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ABSTRACT

We address the problem of comparing the expressiveness
of workflow specification formalisms using a notion of view
of a workflow. Views allow to compare widely different
workflow systems by mapping them to a common represen-
tation capturing the observables relevant to the compari-
son. Using this framework, we compare the expressiveness
of several workflow specification mechanisms, including au-
tomata, temporal constraints, and pre-and-post conditions,
with XML and relational databases as underlying data mod-
els. One surprising result shows the considerable power of
static constraints to simulate apparently much richer work-
flow control mechanisms.

Categories and Subject Descriptors

H.2.3 [Database Management]: Data Manipulation Lan-
guages; H.4.1 [Information Systems Applications]: Of-
fice Automation—Workflow Management

1. INTRODUCTION
There has recently been a proliferation of workflow spec-

ification languages, notably data-centric, in response to the
need to support increasingly ubiquitous processes centered
around databases. Prominent examples include e-commerce
systems, enterprise business processes, health-care and sci-
entific workflows. Comparing workflow specification lan-
guages is intrinsically difficult because of the diversity of
formalisms and the lack of a standard yardstick for expres-
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siveness. In this paper, we develop a flexible framework
for comparing workflow specification languages, in which
the pertinent aspects to be taken into account are defined
by views. We use it to compare the expressiveness of sev-
eral workflow specification mechanisms based on automata,
pre/post conditions, and temporal constraints.

Consider a system that evolves in time as a result of inter-
nal computations or interactions with the rest of the world.
Fundamentally, a workflow specification imposes constraints
on this evolution. There are numerous approaches for spec-
ifying such constraints. Perhaps the most popular consists
of specifying a set of abstract states of the system and im-
posing state transition constraints, in the spirit of a BPEL
program [13]. Another, more declarative approach is to de-
fine a set of tasks equipped with pre/post conditions, such as
IBM’s Business Artifact model (see Related Work). Artifact
systems may also impose constraints by temporal formulas
on the history of the run ([26]).

The richness and variety of these approaches renders their
comparison difficult. In particular, little is known of their
relative expressive power. This is the main focus of the
present paper.

We argue that a very useful approach for comparing work-
flow specification languages is provided by the notion of
workflow view. More broadly, the notion of view is essential
in the context of workflows, and the need to provide differ-
ent views of workflows is pervasive. For example, views can
be used to explain a workflow or provide customized inter-
faces for different classes of stakeholders, for convenience or
privacy considerations. The interaction of workflows, and
contractual obligations, are also conveniently specified by
views. The design of complex workflows naturally proceeds
by refinement of abstracted views. Views can be used at run-
time for surveillance, error detection, diagnosis, or to cap-
ture continuous query subscriptions. The abstraction mech-
anism provided by views is also essential in static analysis
and verification.

Depending on the specific needs, a workflow view might
retain information about some abstract state of the system
and its evolution, about some particular events and their
sequencing, about the entire history of the system so far,
or a combination of these and other aspects. Even if not
made explicit, a view is often the starting point in the de-
sign of workflow specifications. This further motivates using
views to bridge the gap between different specification lan-
guages. To see how this might be done, consider a workflow
W specified by tasks and pre/post conditions and another
workflowW ′ specified as a state-transition system, both per-



taining to the same application. One way to render the two
workflows comparable is to define a view of W as a state-
transition system compatible with W ′. This can be done
by defining states using queries on the current instance and
state transitions induced by the tasks. To make the com-
parison meaningful, the view of W should retain in states
the information relevant to the semantics of the application,
restructured to make it compatible with the representation
used inW ′. More generally, views may be used to map given
workflows models to an entirely different model appropriate
for the comparison. We will formalize the general notion
of view and introduce a form of bisimulation over views to
capture the fact that one workflow simulates another.

In our formal development, we mostly use the Active XML
model [1], which provides seamless integration of complex
data and processes. To describe system evolution (in the
absence of workflow constraints), we use a core model called
Basic Active XML (BAXML for short). BAXML documents
are abstractions of XML with embedded service calls. A
BAXML document is a forest of unordered, unranked trees,
whose internal nodes are labeled with tags from a finite al-
phabet and whose leaves are labeled with tags, data values,
or function symbols. The document evolves as a result of
function calls that initiate new sub-tasks, and returns of re-
sults of function calls (using some local rewritings). The
functions can be internal or external, the latter modeling
interaction with the environment. For example, a BAXML
document is shown in Figure 1. Documents are subject to
static constraints specified by a DTD and a Boolean com-
bination of tree-patterns. Note that this already provides
some form of control on the execution flow, since a function
call can be activated, or its result returned, only if the result-
ing instance does not violate the static constraints. Indeed,
we will see that this already provides very powerful means
to enforce workflow constraints.

BAXML provides a very natural framework for specify-
ing runs of systems in which tasks correspond to evolving
documents, and function calls are seen as requests to carry
out sub-tasks. With the core model in place, we consider
three ways of augmenting BAXML with explicit workflow
control, corresponding to three important workflow specifi-
cation paradigms:

Automata The automata are non-deterministic finite-state
transition systems, in which states have associated tree
pattern formulas with free variables acting as param-
eters. A transition into a state can only occur if its
associated formula is true. In addition, the automaton
may constrain the values of the parameters in consec-
utive states.

Guards These are pre-conditions controlling the firing of
function calls and the return of their answers. This
control mechanism was introduced in [5], where the
results concern verification of temporal properties of
such systems.

Temporal properties These are expressed in a temporal
logic with tree patterns and Past LTL operators. A
temporal formula constrains the next instance based
on the history of the run.

Although presented here in the context of BAXML, these
extensions capture the essential aspects of the three specifi-
cation paradigms regardless of the specific underlying data
model.

Our main results concern the relative power of BAXML
and its extensions as workflow specification languages. When
we insist that they generate exactly the same runs, the three
extensions turn out to be incomparable. More interestingly,
we then consider a more permissive and realistic notion of
equivalence in which a view allows to hide portions of the
data and some of the functions, thus providing more leeway
in simulating one workflow by another. Surprisingly, we
show that the core BAXML alone is largely capable to sim-
ulate the three specification mechanisms based on guards,
automata, and temporal properties. This indicates the con-
siderable power of static constraints to simulate apparently
much richer workflow control mechanisms. Of course, spec-
ifications using guards, automata, and temporal properties
are typically much more readable than their equivalent spec-
ifications in BAXML using hidden functions and static con-
straints.

The above results show the usefulness of seeing a workflow
abstractly as a constraint on the runs of an underlying sys-
tem, decoupled from the specific approach for defining the
constraint. It also demonstrates the effectiveness of views in
comparing workflows and worklow specification languages.
Although the above languages are formalized in a specific
Active XML context, we believe that the results demon-
strate the wide applicability of the approach beyond this
particular setting. In particular, the proofs provide general
insight into when and how specifications based on automata,
guards, and temporal constraints can simulate each other.

