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ABSTRACT
We study highly expressive query languages for unordered
data trees, using as formal vehicles Active XML and exten-
sions of languages in the while family. All languages may
be seen as adding some form of control on top of a set of
basic pattern queries. The results highlight the impact and
interplay of different factors: the expressive power of ba-
sic queries, the embedding of computation into data (as in
Active XML), and the use of deterministic vs. nondeter-
ministic control. All languages are Turing complete, but
not necessarily query complete in the sense of Chandra and
Harel. Indeed, we show that some combinations of features
yield serious limitations, analogous to FOk definability in
the relational context. On the other hand, the limitations
come with benefits such as the existence of powerful nor-
mal forms. Other languages are “almost” complete, but fall
short because of subtle limitations reminiscent of the copy
elimination problem in object databases.

Categories and Subject Descriptors
H.2.3 [Database Management]: Query languages

Keywords
Expressiveness, XML, data trees

1. INTRODUCTION
In recent years there has been much interest in query lan-

guages on trees, motivated by the ubiquity of XML. Most
formal studies have focused on languages of limited expres-
siveness, with an eye towards efficient evaluation and pre-
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serving tractable static analysis. In this paper we consider
the other end of the spectrum – highly expressive query lan-
guages for trees with data. Moreover, we focus on unordered
trees, motivated by considerations familiar from classical
databases, including opportunities for optimization provided
by set-oriented processing. Our languages use simple tree
pattern queries as basic building blocks, and various forms
of control to build complex programs. We highlight two im-
portant factors affecting expressiveness: the power of the
basic tree pattern queries, and the ability to embed code
into trees. In order to understand the latter, we use as a
vehicle for our study the language Active XML (AXML)
that provides a clean, flexible model of XML with embed-
ded programs. We also consider extensions to trees of highly
expressive relational languages of the while family, and es-
tablish tight connections with the AXML languages. The
results highlight the interplay of various language features
on expressiveness. They provide insight into the specificity
of unordered data trees, while also showing some interesting
extensions of classical results. In particular, we show how
the notion of FOk definability can be lifted to the context
of data trees, yielding a powerful tool for understanding the
expressiveness of various languages. We also encounter a
new incarnation of the well-known copy elimination prob-
lem, arising in expressive relational and object-oriented lan-
guages.

The main vehicle for our study, AXML, provides an exten-
sion of XML with embedded service calls. This has proven
useful in many scenarios. While our focus here is on its
ability to define queries, understanding its expressiveness is
of interest beyond querying itself. For example, AXML has
been proposed as a high-level specification framework for
data-centric workflows [5, 1], because it is particularly well
suited to describe workflows whose stages correspond to an
evolving document. In this context, it is of interest to under-
stand the connection between starting and final states of the
workflow. For instance, this transformation underlies the no-
tion of dominance [10], introduced as a basic way to compare
the expressiveness of workflow formalisms, and is also use-
ful when performing abstraction in hierarchical workflows,
by replacing a sub-workflow with a signature specifying the
connection between its inputs and outputs. Static analysis
can also benefit from information on the expressiveness of
AXML fragments (primarily for proving negative results).

We briefly describe the abstraction of AXML used here,
based on the GAXML variant of [5]. An instance consists of
a forest of unordered, unranked trees whose internal nodes
are labeled by tags from a finite alphabet, and whose leaves
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are labeled by tags, data values from an infinite alphabet,
or function symbols. The activation of functions, as well
as their return, are controlled by guards, which are Boolean
combinations of tree patterns. Trees evolve under two types
of actions: function calls and function returns. A function
call creates a fresh workspace initialized by a simple tree-
pattern-based query on the current instance. The workspace
may in turn contain function calls, and workspaces can thus
be created recursively. The answer to a function call consists
of a forest which is the answer to a query applied to the final
state of its workspace. AXML typically adopts a nondeter-
ministic control semantics, by which transitions are caused
by the call or return of a single arbitrarily chosen function
whose corresponding guard is true. Alternatively, one can
adopt a natural deterministic semantics under which all calls
and returns whose guards are true are fired simultaneously
(analogously to Datalog rules). We can view AXML as a
query language whose input is an initial instance and whose
output is a tree produced under a designated root (say Out).
We refer to GAXML viewed as a query language as QAXML
thereby stressing that its main role is as a query language.

The main contribution of our work is to highlight fun-
damental aspects of querying trees and the expressibility of
query languages for trees. It can be viewed as a continuation
of works on relational languages (see, e.g., [3]) and object-
oriented languages [4]. We study in particular the impact
on expressiveness of the embedding of functions into data,
which is a main distinguishing characteristic of AXML. We
consider this in combinations with restrictions on the tree
patterns used by functions, and deterministic or nondeter-
ministic semantics.

A first group of results focuses on the case when the func-
tions are isolated from the data (by disallowing all but trivial
embeddings), and the queries used by functions manipulate
only data values rather than full subtrees. We show that the
resulting expressiveness is analogous to relational languages
in the spirit of embedded SQL, consisting of a Turing com-
plete programming language interacting with an underlying
database by first-order (FO) queries. In the relational case,
such languages are formalized by the relational machine, or
equivalently, languages of the while family augmented with
integers [6]. Recall that despite their Turing completeness,
these languages are far from query complete; in fact, they
are definable in Lω

∞ω (infinitary logic with bounded num-
ber of variables), they have a 0-1 law, and cannot compute
even “simple” queries such as the parity of the domain. We
define analogous languages (and nondeterministic variants)
for trees and show that QAXML with isolated functions is
equivalent to the tree variant of while with integers. This
allows proving limitations in expressive power analogous to
the relational case, but also yields similarly powerful normal
forms. For example, every such QAXML query with isolated
functions can be evaluated in three phases: (i) a ptime pre-
processing phase on the trees; (ii) a computation with no
data; and (iii) the construction of the final answer in ptime

(with respect to the answer). The normal from is a power-
ful technical tool and also highlights potential opportunities
for optimization, since the outcome of the first phase may be
much smaller than the original input. In particular, Boolean
queries require only phases (i) and (ii), so can be computed
by first eliminating data by a ptime computation, then car-
rying out the remaining of the computation on a potentially
much smaller instance with no data values. This may be

seen as an adaptation to trees of similar normal forms that
hold in the relational case, where the first pre-processing
phase can be defined by a fixpoint query [3, 15]. The normal
form is also a key technique in understanding the relative
expressiveness of various languages and showing sometimes
surprising equivalences. Thus, it is instrumental in prov-
ing the equivalence of QAXML with isolated functions and
tree variants of while with integers. It is also key in show-
ing that the nondeterminism does not increase the ability
of QAXML with isolated functions to express deterministic
queries (compared to the deterministic semantics).

The limited expressive power of QAXML with isolated
functions is alleviated by allowing arbitrary embedding of
functions, yielding QAXML with dense functions. In this
case, QAXML with non-deterministic semantics allows ex-
pressing any arbitraty computable queries over trees, i.e.,
QAXML is query complete. Intuitively, this is because func-
tion embedding allows some form of data nondeterminism,
i.e., the possibility to nondeterministically choose a data
value in a set. This allows nondeterministically comput-
ing an ordering of the data values. With this ordering, the
first phase of the computation permits to fully identify the
input, thereby yielding query completeness.

Interestingly, we also consider a deterministic semantics.
Rather surprisingly, QAXML with dense functions and de-
terministic semantics is not query complete (so in this case
nondeterminism does allow expressing more deterministic
queries). In fact, we encounter a phenomenon that has
already been observed for languages with value invention,
namely the well-known copy elimination problem [4], pre-
cluding completeness even for inputs and outputs of bounded
depth. Intuitively, one can obtain several copies of the re-
sult, but the language does not permit retaining only one
final copy.

In the bulk of our study, variables in queries denote atomic
data values. We also consider variables denoting subtrees.
The use of tree variables yields powerful subtree manipu-
lations by the queries of QAXML functions. As a result,
the expressive power is substantially increased. In partic-
ular, deterministic QAXML becomes query complete even
with isolated functions. Interestingly, the nondeterminis-
tic variant falls slightly short of completeness – it expresses
a sublass of queries called weakly nondeterministic, corre-
sponding intuitively to nondeterminism arising from control
rather than choice of data. To render the language fully
complete for nondeterministic queries, we need to go beyond
isolated functions, although full density is not required. As
a side effect of the first result, we obtain a powerful normal
form for deterministic QAXML queries with tree variables:
embedding of functions can be entirely eliminated with no
loss of expressiveness. In the nondeterministic case, embed-
ded functions can be eliminated from the input but must
be allowed in intermediate instances produced by function
calls.

