
DOI 10.1007/s00224-015-9617-5

Highly Expressive Query Languages for Unordered
Data Trees

Serge Abiteboul ·Pierre Bourhis ·Victor Vianu

Published online: 14 April 2015
© Springer Science+Business Media New York 2015

Abstract We study highly expressive query languages for unordered data trees,
using as formal vehicles Active XML and extensions of languages in the while fam-
ily. All languages may be seen as adding some form of control on top of a set of
basic pattern queries. The results highlight the impact and interplay of different fac-
tors: the expressive power of basic queries, the embedding of computation into data
(as in Active XML), and the use of deterministic vs. nondeterministic control. All
languages are Turing complete, but not necessarily query complete in the sense of
Chandra and Harel. Indeed, we show that some combinations of features yield seri-
ous limitations, analogous to FOk definability in the relational context. On the other
hand, the limitations come with benefits such as the existence of powerful normal
forms providing opportunities for optimization. Other languages are “almost” com-
plete, but fall short because of subtle limitations reminiscent of the copy elimination
problem in object databases.

Keywords Query languages · Data trees · XML · Expressiveness

S. Abiteboul
INRIA & ENS Cachan, 94235 CACHAN Cedex, France
e-mail: Serge.Abiteboul@inria.fr

P. Bourhis
CNRS LIFL & Université Lille 1 & INRIA Lille, 59650 Villeneuve d’Ascq, France
e-mail: pierre.bourhis@univ-lille1.fr

V. Vianu (�)
U. C. San Diego & INRIA-Saclay, La Jolla, CA 92093, USA
e-mail: vianu@cs.ucsd.edu

Theory Comput Syst (2015) 57:927–966

mailto:Serge.Abiteboul@inria.fr
mailto:pierre.bourhis@univ-lille1.fr
mailto:vianu@cs.ucsd.edu

1 Introduction

In recent years, there has been much interest in query languages on trees, moti-
vated by the ubiquity of XML. Most formal studies have focused on languages of
limited expressiveness, with an eye towards efficient evaluation and tractable static
analysis. In this paper, we consider the other end of the spectrum: highly expressive
query languages for trees with data. Moreover, we focus on unordered trees, moti-
vated by considerations familiar from classical databases, including opportunities for
optimization provided by set-oriented processing. Our languages use simple tree pat-
tern queries as basic building blocks, and various forms of control to build complex
programs. As in the relational case, it is easy to obtain languages that are Turing com-
plete, that is, providing full computational power. However, such languages are not
necessarily query complete. Indeed, some of them fail to express very simple queries
(such as the parity of the number of data values in the document).

To study such languages, we use as a convenient vehicle the language Active XML
(AXML) [1]. The language is appealing for such a study because it provides a pow-
erful, elegant mechanism for overcoming limitations such as above and controlling
expressiveness. We illustrate this aspect informally next.

Example 1.1 Consider the tree

This document represents a set of data elements {α1, α2, . . . , αn}. Consider the
parity query, asking whether n is even or odd. This query is notoriously difficult to
express in classical relational languages. Now consider AXML, which allows embed-
ding function calls inside trees. Computation in AXML is based on making calls to
these functions, which evaluate tree pattern queries. For example, one possibility is
to add a function !fun under the root:

It turns out that with this placement of the function (referred to as isolated), no
AXML program using basic tree pattern queries can compute the parity of the set
{α1, α2, . . . , αn}. Intuitively, similarly to the relational case, the problem lies in the
inability to break the symmetry between the set elements in the course of the compu-
tation. Now consider instead the following embedding, placing additional functions
!fun next to every data value:

Theory Comput Syst (2015) 57:927–966928

With this embedding (referred to as dense), an AXML program using basic tree
pattern queries can easily compute the parity of the data domain. Intuitively, this is
due to the ability to break symmetry using calls to functions attached to each element,
in nondeterministically chosen order.

Our investigation focuses on the impact on expressiveness of code embedding
in conjunction with the power of the basic tree pattern queries. We also consider
extensions to trees of highly expressive relational languages of the while family,
and establish tight connections with the AXML languages. The results highlight the
interplay of various language features on expressiveness. They provide insight into
the specificity of unordered data trees, while also showing some interesting exten-
sions of classical results. In particular, we show how the notion of FOk definability
can be lifted to the context of data trees, yielding a powerful tool for understand-
ing the expressiveness of various languages. We also encounter a new incarnation
of the well-known copy elimination problem [5], arising in expressive relational and
object-oriented languages.

The AXML model has proven useful in many scenarios. While our focus here is
on its ability to define queries, understanding its expressiveness is of interest beyond
querying itself. For example, AXML has been proposed as a high-level specifica-
tion framework for data-centric workflows [2, 6], because it is particularly well
suited to describe workflows whose stages correspond to an evolving document.
In this context, it is of interest to understand the connection between starting and
final states of the workflow. For instance, this transformation underlies the notion
of dominance [11], introduced as a basic way to compare the expressiveness of
workflow formalisms, and is also useful when performing abstraction in hierarchical
workflows, by replacing a sub-workflow with a signature specifying the connection
between its inputs and outputs. Static analysis can also benefit from information on
the expressiveness of AXML fragments, primarily for proving negative results.

We briefly describe the abstraction of AXML used here, based on the GAXML
variant of [6]. An instance consists of a forest of unordered, unranked trees whose
internal nodes are labeled by tags from a finite alphabet, and whose leaves are labeled
by tags, data values from an infinite alphabet, or function symbols. The activation of
functions, as well as their return, are controlled by guards, which are Boolean com-
binations of tree pattern queries. Trees evolve under two types of actions: function
calls and function returns. A function call creates a fresh workspace initialized by a
simple tree-pattern-based query on the current instance. The workspace may in turn
contain function calls, and workspaces can thus be created recursively. The answer to
a function call consists of a forest which is the answer to a query applied to the final
state of its workspace. AXML typically adopts a nondeterministic control semantics,
by which transitions are caused by the call or return of a single arbitrarily chosen
function whose corresponding guard is true. Alternatively, one can adopt a natural
deterministic semantics under which all calls and returns whose guards are true are
fired simultaneously (analogously to Datalog rules). We can view AXML as a query
language whose input is an initial instance and whose output is a tree produced under
a designated root (say Out). We refer to GAXML viewed as a query language as
QAXML thereby stressing that its main role is as a query language.

Theory Comput Syst (2015) 57:927–966 929

The main contribution of our work is to highlight new fundamental aspects
of querying unordered data trees. Our investigation of the expressibility of query
languages for such trees can be viewed as a continuation of works on relational lan-
guages (see, e.g., [4]) and object-oriented languages [5]. As discussed earlier, we pay
special attention to the impact on expressiveness of the embedding of functions into
data, in combinations with restrictions on the tree patterns used by functions, and
deterministic or nondeterministic semantics.

A first group of results focuses on the case when the functions are isolated from
the data (by disallowing all but trivial embeddings, as in the first embedding in Exam-
ple 1.1), and the queries used by functions manipulate only data values rather than
full subtrees. We show that the resulting expressiveness is analogous to relational
languages in the spirit of embedded SQL, consisting of a Turing complete program-
ming language interacting with an underlying database by first-order (FO) queries.
In the relational case, such languages are formalized by the relational machine, or
equivalently, languages of the while family augmented with integers [7]. Recall that
despite their Turing completeness, these languages are far from query complete; in
fact, they are definable in Lω∞ω (infinitary logic with bounded number of variables),
they have a 0–1 law, and cannot compute even “simple” queries such as the par-
ity of the domain. We define analogous languages (and nondeterministic variants)
for trees and show that QAXML with isolated functions is equivalent to the tree
variant of while with integers. This allows proving limitations in expressive power
analogous to the relational case, but also yields similarly powerful normal forms.
For example, every such QAXML query with isolated functions can be evaluated in
three phases: (i) a PTIME pre-processing data analysis phase on the trees; (ii) a com-
putation with no data; and (iii) the construction of the final answer in PTIME (with
respect to the answer). The normal from is a powerful technical tool. It also suggests
opportunities for optimization, since the outcome of the first phase may be much
smaller than the original input. In particular, Boolean queries require only phases
(i) and (ii), so can be computed by first eliminating data by a PTIME computation,
then carrying out the remaining of the computation on a potentially much smaller
instance with no data values. This may be seen as an adaptation to trees of similar
normal forms that hold in the relational case, where the first pre-processing phase
can be defined by a fixpoint query [4, 16]. The normal form is also a key technique
in understanding the relative expressiveness of various languages and showing some-
times surprising equivalences. Thus, it is instrumental in proving the equivalence of
QAXMLwith isolated functions and tree variants of whilewith integers. It is also key
in showing that the nondeterminism does not increase the ability of QAXML with
isolated functions to express deterministic queries (compared to the deterministic
semantics).

The limited expressive power of QAXML with isolated functions is alleviated by
allowing arbitrary embedding of functions, yielding QAXML with dense functions
(as in the second embedding in Example 1.1). In this case, QAXML with nondeter-
ministic semantics allows expressing any computable query over trees, i.e., QAXML
is query complete. Intuitively, this is because function embedding allows some form
of data nondeterminism, i.e., the possibility to nondeterministically choose a data
value in a set. This allows to nondeterministically compute an ordering of the data

Theory Comput Syst (2015) 57:927–966930

values. With this ordering, the first phase of the computation permits to fully identify
the input, thereby yielding query completeness.

We next consider a deterministic semantics. Rather surprisingly, QAXML with
dense functions and deterministic semantics is not query complete, so in this case
nondeterminism does allow expressing more deterministic queries. In fact, we
encounter a phenomenon that has already been observed for languages with value
invention, namely the well-known copy elimination problem [5], precluding com-
pleteness even for inputs and outputs of bounded depth. Intuitively, one can obtain
several copies of the result, but the language does not permit retaining only one final
copy.

In the bulk of our study, variables in queries denote atomic data values. We
also consider variables denoting subtrees. The use of tree variables provides queries
with the ability to perform complex subtree manipulations. As a result, the expres-
sive power is substantially increased. In particular, deterministic QAXML becomes
query complete even with isolated functions. Interestingly, the nondeterministic vari-
ant falls slightly short of completeness – it expresses a subclass of queries called
weakly nondeterministic, corresponding intuitively to nondeterminism arising from
control rather than choice of data. To render the language fully complete for nonde-
terministic queries, we need to go beyond isolated functions, although full density
is not required. As a side effect of the first result, we obtain a powerful normal
form for deterministic QAXML queries with tree variables: embedding of functions
can be entirely eliminated with no loss of expressiveness. In the nondeterministic
case, embedded functions can be eliminated from the input but must be allowed in
intermediate instances produced by function calls.

As previously, we exhibit close connections between QAXML and languages of
the while flavor, allowing subtree manipulations. The while languages are simpler
than the previous variants, since integers and other constructs are no longer needed.
The results also yield a normal form for the nondeterministic variant of the while
language, confining all nondeterminism to the last step in the computation.

Related work Our investigation of AXML leverages various techniques of the
classical theory of query languages, including expressiveness of FO with a bounded
number variables, normal forms, 0-1 laws, and highly expressive languages. This
background is reviewed in the next section.

Query and transformation languages on trees have been widely investigated in the
context of XML, focusing on abstractions of fragments of XQuery, XPath, and XSLT
(see the surveys [17, 18] and [14]). Many of these studies have focused on trees with-
out data (i.e., over a finite alphabet). More recently, trees with data have been studied.
Much of this work is geared towards static analysis, so aims to capture computations
of limited expressiveness for which questions such as emptiness remain decidable
[10, 19, 20]. There is little work on highly expressive languages on trees with data,
and it usually adopts a model of ordered unranked trees (siblings are ordered) [9, 12,
13, 15]. In contrast, we consider a model of unordered trees. This is in the spirit of
the relational model where the order of tuples in relations is immetarial. The intu-
ition is that we focus on the essence of the information rather than on aspects of its
representation such as an ordering of data elements. The absence of order is also
a source of opportunities for optimization and set-oriented parallel processing, and

Theory Comput Syst (2015) 57:927–966 931

presents advantages for static analysis. This difference in focus renders our results
incomparable to the cited work.