After settling the relative expressiveness of the languages
using BAXML as a common core, we finally consider IBM’s
business artifact model, which uses a different paradigm
based on the relational model and services equipped with
first-order pre/post conditions. Relying once again on the
views framework, we compare BAXML to the business ar-
tifact model, as formalized in [16]. We prove that BAXML
can simulate artifacts, but the converse is false. The first
result uses views mapping XML to relations and functions
to services, so that artifacts become views of BAXML sys-
tems. For the negative result we use views retaining just
the trace of function and service calls from the BAXML
and the artifact system. This is a powerful result, since it
extends to any views exposing more information than the
function/service traces. The latter results demonstrate once
again the flexibility and power of the views approach to com-
paring workflows.

Related work.
Workflowmodeling and specification has traditionally been

process centric (e.g., [22, 39]). This has been captured in the
workflows community by flowcharts, Petri nets [40, 41, 7],
and state charts [25, 32]. The comparison of such systems
using the notion of bisimulation is considered in [31, 38].
More recently, data-centric workflows have been considered
in [42], and in particular the artifact model of IBM [35]. Ver-
ification for such models is considered in [23, 24, 11, 16, 21].
The comparison of such systems is considered in [14] using
the notion of dominance, which focuses on the input/output
pairs of the workflows. Other models in the same spirit in-
clude the Vortex workflow framework [28, 18, 27], the OWL-
S proposal [30, 29] as well as some work on semantic Web
services [33]. The article [17] (building on [37, 6]), consid-
ers the verification of properties of data-centric workflows
specified in LTL-FO, first-order logic extended with linear-



time temporal logic operators. Similar extensions have been
previously used in various contexts [19, 3, 37]. Apart from
the work on verification of BAXML with guards mentioned
above [5], most other work on static analysis on XML (with
data values) deals with documents that do not evolve in
time, e.g., [20, 10, 8]. This motivated studies of automata
and logics on strings and trees over infinite alphabets [34,
15, 12]. See [36] for a survey on related issues.

A survey on Active XML may be found in [1]. In [2],
active XML documents are used to capture data and work-
flow management activities in distributed settings, in the
spirit of the artifact approach. The study of the interplay
between queries and sequencing in the artifact approach was
the driving motivation of the present work.

Organization.
The paper is organized as follows. We introduce the view-

based framework for comparing workflow languages in Sec-
tion 2. The BAXML model and the workflow languages are
presented in Sections 3 and 4. Their expressive power with
respect to different views is compared in Section 5. In Sec-
tion 6 we compare BAXML with a variant of IBM’s business
artifacts, and show that BAXML can simulate artifacts, but
the converse is false. We end with brief conclusions. Due to
space limitations, most proofs are omitted.

2. VIEWS AND SIMULATIONS
In this section, we introduce an abstract framework for

workflows and views of workflows. We then use it to compare
workflows.

Workflow Systems and Languages

The model for workflows we consider is quite general. In-
tuitively, a workflow system describes the tree of the possi-
ble runs of a particular system. More formally, the nodes
of a workflow system are labeled by states from an infinite
set Q∞ and the edges by events from an infinite set E∞

(Q∞ ∩ E∞ = ∅). For example, a state of a workflow sys-
tem may be an instance of a relational database or an XML
document. It may also include various other relevant infor-
mation such as the state of an automaton controlling the
workflow, or historical information such as the prefix of the
run leading up to it. A typical event may consist of the
activation of a task, including its parameters. The presence
of data explains why the sets Q∞ and E∞ are taken to be
infinite.

The workflow systems we consider include two particu-
lar events, namely block and ǫ, both in E∞, whose role we
explain briefly. First consider block. For uniformity, it is
convenient to assume that all runs are infinite. To this end,
we use the distinguished event block to signal that the sys-
tem has reached a terminal state that repeats forever (so
once a system blocks, it remains blocked).

On the other hand, the ǫ event corresponds to the classical
notion of silent transition. Its meaning is best explained
in the context of a view (to be formally defined further),
which defines the observable portion of states and events.
In particular, it may hide information about states as well
as events in the source system. For a transition in the source
system, if the event is (even partially) visible in the view or
if the state of the view changes, the transition is observable
in the view. On the other hand, it may be the case that both

the event and the state change are invisible in the view. So,
although there has been a transition in the workflow system,
nothing can be observed in the view. This is modeled by a
silent transition, indicated by the special event ǫ. Observe
that, unlike for blocking transitions, an ǫ transition may be
followed in the view by non-ǫ (visible) transitions, in which
the state may change.

More formally:

Definition 1 (Workflow System). A workflow sys-
tem is a tuple (N,n0, δ, q0, λN , λδ) where:

• (N,n0, δ) is a tree with root n0, nodes N , edges δ.

• all maximal paths from n0 are infinite.

• λN is a function from N to Q∞, and λN(n0) = q0.

• λδ is a function from δ to E∞.

• for each (n, n′) ∈ δ, if λδ((n, n
′)) = ǫ then λN(n) =

λN(n′).

• for each (n, n′) ∈ δ, if λδ((n, n
′)) = block then n′ is

the only child of n and λN (n) = λN (n′). Moreover, n′

has only one outgoing edge also labeled block.

The edges in δ are also called transitions of the workflow,
and q0 is called its initial state.

Finally, a workflow language W consists of an infinite set
of expressions, called workflow specifications. For example,
BAXML, and its extensions with guards, automata, and
temporal constraints, are all workflow languages. Given a
workflow language W and W ∈ W, the semantics of W is a
workflow system (i.e., the tree of runs defined by W ) and is
denoted by [W ]W, or [W ] when W is understood.

Views of Workflow Systems

We next formalize the notion of view of a workflow system.
We will argue that this is an essential unifying tool for un-
derstanding diverse workflow models. In the present paper,
we rely heavily on the notion of view in order to compare
workflows languages.

A view V is a mapping on Q∞ ∪E∞, such that V (Q∞) ⊆
Q∞, V (E∞) ⊆ E∞, V (ǫ) = ǫ, and V (e) = block iff e =
block. This mapping is extended to workflow systems as
follows. Let WS = (N,n0, δ, q0, λN , λδ) and V be a view.
Then V (WS) is defined1 as (N,n0, δ, V (q0), λN ◦ V, λδ ◦ V ).
We say that the view V is well-defined for WS if V (WS) is
a workflow system.

Note that, by definition of the mapping, the properties
of blocking transitions are automatically preserved. Note
also that, by definition of well-defined workflow system, for
each (n, n′) ∈ δ, if V (λδ((n, n

′))) = ǫ then V (λN(n)) =
V (λN(n′)).

Simulation of Workflows

We next consider the comparison of workflow systems and
workflow languages based on the concept of view. We use a
variant of bisimulation [31] (that we call w-bisimulation). Of
course, many other semantics for comparison are possible.
We refrain from attempting a taxonomy of such semantics,
and instead settle on one definition that is quite general and
adequate for our purposes.