As earlier, we can show close connections between QAXML
and languages of the while flavor, allowing subtree manipu-
lations. The while languages are simpler than the previous
variants, since integers and other constructs are no longer
needed. The results also yield a normal forms for the nonde-
terministic variant of the while language, confining all non-
determinism to the last step in the computation.

ha
l-0

07
65

55
8,

 v
er

si
on

 1
 - 

14
 D

ec
 2

01
2



Related work
Our investigation of AXML leverages various techniques of
the classical theory of query languages, including expressive-
ness of FO with a bounded number variables, normal forms,
0-1 laws, and highly expressive languages. This background
is reviewed in the next section.

Query and transformation languages on trees have been
widely investigated in the context of XML, focusing on ab-
stractions of fragments of XQuery, XPath, and XSLT (see
the surveys [16, 17] and [13]). Many of these studies have fo-
cused on trees without data. More recently, trees with data
(or over infinite alphabets) have been studied. Much of this
work is geared towards static analysis, so aims to capture
computations of limited expressiveness for which questions
such as emptiness remain decidable [9, 18, 19]. There is lit-
tle work on highly expressive languages on trees with data,
and it usually adopts a model of ordered unranked trees
(siblings are ordered) [8, 11, 12, 14]. In contrast, we con-
sider a model of unordered trees. This is in the spirit of
the relational model where the order of tuples in relations
is immetarial. The intuition is that we focus on the essence
of the information rather than on aspects of its representa-
tion such as an ordering of data elements. The absence of
order is also a source of opportunities for optimization and
set-oriented parallel processing, and presents advantages for
static analysis. This difference in focus renders our results
incomparable to the cited work.

Organization
After some preliminaries, Section 3 introduces QAXML query
languages. QAXML with isolated functions is studied in
Section 4 and with dense functions in Section 5. The im-
pact of tree variables (deep equality and tree copying) is
discussed in Section 6. Additional examples are provided in
an appendix.

2. PRELIMINARIES
We informally recall some background on relational query

languages. See [3, 15] for formal and detailed presentations.
We assume an infinite set dom of data values, and an infinite
set of variables, disjoint from dom. A relational schema σ
is a finite set of relation symbols with associated arities. An
instance over σ provides a finite relation of appropriate arity
over dom for each symbol in σ. First-order (FO) queries
over σ are defined as follows. An atom is R(x1, . . . , xm) or
x1 = x2, where R is a relation in σ of arity m and each xi is a
variable or data value (always interpreted by the identity).
Formulas are obtained by closing the set of atoms under
∧,∨,¬, ∀, and ∃, in the usual way. We use the standard
active domain semantics, which limits the ranges of variables
to the data values occurring in the current instance or in the
query.

A query language is query complete if it expresses all com-
putable queries. In the classical relational context, it is gen-
erally assumed that queries produce answers using only data
values from the input (perhaps augmented with a finite set
of values explicitly mentioned in the query) and that queries
are deterministic. Nondeterministic variants of query com-
pleteness have also been defined, some allowing new values
in answers to queries.

FO is not query complete and in fact cannot express sim-
ple queries such as the transitive closure of a graph. This
can be partly alleviated by augmenting FO with a recursion

mechanism. Many extensions of FO with recursion converge
around two robust classes of queries: fixpoint and while.
We recall two imperative languages expressing these classes.
The language while (homonymous with the class) extends
FO with (i) relational variables to which FO queries can
be assigned (with destructive semantics), and (ii) a looping
construct of the form while R 6= ∅ do. The while queries
are those expressed in this language. The fixpoint queries
are expressed by while+, an inflationary variant of while ob-
tained by giving cumulative semantics to assignments and
replacing the looping construct with while change do. Note
that because of the cumulative assignment, the contents of
relational variables is increasing. The loop stops when two
consecutive iterations produce no change to the contents of
the relational variables (i.e. a fixpoint is reached). Clearly,
every query in while+ is in ptime with respect to the size
of the input (for fixed schema), and every query in while is
in pspace. To break the pspace barrier, one possibility is
to make while Turing complete by augmenting it with in-
teger variables, increment and decrement instructions, and
looping of the form while i > 0 do. Indeed, this allows sim-
ulating counters machines, which are computationally com-
plete. The extended language is denoted whileN. It partially
achieves the goal of increased expressiveness by being query
complete on ordered databases. However, there remain very
simple queries that are not expressible in the absence of or-
der, such as the parity of the domain. A measure of the
expressiveness limitations of whileN is that it has a 0-1 law,
i.e. the probability of a formula in this language to be true
for the instances of size n converges to zero or to one when
n goes to infinity.

The expressiveness of whileN and variants of this language
is illuminated by a powerful normal form allowing to reduce
in ptime the evaluation of any such program to a compu-
tation on integers. Intuitively, the integers correspond to
equivalence classes of tuples that are manipulated together
by the program. More precisely, consider a whileN program
that refers to some finite set C of data values, and whose FO
queries use at most k variables. It is easy to see that every
relation constructed in a specific execution of the program is
definable by composing FOk formulas of the program (yield-
ing another FOk formula). Consider an instance I, the set
C of constants, and let ≡I,k,C be the equivalence relation
on tuples of arity l ≤ k defined as follows: for every ϕ ∈
FOk mentioning data values in C and having l free vari-
ables, ā ∈ ϕ(I) iff b̄ ∈ ϕ(I). The following key fact holds.
There exists a fixpoint query Φ (mentioning data values in
C) that, on input I, computes the following:

• the equivalence classes of ≡I,k,C ;

• a total order on the above equivalence classes.

By definition, all relations constructed from I by FOk

formulas are unions of classes of ≡I,k,C . Since the classes are
ordered, they can be viewed as integers, and each relation as
above as the set of integers corresponding to the equivalence
classes it contains. To show the normal form, one needs to
be able to evaluate an FOk formula directly on the integer
representation, without recourse to the actual equivalence
classes. To do so, we need sufficient information on the
action of such formulas on the equivalence classes. It is not
hard to see that there exists a finite set F k of conjunctive
queries with at most k variables such that every FOk formula
over a given schema can be evaluated by applying queries
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in F k, together with union and negation. For each q ∈ F k,
let a(q) be the number of atoms in q. It can be shown that
there exists a fixpoint query Ψ which computes, for each
q ∈ F k, a relation Actionq providing, for each a(q)-tuple of
equivalence classes of ≡I,k,C , the result of applying q to that
tuple. Clearly, the instance Action(I, k, C) = {Actionq |
q ∈ F k} provides the needed information for evaluating FOk

queries directly on the integers representing the equivalence
classes of ≡I,k,C . The normal form for whileN then follows.

As a useful application of the normal form technique, con-
sider the extension of whileN allowing to store integers mixed
together with data in relational variables, denoted while∗N.
More precisely, this is done by an assignment instruction
X := 〈i〉 where X is a unary relational variable and i an in-
teger variable. It turns out that this seemingly more power-
ful language remains equivalent to whileN. This is shown by
extending the normal form to while∗N, by considering “slices”
of relations sharing the same integer components, and show-
ing that their data portions remain definable in FOk. As a
consequence, all properties (and queries producing only data
values) remain definable in whileN [7].

One way to obtain a query complete language is to ex-
tend while with the ability to introduce new data values
throughout the computation. This is done by an instruc-
tion X := new(Y ), where X, Y are relational variables and
arity(X) = arity(Y ) + 1. This inserts in X all tuples of Y
extended with an additional coordinate containing a distinct
new data value for each tuple (akin to a nondeterministically
chosen tuple identifier). It turns out that this language, de-
noted whilenew, is query complete for queries whose answers
do not contain invented values. Interestingly, the language
is not complete when invented values are allowed in the an-
swer, due to the notorious copy elimination problem [4].

Trees The data trees we consider are labeled, unranked and
unordered. We assume given the following disjoint infinite
sets: nodes N (denoted n, m), tags Σ (denoted a, b, c, . . .),
data values D (denoted α, β, . . .), possibly with subscripts.
A tree is a finite binary (parent) relation over N where all
nodes have a single parent except for one (the root). A tree
also has a labeling function assigning a tag or data value
to every node (data values can only be assigned to leaves).
We also assume that the trees are reduced, i.e., there are no
siblings subtrees that are isomorphic by a mapping preserv-
ing the tags and data values. This is analogous to the set
(rather than bag) semantics for relational databases. The
set of data values occurring in a tree I is denoted dom(I).

Tree queries Let Σ be a finite set of tags. We define the
semantic notion of computable query for trees over Σ, by
extending the classical notion of computable query for rela-
tional databases. The input trees may be constrained by a
DTD ∆.