Organization After some preliminaries, Section 3 introduces QAXML query lan-
guages. QAXML with isolated functions is studied in Section 4 and with dense
functions in Section 5. The impact of tree variables (deep equality and tree copying)
is discussed in Section 6.

2 Preliminaries

We briefly recall some background on relational query languages. See [4, 16] for
formal and detailed presentations. We assume an infinite set dom of data values, and
an infinite set of variables, disjoint from dom. A relational schema σ is a finite set of
relation symbols with associated arities. An instance over σ provides a finite relation
of appropriate arity over dom for each symbol in σ . First-order (FO) queries over σ

are defined as follows. An atom is R(x1, . . . , xm) or x1 = x2, where R is a relation
in σ of arity m and each xi is a variable or data value (always interpreted by the
identity). Formulas are obtained by closing the set of atoms under ∧, ∨, ¬,∀, and
∃, in the usual way. We use the standard active domain semantics, which limits the
ranges of variables to the data values occurring in the current instance or in the query.

A query language is query complete if it expresses all computable queries. In
the classical relational context, it is generally assumed that queries produce answers
using only data values from the input (perhaps augmented with a finite set of values
explicitly mentioned in the query) and that queries are deterministic. Nondeterminis-
tic variants of query completeness have also been defined, some allowing new values
in answers to queries.

FO is not query complete and in fact cannot express simple queries such as the
transitive closure of a graph. This can be partly alleviated by augmenting FO with a
recursion mechanism. Many extensions of FO with recursion converge around two
robust classes of queries: fixpoint and while. We recall two imperative languages
expressing these classes. The language while (homonymous with the class) extends
FO with (i) relation variables to which FO queries can be assigned (with destructive
semantics), and (ii) a looping construct of the form while R �= ∅ do. The while
queries are those expressed in this language. The fixpoint queries are expressed by
while+, an inflationary variant of while obtained by giving cumulative semantics
to assignments and replacing the looping construct with while change do. Note that
because of the cumulative assignment, the contents of relation variables is increasing.
The loop stops when two consecutive iterations produce no change to the contents
of the relation variables (i.e. a fixpoint is reached). Clearly, every query in while+
is in PTIME with respect to the size of the input (for fixed schema), and every query
in while is in PSPACE. To break the PSPACE barrier, one possibility is to make while
Turing complete by augmenting it with integer variables, increment and decrement
instructions, and looping of the form while i > 0do. Indeed, this allows simulating
counters machines, which are computationally complete. The extended language is
denoted whileN. It partially achieves the goal of increased expressiveness by being
query complete on ordered databases. However, there remain very simple queries

Theory Comput Syst (2015) 57:927–966932

that are not expressible in the absence of order, such as the parity of the domain.
A measure of the expressiveness limitations of whileN is that it has a 0-1 law, i.e.
the probability that a program with Boolean answer in this language returns true for
instances of size n converges to zero or to one when n goes to infinity.

The expressiveness of whileN and variants of this language is illuminated by a
powerful normal form allowing to reduce in PTIME the evaluation of any such pro-
gram to a computation on integers. Intuitively, the integers correspond to equivalence
classes of tuples that are manipulated together by the program. More precisely, con-
sider a whileN program that refers to some finite set C of data values, and whose
FO queries use at most k variables. It is easy to see that every relation constructed in
a specific execution of the program is definable by composing FOk formulas of the
program (yielding another FOk formula). Consider an instance I , the set C of con-
stants, and let ≡I,k,C be the equivalence relation on tuples of arity l ≤ k defined as
follows: for every ϕ ∈ FOk mentioning data values in C and having l free variables,
ā ∈ ϕ(I) iff b̄ ∈ ϕ(I). The following key fact holds (see [16]). There exists a fixpoint
query � (mentioning data values in C) that, on input I , computes the following:

• the equivalence classes of ≡I,k,C ;
• a total order on the above equivalence classes.

By definition, all relations constructed from I by FOk formulas are unions of
classes of ≡I,k,C . Since the classes are ordered, they can be viewed as integers, and
each relation as above as the set of integers corresponding to the equivalence classes
it contains. To show the normal form, one needs to be able to evaluate an FOk for-
mula directly on the integer representation, without recourse to the actual equivalence
classes. To do so, we need sufficient information on the action of such formulas on
the equivalence classes. One can show that there exists a finite set Fk of conjunctive
queries with at most k variables such that every FOk formula over a given schema
can be evaluated by applying queries in Fk , together with union and negation. For
each q ∈ Fk , let a(q) be the number of atoms in q. It can be shown that there exists
a fixpoint query � which computes, for each q ∈ Fk , a relation Actionq providing,
for each a(q)-tuple of equivalence classes of ≡I,k,C , the result of applying q to that
tuple. Clearly, the instance Action(I, k, C) = {Actionq | q ∈ Fk} provides the
needed information for evaluating FOk queries directly on the integers representing
the equivalence classes of ≡I,k,C . The normal form for whileN then follows.

As a useful application of the normal form technique, consider the extension of
whileN allowing to store integers mixed together with data in relational variables,
denoted while∗

N
. More precisely, this is done by an assignment instruction X := 〈i〉

where X is a unary relational variable and i an integer variable. It turns out that this
seemingly more powerful language remains equivalent to whileN. This is shown by
extending the normal form to while∗

N
, by considering “slices” of relations sharing

the same integer components, and showing that their data portions remain definable
in FOk . As a consequence, all properties (and queries producing only data values)
remain definable in whileN [8].

One way to obtain a query complete language is to extend while with the ability to
introduce new data values throughout the computation. This is done by an instruction
X := new(Y), where X, Y are relational variables and arity(X) = arity(Y) + 1.

Theory Comput Syst (2015) 57:927–966 933

This inserts in X all tuples of Y extended with an additional coordinate containing
a distinct new data value for each tuple (akin to a nondeterministically chosen tuple
identifier). It turns out that this language, denoted whilenew, is query complete for
queries whose answers do not contain invented values. Interestingly, the language is
not complete when invented values are allowed in the answer, due to the notorious
copy elimination problem [5].

Trees The data trees we consider are labeled, unranked and unordered. We assume
given the following disjoint infinite sets: nodes N (denoted n,m), tags � (denoted
a, b, . . .), data values D (denoted α, β, . . .), possibly with subscripts. A tree is a
finite binary (parent) relation overN where all nodes have a single parent except for
one (the root). A tree also has a labeling function assigning a tag or data value to
every node, with data values only assigned to leaves. We also assume that the trees
are reduced, i.e., a node cannot have two sibling subtrees that are isomorphic by a
mapping preserving tags and data values. This is analogous to the set (rather than bag
or list) semantics for relational databases. The set of data values occurring in a tree I

is denoted dom(I).
Tree queries Let � be a finite set of tags. We define the semantic notion of com-

putable query for trees over�, by extending the classical notion of computable query
for relational databases. The input trees may be constrained by a DTD
.

We use the following notions:

C-genericity: We extend the notion of C-genericity for some finite set C of data
values. A relation R on trees with tags in � is C-generic if it is closed under
all isomorphisms that preserve � and C (but may rename all other data values).
More precisely,R is C-generic if for each one-to-one mapping ρ overN ∪D∪�

such that ρ(N) ⊆ N , ρ(D) ⊆ D, and ρ is the identity on � ∪ C, (I, J) ∈ R iff
(ρ(I), ρ(J)) ∈ R.

Computability: The notion of computable is standard: A relationR is computable
if there exists a nondeterministic Turing machine MR that, given any order ≤ on
data values and a standard encoding enc≤(I) of an input tree I on its tape, has a
terminating computation on input enc≤(I) with output enc≤(J) iff 〈I, J 〉 ∈ R.

Definition 2.1 A tree query is a computable, C-generic relation R from trees over
� satisfying
 to trees over �, such that, for every 〈I, J 〉 ∈ R: (i) dom(J) ⊆
dom(I) ∪ C, and (ii) I and J have disjoint sets of nodes.

Condition (ii) in the definition is motivated by the fact that we do not view the
specific node ids as semantically significant. We say that a tree query language is
query complete if it expresses exactly the set of all tree queries.

The definition of deterministic query is somewhat subtle. Since tree queries pro-
duce as outputs trees with new nodes, genericity precludes uniqueness of the result
(intuitively, all choices of new nodes must be allowed). To overcome this problem
we define a queryR to be deterministic if it provides a unique answer for each input
up to renaming of the nodes (labels remain unchanged). A tree query language is
deterministic query complete if it expresses all deterministic tree queries.

Theory Comput Syst (2015) 57:927–966934

Fig. 1 AXML tree

3 AXML Query Languages

We introduce in this section several query languages based on an abstraction of
AXML.

We assume given an infinite set F of function names. For each function name f ,
we also use the symbols !f and ?f , called function symbols, and denote by F ! the set
{!f | f ∈ F} and by F? the set {?f | f ∈ F}. Intuitively, !f labels a node where a
call to function f can be made (possible call), and ?f labels a node where a call to f

has been made and some result is expected (running call). After the answer of a call
at node n is returned, the node n is deleted.

An AXML tree is a tree whose internal nodes are labeled with tags in� and whose
leaves are labeled by either tags, function symbols, or data values. An AXML forest
is a set of AXML trees. An example of AXML tree is given in Fig. 1.

To avoid repetitions of isomorphic sibling subtrees, we define the notion of
reduced tree. A tree is reduced if it contains no distinct isomorphic sibling subtrees
without running calls ?f . We henceforth assume that all trees considered are reduced,
unless stated otherwise. However, the forest of an instance may generally contain
multiple isomorphic trees.

DTD Trees may be constrained using DTDs. Because our trees are unordered,
we use a variant of DTDs that restricts, for each tag a ∈ �, the labels of children
that a-nodes may have.1 As our trees are unordered, we use Boolean combinations
of statements of the form |b| ≥ k for b ∈ � ∪ F ! ∪ F? ∪ {dom} and k a non-
negative integer. Validity of trees and of forests relative to a DTD is defined in the
standard way. For simplicity we assume that all DTDs specify trees with the same
root labeled r . We call a DTD static if it does not allow function symbols, and active
otherwise.

PatternsWe use patterns as basic building blocks for our query languages. A pat-
tern P is a tree-pattern together with a condition, defined next. We use two sorts of
variables: structural variables V, W, . . . that bind to nodes labeled by tags and func-
tion symbols, and data variables X, Y, . . . binding to nodes labeled by data values. A
tree-pattern is a tree whose nodes are labeled by distinct variables, and whose edges
are labeled by / (child) or // (descendant), where descendant is reflexive. Addition-
ally, each node has associated with it a sign: positive or negative. The default sign is
positive, and we indicate nodes of negative sign by a label ¬. The root of each tree
pattern must be positive. We call a node in the tree pattern T a boundary node if it

1Alternatively, we could use automata on unordered trees.

Theory Comput Syst (2015) 57:927–966 935

is the root or a node labeled ¬. For each subtree S of T rooted at a positive node,
we denote by S+ the tree obtained by removing all its subtrees rooted at negative
nodes (including their roots). We associate to each boundary node b of T a set of
variables var(b) defined recursively as follows. For the root r , var(r) is the set of
variables in T +. For an arbitrary boundary node b, var(b) is the union of the vari-
ables in var(b′) for the boundary nodes b′ that are ancestors of b, together with the
variables in S+

b , which is the subtree of T rooted at b where the sign of b is made
positive. The condition of T is a mapping cond associating to each boundary node b

a Boolean combination of equalities over var(b) of the form:

• V = t , where V is a structural variable and t is a tag or function symbol; and
• X = Y , where X is a data variable and Y is a data variable or a data value.

A pattern P is a pair (T , cond), where T is a tree pattern and cond a condition
for T . By slight abuse, we sometimes refer to nodes of P , meaning nodes in its tree
pattern T .