1Composition is applied left-to-right.



In our semantics, we wish to be able to capture silent
transitions as well as infinite branches of such transitions.
Given a workflow system as above, for each e ∈ E − {ǫ},

we define the relation
e
→ on nodes by n

e
→ m if there is a

sequence of transitions from n to m, all of which are silent
except for the last one, which is labeled e.

Informally, the silent transitions are seen as partial inter-
nal computation that do not have impact for the possible
observable reachable events. The choices made during the
internal computation may be different, but the visible tran-
sitions at the end of sequences of silent transitions are the
same.

Definition 2 (w-bisimulation). Let

WSi = (N i, ni
0, δ

i, q0, λ
i
N , λ

i
δ)

i ∈ {1, 2}, be two workflow systems (with the same initial
state). A relation B from N1 to N2 is a w-bisimulation of
WS1 and WS2 if B(n1

0, n
2
0) and for each n1, n2 such that

B(n1, n2) the following hold:

• λ1
N (n1) = λ2

N(n2).

• For each event e 6= ǫ, if n1
e
→ n′

1 in WS1 then there
exists n′

2 such that n2
e
→ n′

2 in WS2 and B(n′
1, n

′
2),

and conversely.

• there is an infinite path of silent transitions from n1

in WS1 iff there is an infinite path of silent transitions
from n2 in WS2.

We denote by WS1 ∼ WS2 the fact that there exists a w-
bisimulation of WS1 and WS2.

We note that there are well-known notions of bisimulation
related to ours, such as weak-bisimulation and observation-
congruence equivalence, motivated by distributed algebra
[31]. These differ from w-bisimulation in their treatment of
silent transitions. For example, infinite paths of silent tran-
sitions are relevant to w-simulation but are ignored in weak
bisimulation. It can be seen that observation-congruence
equivalence implies w-bisimulation, but weak bisimulation
and w-bisimulation are incomparable.

Clearly, ∼ is an equivalence relation. Observe that views
preserve w-bisimulation. More precisely, let WS1 ∼ WS2.
Then for each view V ,

(*) V (WS1) is well-defined iff V (WS2) is well-defined, in
which case V (WS1) ∼ V (WS2).

Equivalence of workflow systems as previously defined es-
sentially requires the two systems to have the same set of
states and events. However, in general we wish to compare
workflow systems whose states and events may be very dif-
ferent. In order to make them comparable, we use views
mapping the states and events of each system to a com-
mon, possibly new set of states and events. Intuitively, these
represent abstractions extracting the observable information
relevant to the comparison. The views may also involve
substantial restructuring, thus extending classical database
views.

Suppose we wish to compare languages W1 and W2. To
compare workflow specifications in W1 and W2, we use sets
of views V1 and V2 that map the states and events of W1

and W2 to a common set.

Definition 3 (Simulation). Let W1,W2 be workflow
languages and V1,V2 be sets of views. The language W2

simulates W1 with respect to (V1,V2), denoted W1 →֒(V1,V2)

W2, if for each W1 ∈ W1 and V1 ∈ V1 such that V1(W1) is
well-defined, there exist W2 ∈ W2 and V2 ∈ V2 such V2(W2)
is well-defined and V1(W1) ∼ V2(W2).

Remark 1. Note that the definition of simulation does
not require effective construction of the simulating workflow
specification. However, all our positive simulation results
are constructive. The negative result in Theorem 11 also
concerns effective simulation.

For sets of views V,V′, we define V ◦ V
′ = {V ◦ V ′ | V ∈

V, V ′ ∈ V
′}. Intuitively, a view V ◦ V ′ is coarser than V (or

equivalently, V is more refined than V ◦ V ′).
The following key lemma is a straightforward consequence

of (*). It states that the relation →֒ is stable under compo-
sition of views.

Lemma 1 (Composition). Let W1 and W2 be work-
flow languages and V1,V2 and V be sets of views. If
W1 →֒(V1,V2) W2 then W1 →֒(V1◦V,V2◦V) W2.

The Composition Lemma allows to relate simulations rel-
ative to different classes of views. It says that simulation
relative to given views implies simulation relative to any
coarser views. This provides a tool for proving both posi-
tive and negative simulation results.

A useful version of the above lemma is the following, com-
bining composition and transitivity.

Lemma 2. Let W1,W2,W3 be workflow languages, and
V1,V2,V3 and V be sets of views. If W1 →֒(V1,V2◦V) W2

and W2 →֒(V2,V3) W3, then W1 →֒(V1,V3◦V) W3.

As we will see, the version of transitivity provided by
the above is routinely used in proofs that combine multi-
ple stages of simulation.

3. THE BASIC AXMLMODEL
In this section we present BAXML, theBasic AXML model.

This is essentially a simplified version of the GAXML model
of [5], obtained by stripping it of the control provided by
call and return guards of functions (all such guards are set
to true). We consider such control later as one of the work-
flow specification mechanisms. The section may be skipped
by readers familiar with the GAXML model. Due to space
constraints, and to limit duplication, the description is in-
formal.

To illustrate our definitions, we use a simplified version
of the Mail Order example of [5]. The purpose of the Mail
Order system is to fetch and process individual mail orders.
The system accesses a catalog subtree providing the price for
each product. Each order follows a simple workflow whereby
a customer is first billed, a payment is received and, if the
payment is in the right amount, the ordered product is de-
livered.

In the model, trees are unranked and unordered. We as-
sume given the following disjoint infinite sets: nodes N (de-
noted n,m), tags Σ (denoted a, b, c, . . .), function names F,
data values D (denoted α, β, . . .) data variables V (denoted
X,Y, Z, . . .), possibly with subscripts.



For each function name f , we also use the symbols !f
and ?f , called function symbols, and denote by F

! the set
{!f | f ∈ F} and by F

? the set {?f | f ∈ F}. Intuitively,
!f labels a node where a call to function f can be made
(possible call), and ?f labels a node where a call to f has
been made and some result is expected (running call). After
the answer of a call at node x is returned, the call may
be kept or the node x may be deleted. If calls to !f are
kept, f is called continuous, otherwise it is non-continuous.
For example, the role of the MailOrder function in Figure 1
is to indefinitely fetch new mail orders from customers, so
MailOrder is specified to be continuous. On the other hand,
the function !Bill occurring in a MailOrder is meant to be
called only once, in order to carry out the billing task. Once
the task is finished, the call can be removed. Therefore, Bill
is specified to be non-continuous.

A BAXML document is a tree whose internal nodes are
labeled with tags in Σ and whose leaves are labeled by either
tags, function symbols, or data values. A BAXML forest is
a set of BAXML trees. An example of BAXML document
is given in Figure 1.