We use the following notions:

C-genericity: We extend the notion of C-genericity for
some finite set C of data values. A relation R on trees
with tags in Σ is C-generic if it is closed under all iso-
morphisms that preserve Σ and C (but may rename
all other data values). More precisely, R is C-generic
if for each one-to-one mapping ρ over N ∪ D ∪ Σ such
that ρ(N) ⊆ N, ρ(D) ⊆ D, and ρ is the identity on
Σ ∪ C, (I, J) ∈ R iff (ρ(I), ρ(J)) ∈ R.

Computability: The notion of computable is standard: A
relation R is computable if there exists a nondetermin-

Graph

Edge

Node1

α1

Node2

α2

· · · Edge

Node1

α2

Node2

α3

!TClosure

Figure 1: AXML tree

istic Turing machine MR that, given any order ≤ on
data values and a standard encoding enc≤(I) of an in-
put tree I on its tape, has a terminating computation
on input enc≤(I) with output enc≤(J) iff 〈I, J〉 ∈ R.

A tree query is a computable, C-generic relation R from
trees over Σ satisfying ∆ to trees over Σ, such that, for
every 〈I, J〉 ∈ R: (i) dom(J) ⊆ dom(I) ∪ C, and (ii) I and
J have disjoint sets of nodes. Condition (ii) is motivated
by the fact that we do not view the specific node ids as
semantically significant. We say that a tree query language
is query complete if it expresses exactly the set of all tree
queries.

The definition of deterministic query is somewhat subtle.
Since tree queries produce as outputs trees with new nodes,
genericity precludes uniqueness of the result (intuitively, all
choices of new nodes must be allowed). To overcome this
problem we define a query R to be deterministic if it pro-
vides a unique answer for each input up to renaming of the
nodes (labels remain unchanged). A tree query language is
deterministic query complete if it expresses all deterministic
tree queries.

3. AXML QUERY LANGUAGES
We introduce in this section several query languages based

on an abstraction of AXML.
We assume given an infinite set F of function names. For

each function name f , we also use the symbols !f and ?f ,
called function symbols, and denote by F

! the set {!f | f ∈
F} and by F

? the set {?f | f ∈ F}. Intuitively, !f labels a
node where a call to function f can be made (possible call),
and ?f labels a node where a call to f has been made and
some result is expected (running call). After the answer of
a call at node n is returned, the node n is deleted.

An AXML tree is a tree whose internal nodes are labeled
with tags in Σ and whose leaves are labeled by either tags,
function symbols, or data values. An AXML forest is a set of
AXML trees. An example of AXML tree is given in Figure 1.

To avoid repetitions of isomorphic sibling subtrees, we de-
fine the notion of reduced tree. A tree is reduced if it contains
no distinct isomorphic sibling subtrees without running calls
?f . We henceforth assume that all trees considered are re-
duced, unless stated otherwise. However, the forest of an
instance may generally contain multiple isomorphic trees.

DTD Trees may be constrained using DTDs. Because our
trees are unordered, we use a variant of DTDs that restricts,
for each tag a ∈ Σ, the labels of children that a-nodes
may have1. As our trees are unordered, we use Boolean
combinations of statements of the form |b| ≥ k for b ∈
Σ∪F

!∪F
?∪{dom} and k a non-negative integer. Validity of

trees and of forests relative to a DTD is defined in the stan-
dard way. For simplicity we assume that all DTDs specify

1Alternatively, we could use automata on unordered trees.
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trees with the same root labeled r. We call a DTD static if
it does not allow function symbols, and active otherwise.

Patterns We use patterns as basic building blocks for our
query languages. A pattern P is a tree-pattern together with
a condition, defined next. We use two sorts of variables:
structural variables V, W, . . . that bind to nodes labeled by
tags and function symbols, and data variables X, Y, . . . bind-
ing to nodes labeled by data values. A tree-pattern is a tree
whose nodes are labeled by distinct variables, and whose
edges are labeled by child (/) or descendant (//), where de-
scendant is reflexive. Additionally, each node has associated
with it a sign: positive or negative. The default sign is pos-
itive, and we indicate nodes of negative sign by a label ¬.
The root of each tree pattern must be positive. We call a
node in the tree pattern T a boundary node if it is the root
or a node labeled ¬. For each subtree S of T rooted at a
positive node, we denote by S+ the tree obtained by remov-
ing all its subtrees rooted at negative nodes (including their
roots). We associate to each boundary node b of T a set of
variables var(b) defined recursively as follows. For the root r,
var(r) is the set of variables in T +. For an arbitrary bound-
ary node b, var(b) is the union of the variables in var(b′)
for the boundary nodes b′ that are ancestors of b, together
with the variables in S+

b , which is the subtree of T rooted
at b where the sign of b is made positive. The condition of
T is a mapping cond associating to each boundary node b a
Boolean combination of equalities over var(b) of the form:

• V = t, where V is a structural variable and t is a tag
or function symbol; and

• X = Y , where X is a data variable and Y is a data
variable or a data value.

A pattern P is a pair (T, cond), where T is a tree pattern
and cond a condition for T . By slight abuse, we sometimes
refer to nodes of P , meaning nodes in its tree pattern T .

Let P = (T, cond) be a pattern. The set of bindings of
P into an AXML forest I is defined by structural recursion
on P as follows. A binding of P into I is a mapping ν from
var(T+) to the nodes of I such that:

• The child and descendant relations are preserved.

• For each data variable X, ν(X) is a node labeled by a
data value.

• cond(r) is satisfied. More precisely, an equality V = t
is satisfied for a structural variable V of the label of
ν(V ) equals t, and X = Y is satisfied for data variables
X, Y if the data values labeling ν(X) and ν(Y ) are
equal (and similarly when Y is a data value).

• For each maximal subtree N of T rooted at a negative
node b, there is no extension of ν to a binding of T ⊕N
where T ⊕N is obtained from T by removing the label
¬ from the root of N , such that ν satisfies cond(b).

Given an AXML forest I and a pattern P , we denote by
Bind(P, I) the set of bindings of P into I. We say that I
satisfies P , denoted I |= P , if Bind(P, I) 6= ∅.

Example 3.1 Figure 2 shows a very simple pattern. When
conditions uniquely specify labels of nodes, we use an intu-
itive representation, as the right pattern in Figure 2. This
cannot always be done. For example, if for the same tree pat-
tern the condition is V 0 = Graph ∧ V 2 = Node1 ∧ V 3 =
Node2 ∧ (V 1 = Self-Loop → X = Y ) ∧ (V 1 = Edge →

(a)

V0

V1

V2

X

V3

Y

(b)

Graph

Edge

Node1

X

Node2

X

Cond(V0)=

{

V0=Graph∧ V1=Edge

∧ V2=Node1∧ V3=Node2∧ X=Y

Figure 2: A simple pattern: full specification (a)
and concise version (b)

(a)
V0

V1

X1 ¬ V2

V3

X2 X3 ¬V4

X4

(b)
r

P

X ¬R

tup

X Y ¬Q

Y

(c)
r

P

X ¬R

tup

X Y ¬Q

Y

⇒ Collect

{X}

Boundary nodes = {V0,V2,V4}

V ar(V0) = {V0,V1,X1}

Cond(V0) = V0=r∧V1=P

V ar(V2) = V ar(V0)∪{V2,V3,X2,X3}

Cond(V2) = Cond(V0)∧V2=R∧V3=tup∧X1=X2

V ar(V4) = V ar(V2)∪{V4,X4}

Cond(V4) = Cond(V2)∧V4=Q∧X3=X4

Figure 3: A complex pattern: (a) full specification
(b) concise version (c) a query using the pattern

X 6= Y ) then there no fixed assignment of labels to nodes.
Finally, a more complex pattern and its concise representa-
tion are shown in Figure 3.

We sometimes use patterns that are evaluated relative to
a specified node in the tree. More precisely, a relative pat-
tern is one whose conditions may use equalities of the form
V = self where self is a new symbol. A relative pattern
is evaluated on a pair (I, n) where I is a forest and n is a
node of I. An equality V = self is satisfied by a binding ν
if ν(V ) = n.

Pattern Queries As previously mentioned, patterns are
the building blocks for our basic queries, as shown next. A
pattern query is a finite set of rules of the form Body →
Head , where Body is a pattern and Head is a tree whose
internal nodes are labeled by tags, and leaves are labeled
by tags, function symbols in F

!, or data variables in Body+.
In addition, all variables in Head occur under a designated
constructor node (marked by set brackets), specifying a form
of nesting. When evaluated on a forest I, the answer is
obtained using the bindings of Body+ into I. The answer
for the rule is obtained by replacing in Head the subtree T
rooted at the constructor node with a forest containing, for
each ν ∈ Bind(Body, I) a new copy of T in which each label
X is changed to the data value labeling ν(X). The answer
to the pattern query is the union of the answers for each rule
(so a set of trees). A simple example of a pattern query is
shown in Figure 3. Its body is the pattern in Figure 3.