Let P = (T , cond) be a pattern. The set of bindings of P into an AXML forest I

is defined by structural recursion on P as follows. A binding of P into I is a mapping
ν from var(T +) to the nodes of I such that:

• The child and descendant relations are preserved.
• For each data variable X, ν(X) is a node labeled by a data value.
• cond(r) is satisfied. More precisely, an equality V = t is satisfied for a structural

variable V if the label of ν(V) equals t , and X = Y is satisfied for data variables
X, Y if the data values labeling ν(X) and ν(Y) are equal (and similarly when Y

is a data value).
• For each maximal subtree N of T rooted at a negative node b, there is no exten-

sion of ν to a binding of T ⊕ N where T ⊕ N is obtained from T by removing
the label ¬ from the root of N , such that ν satisfies cond(b).

Given an AXML forest I and a pattern P , we denote by Bind(P, I) the set of
bindings of P into I . We say that I satisfies P , denoted I |= P , if Bind(P, I) �= ∅.

Example 3.1 Figure 2 shows a very simple pattern. When conditions uniquely spec-
ify labels of nodes, we use an intuitive representation, as the right pattern in Fig. 2.
This cannot always be done. For example, if for the same tree pattern the condition
is V 0 = Graph ∧ V 2 = Node1 ∧ V 3 = Node2 ∧ (V 1 = Self − Loop →

Fig. 2 A simple pattern: full
specification (a) and concise
version (b)

Theory Comput Syst (2015) 57:927–966936

X = Y) ∧ (V 1 = Edge → X �= Y) then there is no fixed assignment of labels to
nodes. Finally, a more complex pattern with negation, and its concise representation,
are shown in Fig. 3.

We sometimes use patterns that are evaluated relative to a specified node in the
tree. More precisely, a relative pattern is one whose conditions may use equalities of
the form V = self where self is a new symbol. A relative pattern is evaluated on a
pair (I, n) where I is a forest and n is a node of I . An equality V = self is satisfied
by a binding ν if ν(V) = n.

Pattern Queries As previously mentioned, patterns are the building blocks for
our basic queries, as shown next. A pattern query is a finite set of rules of the form
Body → Head , where Body is a pattern and Head is a tree whose internal nodes
are labeled by tags, and leaves are labeled by tags, function symbols in F !, or data
variables in Body+. In addition, all variables in Head occur under a designated con-
structor node (marked by set brackets), specifying a form of nesting. When evaluated
on a forest I , the answer is obtained using the bindings of Body+ into I . The answer
for the rule is obtained by replacing in Head the subtree T rooted at the constructor
node with a forest containing, for each ν ∈ Bind(Body, I) a new copy of T in which
each label X is changed to the data value labeling ν(X). The answer to the pattern
query is the union of the answers for each rule (so a set of trees). A simple example
of a pattern query is shown in Fig. 3. Its body is the pattern in Fig. 3.

Note that, according to this definition, variables in heads of queries extract data
values from the input. We will consider in Section 6 an extension allowing variables
in heads to extract entire subtrees from the input.

Fig. 3 A complex pattern: (a) full specification (b) concise version (c) a query using the pattern

Theory Comput Syst (2015) 57:927–966 937

As for patterns, we may consider queries evaluated relative to a specified node in
the input tree. A relative pattern query is defined like a pattern query, except that the
bodies of its rules are relative patterns.

Programs and instances A QAXML program Q is a pair (�,
) where � is a
set of function definitions, and
 is a DTD constraining the initial instance.

We next provide more details, starting with �. For each f ∈ F , let af be a new
distinct label in �. Intuitively, af will be the root of a subtree where a call to f is
being evaluated (this may be seen as a workspace for the evaluation of the call). The
specification of a function f of � provides a call guard (Boolean combination of
patterns), its input query (a relative query), return guard (Boolean combination of
patterns with roots labeled af), and return query (a pattern query with rules whose
bodies have roots labeled af). When the input query is evaluated, self binds to the
node at which the call !f is made. The role of the input query is to define the initial
state of the workspace of the call to f .

An AXML instance I is a pair (T , eval), where T is an AXML forest and eval
an injective function over the set of nodes in T labeled with ?f for some f ∈ �

such that: (i) for each n with label ?f , eval(n) is a tree in T with root label af

(its workspace), and (ii) every tree in T with root label af is eval(n) for some n

labeled?f . Figure 4 shows an AXML instance.
The standard semantics of AXML is nondeterministic. At each step of a computa-

tion, one function is called or one function call returns its answer. Alternatively, one
can provide a deterministic semantics, in which all calls and returns whose guards
are true take place simultaneously. This distinction is in the spirit of a distinction that
has been considered for Datalog programs, for which rules may be fired simultane-
ously or one at a time. We denote the nondeterministic variant by NQAXML and the
deterministic one by DQAXML.

Nondeterministic semantics We first define the standard nondeterministic
semantics, yielding the language NQAXML. Let I = (T , eval) and I ′ = (T ′, eval′)
be instances. The instance I ′ is a possible next instance of I iff I ′ is obtained from I

by making a call to some function whose call guard is true, or by returning the answer
to an existing call whose return guard is true. We denote by I � I ′ the fact that I ′ is
a possible next instance of I .

We now provide more details. When a call to !f is made at node n, the label of n

is changed to ?f and we add to the graph of eval the pair (n, T ′) where T ′ is a tree
consisting of a root af connected to the forest that is the result of evaluating the input
query of f on input (T , n). When an answer to call ?f at node n is received, the trees
in the answer are added as siblings of n, and n is deleted. The answer can be returned

Fig. 4 An AXML instance with an eval link

Theory Comput Syst (2015) 57:927–966938

only if eval(n) contains no running calls ?g, in which case the answer consists of
the result of evaluating the return query of f on eval(n), after which (n, eval(n)) is
removed from the graph of eval.

Figure 4 shows a possible next instance for the instance of Fig. 1 after a call has
been made to !TClosure.

We are interested in computations of NQAXML programs. An initial instance
of program Q = (�,
) is an instance consisting of a single tree satisfying
. A
computation of Q is a maximal sequence {(Ii)}0≤i<n, such that n ∈ N ∪ {ω}, I0
satisfies
, and for each i, 0 < i < n, Ii−1 � Ii . A computation is terminating if it
is finite.

Deterministic semantics QAXML programs can be given deterministic seman-
tics by firing at each transition all function calls and function returns whose guards
hold in the current instance. The notion of computation is defined analogously
to the nondeterministic case. Of course, a QAXML program with determinis-
tic semantics has only one computation on each given input. QAXML programs
with deterministic semantics are denoted by DQAXML. We continue to refer to
QAXML to denote programs with either deterministic or nondeterministic semantics.
eval(n)

QAXML as a query language Consider a tree queryRwith input DTD
. Recall
that inputs and outputs of tree queries have no function symbols. In order to compute
R using QAXML, we add function calls to the input under certain nodes. An answer
is the tree found under a designated new tag Out whenever the program terminates.
An example of a QAXML program computing the transitive closure of a graph is
provided next.

Example 3.2 We exhibit a QAXML program with data variables, computing the tran-
sitive closure of a graph. A directed graph is represented as in Fig. 5. The QAXML
program uses two functions: TClosure to initialize the output and Iterate to perform
each iteration in the computation of the transitive closure.

The tree in Fig. 6 represents the initial instance of the QAXML program. It is
obtained from the input tree in Fig. 5 by adding a function call !TClosure under the
root. A call to this function returns a copy of the input graph and adds a function
call !Iterate (Fig. 7). Each call to Iterate performs one iteration in the computation of
transitive closure. It returns the edges obtained in the current iteration and, if the last
iteration has not yet been reached, a new call !Iterate. In more detail, a call to Iterate
first creates a workspace containing the edges of the current iteration (new and old)
under tag NewEdges, and separately a copy of the old edges under tag OldEdges. The
input query of Iterate is shown in Fig. 8. An instance obtained by the activation of
Iterate is depicted in Fig. 9.

Fig. 5 Input graph

Theory Comput Syst (2015) 57:927–966 939

Fig. 6 QAXML initial instance

The function Iterate returns the set of edges under NewEdges that are not also
under OldEdges. If this set is not empty (so the last iteration has not been reached),
it also returns a new call to Iterate. The return query of Iterate is shown in Fig. 10.

The computation terminates when no new edges are added.

We will study two extreme function embedding policies: (i) the only function call
allowed in the input is under the root, and (ii) function calls are placed under every
node in the input (except those labeled by data values). Intermediate restrictions on
embeddings can be defined by various means that we leave open, for instance by
specifying the parents of function calls using their tags, by an MSO formula, etc.
As we shall see, the allowed embedding of function calls into the input has drastic
impact on expressiveness. We consider (i) in Section 4, then (ii) in Section 5.

4 QAXML with Isolated Functions

A main objective of the current study is to understand the impact on expressiveness
of function calls embedded in the data. We first consider the case when there is no
non-trivial embedding in the input, coupled with a restriction on how new functions
can be introduced. Without loss of generality, we can assume that the initial instance
contains only one function symbol !f (other functions can be added if desired by a
call to that function).

Definition 4.1 A QAXML program with isolated functions is a pair Q = (�,
)

where
 is a static DTD and for every query rule Body→ Head used in �, no func-
tion symbol occurs under the constructor node in Head. For an instance I satisfying

, we denote by I ! the instance obtained by adding a call !f under the root of I .
The program Q expresses a tree query R with input DTD
 if for every I satisfying

Fig. 7 QAXML instance after return of TClosure

Theory Comput Syst (2015) 57:927–966940

Fig. 8 Input query of Iterate

, (I, O) ∈ R iff there exists a computation of Q on I ! terminating with O as the
unique subtree of a unique node labeled Out (where Out is a new tag).

For instance, the QAXML program in Example 3.2 is a program with isolated
functions. The isolation restriction places drastic limitations on the expressive power
of QAXML programs. Rather surprisingly, it turns out that this is closely related to
definability by FO with a bounded number of variables, a restriction well explored in
the theory of relational query languages [16]. We first elaborate on this connection,
which provides a key technical tool. We then use it to establish equivalencies to lan-
guages in the while family, extended to data trees, as well as to present a powerful
normal form.

4.1 Isolated Functions and FOk Definability

We begin with an informal description of the connection between QAXML with iso-
lated functions and FOk definability. Let Q be a QAXML program with isolated
functions, with deterministic or nondeterministic semantics. Suppose Q uses a finite
set C of data value constants in its patterns. Consider a computation ofQ on input I .
In the course of the computation, I remains unchanged and function calls generate
another subtree under the root r , as well as a forest of workspaces siblings to r . When
a tree pattern query is evaluated, a portion is bound to I and the rest to trees outside
I . The bindings to I can be pre-computed for all relevant subpatterns and stored in
a relational structure σ(I). Now consider the trees built in the course of the compu-
tation. Recall that data values are introduced in such trees using pattern queries, by
instantiating subtrees in the head rooted at constructor nodes with bindings of the
data variables. Let us call nodes obtained by such instantiations expanded nodes. Let

Fig. 9 QAXML program after activation of Iterate

Theory Comput Syst (2015) 57:927–966 941

Fig. 10 Return query of Iterate

Rε be the relation consisting of all bindings used in a given step of the computation
to produce expanded nodes by applying a particular query rule. We will show the
following key fact:

There exists k > 0 depending only on Q such that each Rε is definable from σ(I)

by an FOk formula (using only constants in C).
Recall that every relation definable in FOk from σ(I) is a union of classes of the

equivalence relation ≡σ(I),k,C . Intuitively, this captures the distinguishing power of
Q with regard to data values. Computation on the actual data can in fact be replaced
with computation on the equivalence classes of ≡σ(I),k,C , augmented with a total
order on the classes and the structure Action(I, k, C) summarizing the action of FOk

queries on the equivalence classes (see the preliminaries). These can be computed by
a fixpoint query, so also by a QAXML program with isolated functions (in PTIME).
Because of the total order, the classes of ≡σ(I),k,C can henceforth be abstracted as
integers. As we will see, this provides a powerful technical tool.