To avoid repetitions of isomorphic sibling subtrees, we de-
fine the notion of reduced tree. A tree is reduced if it contains
no distinct isomorphic sibling subtrees without running calls
?f . We henceforth assume that all trees considered are re-
duced, unless stated otherwise. However, note that the for-
est of an instance may generally contain multiple isomorphic
trees.

Patterns. We use patterns as the basis for our query lan-
guage, and later in the specification of workflow constraints
and temporal properties. A pattern is a forest of tree-patterns.
A tree-pattern is a tree whose edges are labeled by child (/)
or descendant (//), where, as in XPath, descendant is re-
flexive. Nodes are labeled by tags if they are internal, and
by tags, function symbols, or variables if they are leafs. In
addition, nodes may be labeled by wildcard (*), which can
map to any tag. A constraint consisting of a Boolean com-
bination of (in)equalities between the variables and/or data
constants may also be given. In particular, we can specify
joins (equality of data values). A tree-pattern is evaluated
over a tree in the straightforward way. The definition of the
evaluation of patterns over forests extends the above in the
natural way. An example is given in Figure 2 (a). The pat-
tern shown there expresses the fact that the value Order-Id
is not a key. It does not hold on the BAXML document of
Figure 1. (Indeed, we want Order-Id to be a key).

We sometimes use patterns that are evaluated relative to a
specified node in the tree. More precisely, a relative pattern
is a pair (P , self ) where P is a pattern and self is a node of
P . A relative pattern (P , self ) is evaluated on a pair (F, n)
where F is a forest and n is a node of F . Such a pattern
forces the node self in the pattern to be mapped to n. Figure
2 (b) provides an example of relative pattern. The pattern
shown there checks that a product that has been ordered
occurs in the catalog. It holds in the BAXML document of
Figure 1 when evaluated at the unique node labeled !Bill.

We also consider Boolean combinations of (relative) pat-
terns. The (relative) patterns are matched independently of
each other and the Boolean operators have their standard
meaning. If a variable X occurs in two different patterns
P and P ′ of the Boolean combination then it is treated as
quantified existentially for P and independently quantified
for P ′.

It will be useful to occasionally consider parameterized
patterns, in which some variables are designated as free. Let
P (X̄) be a pattern with free variables X̄, and ν an assign-
ment of data values to X̄. A BAXML forest I satisfies P (X̄)
for assignment ν, denoted I, ν |= P (X̄), if I satisfies the pat-
tern P (ν(X̄)) obtained by replacing each variable in X̄ by
its value under ν.

Main

MailOrder

Order-Id

X

Cname

Y

Pname

Z

MailOrder

Order-Id

X

Cname

Y’

Pname

Z’

Y 6= Y’ or Z 6= Z’

(a)

Main

Product

Pname

X

MailOrder

Pname

X

self

(b)

Figure 2: Two patterns

Queries. As previously mentioned, patterns are used in
queries, as shown next. A query is a finite union of rules of
the form Body → Head , where Body and Head are patterns
and Head contains no descendant edges and no constants,
and all its variables occur in Body. In each tree of Head, all
variables occur under a designated constructor node, spec-
ifying a form of nesting. When evaluated on a forest, the
matchings of Body define a set of valuations of the variables.
The answer for the rule is obtained by replacing, in each tree
of Head, the subtree rooted at the constructor node with the
forest obtained by instantiating the variables in the subtree
with all their matchings provided by the Body. The answer
to the query is the union of the answers for each rule. As
for patterns, we may consider queries evaluated relative to a
specified node in the input tree. A relative query is defined
like a query, except that the bodies of its rules are relative
patterns (P , self ). An example of relative query (with a sin-
gle rule) is given in Figure 3. The label of the constructor
node (indicated by brackets) is Process-bill.

Main

Catalog

Product

Pname

X

Price

Y

MailOrder

Pname

X

self: !Bill

{Process-bill}

Pname

X

Amount

Y

!Invoice

Figure 3: Example of a relative query

Consider the evaluation of the query of Figure 3 on the
BAXML document of Figure 1 at the unique node labeled
!Bill. There is a unique matching of the Body pattern and
the result is the Head pattern of the query with X replaced
by Nikon and Y by 199 (without brackets for Process-

bill).

DTD. Trees used by a BAXML system may be constrained
using DTDs and Boolean combinations of patterns. For
DTDs, we use a typing mechanism that restricts, for each



Main

Catalog

Product

Pname

Canon

Price

120

Product

Pname

Nikon

Price

199

Product

Pname

Sony

Price

175

!Mailorder MailOrder

Order-Id

1234567

Cname

Serge

Pname

Nikon

!Bill !Deliver !Reject

Figure 1: A BAXML document.

tag a ∈ Σ, the labels of children that a-nodes may have.
As our trees are unordered we use Boolean combinations of
statements of the form |b| ≥ k for b ∈ Σ ∪ F! ∪ F? ∪ {dom}
and k a non-negative integer. Validity of trees and of forests
relative to a DTD is defined in the standard way.

Schemas and instances. A BAXML schema S is a tuple
(Φint,Φext,∆) where (i) the set Φint contains a finite set
of internal function specifications, (ii) the set Φext contains
a finite set of external function specifications, and (iii) ∆
provides static constraints on instances of the schema. It
consists of a DTD and a Boolean combination of patterns.
For instance, the negation of the pattern in Figure 2 (b)
states that Order-Id uniquely determines the mail order.

We next detail Φint and Φext. For each f ∈ F, let af be a
new distinct label in Σ. Intuitively, af will be the root of a
subtree where a call to f is being evaluated. (This subtree
may be seen as a task initiated by the function call.) The
specification of a function f of Φint indicates whether f is
continuous or not, provides its argument query (a relative
query), and return query (a query rooted at af ). When the
argument query is evaluated, self binds to the node at which
the call !f is made. The role of the argument query is to
define the argument of a call to f , which is also the initial
state of the task corresponding to f .

Example 1 We continue with our running example. The
function Bill used in Figure 1 is specified as follows. It
is internal and non-continuous. The argument query is the
query in Figure 3. Assuming that Invoice is an external
function eventually returning Payment (with product and
amount paid) the return guard query of Bill is:

aBill

Payment

Pname

X

Amount

Y

−→ {Paid}

Pname

X

Amount

Y

Each function f in Φext is specified similarly, except that
the return query is missing. In addition, a DTD ∆f con-
strains the answers returned by f (the DTD assumes a vir-
tual root under which the answer forest is placed). Intu-
itively, an external call can return any answer satisfying ∆f

at any time, as long as the resulting instance also satisfies
the global static constraints ∆. For example, MailOrder is
external, since its role is to fetch orders from an external
user.

An instance I over a BAXML schema S = (Φint,Φext,∆)
is a pair (T, eval), where T is a BAXML forest and eval an
injective function over the set of nodes in T labeled with ?f
for some f ∈ Φint such that: (i) for each n with label ?f ,
eval(n) is a tree in T with root label af (its workspace), and

(ii) every tree in T with root label af is eval(n) for some n
labeled ?f . An instance of S is valid if it satisfies ∆.