Note that, in the above, variables in heads of queries ex-
tract data values from the input. We will consider in Section
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Figure 4: An AXML instance with an eval link

6 an extension allowing variables in heads to extract entire
subtrees from the input.

As for patterns, we may consider queries evaluated relative
to a specified node in the input tree. A relative pattern query
is defined like a pattern query, except that the bodies of its
rules are relative patterns.

Programs and instances A QAXML program Q is a tuple
(Φ, ∆) where Φ is a set of function definitions, and ∆ is a
DTD constraining the initial instance.

We next provide more details, starting with Φ. For each
f ∈ F, let af be a new distinct label in Σ. Intuitively, af will
be the root of a subtree where a call to f is being evaluated
(this may be seen as a workspace for the evaluation of the
call). The specification of a function f of Φ provides a call
guard (Boolean combination of patterns), its input query
(a relative query), return guard (Boolean combination of
patterns with roots labeled af ), and return query (a pattern
query with rules whose bodies have roots labeled af ). When
the input query is evaluated, self binds to the node at which
the call !f is made. The role of the input query is to define
the the initial state of the workspace of the call to f .

An AXML instance I is a pair (T, eval), where T is an
AXML forest and eval an injective function over the set of
nodes in T labeled with ?f for some f ∈ Φ such that: (i) for
each n with label ?f , eval(n) is a tree in T with root label af

(its workspace), and (ii) every tree in T with root label af

is eval(n) for some n labeled ?f . Figure 4 shows an AXML
instance.

The standard semantics of AXML is nondeterministic. At
each step of a computation, one function is called or one
function call returns its answer. Alternatively, one can pro-
vide a deterministic semantics, in which all calls and returns
whose guards are true take place simultaneously. This dis-
tinction is in the spirit of a distinction that has been con-
sidered for Datalog programs, for which rules may be fired
simultaneously or one at a time. We denote the nondeter-
ministic variant by NQAXML and the deterministic one by
DQAXML.

Nondeterministic semantics We first define the standard
nondeterministic semantics, yielding the language NQAXML.
Let I = (T, eval) and I ′ = (T′, eval’) be instances. The in-
stance I ′ is a possible next instance of I iff I ′ is obtained
from I by making a call to some function whose call guard
is true, or by returning the answer to an existing call whose
return guard is true. We denote by I ` I ′ the fact that I ′ is
a possible next instance of I.

We now provide more details. When a call to !f is made
at node n, the label of n is changed to ?f and we add to the
graph of eval the pair (n, T ′) where T ′ is a tree consisting of a
root af connected to the forest that is the result of evaluating
the input query of f on input (T, n). When an answer to
call ?f at node n is received, the trees in the answer are
added as siblings of n, and n is deleted. The answer can

be returned only if eval(n) contains no running calls ?g, in
which case the answer consists of the result of evaluating
the return query of f on eval(n), after which (n, eval(n)) is
removed from the graph of eval.

Figure 4 shows a possible next instance for the instance
of Figure 1 after a call has been made to !TClosure.

We are interested in computations of NQAXML programs.
An initial instance of program Q = (Φ, ∆) is an instance
consisting of a single tree satisfying ∆. A computation of Q

is a maximal sequence {(Ii)}0≤i<n, such that n ∈ N ∪ {ω},
I0 satisfies ∆, and for each i, 0 < i < n, Ii−1 ` Ii. A
computation is terminating if it is finite.

Deterministic semantics QAXML programs can be given
deterministic semantics by firing at each transition all func-
tion calls and function returns whose guards hold in the
current instance. The notion of computation is defined anal-
ogously to the nondeterministic case. Of course, a QAXML
program with deterministic semantics has only one compu-
tation on each given input. QAXML programs with deter-
ministic semantics are denoted by DQAXML. We continue
to refer to QAXML to denote programs with either deter-
ministic or nondeterministic semantics.

QAXML as a query language Consider a tree query R

with input DTD ∆. Recall that inputs and outputs of tree
queries have no function symbols. In order to compute R

using QAXML, we add function calls to the input under cer-
tain nodes. An answer is the tree found under a designated
new tag Out whenever the program terminates. An example
of a QAXML program computing the transitive closure of a
graph is provided in the appendix.

We consider two extremes: (i) the only function call al-
lowed in the input is under the root, and (ii) function calls
are placed under every node in the input (except those la-
beled by data values). Intermediate restrictions on embed-
dings can be defined by various means that we leave open,
for instance by specifying the parents of function calls using
their tags, by an MSO formula, etc. As we shall see, the al-
lowed embedding of function calls into the input has drastic
impact on expressiveness. We next consider (i) in Section 4,
then (ii) in Section 5.

4. QAXML WITH ISOLATED FUNCTIONS
A main objective of the current study is to understand

the impact on expressiveness of function calls embedded in
the data. We first consider the case when there is no non-
trivial embedding in the input, coupled with a restriction
on how new functions can be introduced. Without loss of
generality, we can assume that the initial instance contains
only one function symbol !f (other functions can be added
if desired by a call to that function).

Definition 4.1. A QAXML program with isolated func-
tions is a pair Q = (Φ, ∆) where ∆ is a static DTD and
for every query rule Body → Head used in Φ, no function
symbol occurs under the constructor node in Head. For an
instance I satisfying ∆, we denote by I ! the instance ob-
tained by adding a call !f under the root of I. The program
Q expresses a tree query R with input DTD ∆ if for every I
satisfying ∆, (I,O) ∈ R iff there exists a computation of Q

on I ! terminating with O as the unique subtree of a unique
node labeled Out (where Out is a new tag).

The isolation restriction places drastic limitations on the
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expressive power of QAXML programs. Rather surprisingly,
it turns out that this is closely related to definability by FO
with a bounded number of variables, well explored in the
theory of relational query languages [15]. We first elaborate
on this connection, which provides a key technical tool. We
then use it to establish equivalencies to languages in the
while family, extended to data trees, as well as to present a
powerful normal form.

4.1 Isolated Functions and FOk Definability
We begin with an informal description of the connection

between QAXML with isolated functions and FOk definabil-
ity. Let Q be a QAXML program with isolated functions,
with deterministic or nondeterministic semantics. Suppose
Q uses a finite set C of data value constants in its patterns.
Consider a computation of Q on input I. In the course of the
computation, I remains unchanged and function calls gen-
erate another subtree under the root r, as well as a forest of
workspaces siblings to r. When a tree pattern query is eval-
uated, a portion is bound to I and the rest to trees outside I.
The bindings to I can be pre-computed for all relevant sub-
patterns and stored in a relational structure σ(I). Now con-
sider the trees built in the course of the computation. Recall
that data values are introduced in such trees using pattern
queries, by instantiating subtrees in the head rooted at con-
structor nodes with bindings of the data variables. Let us
call nodes obtained by such instantiations expanded nodes.
Let RE be the relation consisting of all bindings used in a
given step of the computation to produce expanded nodes by
applying a particular query rule. We will show the following
key fact:

There exists k > 0 depending only on Q such that each RE

is definable from σ(I) by an FOk formula (using constants
in C).

Recall that every relation definable in FOk from σ(I) is a
union of classes of the equivalence relation ≡σ(I),k,C . Intu-
itively, this captures the distinguishing power of Q with re-
gard to data values. Computation on the actual data can in
fact be replaced with computation on the equivalence classes
of ≡σ(I),k,C , augmented with a total order on the classes
and the structure Action(I, k, C) summarizing the action of
FOk queries on the equivalence classes (see the preliminar-
ies). These can be computed by a fixpoint query, so also
by a QAXML program with isolated functions (in ptime).
Because of the total order, the classes of ≡σ(I),k,C can hence-
forth be abstracted as integers. As we will see, this provides
a powerful technical tool.

We now provide more details. Let Q be a QAXML pro-
gram with isolated functions. In the course of the computa-
tion of Q on input I, a tree is generated next to I under r, to-
gether with a forest of workspaces sibling to r. As discussed
earlier, when a tree pattern is evaluated, a portion is bound
to I and the rest to trees outside I, which may be siblings of
I under r, or workspaces rooted at ag for some function g.
We show how to pre-compute the relational structure σ(I)
holding the result of evaluating on I a set of subpatterns
depending only on Q. Consider a pattern P = (T, condP )
of Q where T has root r. Every child subtree S of r in T
can generally extract some bindings from I. Recall that S
can only extract data bindings using the data variables in
S+. However, the conditions attached to S use (i) struc-
tural variables in var(T +) and (ii) data variables in var(T +)

which may include variables not in S. To evaluate each S
independently, we do the following. To account for (i), we
consider different instantiations of S for each assignment of
tags, function symbols, or self to the structural variables in
T+. To account for (ii), we augment S with a subtree ex-
tracting all assignments of data values to the data variables
in T+ that are not in S+. Now the bindings extracted by
the different S can be combined by joining them. The rela-
tional structure σ(I) contains the sets of bindings extracted
by each such S, for all patterns P rooted at r.