We now provide more details. Let Q be a QAXML program with isolated func-
tions. In the course of the computation of Q on input I , a tree is generated next to
I under r , together with a forest of workspaces sibling to r . As discussed earlier,
when a tree pattern is evaluated, a portion is bound to I and the rest to trees out-
side I , which may be siblings of I under r , or workspaces rooted at ag for some
function g. We show how to pre-compute the relational structure σ(I) holding the
result of evaluating on I a set of subpatterns depending only onQ. Consider a pattern
P = (T , condP) ofQ where T has root r . Every child subtree S of r in T can gener-
ally extract some bindings from I . Recall that S can only extract data bindings using
the data variables in S+. However, the conditions attached to S use (i) structural vari-
ables in var(T +) and (ii) data variables in var(T +) which may include variables not
in S. To evaluate each S independently, we do the following. To account for (i), we
consider different instantiations of S for each assignment of tags, function symbols,
or self to the structural variables in T +. To account for (ii), we augment S with a
subtree extracting all assignments of data values to the data variables in T + that are
not in S+. Now the bindings extracted by the different S can be combined by joining
them. The relational structure σ(I) contains the sets of bindings extracted by each
such S, for all patterns P rooted at r .

In more detail, let P = (T , condP) be a pattern of Q as above, where T has root
r . Let svar(T +) be the set of structural variables of T +, and dvar(T +) the set of
data variables of T +. Let � be the set of assignments of tags, function symbols of
Q, or self to svar(T +), and for each γ ∈ �, let condγ be the condition ∧{V =
γ (V) | V ∈ svar(T +)}. Let S be the set of subtrees S of T whose roots are children

Theory Comput Syst (2015) 57:927–966942

of r . For each S ∈ S and each γ ∈ �, we define a pattern Sγ rooted at r with
subtrees /S and { //X | X ∈ dvar(T +) − dvar(S+)} and condition defined by
cond(r) = condP (r)∧condγ and cond(b) = condP (b) for all boundary nodes of S.

Note that for each pattern P , the set of bindings of dvar(T +) on a given instance
can be computed by applying independently the patterns extracted from T as above,
and then combining the results. More precisely, the set of bindings is obtained by the
following “formula” :

(†)
∨

γ∈�

(∧S∈SSγ)

To each pattern P , γ ∈ � and Sγ as above we associate a relation RS,γ of arity
|dvar(T +)|. Let σ be the schema consisting of all such relations. For an input I , let
σ(I) be the relational structure obtained by evaluating each Sγ on I .

Now consider again the evaluation of a pattern P rooted at r in the course of the
computation ofQ on I . In view of (†), it follows that the set of bindings of dvar(T +)

on the current instance can be obtained using only σ(I) and evaluating the patterns
of T on the tree from which I has been removed. We make this more precise. Let Pos
by the set of patterns Sγ constructed from P as above where the root of S is positive,
and Neg the set of Sγ with negative root. The set of bindings is:

(‡)
∨

γ∈�

(∧S∈Pos

(
RS,γ

(
X̄

) ∨ Sγ

(
X̄

)) ∧S∈Neg

(
RS,γ

(
X̄

) ∧ Sγ

(
X̄

)))

where X̄ = dvar(T +) and Sγ (X̄) is evaluated on the current instance from which I

has been removed. This assumes that the remaining instance contains all data values
in I , which can be easily ensured.

Now consider a computation of Q on input I . Recall the definition of expanded
nodes generated in the course of the computation. Consider the expanded trees
obtained as the answer to a a rule Body → Head of a pattern query, with set B of
bindings for the m variables in the head of the rule. To each such set ε of trees we
associate a relation Rε of arity m containing the bindings in B.

The following key fact can be shown.

Lemma 4.2 Each relation Rε generated in the course of the computation of Q on I

as above is definable by an FOk query from σ(I), for some k depending only on Q.

Proof We provide the proof for NQAXML. The deterministic case is similar.
Recall the language while∗

N
defined in preliminaries. We consider a nondeter-

ministic variant N-while∗
N

obtained by allowing a choice operator, program1 |
program2. We will show that every relation Rε is definable from σ(I) by a pro-
gram in N-while∗

N
. By results in [8] (where while∗

N
is denoted while++), each relation

not containing integers and definable in while∗
N
is also definable in whileN so in

FOk for some fixed k depending on the program. This can be easily extended to the
nondeterministic variants of the languages.

In order to prove the lemma, we need to represent AXML instances generated
in the computation of an NQAXML program Q as relational structures, constructed
from σ(I) by the N-while∗

N
program. The basic approach is to represent trees as

Theory Comput Syst (2015) 57:927–966 943

binary relations on the nodes. As we will see, the nodes themselves can be repre-
sented as tuples of bounded width containing labels and integers. This is needed
because the domain is restricted to the initial data values in σ(I), but we must also
represent the new nodes created throughout the computation of Q. In addition, we
must represent the eval links between function calls and workspaces. To deal with
this, we use the ability of N-while∗

N
to insert integers in relations in the course of the

computation. Their main use is as timestamps indicating the step in the computation
when a node was created. New nodes are represented as follows. Recall that these are
created by function calls or returns.

Function calls Consider a function call to !g made at time t and the workspace
constructed by its argument query. First note that the data variable bindings for
each pattern are easily defined by an FO query using the descendant relation, defin-
able in while∗

N
. The formula uses σ(I) as well as the new portion of the instance,

mimicking (‡).
Assume that the query has a single rule Body → Head (the multiple rule case is

similar). We denote by Head0 the tree obtained from Head by removing the subtree
rooted at the constructor node {a}. The nodes of the workspace constructed at time t

using the bindings are represented as tuples with the following components

• each node n labeled b that does not lie under the constructor node {a} is repre-
sented as (h, t) where h is a string representation of Head0 where each symbol
is one coordinate of the tuple and the position of n in the tree is marked. The
inclusion of the entire tree h is useful for technical reasons, as it enables ordering
sibling nodes with the same label.

• each expanded node n corresponding to binding β is represented as (h, t, β)

where h is the string representation of the constructor tree, with the position of n

in the tree marked.

The link from the call ?g at node n to its workspace is represented by updating the
timestamp of node n to t , the same as that of the workspace.

Function returns Consider the simulation of a function return. The answer to the
call is computed similarly to the above, with nodes labeled by the time of the return
(details omitted). A subtlety is that the program must also enforce the reduction of
sibling isomorphic trees that may have resulted from the return. This can be done by
recursively defining bottom-up pairs of roots of isomorphic subtrees. Suppose that
two isomorphic sibling subtrees rooted at n andm are detected. Note that one of these
subtrees, say tree(n), must contain the answer to the call, so it contains the current
maximum timestamp. This allows distinguishing n and m and deleting one of them,
say tree(m).

Choice of function call or return The function to be called or returned is nondeter-
ministically chosen in the program Q. This can be simulated by a nondeterministic
computation of the N-while∗

N
program as follows. Recall that new function calls are

never introduced in an expanded subtree. This means that all function calls can be
reached by a depth-first traversal of the trees that ignores the expanded subtrees.
Since the roots of all maximal trees have distinct timestamps, the tree to explore is
chosen nondeterministically by the timestamp of the root. Once the tree is chosen, its
non-expanded portion must be explored in a depth-first manner. To do this, note that

Theory Comput Syst (2015) 57:927–966944

in the non-expanded portion of each tree, siblings have one of the two following
properties:

(i) they have different timestamp, or
(ii) they have the same timestamp, but are in distinct positions in h.

This allows the depth-first traversal of the tree and the nondeterministic choice of
a function call. The choice of a function return is done similarly.

Now consider the relation Rε generated at time t0. This is defined by an N-while∗
N

program w(t0) using a loop that carries out the first t0 transitions, then selects the
subinstance with timestamp t0 and extracts Rε. Thus each Rε is defined by w(t)

so is definable in FOk for some k depending on w(t0). It is easily seen that k does
not depend on the particular timestamp t0 parameterizing the program, so all Rε are
definable in FOk .

Remark 4.3 Observe that the structure σ(I) is built using the patterns of Q. The
construction can be made less dependent on the specific Q by using a more general
syntactic criterion such as the maximum number of nodes k and the set C of con-
stants used in patterns ofQ. The structure σ(I) can then be replaced with a structure
σk,C(I) depending only on k and C, consisting of one relation for each pattern of
size up to k using constants in C. Of course, the number of relations in σk,C(I) may
be exponential in the number of relations in σ(I).

As we will see in Theorem 4.8, Lemma 4.2 can be used to show a powerful normal
form for QAXML programs. Informally, a program in the normal form first produces
σ(I),≡I,k,C with a total order, and Action(I, k, C), and then carries out the rest of the
computation on the quotient structure of the above instance with respect to ≡I,k,C ,
in which the ordered equivalence classes of ≡I,k,C are replaced by corresponding
integers (represented as paths).

Using the above development, we show next that QAXML with isolated functions
is equivalent to natural analogs of whileN to trees. We consider first NQAXML, then
DQAXML.

4.2 WhileN Languages for Trees

We define an analog of the language whileN for trees. We first define a nondetermin-
istic variant, denoted N-whiletree

N
, then a deterministic one denoted whiletree

N
. The

language N-whiletree
N

uses integer variables i, j, . . . (initialized to zero) and forest
variables X, Y . . . including two distinguished variables In and Out, for input and
output respectively. In addition, it is equipped with one stack on which the content of
forest variables can be pushed and popped. This stack is used primarily to build the
result. The basic instructions are:

• increment/decrement i
• X := {T }, where X is a forest variable and T is a constant AXML tree with no

functions
• X := Q(Y), where X and Y are forest variables and Q a tree pattern query

applied to Y

Theory Comput Syst (2015) 57:927–966 945

• X := Y ∪ Z where X, Y,Z are forest variables distinct from In
• X := a[Y], where X, Y are forest variables distinct from In, a ∈ � (this assigns

to X the tree with root labeled a and all trees in Y as its children)
• push(X) (push the contents of forest variable X �= In on the stack)
• X := top (assign to X the top of the stack and pop it).

A program may consist of a single instruction. More complex programs may be
obtained using the following constructs:

• while i > 0 do program
• while X �= ∅ do program
• program1 ; program2 (composition)
• program1 | program2 (nondeterministic choice)

A program also comes equipped with a DTD
 constraining its input, provided
in the initial instance by variable In. An output is the content of variable Out in a
final instance (whenever the computation terminates). A program W computes a tree
query R if for each input tree I satisfying
, the set of possible outputs of W is
{J | 〈I, J 〉 ∈ R}.

The deterministic variant of N-whiletree
N

, denoted whiletree
N

, is obtained by dis-
allowing nondeterministic choice. We next provide an example of a whiletree

N

program.

Example 4.4 A whiletree
N

program computing the transitive closure of the graph is
sketched in Fig. 11. We explain the notation. Besides Input and Output, the program
uses variables Old (containing a tree rooted at O), New (containing a tree rooted at N
and sometimes also a tree rooted at O), and Difference (containing a tree roted at N).
Query QN initializes variable New to Input in which the root label Graph is changed
toN . The query QOld copies the contents of New, relabeling the root toO. The query
QNewEdges computes the new edges of the next iteration (those not present in the
tree of New rooted at O), similarly to the query in Fig. 10. The new edges are placed
in a tree rooted at N . Note that New ∪ Diff erence is a forest containing two trees
rooted at N . The query QMergeN merges the two trees into a single tree rooted at N
(by taking the union of the subtrees under the two roots). Finally the query QAnswer
copies New while changing the label N back to Graph for the final answer.

Fig. 11 whiletree
N

program for transitive closure

Theory Comput Syst (2015) 57:927–966946

4.3 NQAXML with Isolated Functions

We now return to NQAXML and show the following main result.

Theorem 4.5 NQAXML programs with isolated functions express the same set of
tree queries as N-whiletree

N
.

Proof We begin with the simulation of N-whiletree
N

by NQAXML with isolated
functions.

Lemma 4.6 Every tree query expressible by an N-whiletree
N

program can also be
expressed by an NQAXML program with isolated functions.

Proof Let W be an N-whiletree
N

program with input DTD
 with root label r , defin-
ing a tree query R. We outline its simulation by an NQAXML program P with
isolated functions.