Runs. Let I = (T, eval) and I ′ = (T′, eval’) be instances of
a BAXML schema S = (Φint,Φext,∆). The instance I ′ is a
possible next instance of I iff I ′ is obtained from I by making
a function call or by receiving the answer to an existing call.
We refer to the latter as an event. More precisely, an event
is an expression of the form !f(F ) or ?f(F ), where f is a
function, and F is the forest consisting of the argument,
resp. answer to the function call. For technical reasons,
we also use two special events, init that only generates the
initial instance, and block, whose use will be clear shortly.
We denote by I ⊢e I ′ the fact that I ′ is a possible next
instance of I caused by event e.

We now provide more details. When a call to !f is made
at node n, the label of n is changed to ?f . If f is internal,
we additionally add to the graph of eval the pair (n, T ′)
where T ′ is a tree consisting of a root af connected to the
forest that is the result of evaluating the argument query
of f on input (T, n). When an answer to call ?f at node n
is received, the trees in the answer are added as siblings of
n, and n is deleted (if f is non-continuous) or its label is
reset to !f (if f is continuous). If f is external, its answer
is a forest satisfying ∆f . If f is internal, the answer can
be returned only if eval(n) contains no running calls ?g, in
which case the answer consists of the result of evaluating
the return query of f on eval(n), after which (n, eval(n)) is
removed from the graph of eval.

Figure 4 shows a possible next instance for the instance
of Figure 1 after an internal call has been made to !Bill.
Recall the specification of Bill from Example 1. As !Bill
is an internal call, the subtree aBill contains the result of
the query defining !Bill (see Figure 3). The dotted arrow
indicates the function eval.

We will typically be interested in runs of such systems. An
initial instance of schema S is an instance of S consisting of
a single tree whose root is not a function call and for which
there is no running call. For runs, we use a variation of the
model of [5]. A prerun of a schema S is a finite sequence
{(Ii, ei)}0≤i≤n, such that (i) for each i, Ii satisfies the static
constraints ∆, (ii) e0 = init, and (iii) for each i > 0, Ii−1 ⊢ei

Ii. A run is an infinite sequence ρ = {(Ii, ei)}i≥0 such that:

nonblocking each finite prefix of ρ is a prerun of S, or

blocking there is a finite prefix (I0, e0), ..., (In, en) of ρ that
is a maximal prerun2 of S; and for each i > n, Ii = In
and ei = block.

2There is no (I ′, e′) for which (I0, e0), ..., (In, en)(I
′, e′) is a

prerun of S.
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Figure 4: An instance with an eval link

Thus, we force all runs to be infinite by repeating forever a
blocking instance from which no legal transition is possible,
if such an instance is reached.

Semantics with and without aborts

We next discuss a subtle difference between the semantics
adopted here and that of [5]. According to our semantics, if a
prerun reaches an instance from which every transition leads
to a violation of the static constraints, the prerun blocks for-
ever in that instance, generating a blocking run. In contrast,
the semantics of [5] allows blocking runs only if no transition
exists at all (whether leading to a valid instance or not). If
there are possible transitions but they all lead to constraint
violations, the prerun is discarded. Intuitively, this amounts
to aborting the run. We refer to this as the semantics of runs
with aborts, and to the one we follow in this paper as the
semantics of runs (without aborts). Note that in our seman-
tics, every prerun is extensible to a (possibly blocking) run,
whereas this is not the case in the semantics with aborts.
Furthermore, as shown next, in the semantics with aborts
it is undecidable if a given prerun can be extended to an
infinite run. This is a main motivation for our choice of the
semantics without aborts.

Theorem 2. Let S be a BAXML schema and ρ a prerun
of S. Under the semantics with aborts, it is undecidable
whether ρ is the prefix of a run of S. Furthermore, this
remains undecidable even for nonrecursive3 DTDs.

The proof for arbitrary DTDs is trivial by the undecidabil-
ity of satisfiability of static constraints. The proof for non-
recursive DTDs is by reduction of the implication problem
for functional and inclusion dependencies (FDs and IDs),
known to be undecidable (see [4]).

4. WORKFLOWCONSTRAINTS
In this section, we introduce three ways of enriching the

BAXML model with workflow constraints: (i) function call
and return guards (yielding the GAXML model), (ii) an
automaton model, and (iii) temporal constraints. Each cor-
responds to a very natural way of expressing constraints on
the evolution of a system. We study and compare these
mechanisms in the next sections.

We begin by considering an abstract notion of workflow
constraint. A workflow constraint W over a BAXML schema
S is a prefix-closed property of preruns of S. For a prerun
ρ of S, we denote by ρ |= W the fact that ρ satisfies W .
We denote by S|W the workflow specification defined by S
constrained by W . A run of S|W is an infinite sequence
ρ = {(Ii, ei)}i≥0 such that:

3A DTD is recursive is there is a cycle in the graph that has
an edge from tag a to b if the DTD allows b to label a child
of a node labeled a.

nonblocking each finite prefix of ρ is a prerun of S that
satisfies W.

blocking there is a finite prefix (I0, e0), ..., (In, en) of ρ that
is a maximal prerun of S satisfying W ; and for each
i > n, Ii = In and ei = block.

Observe that nonblocking runs of S|W are particular non-
blocking runs of S. Also, a sequence {(Ii, ei)}i≥0 may be a
blocking run of S|W but not a blocking run of S. (This is
because all transitions that are possible according to S are
forbiddent by W .) The set of runs of S|W is denoted by
runs(S|W ).

A main goal of the paper is to compare the descriptive
power of different formalisms for specifying workflow con-
straints. To this end, we consider the workflow languages
G (for call guards), A (for automata), and T (for temporal
formulas), defined next.

Call and return guards. Recall the Mail Order example,
in which processing an order requires executing some tasks
in a desired sequence (order, bill, pay, deliver). Since tasks in
BAXML are initiated by function calls, one convenient work-
flow specification mechanism is to attach guards to function
calls. For instance, the guard of !Deliver, shown in Figure
5, might require that the ordered product must have been
paid in the correct amount. Similarly, it is useful to control
when the answer of an internal function may be returned.
This can be done by providing return guards.

Let S be a BAXML schema. A guard assignment over S
is a pair γ = (γc, γr), where:

• γc, the call guard assignment, is a mapping from the
functions of S to Boolean combinations of relative pat-
terns over S. A call to f can only be activated if γc(f)
holds.

• γr, the return guard assignment, is a mapping from
the functions of S which is true for external functions
and a Boolean combination of tree patterns rooted at
af for each internal function f . The result of a call
to f is returned only when γr(f) guard is satisfied on
its current workspace. Return guards constrain only
internal functions.