In more detail, let P = (T, condP ) be a pattern of Q as
above, where T has root r. Let svar(T +) be the set of struc-
tural variables of T +, and dvar(T+) the set of data variables
of T+. Let Γ be the set of assignments of tags, function sym-
bols of Q, or self to svar(T +), and for each γ ∈ Γ let condγ

be the condition ∧{V = γ(V ) | V ∈ svar(T +)}. Let S be
the set of subtrees S of T whose roots are children of r. For
each S ∈ S and each γ ∈ Γ, we define a pattern Sγ rooted at
r with subtrees /S and { //X | X ∈ dvar(T +) − dvar(S+)}
and condition defined by cond(r) = condP (r) ∧ condγ and
cond(b) = condP (b) for all boundary nodes of S.

Note that for each pattern P , the set of bindings of dvar(T +)
on a given instance can be computed by applying indepen-
dently the patterns extracted from T as above, and then
combining the results. More precisely, the set of bindings is
obtained by the following “formula” :

(†)
_

γ∈Γ

(∧S∈SSγ)

To each pattern P , γ ∈ Γ and Sγ as above we associate
a relation RS,γ of arity |dvar(T +)|. Let σ be the schema
consisting of all such relations. For an input I, let σ(I) be
the relational structure obtained by evaluating each Sγ on
I.

Now consider again the evaluation of a pattern P rooted
at r in the course of the computation of Q on I. In view
of (†), it follows that the set of bindings of dvar(T +) on
the current instance can be obtained using only σ(I) and
evaluating the patterns of T on the tree from which I has
been removed. We make this more precise. Let Pos by the
set of patterns Sγ constructed from P as above where the
root of S is positive, and Neg the set of Sγ with negative
root. The set of bindings is:

(‡)
_

γ∈Γ

(∧S∈Pos(RS,γ(X̄)∨Sγ(X̄))∧S∈Neg(RS,γ(X̄)∧Sγ(X̄)))

where X̄ = dvar(T+) and Sγ(X̄) is evaluated on the current
instance from which I has been removed. This assumes that
the remaining instance contains all data values in I, which
can be easily ensured.

Now consider a computation of Q on input I. Recall the
definition of expanded nodes generated in the course of the
computation. Consider the expanded trees obtained as the
answer to a a rule Body → Head of a pattern query, with set
of bindings B for the m variables in the head of the rule. To
each such set E of trees we associate a relation RE of arity
m containing the bindings in B.

The following key fact can be shown.

Lemma 4.2. Each relation RE generated in the course of
the computation of Q on I as above is definable by an FOk

query from σ(I), for some k depending only on Q.

ha
l-0

07
65

55
8,

 v
er

si
on

 1
 - 

14
 D

ec
 2

01
2



The proof uses the language while∗N defined in preliminar-
ies. We consider a nondeterministic variant N-while∗N ob-
tained by allowing a choice operator, program1 | program2.
By results in [7], (where while∗N is denoted while++) every
relation not containing integers and definable in while∗N is
also definable in whileN, so also in FOk for some fixed k
depending on the program. This easily extends to the non-
deterministic variants. We then show that every relation
RE is definable from σ(I) by a program in N-while∗N. The
key idea is to represent AXML instances generated in the
computation of a QAXML program Q as relational struc-
tures, constructed from σ(I) by the N-while∗N program. In
particular, new tree nodes are represented by tuples con-
taining both data values from σ(I) and integers. Details are
omitted.

Remark 4.3. Observe that the structure σ(I) is built us-
ing the patterns of Q. The construction can be made less
dependent on the specific Q by using a more general syntac-
tic criterion such as the maximum number of nodes k and
the set C of constants used in patterns of Q. The structure
σ(I) can then be replaced with a structure σk,C(I) depending
only on k and C, consisting of one relation for each pattern
of size up to k using constants in C. Of course, the number
of relations in σk,C(I) may be exponential in the number of
relations in σ(I).

As we will see in Theorem 4.5, Lemma 4.2 can be used
to show a powerful normal form for QAXML programs. In-
formally, a program in the normal form first produces σ(I),
≡I,k,C with a total order, and Action(I, k, C), and then car-
ries out the rest of the computation on the quotient structure
of the above instance with respect to ≡I,k,C , in which the
ordered equivalence classes of ≡I,k,C are replaced by corre-
sponding integers (represented as paths).

Using the above development, we show next that QAXML
with isolated functions is equivalent to natural analogs of
whileN to trees. We consider first NQAXML, then DQAXML.

4.2 WhileN Languages for Trees
We define an analog of the language whileN for trees. We

first define a nondeterministic variant, denoted N-whiletree
N ,

then a deterministic one denoted whiletree
N . The language

N-whiletree
N uses integer variables i, j, . . . (initialized to zero)

and forest variables X, Y . . . including two distinguished vari-
ables In and Out, for input and output respectively. In ad-
dition, it is equipped with one stack on which the content
of forest variables can be pushed and popped. This stack
is used primarily to build the result. The basic instructions
are:

• increment/decrement i

• X := {T}, where X is a forest variable and T is a
constant AXML tree with no functions

• X := Q(Y ), where X and Y are forest variables and
Q a tree pattern query applied to Y

• X := Y ∪ Z where X, Y, Z are forest variables distinct
from In

• X := a[Y ], where X, Y are forest variables distinct
from In, a ∈ Σ (this assigns to X the tree with root
labeled a and all trees in Y as its children)

• push(X) (push the contents of forest variable X 6= In
on the stack)

• X := top (assign to X the top of the stack and pop
it).

A program may consist of a single instruction. More com-
plex programs may be obtained using the following con-
structs:

• while i > 0 do program

• while X 6= ∅ do program

• program1 ; program2 (composition)

• program1 | program2 (nondeterministic choice)

A program also comes equipped with a DTD ∆ constrain-
ing its input, provided in the initial instance by variable
In. An output is the content of variable Out in a final in-
stance (whenever the computation terminates). A program
W computes a tree query R if for each input tree I satisfying
∆, the set of possible outputs of W is {J | 〈I, J〉 ∈ R}.

The deterministic variant of N-whiletree
N , denoted whiletree

N ,
is obtained by disallowing nondeterministic choice. An ex-
ample of a whiletree

N program is provided in the appendix.

4.3 NQAXML with Isolated Functions
We now return to NQAXML and show the following main

result.

Theorem 4.4. NQAXML programs with isolated functions
express the same set of tree queries as N-whiletree

N .

The simulation of N-whiletree
N by NQAXML with isolated

functions is rather straightforward. The converse simulation
is much more intricate and makes crucial use of Lemma 4.2.
The simulation of a NQAXML program Q consists of several
stages:

(i) Compute from input I a representation of the rela-
tional structure σ(I);

(ii) For the k provided by Lemma 4.2, compute from σ(I)
the ordered set of equivalence classes ≡I,k,C , and the
instance Action(I, k, C) defined in Section 2, where C
is the set of data values mentioned in Q;

(iii) compute a Turing Machine tape representation of σ(I)
and Action(I, k, C), in which each class of ≡I,k,C is
represented by the corresponding integer;

(iv) Simulate the Turing machine computing the answers
to Q given as input the above tape;

(v) For each terminating computation, produce in variable
Out the output tree encoded on the tape.

Note that the stack and instructions of the form X := Y ∪Z,
X := a[Y ] are only needed in step (v) of the simulation.

The two-way simulations above yield a powerful normal
form. We use the notation in Section 4.1.

Theorem 4.5. For each NQAXML program Q with iso-
lated functions there is an equivalent program Qnf effectively
obtained from Q, whose computation on input I consists of
the following three phases:

1. a ptime computation producing a standard tree repre-
sentation of the relational structure σ(I), ≡I,k,C with
a total order, and Action(I, k, C);
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2. an arbitrary computation on a representation of the
quotient structure of the above instance with respect
to ≡I,k,C, in which the ordered equivalence classes of
≡I,k,C are replaced by their ranks;

3. a ptime computation (in the size of the output) pro-
ducing the result.

In particular, note that (1) eliminates in ptime all data
values from the input tree, (2) is a computation with no data
values, and (3) produces in ptime the final result with its
data values. The ranks of equivalence classes in the quotient
structure are represented by chains of function calls.