The program W uses forest variables X, Y, . . . and integer variables i, j,
Recall that the input to the program is the initial value of the variable In, which is a
tree satisfying
. The DTD
r for the initial instance of the NQAXML program P

is
 modified to require a child labeled !f under the root (labeled r).
The initial call to !f returns several function calls that will be needed in the

simulation and that we describe as we go along.
There are several main components of the simulation:

• representing the contents of variables (forests and integers)
• simulating individual instructions modifying the variables
• simulating the control

To generate and represent the content of variable X in NQAXML, we use a
tree with a special root rX containing initially a function call !X. The content of
X is represented by a forest of subtrees under rX. To distinguish the current con-
tents from previous ones, we mark the current subtrees by a function !current (that
vanishes when a new assignment is simulated). Some control (to be explained fur-
ther) determines which instruction is simulated. We consider next the instructions in
turn.

An assignment X := Q(Y) is simulated by activating !X. The control determines
that !X is replaced by !XQ a function that simulates this particular instruction. The
function !XQ applies Q to the current forest of rY . This generates a workspace with
root aX containing Q(Y). The return query of !XQ simply copies the content of the
workspace. This is easly done by turning the heads of rules of Q into bodies of rules
for the return query.

Now consider the assignments X := Y ∪ Z and X := a[Y]. These are trick-
ier because of the difficulty of “copying” a tree from X to Y in NQAXML (recall
that pattern queries extract data values but cannot copy subtrees). Note also that the
program W could, for instance, construct trees of unbounded depth bottom-up using
these operators (and the stack), whereas P must construct trees top-down by repeated
function calls. To deal with this, we will need to adorn all trees produced in the

Theory Comput Syst (2015) 57:927–966 947

simulation with additional functions used to facilitate copying in a manner similar to
pebbles placed on nodes.

Consider a computation of a NQAXML program. Recall that data values are intro-
duced in trees using pattern queries, by instantiating subtrees in the head rooted at
constructor nodes with bindings for the data variables. As before, let us call nodes
obtained by such instantiations expanded nodes, and the others unexpanded. One can
easily modify the NQAXML program so that each unexpanded node has as child a
node labeled by a particular function !mark that will be useful for copying trees in the
simulation. Expanded nodes cannot be marked because functions cannot occur under
constructor nodes.

Consider a tree T marked as above, whose root is not an expanded node. Sup-
pose we wish to create a copy of a tree T starting with a call to a function !copy.
We begin by marking the root r of T with a call to its child !mark and making a
call to !copy that returns a tree with a root having the same label as r and as a child
another call !copy. Next, subtrees of T are recursively copied by calls to!copy, fol-
lowing a nondeterministic depth-first traversal visiting the non-expanded nodes of T ,
making use of the marker provided by calls to !mark. Expanded subtrees occurring
as children of non-expanded nodes are copied by pattern queries obtained by turn-
ing all heads of the pattern queries used in the original program into bodies that are
copied in the head. Of course, the bodies have to be augmented with patterns limit-
ing application of the query to subtrees of the current node in the depth-first traversal
of T .

The instructions X := Y ∪Z and X := a[Y] can now be easily simulated using the
above technique. For X := Y ∪ Z, the trees in Y and Z are copied into X in arbitrary
order. For X := a[Y], a first call generates root a with child !copy, after which all
trees of Y are copied under a.

Now consider the stack s of forests. We associate to s a function !s. The contents
of s is represented by a chain of workspaces generated by calls to !s, each holding the
corresponding forest. To simulate push(X), a new call to !s is made, which generates
the workspace corresponding to the new top of the stack. This contains another call
to !s, as well as the contents of X, copied to the workspace by the same technique as
above. To simulate X := top, the forest in the last workspace of the chain is copied
in X and the call ?s in the previous workspace returns its answer !s (this pops the
stack). Some straightforward bookkeeping is needed to prevent undesired multiple
pops and pushes (details omitted).

Consider integer variables. To each integer variable i we associate a function !i.
Increments and decrements are implemented similarly to the stack, by a chain of
calls to !i. Thus, a call to !i produces a workspace containing another call !i. The
content of i is represented by the number of active calls ?i in the instance. Increment
is implemented by a call to !i in the last workspace, and decrement by returning an
answer to the last call ?i. Again, some bookkeeping is needed to prevent undesired
multiple increments and decrements.

We finally discuss the control. This is simulated using a function associated to
each instruction of the program. The current instruction is identified by the presence
of an active call to the corresponding function. At each point, at most one such active
call is present, and guards are used for sequencing and to verify the loop conditions.

Theory Comput Syst (2015) 57:927–966948

In addition, some bookkeeping is needed to signal the beginning and completion of
the simulation of each instruction as described above.

The converse simulation is much more intricate and makes critical use of
Lemma 4.2.

Lemma 4.7 Each tree query expressible by a NQAXML program with isolated
functions can also be expressed by an N-whiletree

N
program.

Proof The simulation of the NQAXML program Q consists of several stages:

(i) Compute from I a representation of the relational structure σ(I);
(ii) For the k provided by Lemma 4.2, compute from σ(I) the ordered set of equiv-

alence classes ≡I,k,C , and the instance Action(I, k, C) defined in Section 2,
where C is the set of data values mentioned in Q;

(iii) Compute a Turing Machine tape representation of σ(I) and Action(I, k, C),
in which each class of ≡I,k,C is represented by the corresponding integer;

(iv) Simulate the Turing machine computing the answers to Q given as input the
above tape; and

(v) For each terminating computation, produce in variable Out the output tree
encoded on the tape.

We briefly outline each of the above stages. In the simulation, relational structures
are represented in a standard way by bounded trees whose leaves are data values.
The computation of σ(I) is done by applying to I the pattern defining each rela-
tion in σ and assigning the result to a corresponding forest variable. For (ii), recall
that ≡I,k,C and Action(I, k, C) can be computed from σ(I) by a fixpoint query, so
by while and N-whiletree

N
. Consider (iii). Recall that the equivalence classes ≡I,k,C

are totally ordered, so each class can be identified with an integer. Moreover, each
relation in σ(I) contains a set of such equivalence classes, and Action(I, k, C) con-
sists of relations on the equivalence classes. Thus, these can be represented on the
tape using the integers corresponding to the classes. The sequence of symbols on the
resulting tape encoding can be read as an integer (whose base is the number of tape
alphabet symbols), which is easy to generate using an N-whiletree

N
program (in fact

even by a whileN program). Each terminating computation of the nondeterministic
Turing machine simulating Q produces a final tape encoding an output tree, whose
corresponding integer can be obtained again by an N-whiletree

N
program, because

N-whiletree
N

is computationally complete on integers. The output tree can be repre-
sented on the final tape in a standard way as a string, except for nodes of expanded
trees, because individual data values are not available to the Turing machine. Instead,
consider an expanded subtree Rε obtained by a query rule Body → Head with con-
structor subtree T using a set of bindings B for the variables in T . By Lemma 4.2,
Rε consists of a set {i1, . . . , im} of equivalence classes of ≡I,k,C (the ij are the
corresponding integers) and can be represented by string(T){i1, . . . , im}. Finally,
consider (v). The output tree is produced from the tape representation using the
instructions X := Y ∪ Z and X := a[Y], together with the stack. More precisely,
subtrees of the output are generated in the order of a depth-first traversal of the tree

Theory Comput Syst (2015) 57:927–966 949

on the tape. Whenever a subtree is generated it is pushed on the stack. When all sib-
ling subtrees sitting under a node labeled a are generated, they are popped from the
stack one-by-one and accumulated in a forest variable X, and the subtree rooted at
a is obtained by an instruction X := a[X]. Non-expanded leaves are easily gener-
ated using some constant trees, one for each tag. Expanded subtrees represented as
string(T){i1, . . . , im} are generated as follows. The equivalence classes correspond-
ing to {i1, . . . , im} are first collected in a relation B using the order on ≡I,k,C . The
expanded subtrees are obtained by applying to B a query Body → Head whose
data variables in Body bind to all tuples in B and whose head is T (with the root as
constructor node).

This completes the proof of Theorem 4.5.

The two-way simulations above yield a powerful normal form.We use the notation
of Section 4.1.

Theorem 4.8 For each NQAXML program Q with isolated functions there is an
equivalent program Qnf effectively obtained from Q, whose computation on input I
consists of the following three phases:

1. a PTIME computation producing a standard tree representation of the relational
structure σ(I), ≡I,k,C with a total order, and Action(I, k, C);

2. an arbitrary computation on a representation of the quotient structure of the
above instance with respect to ≡I,k,C , in which the ordered equivalence classes
of ≡I,k,C are replaced by their ranks;

3. a PTIME computation (in the size of the output) producing the result.

In particular, note that (1) reduces in PTIME the computation to one without data
values, (2) is a computation with no data values, and (3) produces in PTIME the final
result with its data values. The ranks of equivalence classes in the quotient structure
are represented by chains of function calls.

Remark 4.9 Observe that the index of ≡I,k,C , so the size of the input to phase (2),
may be arbitrarily smaller than the input I . In fact, as shown in [3], for inputs that
are standard tree representations of relations, there is a constant M > 0 so that the
expected index of ≡I,k,C (under uniform distribution) is asymptotically bounded by
M . This suggests a potential opportunity for optimization, using the compressed rep-
resentation provided by the quotient structure. The analysis is harder if the input is
not a representation of a relation. Note also that σ(I) may be arbitrarily smaller than
I (for example, I may consist of a very deep tree with a single data value, and σ(I)

may use only that data value). Thus, in the best case, a double compression takes
place: first from I to σ(I), and then from σ(I) to the quotient structure.

The following is now immediate.

Corollary 4.10 The normal form of Theorem 4.8 also applies to N-whiletree
N

pro-
grams. Additionally, phases (1) and (3) can be expressed by whiletree

N
programs (i.e.

without nondeterministic instruction choice).

Theory Comput Syst (2015) 57:927–966950

Remark 4.11 One might wonder if it is possible to relax the definition of QAXML
with isolated functions while preserving Lemma 4.2 and Theorems 4.5 and 4.8. This
can be done to a limited extent. For example one can show that the results continue to
hold if we allow functions to be placed under tags that may occur only once in every
valid input. Indeed, these can be simulated by NQAXML programs with isolated
functions. Going further is non-trivial. To illustrate this, we note that one cannot even
allow functions under tags that may appear twice in valid trees without losing the
above results. Indeed, consider the DTD

r → a a, a → |dom| ≥ 0

Suppose functions are allowed under a. One can write a NQAXML program which,
on a given input, outputs nondeterministically one of the sets of data values under the
a’s. It is easy to see, by genericity, that there is no N-whiletree

N
program computing

this query. The problem can be circumvented in various ways, for instance by bound-
ing the number of data values allowed under a. In fact, it remains open to characterize
where functions can be placed so that Lemma 4.2 and equivalence to N-whiletree

N
still

hold.

4.4 DQAXML with Isolated Functions

We now consider deterministic QAXML with isolated functions. As we will see,
much of the previous development transfers to this case.

Recall that whiletree
N

denotes the language N-whiletree
N

without the nondetermin-
istic instruction choice construct. Thus, whiletree

N
expresses a subset of the queries

defined by N-whiletree
N

. For a language expressing both deterministic and non-
deterministic queries, let us call the set of deterministic queries it expresses its
deterministic fragment. It will be useful to note the following.

Theorem 4.12 The language whiletree
N

expresses precisely the deterministic frag-
ment of N-whiletree

N
.

Proof By definition, whiletree
N

is included in the deterministic fragment of N-
whiletree

N
. Conversely, consider an N-whiletree

N
program W defining a deterministic

query. We use the normal form provided by Corollary 4.10. The only nondeter-
ministic portion of the normal form is Phase (2), consisting of the simulation of
a nondeterministic Turing machine producing an encoding of the output. However,
since the output is the same for all computations, the Turing machine can be deter-
minized. Since whiletree

N
is computationally complete on integers, Phase (2) can

be computed by a whiletree
N

program. Thus, W can be expressed by a whiletree
N

program.

We now show the analog of Theorem 4.5.

Theorem 4.13 DQAXML programs with isolated functions express the same set of
tree queries as whiletree

N
.