A prerun ρ = (I0, e0), ..., (In, en) of S satisfies γ = (γc, γr),
denoted ρ |= γ, if for each transition Ii−1 ⊢ei Ii, if the tran-
sition results from a function call to !f at node u the guard
γc(f) holds in (Ii−1, u), and if the transition results from
the return of an internal function call ?f at node u, γr(f)
holds in evali−1(u). Observe that these constraints involve
consecutive instances only.

The set of all guard workflow constraints is denoted G. A
GAXML schema is an expression S|γ, for some γ ∈ G.



Example 3 Figure 5 shows call guards for some functions
in the Mail Order example. The call guard of function Bill

is given in Figure 2(b) (this checks that the ordered product
is available). The call guard of Invoice is true. In the same
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Figure 5: Call guards of Reject and Deliver.

example, the return guard of function Bill is:

aBill

Payment

indicating that payment has been received, so billing is com-
pleted.

Pattern automata. We next consider workflows based on
automata. The states of the automaton are defined using
pattern queries. The automaton has no final states, since
BAXML (like AXML) does not have a built-in notion of
successful computation.

A pattern automaton is a tuple (Q, qinit, δ,Υ) where:

• Q is a finite set of states, qinit ∈ Q, and each q ∈ Q
has an associated set of variables Xq;

• For each q, Υ(q) is a Boolean combination of parame-
terized patterns whose set of free variables equals Xq ;

• the transition function δ is a partial function over Q×
Q; for each q, q′, δ(q, q′) is a Boolean combination of
equalities of variables in Xq and Xq′ .

To simplify the presentation, we assume without loss of
generality that Xq and Xq′ have no variables in common.

LetA be the set of pattern automata. An AAXML schema
is an expression S|A for a BAXML schema S and A ∈
A. A prerun ρ = {(Ii, ei)}i≤n of S satisfies an automa-
ton constraint A, denoted ρ |= A, if there exists a sequence
{(qi, νi)}i≤n, where q0 = qinit and νi is a valuation of Xqi ,
such that for each i ≤ n:

1. Ii, νi |= Υ(qi),

2. νi(Xqi) ∪ νi+1(Xqi+1
) |= δ(qi, qi+1).

Intuitively, the state of such an automaton after reading
a finite sequence ρ of instances is a pair (q, ν) where ν is a
valuation of the variables in Xq. Note that the automaton

qinit p(x1) pe(x2)

d(x3) de(x4)

r(x5) re(x6)

x1 = x1

x1 = x2

x2 = x3

x2 = x5

x3 = x4

x5 = x6

Figure 6: Example of pattern automaton

is non-deterministic both with respect to the state and the
valuation of its variables.

An automaton for our running example is represented in
Figure 6. The edges represent the pairs for which δ is de-
fined, and the patterns in Υ check the following:

• Υ(qinit) checks nothing.

• Υ(p)(x1) checks that the call to Bill of the MailOrder
of Order-Id x1 has been activated and the product is
in the catalog. The calls to Deliver and to Reject are
still not activated.

• Υ(pe)(x2) checks that the call to Bill of the MailOrder
of Order-Id x2 has returned a payment.

• Υ(d)(x3) checks that the call to Deliver of the MailOrder
of Order-Id x3 is activated and the amount brought
by Bill is the same as the price of the item that has
been ordered.

• Υ(de)(x4) checks that the call to Deliver of the MailOrder
of Order-Id x4 has been returned.

• Υ(r)(x5) checks that the call to Rejection of the MailOrder
of Order-Id x5 is activated and the amount brought
by !Bill is different from the price of the item that
has been ordered.

• Υ(re)(x6) checks that the call to Rejection has been
returned for the MailOrder of Order-Id x6.

We note that in some specification models, such as state-
charts [25], states are defined in a hierarchical manner, i.e.
entering a state may trigger a more refined state-transition
sub-system. Other systems further extend this with recur-
sion [9]. Although not done here, one could extend our
formalism to capture such hierarchical or recursive states.

Past-Tree-LTL. Finally, we consider workflow constraints
specified using temporal formulas. Intuitively, these state,
given a particular history, whether a given transition is al-
lowed. The language is a variant of Tree-LTL [5] using only
past LTL operators, that we call Past-Tree-LTL. It is ob-
tained from classical propositional LTL (e.g., see [19]) by
interpreting each proposition as a parameterized tree pat-
tern P (X̄) where X̄ is a subset of its variables, designated as
global. All global variables are treated as free in the patterns
and are quantified existentially at the end. The past tempo-
ral operators are X−1 (previously) and S (since), with the
standard semantics. Specifically, X−1ϕ holds for a prerun
(I0, e0) . . . , (In, en) if ϕ holds at (I0, e0) . . . , (In−1, en−1); ϕSψ
holds at (I0, e0) . . . , (In, en) if ψ holds in (I0, e0) . . . , (Ij , ej)



for some j ≤ n and ϕ holds in (I0, e0) . . . , (Ik, ek) for every
k, j < k ≤ n. In summary, a Past-Tree-LTL formula is of
the form ∃Xψ(X) where ψ uses only the temporal operators
X−1 and S, and X is the set of global variables of the pa-
rameterized patterns interpreting the propositions. The set
of Past-Tree-LTL formulas is denoted T. A TAXML schema
is an expression S|θ for S a BAXML schema and θ ∈ T. A
prerun ρ satisfies ∃Xψ(X) if ρ satisfies ψ(ν(X)) for some
valuation ν of the global variables X in the active domain
of ρ.

The choice to existentially quantify the global free vari-
ables appears natural for specifying workflow transition con-
straints. Observe that such variables are quantified univer-
sally in the language Tree-LTL of [5], used to specify prop-
erties of all runs. However, the model checking approach
of [5] is based on checking unsatisfiability of the negation
of Tree-LTL formulas, whose global variables then become
existentially quantified.

To illustrate Past-Tree-LTL constraints, consider the de-
scription of valid transitions in the MailOrder example. This
can be specified by a Past-Tree-LTL disjunctive formula.
One of its disjuncts is the following:

∃y
(

ψ?Bill(y) ∧X
−1ψ!Bill(y) ∧X

−1ψγc(Bill)(y))

stating the existence of an order id y for which ?Bill is
present in the current instance, !Bill is present in the pre-
vious instance, and the guard of Bill is true in the previous
instance. This is done using appropriate parameterized pat-
terns4 ψ?Bill (y), ψ!Bill (y) and ψγc(Bill)(y).

Checking workflow constraints

The following establishes the complexity of testing workflow
constraints.

Theorem 4. Let S|W be a fixed workflow schema, for
W ∈ {G,A,T}, and ρ a prerun of S. Checking whether ρ
satisfies W can be done in ptime with respect to |ρ|.

