insight into the power of the various workflow specification paradigms, the
trade-offs involved in choosing one over another, and the relation to static constraints. Finally, we compared BAXML
to tuple artifacts, a variant of IBM’s Business Artifact model using relational databases. We showed that BAXML
can simulate tuple artifacts whereas the converse is false. To compare these very different models, we used again the
views framework to render them compatible. This illustrates the usefulness of the view-based framework to reconcile
seemingly incomparable workflow models.
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