Theory Comput Syst (2015) 57:927–966 951

Proof The proof of Theorem 4.5 largely transfers to the deterministic case. Consider
first a whiletree

N
program. Theorem 4.12 in conjunction with Corollary 4.10 show

that the normal form applies to whiletree
N

. Phase (1) can be easily expressed by a
DQAXML program with isolated functions. Recall that Phase (2) consists of simulat-
ing a deterministic Turing machine computation producing an encoding of the output
tree. This can also be carried out by a DQAXML program with isolated functions,
by simulating integers similarly to the proof of Lemma 4.6. Finally, Phase (3) con-
sists of building the output tree from its tape representation. In whiletree

N
, this is done

using the stack and the instructions X := Y ∪ Z and X := a[Y]. However, QAXML
can circumvent this and directly construct the output tree from the tape representa-
tion. This is done top-down, by mimicking a depth-first traversal of the tree on the
tape and generating the corresponding nodes. The expanded subtrees in the output are
generated as in the proof of Lemma 4.7. More precisely, consider an expanded forest
represented on the tape as string(T){i1, . . . , im}. To generate the forest, the equiva-
lence classes corresponding to {i1, . . . , im} are first collected in a relation B using
the order on ≡I,k,C produced in Phase (1). The expanded forest is obtained by apply-
ing to B a query Body → Head whose data variables in Body bind to all tuples in
B and whose head is T (with the root as constructor node).

Conversely, consider a DQAXML program with isolated functions. The simula-
tion by whiletree

N
is similar to that in the proof of Lemma 4.7, making once again

crucial use of Lemma 4.2.

As a consequence of Theorems 4.5, 4.12 and 4.13, we have the following
nontrivial result.

Theorem 4.14 DQAXML with isolated functions expresses precisely the determinis-
tic fragment of NQAXML with isolated functions.

Finally, the same normal forms hold for DQAXML with isolated functions and for
whiletree

N
as for their nondeterministic counterparts.

4.5 Boolean Queries

We consider here Boolean queries, for which some of the earlier results can be
strengthened. In particular, constructing the answer is trivial for such queries. As
we will see, this renders redundant some instructions and the stack in the while
languages.

Consider an NQAXML programQ. We say thatQ is Boolean if whenever it termi-
nates, it produces as output a tree consisting of a single node labeled accept or reject.
A computation is accepting if it terminates with output accept. An input I is accepted
by Q if Q has at least one accepting computation on I . Boolean N-whiletree

N
pro-

grams are defined analogously. The definitions for Boolean deterministic QAXML
and whiletree

N
programs are similar. We say that two Boolean programs are equivalent

(or define the same property) if they have the same input DTD and accept the same
set of instances.

For Boolean queries, we are able to obtain a stronger version of Theorem 4.5.

Theory Comput Syst (2015) 57:927–966952

Theorem 4.15 The following languages express the same Boolean tree queries:

(i) NQAXML and DQAXML with isolated functions;
(ii) N-whiletree

N
and whiletree

N
with or without the stack and instructions of the form

X := Y ∪ Z, X := a[Y];

Proof The equivalence of Boolean NQAXML and DQAXML follows from Theo-
rem 4.14 and the following fact:

(†) The set of Boolean queries expressed by NQAXML programs with isolated
functions equals the set of Boolean queries in its deterministic fragment.

The proof of (†) relies once again on the normal form for NQAXML with isolated
functions. In the normal form, the nondeterministic portion of the computation is
simulated by a Turing machine, so acceptance can be determinized.

The equivalence of N-whiletree
N

and whiletree
N

is similar. Note from the proof of
the normal form that the stack and instructions X := Y ∪ Z, X := a[Y] are only
used to construct the output tree from the tape. For Boolean queries, the output can
be constructed without these instructions or the stack, so these are redundant. Finally,
the equivalence of DQAXML and whiletree

N
follows from Theorem 4.13.

We additionally obtain the following stronger normal form for Boolean programs.

Corollary 4.16 For each Boolean (non)deterministic QAXML program Q with iso-
lated functions there is a (non)de-terministic Boolean QAXML program Qnf with
isolated functions, effectively computable from Q, that defines the same property,
whose computation consists of the following phases:

1. a PTIME computation (in the size of the input);
2. an arbitrary computation on an instance with no data values.

The normal form shows that data values can be eliminated by a pre-processing
phase in PTIME, regardless of the overall complexity of the property. The same nor-
mal form holds for Boolean (N)-whiletree

N
programs, with the addition that no stack

or instructions X := Y ∪ Z, X := a[Y] are used in the normal form.
Expressiveness of QAXML with isolated functions The above development

points to limitations in the expressive power of QAXML with isolated functions that
are reminiscent of limitations of whileN in the relational context. In particular, the
0/1 law for properties definable by whileN is inherited from the relational context,
for inputs consisting of trees encoding relations. More precisely, consider an m-ary
relation R and its standard tree representation described by the following DTD
R:

R → |tup| ≥ 0
tup → |A1| = 1 ∧ . . . ∧ |Am| = 1
Ai → |dom| = 1, 1 ≤ i ≤ m

It is easily seen that (non)deterministic QAXML with isolated functions, input DTD

R , and no constant data values, has a 0-1 law. It would be interesting to characterize
the class of input DTDs for which the 0-1 law continues to hold.

Theory Comput Syst (2015) 57:927–966 953

The 0-1 law for relational inputs shows that there are simple properties that cannot
be expressed in QAXMLwith isolated functions, e.g., evenness of the number of data
values in inputs over
R . This is despite the fact that QAXMLwith isolated functions
is computationally complete, since it can simulate arbitrary computations on integers.
A reason for this limitation is the strict separation between data and computation,
imposed by the isolation condition. We next show that this can be largely overcome
by closer integration of the two, provided by embedded functions.

5 QAXML with Dense Functions

We now consider QAXML that can have embedded functions throughout the input.
Intuitively, we would expect this to lead to completeness, alleviating the limitations of
isolated functions. This turns out to be true for nondeterministic semantics, but false
in the deterministic case. This is due to a variant of the ”copy elimination problem”.

Definition 5.1 A QAXML program with dense functions is a pairQ = (�,
) where
� is a set of function definitions and
 a static DTD. For an instance I satisfying

, we denote by I !∗ the instance obtained by adding a call !f under every node of
I whose label is a tag. The program Q expresses a tree query R with input DTD

if for every I satisfying
, (I, O) ∈ R iff there exists a computation of Q on I !∗

terminating with O as the unique subtree of a unique node labeled Out.

In other words, a QAXML program with dense functions is one that has in the
initial instance a function call !f as a child of each tag.

Nondeterministic semantics The main result on NQAXML with dense functions
is the following.

Theorem 5.2 NQAXML with dense functions is query complete.

Proof Let R be a tree query with input DTD
. Let I be an input to R. We begin
with a pre-processing stage. Recall that programs with dense functions adorn their
inputs with a function call under each tag. However, individual data values are not
marked with function calls in the same manner. As a preliminary step, we create a tree
I ∗ that is identical to I , except that each data value d is replaced by a subtree e[d !f]
where e is a new tag. Such a tree can be generated by mimicking nondeterministically
a depth-first traversal of I . Whenever a tag is encountered, a node labeled with the
same tag is generated in I∗ (with its accompanying function call). Data values are
treated differently: all sibling data values are collected using a function call, which
returns the desired set of trees e[d! f] for each d. Thus, each occurrence of a data
value now has associated to it a unique function call.

With I ∗ constructed, the computation ofR has several phases:

(i) construct an ordering ≤ of the data values in I ;
(ii) compute an encoding enc≤(I) of I on a Turing machine input tape;
(iii) simulate the Turing machine computingR;

Theory Comput Syst (2015) 57:927–966954

(iv) if the Turing machine terminates, construct the tree J whose encoding
enc≤(J) is on the final tape of the machine.

We briefly outline steps (i)-(iv) above. An ordering ≤ can be constructed nonde-
terministically by marking in arbitrary order the data values using their associated
function calls, and adding each newly detected value to the order. For (ii), we con-
sider an encoding enc≤(I ∗) representing I ∗ in a standard string notation, where each
data value is replaced by the integer corresponding to its rank w.r.t. ≤ (for simplic-
ity integers are represented in unary). The encoding is produced, once again, by a
nondeterministic depth-first traversal of I ∗ (consulting ≤ whenever a data value is
encountered). The Turing machine tape is represented by a path where each node
represents a tape cell and has associated to it its content. In addition, each such node
is adorned by function calls used as markers, which allows simulating the Turing
machine computation. The nondeterministic control is easily simulated by a nonde-
terministic choice of function calls whose guards test the conditions associated to
each move. The output of the Turing machine, if it exists, consists of enc≤(J) where
J is the output of R on I . The tree J can then be generated from the tape in some
depth-first order, replacing each integer by its corresponding data value given by
≤.

Deterministic semantics We now consider DQAXML with dense functions.
Recall that in the case of isolated functions, DQAXML was as expressive as the
deterministic fragment of NQAXML. Interestingly, this turns out not to be the case
with dense functions, as shown next.

Theorem 5.3 DQAXML with dense functions is not complete.

Proof Recall the standard DTD
R associated with a relation schema R. Let R be
a unary relation schema and consider the queryR whose input DTD is
R . Thus, its
input is essentially a set of n data values. The output consists of a tree rooted at r , with
n! subtrees, each representing a successor relation among the n data values. We claim
that there is no DQAXML program with dense functions that computesR. The proof
relies on a structural property involving the automorphisms of instances produced in
the computation of any DQAXML program on input I . The property shows that any
program computingR must produce more than one copy of the answer.

Let Q be a DQAXML program with dense functions, running on the inputs of
R. Let I be an input with a set D of n data values (where n can be taken to be as
large as needed). Consider an instance E obtained in the course of the computation
of Q on I . Recall that E consists of a forest of which one tree is rooted at R and
the others are workspaces of active function calls. Let tree(E) be the tree obtained
from E by adding all edges connecting nodes labeled by active function calls to the
roots of their corresponding workspaces. For each node u, we denote by tree(u)

the subtree of tree(E) rooted at u. For nodes u, v, where one is an ancestor of the
other in tree(E), we denote by δ(u, v) the distance between u and v. We show the
following:

(†) There exists a mapping σ from the nodes of tree(E) to subsets of D such that:

Theory Comput Syst (2015) 57:927–966 955

1. σ(root (tree(E))) = ∅;
2. if u is an ancestor of v then σ(u) ⊆ σ(v);
3. for each node u and permutation π of D fixing σ(u), there is an exten-

sion π̄ of π to an automorphism of tree(u) that commutes with σ (so
σ(π̄(v)) = π̄(σ (v)) for every v);

4. for all nodes u, v such that u is the parent of v in tree(E), |σ(v)−σ(u)| ≤
k, where k is the maximum number of variables in a query or pattern
of Q.

The proof of (†) is by induction on the number of steps leading to E. The intuition
is the following. First, all permutations of D are automorphisms of the input, so by
genericity every instance obtained throughout the computation has the same property.
However, subtrees generated by function calls and returns may be dependent on a
fixed set of data values, because heads of queries may attach new function calls to
each binding of its variables. The mapping σ associates to each node u the set of data
values on which tree(u) depends.

We outline the induction. The basis is obvious. Suppose (†) holds in a reachable
instance E and E′ is obtained from E in one step. In the transition, all functions
whose call guards are true are activated, and those whose return guards hold return
their answer. Consider a function call !h at a node u. We extend σ to the workspace
created by the call as follows: for nodes v that are not expanded nodes, σ(v) = σ(u).
For an expanded node v obtained with binding β, σ(v) is σ(u) together with the data
values in β (at most k). It is clear that (2)–(3) hold for the nodes in the workspace
(and all workspaces generated in parallel by function calls), and (4) holds for the
entire E′. Now consider call returns. Consider the answer returned by a call at node
u. Similarly to the above, σ is extended to the nodes in the answer, by augmenting
σ(u) for expanded nodes with the data values in the corresponding bindings. Again,
(2)–(3) hold for the new nodes, and (4) continues to hold for the entire E′. Finally, it
can be easily shown that (3) continues to hold for nodes w of E′ that already exists in
E, because of the induction hypothesis and the fact that bindings of patterns applied
to E compose with automorphisms of E. This establishes (†).