A more difficult decision problem is checking the existence
of a valid transition extending the current prerun. Indeed,
this is undecidable even for BAXML schemas with no work-
flow constraints (with either flavor of the abort semantics).
The difficulty arises from the power of external functions.
Indeed, without external functions it suffices to test all pos-
sible call activations and returns. However, the problem
becomes decidable for bounded trees.

Theorem 5. (i) Given a BAXML schema S and a pre-
run ρ of S, it is undecidable whether ρ is blocking. (ii) Given
a BAXML schema S with non-recursive DTD and a prerun
ρ of S, it is decidable whether ρ is blocking.

5. EXPRESSIVENESS
In this section we compare the expressive power of BAXML,

GAXML, AAXML, and TAXML, using the framework de-
veloped in Section 2. We begin by comparing the languages
relative to views retaining full information about the cur-
rent BAXML document, that we refer to as identity views.
We then consider a more permissive version allowing to hide
some of the data and functions, thus providing more leeway
for simulations.
4The parametrized pattern formula ψγc(Bill)(y) is obtained
by replacing in γc(Bill) each label self by !Bill and mapping
y to the Order-Id of the MailOrder to which !Bill belongs.

Workflow system semantics

We begin by casting the semantics of BAXML, GAXML,
AAXML, and TAXML in terms of the workflow systems de-
scribed in Section 2. For each specification S (for BAXML)
or S|W (for GAXML, AAXML and TAXML), the nodes of
the workflow system are the finite prefixes of runs of S or
S|W . The state label for each node is the last instance in
the prefix. The root is the empty prerun, denoted Φ. There
is an edge labeled e from node ν to ν′ if ν′ extends ν with
a single instance by event e that is a function call or the re-
turn of a such a call. Note that the infinite paths in the tree
starting from Φ correspond to the runs of S|W . Because of
the semantics of blocking runs, each path is extensible to an
infinite path.

Note that there are alternative choice of workflow system
semantics, and different goals may require different choices.
For example, for AAXML it may be natural to retain in
the state, information on the current state of the associated
automaton together with the valuation of its parameters.
This would simplify defining views where such states are
included in the observables.

Comparison with identity views

We first compare BAXML, GAXML, AAXML, and TAXML
relative to the identity view on the states and events of the
workflow system (denoted id), thus preserving full informa-
tion on the system. Observe that if a language W2 simu-
lates W1 with respect to (id, id), this means that for each
W1 in W1, there exists W2 in W2, such that W1 ∼ W2,
i.e., W1 and W2 have exactly the same runs. So, this is
a very strong requirement. Note also, that since id is the
most refined possible view of a workflow system, existence
of simulation with respect to id would imply, by Lemma 1,
the existence of simulation with respect to any coarser view.
Unfortunately (but not surprisingly), the three extensions
of BAXML models are incomparable relative to the identity
view.

Theorem 6. The workflow languages GAXML, AAXML
and TAXML are incomparable relative to →֒(id,id).

Comparison with projection views

Given the negative result of Theorem 6, we next consider
simulation relative to views allowing more leeway in the sim-
ulating system. Specifically, the view remains the identity
on the simulated system, but allows the simulating system
to use additional data and functions. We refer to the latter
as a projection view and denote the class of projection views
by π.

Specifically, let S be a BAXML schema and Σ0 and F0 be
subsets of the tags and functions of S (the visible symbols)
such that, in every instance satisfying the DTD of S, when-
ever a node has tag a 6∈ Σ0, none of its descendants has a
label in Σ0 or in F0. The projection πΣ0,F0

([S]) is defined
as follows. For a state I of [S] (and for any instance), the
projection is obtained by removing all nodes whose label is
a tag not in Σ0 or a function not in F0 and their descen-
dants. We also remove the workspaces whose correspond-
ing function calls have been projected out. The projection
of an event !f(F ) is ǫ for f 6∈ F0 and !f(πΣ0,F0

(F )) for
f ∈ F0, and similarly for ?f(F ). The projection view is
defined in the same way for BAXML augmented with con-
straints (GAXML, AAXML, and TAXML).



Simulation Schema blowup Instance blowup Silent transitions
GAXML →֒(id,π) BAXML exponential linear in instance linear in prerun
AAXMLsib →֒(id,π) BAXML exponential polynomial in instance polynomial in prerun
TAXMLsib →֒(id,π) BAXML exponential polynomial in prerun polynomial in prerun
TAXML →֒(id,π) AAXML exponential polynomial in prerun polynomial in prerun
AAXML →֒(id,π) TAXML polynomial polynomial in instance O(1)

Figure 7: Cost of various simulations from Theorems 7 and 8

Our main result is that, with projection views, the pow-
erful control mechanisms of GAXML can be simulated by
BAXML alone. For AAXML and TAXML, we need a mi-
nor restriction forbidding the presence of sibling calls to the
same external function (this can be enforced by the DTD).
We denote these restrictions by AAXMLsib and TAXMLsib.

Theorem 7. W →֒(id,π) BAXML

for W ∈ {GAXML,TAXMLsib,AAXMLsib}.

Since BAXML is included in GAXML, TAXMLsib, and
AAXMLsib, it follows that the four languages can simulate
each other relative to projection views.

For AAXML and TAXML, we have the following.

Theorem 8. AAXML →֒(id,π) TAXML and
TAXML →֒(id,π) AAXML.

The proofs of the above results (omitted) provide insight
into the simulations of the four languages by each other, and
in particular into the power of imposing control using static
constraints. In terms of the cost of each simulation, several
parameters can be considered: (i) the blowup in the schema
size, (ii) the blowup in the instance size, (iii) the number of
silent transitions needed to simulate a single transition. For
the simulations considered here, the blowup in the schema
size varies from polynomial to exponential, the blowup in the
instance size from polynomial with respect to the instance
to polynomial with respect to the entire prerun, and the
number of silent transitions from constant to polynomial
in the prerun (for fixed schemas). The costs for various
simulations are spelled out in more detail in Figure 7.

The difficulty of simulating AAXML and TAXML with
sibling external function calls by BAXML (or GAXML) lies
in the fact that the constraints of AAXML and TAXML
must be checked after every transition, and GAXML can-
not prevent multiple returns from sibling external function
calls that skip validity checks. Indeed, as shown below, this
difficulty cannot be circumvented.

Theorem 9. W 6 →֒(id,π) GAXML
for W ∈ {TAXML, AAXML}.

Comparison with coarser views

Theorem 7 shows that BAXML, GAXML, TAXMLsib and
AAXMLsib can simulate each other relative to projection
views. This result turns out to be quite powerful. Indeed,
by Lemma 1 it implies that the simulation results can be
extended to any views that are coarser than such views. For
example, one may wish to focus on the sequence of events
(function calls and returns, together with their arguments),
ignoring state information. This information can be cap-
tured by composing the views in id and π with a view V

that is the identity on events and maps every state to a fixed
constant. By Lemma 1, BAXML, GAXML, TAXMLsib and
AAXMLsib can simulate each other relative to (id◦V, π◦V ).
Similar remarks apply to TAXML and AAXML.