Remark 4.6. Observe that the index of ≡I,k,C, so the
size of the input to phase (2), may be arbitrarily smaller
than the input I. In fact, as shown in [2], for inputs that
are standard tree representations of relations, there is a con-
stant M > 0 so that the expected index of ≡I,k,C (under
uniform distribution) is asymptotically bounded by M . This
suggests a potential opportunity for optimization, using the
compressed representation provided by the quotient struc-
ture. The analysis is harder if the input is not a represen-
tation of a relation. In the best case, a double compression
takes place: first from I to σ(I), and then from σ(I) to the
quotient structure.

The following is now immediate.

Corollary 4.7. The normal form of Theorem 4.5 also
applies to N-whiletree

N programs. Additionally, phases (1)
and (3) can be expressed by whiletree

N programs (i.e. without
nondeterministic instruction choice).

Remark 4.8. One might wonder if it is possible to relax
the definition of QAXML with isolated functions while pre-
serving Lemma 4.2 and Theorems 4.4 and 4.5. This can be
done to a limited extent. For example one can show that the
results continue to hold if we allow functions to be placed
under tags that may occur only once in every valid input.
Indeed, these can be simulated by NQAXML programs with
isolated functions. Going further is non-trivial. To illustrate
this, we note that one cannot even allow functions under tags
that may appear twice in valid trees without losing the above
results. Indeed, consider the DTD ∆

r → a a, a → |dom| ≥ 0

Suppose functions are allowed under a. One can write a
NQAXML program which, on a given input, outputs nonde-
terministically one of the sets of data values under the a’s.
It is easy to see, by genericity, that there is no N-whiletree

N

program computing this query. The problem can be circum-
vented in various ways, for instance by bounding the number
of data values allowed under a. In fact, it remains open to
characterize where functions can be placed so that Lemma
4.2 and equivalence to N-whiletree

N still hold.

4.4 DQAXML with Isolated Functions
We now consider deterministic QAXML with isolated func-

tions. As we will see, much of the previous development
transfers to this case.

Recall that whiletree
N denotes the language N-whiletree

N with-
out the nondeterministic instruction choice construct. Thus,
whiletree

N expresses a subset of the queries defined by N-
whiletree

N . For a language expressing both deterministic and

nondeterministic queries, let us call the set of determinis-
tic queries it expresses its deterministic fragment. It will be
useful to note the following. The proof relies on the normal
form provided by Corollary 4.7.

Theorem 4.9. The language whiletree
N expresses precisely

the deterministic fragment of N-whiletree
N .

We now state the analog of Theorem 4.4.

Theorem 4.10. DQAXML programs with isolated func-
tions express the same set of tree queries as whiletree

N .

As a consequence of Theorems 4.4, 4.9 and 4.10, we have
the following nontrivial result.

Theorem 4.11. DQAXML with isolated functions expresses
precisely the deterministic fragment of NQAXML with iso-
lated functions.

Finally, the same normal forms hold for DQAXML with
isolated functions and for whiletree

N as for their nondetermin-
istic counterparts.

4.5 Boolean queries
We consider here Boolean queries, for which some of the

earlier results can be strengthened. In particular, construct-
ing the answer is trivial for such queries. As we will see,
this renders redundant some instructions and the stack in
the while languages.

Consider a NQAXML program Q. We say that Q is Boolean
if whenever it terminates, it produces as output a tree con-
sisting of a single node labeled accept or reject. A compu-
tation is accepting if it terminates with output accept. An
input I is accepted by Q if Q has at least one accepting
computation on I. Boolean N-whiletree

N programs are de-
fined analogously. The definitions for Boolean deterministic
QAXML and whiletree

N programs are similar. We say that
two Boolean programs are equivalent (or define the same
property) if they have the same input DTD and accept the
same set of instances.

For Boolean queries, we are able to obtain a stronger ver-
sion of Theorem 4.4.

Theorem 4.12. The following languages express the same
Boolean tree queries:

(i) NQAXML and DQAXML with isolated functions;

(ii) N-whiletree
N and whiletree

N with or without the stack and
instructions of the form X := Y ∪ Z, X := a[Y ];

We additionally obtain the following stronger normal form
for Boolean programs.

Corollary 4.13. For each Boolean (non)deterministic
QAXML program Q with isolated functions there is a (non)de-
terministic Boolean QAXML program Qnf with isolated func-
tions, effectively computable from Q, that defines the same
property, whose computation consists of the following phases:

1. a ptime computation (in the size of the input);

2. an arbitrary computation on an instance with no data
values.
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The normal form shows that data values can be eliminated
by a pre-processing phase in ptime, regardless of the overall
complexity of the property. The same normal form holds for
Boolean (N)-whiletree

N programs, with the addition that no
stack or instructions X := Y ∪Z, X := a[Y ] are used in the
normal form.

Expressiveness of QAXML with isolated functions
The above development points to limitations in the expres-
sive power of QAXML with isolated functions that are rem-
iniscent of limitations of whileN in the relational context. In
particular, the 0/1 law for properties definable by whileN is
inherited from the relational context, for inputs consisting of
trees encoding relations. More precisely, consider an m-ary
relation R and its standard tree representation described by
the following DTD ∆R:

R → |tup| ≥ 0
tup → |A1| = 1 ∧ . . . ∧ |Am| = 1
Ai → |dom| = 1, 1 ≤ i ≤ m

It is easily seen that (non)deterministic QAXML with iso-
lated functions, input DTD ∆R, and no constant data val-
ues, has a 0-1 law. It would be interesting to characterize
the class of input DTDs for which the 0-1 law continues to
hold.

The 0-1 law for relational inputs shows that there are sim-
ple properties that cannot be expressed in QAXML with iso-
lated functions, e.g., evenness of the number of data values
in inputs over ∆R. This is despite the fact that QAXML
with isolated functions is computationally complete, since it
can simulate arbitrary computations on integers. A reason
for this limitation is the strict separation between data and
computation, imposed by the isolation condition. We next
show that this can be largely overcome by closer integration
of the two, provided by embeddeed functions.

5. QAXML WITH DENSE FUNCTIONS
We now consider QAXML that can have embedded func-

tions throughout the input. Intuitively, we would expect
this to lead to completeness, alleviating the limitations of
isolated functions. This turns out to be true for nondeter-
ministic semantics, but false in the deterministic case. This
is due to a variant of the ”copy elimination problem”.

Definition 5.1. A QAXML program with dense func-
tions is a pair Q = (Φ, ∆) where Φ is a set of function
definitions and ∆ a static DTD. For an instance I satisfy-
ing ∆, we denote by I !∗ the instance obtained by adding a
call !f under every node of I whose label is a tag. The pro-
gram Q expresses a tree query R with input DTD ∆ if for
every I satisfying ∆, (I,O) ∈ R iff there exists a computa-

tion of Q on I !∗ terminating with O as the unique subtree of
a unique node labeled Out.

In other words, a QAXML program with dense functions
is one that has in the initial instance a function call !f as a
child of each tag.

Nondeterministic semantics The main result on NQAXML
with dense functions is the following.

Theorem 5.2. NQAXML with dense functions is query
complete.

Proof. Let R be a tree query with input DTD ∆. The
computation of R by an NQAXML program is done in sev-
eral phases:

(i) on input I, nondeterministically construct an ordering
≤ of the data values in I;

(ii) compute an encoding enc≤(I) of I on a Turing machine
input tape;

(iii) simulate the Turing machine computing R;

(iv) if the Turing machine terminates, construct the tree
J whose encoding enc≤(J) is on the final tape of the
machine.

Deterministic semantics We now consider DQAXML with
dense functions. Recall that in the case of isolated functions,
DQAXML was as expressive as the deterministic fragment
of NQAXML. Interestingly, this turns out not to be the case
with dense functions, as shown next.

Theorem 5.3. DQAXML with dense functions is not com-
plete.

Proof. Consider the query R whose input I is a set of
n data values, and whose output consists of a tree rooted
at r, with n! subtrees, each representing a successor rela-
tion among the n data values. We claim that there is no
DQAXML program with dense functions that computes R.
The proof relies on a structural property involving the au-
tomorphisms of instances produced in the computation of
any DQAXML program on input I. The property shows
that any program computing R must produce more than
one copy of the answer.

Note that the counterexample in the proof of Theorem 5.3
uses bounded inputs and outputs. Thus, DQAXML with
dense functions is not complete even in this case. However,
it is complete for inputs and outputs encoding relations. Re-
call that ∆R denotes the standard DTD corresponding to a
relation schema R.

Theorem 5.4. Let R and S be relation schemas and R

be a deterministic tree query with input DTD ∆R, such that
every output satisfies ∆S. Then there exists a DQAXML
program with dense functions that expresses R.