Now suppose that Q produces at some point in its computation an instance E

containing a subtree rooted at node u labeled Out, having the output of R as unique
subtree. Consider σ(u). Suppose first that σ(u) �= ∅. By (1,2,4), and assuming that
n > k, there exists an ancestor w of u such that ∅ �= σ(w) �= D. Consider a
permutation π of D such that π(σ(w)) �= σ(w). Since σ(root (tree(E))) = ∅, and
by (3), π can be extended to an automorphism π̄ of tree(E) that commutes with
σ . It follows that π̄(w) �= w, so π̄(u) �= u. Thus, E contains at least two distinct
subtrees rooted at Out. Now suppose that σ(u) = ∅. Recall that u has a child labeled
r , under which sit the n! trees representing the successor relations corresponding to
the permutations of D. Consider the root w of such a tree. Note that the distance
between u and w is 2. Thus, by (4), |σ(w)| ≤ 2 · k. Pick a ∈ D − σ(w) (assuming
without loss of generality that D is large enough) and consider a permutation π of D

that fixes σ(w) for which π(a) �= a. By (3), π can be extended to an automorphism
π̄ of tree(w). This is a contradiction, since the successor relation represented by
tree(w) is rigid (its only automorphism is the identity).

Theory Comput Syst (2015) 57:927–966956

From the above it follows that no instance E computed byQ from I can contain a
single output tree of the desired form. Thus,R cannot be computed by any DQAXML
program with dense functions.

Note that the counterexample in the proof of Theorem 5.3 uses bounded-depth
inputs and outputs. Thus, DQAXML with dense functions is not complete even in
this case. However, it is complete for inputs and outputs encoding relations. Recall
that
R denotes the standard DTD corresponding to a relation schema R.

Theorem 5.4 Let R and S be relation schemas and R be a deterministic tree
query with input DTD
R , such that every output satisfies
S . Then there exists a
DQAXML program with dense functions that expressesR.

Proof The computation ofR on input I over
R proceeds in stages similar to those
in the proof of Theorem 5.2, but rendered more subtle by the lack of nondeterminism.
In particular, all orderings of the data values in I must be constructed, and the Turing
machine is simulated in parallel for all orderings.

In more detail, the computation ofR on input I over
R proceeds as follows:

(i) construct all orderings of the set of data values in I ;
(ii) for each ordering ≤ compute an encoding enc≤(I) of I as a Turing machine

input tape;
(iii) simulate the Turing machine computingR, in parallel on all encodings;
(iv) if the Turing machine terminates, construct for each ≤ a subtree containing an

isomorphic copy of the tree J whose encoding enc≤(J) is on the final tape of
the Turing machine corresponding to ≤;

(v) Construct a single tree rooted at Out that contains J as unique subtree.

The construction of the orderings in (i) proceeds as follows. Suppose I has arity k and
contains n data values. The construction is initiated by calling a function !f whose
body collects all data values using variable X and whose head is {a}[X, !f]. The
function returns the same forest, producing n subtrees, each rooted at a and holding
one data value (together with !f). After j iterations of parallel calls to all !f , we
have constructed the prefixes of length j of all orderings of the n data values. In the
next step, a call to !f collects all data values X not yet in the prefix held by the path
to !f , and returns as before a subtree a[X, !f] for each such X. After n steps, all
orderings of n data values have been constructed. Note that each path from root to
leaf represents one ordering.

The computation of the encoding enc≤(I) proceeds as follows. First, a copy of I

is created by a function call attached to ≤. The encoding enc≤(I) consists of the k-
tuples of integers obtained from the tuples of I , by replacing each data value with its
rank with respect to ≤. This is represented by a path where each node represents a
tape cell and has associated to it its content (for simplicity integers are represented in
unary). In addition, each such node is adorned by function calls used as markers of
the cells, which allows simulating the Turing machine computation on this input. For
each ordering ≤, the output of the Turing machine, if it exists, consists of enc≤(J).
A copy of J can then be generated by decoding it from the tape, which involves

Theory Comput Syst (2015) 57:927–966 957

replacing each integer by its corresponding data value given by ≤. Finally, in step
(v), a new, unique copy of J under root Out is obtained using a query that collects
the tuples from all copies of J .

The above proof relies crucially on the fact that the input and output of R are
trees representing relations and thus have highly regular structure. In particular, con-
structing a single copy of the output is easily done in this case, but is impossible for
arbitrary outputs. This follows from the proof of Theorem 5.3, since the query R
shown not to be expressible has relational input but nonrelational (although bounded-
depth) output. In this case, one can compute multiple copies of the answer, but a
single final copy cannot be obtained. This is a technical problem similar to the well-
known copy elimination problem arising in some relational and object-oriented query
languages [5]. One can show the following.

Corollary 5.5 Let R be a relation schema. For each deterministic tree queryR with
input DTD
R , there exists a DQAXML program Q with dense functions and input
DTD
R which, for every input I of R, produces an instance containing a set of
subtrees with root Out, each containing a unique subtree isomorphic to the output of
R on I .

Thus, for relational input, DQAXML with dense functions is complete up to copy
elimination.

Since for Boolean queries the output is relational, we have the following.

Corollary 5.6 Let R be a relation schema. Every Boolean tree query with input DTD

R is expressed by some DQAXML program with dense functions.

It remains open to give a precise characterization of the input and output DTDs
for which DQAXML is complete as in Theorem 5.4 and Corollary 5.6.

Remark 5.7 Recall that the QAXML languages with isolated functions have
natural counterparts in the while family of languages. As we will see in the
next section, this also holds for QAXML with tree variables. We know of no
while counterpart for the QAXML languages with dense functions and no tree
variables.

6 QAXML with Tree Variables

In the previous sections, we considered the impact of embedding functions into data,
where the queries used by functions extract bindings of data values. In particular,
we showed that there are drastic differences in expressiveness between the isolated
and dense cases. We now consider QAXML with more powerful queries equipped
with tree variables, that can extract and compare entire subtrees from the input. We
show how the picture changes in this case due to the increased power of the basic
queries. First, programs with isolated functions are much more powerful. Indeed,

Theory Comput Syst (2015) 57:927–966958

Fig. 12 Intermediate instance
in the computation of the
QAXMLτ program Parity

in the deterministic case they become complete. In the nondeterministic case, the
language is not complete, but remains so for a restricted kind of nondeterminism,
occurring at the control level but not at the data level. With dense functions, this
restriction can be lifted. In fact, only an intermediate form of density is needed for
nondeterministic completeness, allowing functions to occur under constructor nodes
of queries, but not embedded in the input.

We begin by defining QAXML with tree variables. We outline the differences
with the model described in Section 3. We no longer distinguish in patterns
between structural and data variables. Instead, each variable may bind to any node
in the input tree. However, we introduce two types of equality: shallow equal-
ity X = Y where X is a variable and Y is a variable, tag, function symbol,
or data value, and deep equality X =d Y , where X and Y are variables. The
semantics is standard. Variables in heads of queries return an isomorphic copy of
the entire subtree rooted at the node to which they bind. Relative patterns and
queries are defined as before, by allowing equalities of the form X = self .
We denote QAXML with tree variables by QAXMLτ . The notion of isolated and
dense program remains unchanged. We next provide an example of a QAXMLτ

program.

Example 4.4 We exhibit a QAXMLτ program with isolated functions and tree vari-
ables computing the parity of the depth of the input tree (the depth is the maximum
number of edges in a path from root to leaf). The root of the input tree is labeled Tree.
The programs return a node with label Even if the depth of the input is even and Odd
otherwise. The QAXMLτ program has isolated functions and computes the desired
query with either deterministic or nondeterministic semantics. The main component
of the QAXMLτ program is a function deeper that extracts, at each invocation, all
subtrees whose roots are at a given depth in the input tree (the depth increases by
one at each iteration). A parity flag is flipped at each invocation, and the function is
called until no more subtrees are obtained. Figure 12 depicts an intermediate instance
in the computation of the program.

In more detail, the initial instance is of the form shown in Fig. 13, with a function
!initialize under the root. The computation starts with a call to !initialize that returns

Theory Comput Syst (2015) 57:927–966 959

Fig. 13 Initial instance for the
QAXMLτ program Parity

a node labeled Even and two calls !deeper and !result. We call a subtree proper if
its root is not labeled by a function symbol or a parity flag Even or Odd. The call
guard of deeper ensures that the function is only called if the calling node has at least
one proper sibling subtree. The input query of deeper is shown in Fig. 14. It copies
the sibling parity flag Even or Odd and the proper siblings subtrees of the function
call. The return query, shown in Fig. 15, returns under a root Tree all subtrees whose
roots are at depth one in the copied subtrees, and flips the parity flag Even to Odd
or conversely. The function result is called when deeper can no longer be activated,
i.e. when the current call to deeper with no proper sibling subtree. The call to result
returns a tree rooted at Output with one child labeled by the parity flag sibling to
!deeper.

We now establish the expressive power of QAXMLτ with isolated functions and
deterministic semantics, denoted DQAXMLτ .

Theorem 6.2 DQAXMLτ with isolated functions is query complete.

Proof The high-level structure of the proof is similar to that of Theorem 5.2, but the
lack of dense functions complicates the construction.

Let R be a deterministic tree query with input DTD
, computable by some Tur-
ing machine M . The simulation ofR by a QAXMLτ program with isolated functions
on input I consists of several phases:

Fig. 14 The input query of deeper

Theory Comput Syst (2015) 57:927–966960

Fig. 15 The output query of deeper

(i) construct simultaneously all orderings of the data values in I ;
(ii) for each ordering ≤, construct a standard tape encoding enc≤(I);
(iii) for each ≤, simulate the computation of M on enc≤(I);
(iv) ifM terminates, output J such that the final tape ofM contains enc≤(J); since

R is deterministic, J independent of ≤. Produce one copy of J as the result.

We next elaborate on phases (i) − −(iv). Consider (i). The simultaneous con-
struction of all successor relations on data values is similar to (i) in the proof of
Theorem 5.4, where dense functions were used. This is now feasible with isolated
functions because entire subtrees defining partial successor relations can be copied
simultaneously by a single query using tree variables. Suffixes of the successors are
constructed recursively bottom-up. First, the set of data values is collected and each
is placed under a node labeled a, representing all suffixes of length one. Suppose a
forest of all suffixes of length n has been constructed, consisting of a path of nodes
labeled a, each with a child holding a distinct data value. The suffixes are extended
by one using a query whose body collects the bindings of two variables: S binding
to a current suffix and X binding to a data value not occurring in S. The head of the
query is {a}[X, S] where a is a fixed tag. This extends each S with all choices of data
values not yet included in S.

Consider (ii). For each ordering ≤ constructed above, we use the same string
encoding enc≤(I) as in Theorem 5.2. The construction can now be done simultane-
ously for all ordering by carrying the order as a parameter in a tree variable. The
construction of the encoding has two phases. First, we inductively compute a total
order ≺ on the set of subtrees of I (up to isomorphism) induced in some standard
way by ≤ and a fixed order on tags. We then generate for each ≤ a path whose nodes
are marked with the symbols of enc≤(I). This is done by carrying out a depth-first
traversal of I using ≺, and updating the encoding with an opening or closing tag
every time a node is visited. In order to be able to backtrack, the ancestors of the cur-
rent node in the traversal are marked until all their subtrees have been visited. Each
modification of the marking involves reconstructing the tree bottom-up, which can
be done due to the tree variables.

Theory Comput Syst (2015) 57:927–966 961

With enc≤(I) constructed, the computation of M is easily simulated. Each move
involves reconstructing the tape bottom-up and modifying markers corresponding
to the state and position of the head. Extending the tape poses no problem. If M

terminates, its final configuration is by definition enc≤(J), where J is the unique
answer ofR on I (sinceR is deterministic). The tree J is constructed for each ≤ in a
depth-first manner, using again markings to distinguish uncompleted trees. Each time
a node is added, the entire tree is generated again bottom-up. It is straightforward
to replace unary integers with their corresponding data values wrt ≤. Finally, the
isomorphic versions of J obtained for each ≤ are copied under a new root labeled
Out using a tree variable. Because isomorphic sibling trees are automatically reduced
in our semantics, this results in a single copy of J , completing (iv).