The proof relies crucially on the fact that the input and
output of R are trees representing relations and thus have
highly regular structure. In particular, constructing a single
copy of the output is easily done in this case, but is impos-
sible for arbitrary outputs. This follows from the proof of
Theorem 5.3, since the query R shown not to be expressible
has relational input but nonrelational (although bounded-
depth) output. In this case, one can compute multiple copies
of the answer, but a single final copy cannot be obtained.
This is a technical problem similar to the well-known copy
elimination problem arising in some relational and object-
oriented query languages [4]. We can show the following.

Corollary 5.5. Let R be a relation schema. For each
deterministic tree query R with input DTD ∆R, there exists
a DQAXML program Q with dense functions and input DTD
∆R which, for every input I of R, produces an instance con-
taining a set of subtrees with root Out, each containing a
unique subtree isomorphic to the output of R on I.
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Thus, for relational input, DQAXML with dense functions
is complete up to copy elimination.

Since for Boolean queries the ouput is relational, we have
the following.

Corollary 5.6. Let R be a relation schema. Every Boolean
tree query with input DTD ∆R is expressed by some DQAXML
program with dense functions.

It remains open to give a precise characterization of the
input and output DTDs for which Theorem 5.4 and Corol-
lary 5.6 hold.

Remark 5.7. Recall that the QAXML languages with iso-
lated functions have natural counterparts in the while family
of languages. As we will see in the next section, this also
holds for QAXML with tree variables. We know of no while
counterpart for the QAXML languages with dense functions
and no tree variables.

6. QAXML WITH TREE VARIABLES
In the previous sections we considered the impact of em-

bedding functions into data, where the queries used by func-
tions extract bindings of data values. In particular, we
showed that there are drastic differences in expressiveness
between the isolated and dense cases. We now consider
QAXML with more powerful queries equipped with tree vari-
ables, that can extract and compare entire subtrees from the
input. We show how the picture changes in this case due to
the increased power of the basic queries. First, programs
with isolated functions are much more powerful. Indeed, in
the deterministic case they become complete. In the nonde-
terministic case the language is not complete, but remains
so for a restricted kind of nondeterminism, occurring at the
control level but not at the data level. With dense functions,
this restriction can be lifted. In fact, only an intermedi-
ate form of density is needed for nondeterministic complete-
ness, allowing functions to occur under constructor nodes of
queries, but not embedded in the input (other than under
the root).

We begin by informally defining QAXML with tree vari-
ables. We outline the differences with the model described
in Section 3. We no longer distinguish in patterns between
structural and data variables. Instead, each variable may
bind to any node in the input tree. However, we introduce
two types of equality: shallow equality X = Y where X
is a variable and Y is a variable, tag, function symbol, or
data value, and deep equality X =d Y , where X and Y are
variables. The semantics is standard. Variables in heads
of queries return an isomorphic copy of the entire subtree
rooted at the node to which they bind. Relative patterns
and queries are defined as before, by allowing equalities of
the form X = self. We denote QAXML with tree variables
by QAXMLT. The notion of isolated and dense program
remains unchanged. An example of a QAXMLT program is
provided in the appendix.

We first consider QAXMLTwith isolated functions and de-
terministic semantics, denoted DQAXMLT.

Theorem 6.1. DQAXMLTwith isolated functions is query
complete.

The high-level structure of the proof is similar to that of
Theorem 5.2, but the lack of dense functions renders the
construction more challenging.

We now consider QAXMLTwith nondeterministic seman-
tics, denoted NQAXMLT. It turns out that NQAXMLTis
not query complete. For example, it cannot express the
query that outputs one arbitrary data value from the in-
put. Intuitively, this is because NQAXMLTwith isolated
functions provides nondeterminism in the control, but not
in choice of data. This can capture a limited form of nonde-
terminism that we call weak nondeterminism. For a tree T
and automorphism π of T , we denote by πd the restriction
of π to the set of data values in T .

Definition 6.2. A tree query R is weakly nondetermin-
istic if for every input-output pair 〈I, J〉 of R and automor-
phism π of I, πd can be extended to an automorphism of
J.

For example, the above-mentioned query that outputs one
arbitrary data value from a set of input values is not weakly
nondeterministic. The query that outputs either the set of
data values under some tag a or the set of data values un-
der tag b is weakly nondeterministic. Note that the input
DTD is important: the same program may define a query
that is weakly nondeterministic with respect to some input
DTD, but not so with respect to another. The second query
happens to be weakly nondeterministic for all input DTDs.

Theorem 6.3. NQAXMLTwith isolated functions expresses
precisely the weakly nondeterministic tree queries.

To summarize the results in this section so far, QAXMLTwith
isolated functions is complete for deterministic queries, but
falls short for nondeterministic queries. It is clear that al-
lowing dense functions leads to a complete language, as for
QAXML. However, full density is not required. We say that
a QAXMLT

program is query-dense if function calls can only occur un-
der the root in the initial instance, but are allowed under
constructor nodes in heads of queries. Thus, programs with
query-dense functions are a hybrid allowing only isolated
functions in the input but dense functions in queries. We
have the following.

Theorem 6.4. NQAXMLTwith query-dense functions is
query complete.

Finally, we note that Theorems 6.1 and 6.4 yield some
strong normal forms for QAXMLTprograms.

Theorem 6.5. (i) For every DQAXMLTprogram one can
effectively construct an equivalent DQAXMLTprogram with
isolated functions. (ii) For every NQAXMLTprogram one
can effectively construct an equivalent NQAXMLTprogram
with query-dense functions.

While with tree variables
We next define simple variants of the while language that are
equivalent to the (non)deterministic QAXMLTlanguages. The
deterministic language, denoted whileT has forest variables
X, Y, Z, . . ., assignments X := ϕ(Y ) (where X a variable,
Y is a variables or a constant tree, and ϕ is a tree pattern
query with tree variables), and an iterator while X 6= ∅ do.
The nondeterministic version of the language, denoted N-
whileT, is obtained by introducing control choice program1 |
program2. As before, there are two distinguished variables,
In and Out holding the input and output to the query.
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Note that, unlike (N)-while tree
N , these languages have no

integer variables, no stack, and no tree constructors, because
all can be simulated using tree variables. A simple example
of a whileT program is given in the appendix.

The following establishes the connection between the (N)-
whileT and QAXMLTlanguages. The proofs are similar to
Theorems 6.1 and 6.3.

Theorem 6.6. (i) whileT is equivalent to DQAXMLTwith
isolated functions and is query complete; (ii) N-whileT is
equivalent to NQAXMLTwith isolated functions and expresses
exactly the weakly nondeterministic tree queries.

In order to obtain a complete nondeterministic language,
N-whileT has to be extended with a tree choice construct. To
this end, we add an assignment X := choose(Y ), where X
and Y are forest variables. This assigns to X one tree non-
deterministically chosen from the forest in Y . We denote the
language extended with this form of data nondeterminism
by Nd-whileT. The following is immediate.

Theorem 6.7. Nd-whileT is query complete and therefore
equivalent to NQAXMLTwith query-dense functions.

It turns out that a single use of data nondeterminism at
the end of the computation is sufficient to achieve complete-
ness. This yields a normal form for N d-whileT programs
that pushes all nondeterminism into the last step.

Corollary 6.8. Every Nd-whileT program P can be writ-
ten as Q;{Out := choose(Y )} where Q is a deterministic
whileT program.

Naturally, the determinization in the normal form comes
at the cost of an exponential blowup in the size of interme-
diate instances generated in the computation.

7. CONCLUSION
We investigated highly expressive query languages on un-

ordered data trees. We focused largely on QAXML, because
this language turned out to be a very appropriate vehicle for
understanding the impact and interplay of various language
features on expressiveness: (i) the integration of data and
computation, (ii) the use of tree versus data variables and
(iii) the use of deterministic vs. nondeterministic control.

When patterns and queries do not have tree variables,
QAXML with isolated functions has expressiveness limita-
tions reminiscent of relational while languages. It also has
similarly powerful normal forms, shown by adapting tech-
niques related to FOk definability. We see the presentation
of these normal forms as a major contribution of the pa-
per. We show in particular that NQAXML is equivalent
to the much simpler N-whiletree

N and DQAXML to whiletree
N .

With dense functions, NQAXML becomes complete, while
DQAXML falls short even for relational input, due to the
copy elimination problem. Interestingly, the deterministic
fragment of NQAXML is strictly more expressive than
DQAXML (so nondeterminism increases the ability to ex-
press deterministic queries). We do not know of a natural
deterministic complete language without deep equality and
tree copying.

Tree variables in patterns and queries partly alleviate the
limitations of isolated functions: DQAXML with isolated
functions becomes complete with tree variables, but

NQAXML falls short of capturing full nondeterminism. To
obtain nondeterministic completeness for NQAXML, isola-
tion must be relaxed. The results suggest that dense func-
tions and tree variables are alternatives for achieving query
completeness, modulo the subtle limitations mentioned above.

A number of interesting issues were raised by the present
work. We mention a few:

• characterize relaxations of the isolation condition for
which the results on isolated QAXML programs con-
tinue to hold.

• characterize the input and output DTDs for which
DQAXML with dense functions is query-complete, or
query-complete up to copy elimination.

• characterize the input DTDs for which properties de-
fined by QAXML programs with isolated functions also
follow 0-1 laws.

• find natural, deterministic, query-complete languages
without deep equality or tree copying.

Many classical models of computation on trees are based
on automata and transducers. We plan to consider in future
work various forms of transducers for unordered data trees,
and their connection to query languages. While a nondeter-
ministic, query-complete transducer is easy to design, this
appears to be more challenging for the deterministic case.
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APPENDIX

A. ADDITIONAL EXAMPLES
We illustrate the QAXML and while languages with two

examples. The first shows a QAXML and a whiletree
N pro-

gram with data variables computing the transitive closure
of a graph. The second exhibits QAXMLT and whileT pro-
grams with tree variables computing the parity of the depth
of a tree.

A.1 Transitive Closure
A directed graph is represented as in Figure 5. We exhibit

a QAXML program with isolated functions and a whiletree
N

program computing a representation of the transitive closure
of the graph.

A.1.1 QAXML Program
The QAXML program uses two functions: TClosure to

initialize the output and Iterate to perform each iteration in
the computation of the transitive closure.

The tree in Figure 6 represents the initial instance of the
QAXML program. It is obtained from the input tree in
Figure 5 by adding a function call !TClosure under the root.
A call to this function returns a copy of the input graph and
adds a function call !Iterate (Figure 7).

Each call to Iterate performs one iteration in the compu-
tation of transitive closure. It returns the edges obtained in
the current iteration and, if the last iteration has not yet
been reached, a new call !Iterate. In more detail, a call to
Iterate first creates a workspace containing the edges of the
current iteration (new and old) under tag NewEdges, and
separately a copy of the old edges under tag OldEdges. The
input query of Iterate is shown in Figure 8. An instance
obtained by the activation of Iterate is depicted in Figure 9.

The function Iterate returns the set of edges under NewEdges
that are not also under OldEdges. If this set is not empty
(so the last iteration has not been reached), it also returns a
new call to Iterate. The return query of Iterate is shown in
Figure 10. The computation terminates when no new edges

Graph

Edge

Node1

α1

Node2

α2

· · · Edge

Node1

α2

Node2

α3

!TClosure

Figure 6: QAXML initial instance

are added.

A.1.2 Whiletree
N Program

A whiletree
N program computing the transitive closure of

the graph is sketched below.

Data: A tree representing a graph stored in Input
Result: A tree representing the transitive closure of the graph

stored in Output
begin

New := QN(Input)
Difference := New

while Difference ! = ∅ do
Old := QOld(New)

New := New ∪ Old

Difference :=QNewEdges(New)
New := QMergeN(New ∪ Difference)

Output := QAnswer(New)
end

We explain the notation. Besides Input and Output, the
program uses variables Old (containing a tree rooted at O),
New (containing a tree rooted at N and sometimes also a
tree rooted at O), and Difference (containing a tree roted at
N). Query QN initializes variable New to Input in which the
root label Graph is changed to N . The query QOld copies
the contents of New, relabeling the root to O. The query
QNewEdges computes the new edges of the next iteration
(those not present in the tree of New rooted at O), simi-
larly to the query in Figure 10. The new edges are placed
in a tree rooted at N . Note that New ∪ Difference is a for-
est containing two trees rooted at N . The query QMergeN
merges the two trees into a single tree rooted at N (by tak-
ing the union of the subtrees under the two roots). Finally
the query QAnswer copies New while changing the label N
back to Graph for the final answer.

A.2 Depth Parity
We exhibit a QAXMLT program with isolated functions

and tree variables and a WhileT program computing the par-
ity of the depth of the input tree (the depth is the maximum
number of edges in a path from root to leaf). The root of
the input tree is labeled Tree. The programs return a node
with label Even if the depth of the input is even and Odd
otherwise.

A.2.1 QAXMLT Program
The QAXMLT program we exhibit has isolated functions

and computes the desired query with either deterministic
or nondeterministic semantics. The main component of the
QAXMLT program is a function deeper that extracts, at
each invocation, all subtrees whose roots are at a given depth
in the input tree (the depth increases by one at each iter-
ation). A parity flag is flipped at each invocation, and the
function is called until no more subtrees are obtained. Fig-
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output

Graph

Edge

Node1

α1

Node2

α2

· · · Edge

Node1

α2

Node2

α3

!Iterate

Figure 7: QAXML instance after return of TClosure

Graph

Edge

Node1

X

Node2

Z

Edge

Node1

Z

Node2

Y

⇒ NewEdges

{Edge}

Node1

X

Node2

Y

, Graph

output

Graph

Edge

Node1

X

Node2

Y

self

⇒ OldEdges

{Edge}

Node1

X

Node2

Y

Figure 8: Input query of Iterate
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output
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Node2
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· · · Edge

Node1

α2

Node2

α3

?Iterate

aIterate

NewEdges

Edge

Node1

α1

Node2

α3

OldEdges

. . .

Figure 9: QAXML program after activation of Iterate

aIterate

NewEdges

Edge

Node1

X

Node2

Y

¬ OldEdges

Edge

Node1

X

Node2

Y

⇒ {Edge}

Node1

X

Node2

Y

, aIterate

NewEdges

Edge

Node1

X

Node2

Y

¬ OldEdges

Edge

Node1

X

Node2

Y

⇒ {!Iterate}

Figure 10: Return query of Iterate
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Tree

t !initialize

Figure 11: Initial instance for the QAXMLT pro-
gram Parity

Tree

t Tree

t1 · · · tk Odd Tree

t
′

1
· · · Even !deeper

· · ·

Even !result

Figure 12: Intermediate instance in the computation
of the QAXMLT program Parity

ure 12 depicts an intermediate instance in the computation
of the program.

In more detail, the initial instance is of the form shown
in Figure 11, with a function !initialize under the root. The
computation starts with a call to !initialize that returns a
node labeled Even and two calls !deeper and !result. We
call a subtree proper if its root is not labeled by a function
symbol or a parity flag Even or Odd. The call guard of deeper
ensures that the function is only called if the calling node
has at least one proper sibling subtree. The input query of
deeper is shown in Figure 13. It copies the sibling parity
flag Even or Odd and the proper siblings subtrees of the
function call. The return query, shown in Figure 14, returns
under a root Tree all subtrees whose roots are at depth one
in the copied subtrees, and flips the parity flag Even to Odd
or conversely. The function result is called when deeper can
no longer be activated, i.e. when the current call to deeper
with no proper sibling subtree. The call to result returns a
tree rooted at Output with one child labeled by the parity
flag sibling to !deeper.

A.2.2 WhileT Program
A WhileT program computing the parity of the depth of

the input tree is sketched below.

Data: A tree stored in Input
Result: A node labeled by Even or Odd, stored in Output

begin
Parity := Even

Tree := Children(Input)
while Tree! = ∅ do

Parity := Flip(Parity)
Tree := Children(Tree)

Output := Parity

end

V0

V1

V2 V3 V4

⇒ Tree

{V2} Even

, V ′

0

V ′

1

V ′

2
V ′

3
V ′

4

⇒ Tree

{V ′

2
} Odd

Cond(V0) =















V0 = Tree
∧ V1 = Tree
∧ V2 6= Even ∧ V2 6= Odd ∧ V2 6= !deeper ∧ V2 6= !result
∧ V3 = self

∧ V4 = Even

Cond(V ′

0
) =















V ′

0
= Tree

∧ V ′

1
= Tree

∧ V ′

2
6= Even ∧ V ′

2
6= Odd ∧ V ′

2
6= !deeper ∧ V ′

2
6= !result

∧ V ′

3
= self

∧ V ′

4
= Odd

Figure 13: The input query of deeper

V0

V1

V2

V3

V4

⇒ Tree

{V3} Odd !deeper

, V ′

0

V ′

1

V ′

2

V ′

3

V ′

4

⇒ Tree

{V ′

3
} Even !deeper

Cond(V0) =

(

V4 = Even

)

Cond(V ′

0
) =

(

V
′

4
= Odd

)

Figure 14: The output query of deeper

The query Flip changes the label Even to Odd and Odd to
Even. The query Children returns all subtrees whose roots
are at depth one in the forest to which it is applied.
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