We now consider QAXMLτ with nondeterministic semantics, denoted
NQAXMLτ . It turns out that NQAXMLτ is not query complete. For example, it can-
not express the query Choice that outputs one arbitrary data value from the input.
Intuitively, this is because NQAXMLτ with isolated functions provides nondeter-
minism in the control, but not in choice of data. This can capture a limited form of
nondeterminism that we call weak nondeterminism. For a tree T and automorphism
π of T , we denote by πd the restriction of π to the set of data values in T .

Definition 6.3 A tree query R is weakly nondeterministic if for every input-output
pair 〈I, J 〉 of R and automorphism π of I , πd can be extended to an automorphism
of J .

For example, the query Choice is not weakly nondeterministic. The query Qa∨b

that outputs either the set of data values under some tag a or the set of data values
under tag b is weakly nondeterministic. Note that the input DTD is important: the
same program may define a query that is weakly nondeterministic with respect to
some input DTD, but not so with respect to another. The query Qa∨b happens to be
weakly nondeterministic for all input DTDs.

Theorem 6.4 NQAXMLτ with isolated functions expresses precisely the weakly
nondeterministic tree queries.

Proof Let E be an instance obtained from input I in the course of the computation
of a QAXMLτ program with isolated functions. An easy induction on the number
of steps in the computation shows that for every automorphism π of I , πd can be
extended to an automorphism of E. Since the final instance contains a single tree
rooted at Out, the output J also satisfies the property. Thus, every query expressible
by QAXMLτ with isolated functions is weakly nondeterministic.

Conversely, let R be a weakly nondeterministic tree query computed by a Turing
machine M . A NQAXMLτ program computingR is obtained similarly to (i)–(iv) in
the proof of Theorem 6.2, with some modifications. The simulation now involves the
following steps:

(i) construct simultaneously all orderings of the data values in I ;

Theory Comput Syst (2015) 57:927–966962

(ii) for each ordering ≤, construct a standard tape encoding enc≤(I);
(c) select the set ofM of orderings ≤ for which enc≤(I) is minimum (as a string)

among the encodings for all orderings and denote the minimum encoding by
encM(I);

(d) for all ≤ ∈ M, simulate the same computation of M on encM(I);
(e) if M terminates, output, for each ≤ ∈ M, the tree J such that the final tape of

M contains enc≤(J); because R is weakly nondeterministic, all J ’s obtained
for the ≤ ∈ M are isomorphic. Produce one copy of J as the result.

Stages (i) and (ii) are carried out as before. Step (c) is straightforward, and (d) is
done as before except that nondeterministic moves are simulated by having a differ-
ent function for each move, of which one is activated nondeterministically at each
transition. We justify the claim made in (e). Let ≤i ∈ M and Ji be such that the
final tape of M is enc≤i

(Ji), i = 1, 2. We show that J1 and J2 are isomorphic. Let πi

be the isomorphism that replaces in I every data value by the integer representing its
rank w.r.t. ≤i . Since enc≤1(I) = enc≤2(I), π1(I) = π2(I) and π1 ◦ π−1

2 is an iso-
morphism from J1 to J2. Thus, the outputs produced for all ≤ ∈ M are isomorphic.
To output a single copy of the output J , a final query collects all copies of J under a
new root Out, using a tree variable.

To summarize the results in this section so far, QAXMLτ with isolated functions
is complete for deterministic queries, but falls short for nondeterministic queries. It
is clear that allowing dense functions leads to a complete language, as for QAXML.
However, full density is not required. We say that a QAXMLτ program is query-
dense if function calls can only occur under the root in the initial instance, but are
allowed under constructor nodes in heads of queries. Thus, programs with query-
dense functions are a hybrid allowing only isolated functions in the input but dense
functions in queries. We have the following.

Theorem 6.5 NQAXMLτ with query-dense functions is query complete.

Finally, we note that Theorems 6.2 and 6.5 yield some strong normal forms for
QAXMLτ programs.

Theorem 6.6 (i) For every QAXMLτ program one can effectively construct an
equivalent QAXMLτ program with isolated functions. (ii) For every NQAXMLτ

program one can effectively construct an equivalent NQAXMLτ program with
query-dense functions.

While with tree variables
We next define simple variants of the while language that are equivalent to
the (non)deterministic QAXMLτ languages. The deterministic language, denoted
whileτ , has forest variables X, Y, Z, . . ., assignments X := ϕ(Y) (where X a
variable, Y is a variables or a constant tree, and ϕ is a tree pattern query with
tree variables), and an iterator whileX �= ∅do. The nondeterministic version
of the language, denoted N − whileτ , is obtained by introducing control choice

Theory Comput Syst (2015) 57:927–966 963

program1|program2. As before, there are two distinguished variables, In and Out
holding the input and output to the query.

Note that, unlike (N)-whiletree
N

, these languages have no integer variables, no
stack, and no tree constructors, because all can be simulated using tree variables. We
give an example of a whileτ program.

Example 6.7 A whileτ program computing the parity of the depth of the input tree
(see Example 6.1) is sketched below.

The query Flip changes the label Even to Odd and Odd to Even. The query Chil-
dren returns all subtrees whose roots are at depth one in the forest to which it is
applied.

The following establishes the connection between the (N)−whileτ and QAXMLτ

languages. The proofs are similar to Theorems 6.2 and 6.4 and are omitted.

Theorem 6.8 (i) whileτ is equivalent to DQAXMLτ with isolated functions and is
query complete; (ii) N-whileτ is equivalent to NDQAXMLτ with isolated functions
and expresses exactly the weakly nondeterministic tree queries.

In order to obtain a complete nondeterministic language, N − whileτ has to
be extended with a tree choice construct. To this end, we add an assignment
X := choose(Y), where X and Y are forest variables. This assigns to X one
tree nondeterministically chosen from the forest in Y . We denote the language
extended with this form of data nondeterminism by Nd -whileτ . The following is
immediate.

Theorem 6.9 Nd -whileτ is query complete and therefore equivalent to NQAXMLτ

with query-dense functions.

It turns out that a single use of data nondeterminism at the end of the computation
is sufficient to achieve completeness. This yields a normal form for Nd − whileτ

programs that pushes all nondeterminism into the last step.

Corollary 6.10 Every Nd -whileτ program P can be written as Q;{Out :=
choose(Y)} where Q is a deterministic whileτ program.

Theory Comput Syst (2015) 57:927–966964

Proof It is clear that every Nd − whileτ program P can be written as Q; {Out :=
choose(Y)} where Q is a N − whileτ program. Recall that the instruction
nondeterminism in Q is needed for the simulation of a nondeterministic Turing
machine on encodings of the input. However, the nondeterminism can be absorbed
into the last step by deterministically generating all choices and keeping them until
the end of the computation. This makes crucial use of tree variables and renders Q

deterministic.

Naturally, the determinization in the normal form comes at the cost of
an exponential blowup in the size of intermediate instances generated in the
computation.

7 Conclusion

We investigated highly expressive query languages on unordered data trees. We
focused largely on QAXML, because this language turned out to be a very appropri-
ate vehicle for understanding the impact and interplay of various language features
on expressiveness: (i) the integration of data and computation, (ii) the use of
tree versus data variables and (iii) the use of deterministic vs. nondeterministic
control.

When patterns and queries do not have tree variables, QAXML with isolated func-
tions has expressiveness limitations reminiscent of relational while languages. It also
has similarly powerful normal forms, shown by adapting techniques related to FOk

definability. We see the presentation of these normal forms as a major contribution
of the paper. We show in particular that NQAXML is equivalent to the much simpler
N-whiletree

N
and DQAXML to whiletree

N
. With dense functions, NQAXML becomes

complete, while DQAXML falls short even for relational input, due to the copy elim-
ination problem. Interestingly, the deterministic fragment of NQAXML is strictly
more expressive than DQAXML (so nondeterminism increases the ability to express
deterministic queries). We do not know of a natural deterministic complete language
without deep equality and tree copying.

Tree variables in patterns and queries partly alleviate the limitations of isolated
functions: DQAXML with isolated functions becomes complete with tree variables,
but NQAXML falls short of capturing full nondeterminism. To obtain nondetermin-
istic completeness for NQAXML, isolation must be relaxed. The results suggest that
dense functions and tree variables are alternatives for achieving query completeness,
modulo the subtle limitations mentioned above.

A number of interesting issues were raised by the present work. We mention a few:

• characterize relaxations of the isolation condition for which the results on
isolated QAXML programs continue to hold.

• characterize the input and output DTDs for which DQAXML with dense
functions is query-complete, or query-complete up to copy elimination.

• characterize the input DTDs for which properties defined by QAXML programs
with isolated functions also follow 0-1 laws.

Theory Comput Syst (2015) 57:927–966 965

• find natural, deterministic, query-complete languages without deep equality or
tree copying.

Many classical models of computation on trees are based on automata and
transducers. We plan to consider in future work various forms of transducers for
unordered data trees, and their connection to query languages. While a nondetermin-
istic, query-complete transducer is easy to design, this appears to be more challenging
for the deterministic case.

Acknowledgments This work has been partially funded by the European Re-search Council under
the European Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant Webdam,
agreement 226513. http://webdam.inria.fr

V. Vianu was supported in part by the NSF under award IIS-1422375. Work done in part while visiting
INRIA and ENS-Cachan.

References

1. Abiteboul, S., Benjelloun, O., Milo, T.: The active XML project: an overview. VLDB J. 17(5) (2008)
2. Abiteboul, S., Bourhis, P., Vianu, V.: Comparing workflow specification languages: a matter of views.

ACM Trans. Database Syst. 37(2) (2012). Also ICDT 2011
3. Abiteboul, S., Compton, K.J., Vianu, V.: Queries are easier than you thought (probably). In PODS

(1992)
4. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley, Reading, MA (1995)
5. Abiteboul, S., Kanellakis, P.: Object identity as a query language primitive. J. Assoc. Comput. Mach.

(JACM) 45(5) (1998)
6. Abiteboul, S., Segoufin, L., Vianu, V.: Static analysis of active XML systems. ACM Trans. Database

Syst. 34(4) (2009). Also PODS 2008
7. Abiteboul, S., Vianu, V.: Generic computation and its complexity. In STOC, pp. 209–219 (1991)
8. Abiteboul, S., Vianu, V.: Computing with first-order logic. J. Comput. Syst. Sci. 50(2) (1995)
9. Benedikt, M., Koch, C.: From XQuery to relational logics. ACM Trans. Database Syst. 34(4) (2009)

10. Bojanczyk, M.: Automata for data words and data trees. In RTA, pp. 1–4 (2010)
11. Calvanese, D., Giacomo, G.D., Hull, R., Su, J.: Artifact-centric workflow dominance. In

ICSOC/ServiceWave (2009)
12. Hidders, J., Marrara, S., Paredaens, J., Vercammen, R.: On the expressive power of XQuery fragments.

In DBPL (2005)
13. Hidders, J., Paredaens, J., Vercammen, R., Demeyer, S.: A light but formal introduction to XQuery.

In XSym (2004)
14. Janssen, W., Korlyukov, A., den Bussche, J.V.: On the tree-transformation power of XSLT. Acta Inf.

43(6) (2007)
15. Koch, C.: On the complexity of nonrecursive XQuery and functional query languages on complex

values. ACM Trans. Database Syst. 31(4) (2006)
16. Libkin, L.: Elements of Finite Model Theory. Springer, Berlin (2004)
17. Neven, F.: Automata, logic, and XML. In Computer Science Logic (2002)
18. Schwentick, T.: Automata for XML - a survey. J. Comput. Syst. Sci. 73(3) (2007)
19. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In Computer Science

Logic, pp. 41–57 (2006)
20. Segoufin, L.: Static analysis of XML processing with data values. SIGMOD Record 36(1), 31–38

(2007)

Theory Comput Syst (2015) 57:927–966966

http://webdam.inria.fr

	Highly Expressive Query Languages for Unordered Data Trees
	Abstract
	Introduction
	Preliminaries
	AXML Query Languages
	QAXML with Isolated Functions
	Isolated Functions and FOk Definability
	WhileN Languages for Trees
	NQAXML with Isolated Functions
	DQAXML with Isolated Functions
	Boolean Queries

	QAXML with Dense Functions
	QAXML with Tree Variables
	Conclusion
	Acknowledgments
	References