Conversely, one may be interested in observing certain
characteristics of the states in the tree of runs, ignoring event
information. Once again, this can be captured by coarser
views than (id, π) so the four languages can simulate each
other relative to such views.

6. BAXML AND TUPLE ARTIFACTS
In the previous section, we compared the expressiveness

of several workflow languages centered around the common
core provided by BAXML. In this section, we illustrate how
views can be used to reconcile models that are otherwise in-
comparable. For this, we use the views framework to com-
pare BAXML workflows with tuple artifacts workflows, a
variant of IBM’s Business Artifacts, which uses relational
databases as its underlying model. The main result is that
BAXML can simulate tuple artifacts. Indeed, tuple artifacts
can be seen as views of BAXML. We will also see that tu-
ple artifacts cannot simulate BAXML even with respect to
coarse views retaining just the traces of service and function
calls.

We first review informally the tuple artifact model, as pre-
sented in [16] (see Appendix for the formal definition). We
denote the model by TA. We assume an infinite data do-
main D. An artifact system consists of a set of artifacts and
a set of services acting on the artifacts. An artifact consists
of an artifact tuple and a set of state relations. In addition,
an artifact system has an underlying database shared by all
artifacts and services, that is fixed throughout a run of the
system.

Each service causes a modification of one or several cur-
rent artifacts. Intuitively, the focus is on the evolution of
the artifact tuples, while the state relations are used to carry
auxiliary information needed by the services. A service con-
sists of the following:

• a pre-condition, which is an FO formula on the set of
artifacts of the system and the underlying database;

• a post-condition, which is an FO formula on the set
of artifacts and the database, defining, for each arti-
fact tuple, the values allowed in the next instance; free
variables range over the infinite domain D, so may take
new values not present in the current instance;

• for each state relation, two FO formulas defining the
sets of tuples to be inserted and deleted from the state.
The formulas take as input the current artifact in-
stance and the database, and are interpreted with ac-
tive domain semantics. Thus, their result is always
finite.



Services are applied non-deterministically. At any given
time, a service can be applied to the current instance if its
pre-condition holds and if the post-condition is satisfiable.
Thus, there are two forms of non-determinism in a transi-
tion: one stemming from the choice of service, and another
from the choice of values for the next artifact tuples, from
among those satisfying the post-condition. A run of an ar-
tifact system is a sequence of consecutive instances together
with the name of the service applied at each transition. (For
initial instance, we take any instance whose artifact states
are empty.) As for BAXML, blocking runs are extended
by repeating forever the last configuration, with the corre-
sponding transitions labeled by the special event block. See
[16] for a detailed example of an artifact system.

In order to simulate TA with BAXML, we must define
views that render the two compatible. For TA, we sim-
ply take the identity views id. For BAXML, we consider
schemas of a special form, that represent the artifact tuples
and relations (states and database) of TA. A relation R with
attributes A1 . . . Am is naturally represented in BAXML by
a subtree rooted at R, satisfying the DTD:

R → |tupR| ≥ 0
tupR → ∧m

i=1|Ai| = 1
Ai → |dom| = 1

We will have to record several instances of a state relation
R. To distinguish the current one, it will be adorned by
a function call !current just placed under its root, i.e., an
R-labeled node. Artifact tuples are handled similarly. Each
service of the artifact system is modeled in BAXML by a
corresponding function with the same name. The call of a
service is captured in BAXML by a call to the corresponding
function. Given a BAXML instance as described, the view
is defined as follows. On states of the BAXML workflow
system, the view maps the subtrees representing database
and state relations, and artifact tuples, to the correspond-
ing relations and tuples. Events consisting of activations of
functions corresponding to services are mapped to the cor-
responding service name, and all others are mapped to ǫ.
We denote this class of views by VTA. The main result is
the following.

Theorem 10. TA →֒(id,VTA) BAXML.

Thus, BAXML can simulate TA. In fact, since the view
used for TA is the identity, tuple artifacts themselves can
be seen as views of BAXML systems. The simulation yields
a BAXML schema polynomial in the TA schema, BAXML
instances polynomial in the TA instances, and polynomi-
ally many silent transitions (with respect to the current in-
stance), to simulate in BAXML one transition of TA.

Conversely, we will show that, in a strong sense, TA can-
not effectively simulate BAXML. We use coarse views that
retain just the names of function calls in BAXML and of ser-
vice calls in TA (modulo a projection). Such views are nat-
ural because the traces of function and service calls largely
capture the sequencing of events central to workflows. We
will prove a strong negative result for such views. Intuitively,
the problem in simulating BAXML with TA is due to the
fact that BAXML can read a large structure (for example
an entire relation represented as an XML document) by a
single function call. On the other hand, tuple artifacts can
only read one tuple at a time, so the simulation requires

a loop. This loop may lead to an infinite sequence of ǫ-
transitions (imagine a denial-of-service attack in which the
attacker keeps sending new tuples). But if no such sequence
of ǫ-transitions occurs in the BAXML system, this is not a
correct simulation.

More precisely, the views we use are defined as follows:

states for both BAXML and TA, all states are mapped to
a constant state (so all information about the states is
lost);

events for BAXML, active calls ?g are mapped to ǫ and
calls !g are mapped to g or to ǫ (so some function calls
can be hidden); for TA, a service σ is mapped to σ or
to ǫ (so again, some services can be hidden).

We denote the above class of views of BAXML systems
by Vfun and of TA systems by Vserv.

Recall that the definition of simulation does not require
effective construction of the simulating schema (even though
all our positive simulation results are constructive). We can
show that one cannot effectively construct a TA specifica-
tion simulating a given BAXML schema, with respect to
the above views.

Theorem 11. There is no algorithm that, given as input
a BAXML schema W1 and a view V1 ∈ Vfun produces a TA

schema W2 with a view V2 ∈ Vserv such that V1([W1]) ∼
V2([W2]). Moreover, this holds even for BAXML schemas
of bounded depth.

The proof (using only BAXML schemas of bounded depth)
relies on the undecidability of implication for FDs and IDs.

Remark 2. By Lemma 1 (applied to effective simulations),
the negative result of Theorem 11 extends to any views that
expose more information than those above.

7. CONCLUSION
This paper makes a dual contribution. First, it proposes

a flexible framework for comparing distinct workflow mod-
els by means of views extracting a common set of observ-
able states and events, and a natural notion of simulation.
Second, it uses this framework to compare concrete lan-
guages capturing some of the main workflow specification
paradigms: automata, temporal constraints, and pre-and-
post conditions. These were first investigated using as a
common core BAXML, where the integration of XML and
embedded function calls allows to naturally support a wide
range of data-centered tasks. We proved the surprising re-
sult that the static constraints of BAXML are alone suf-
ficient to simulate the three apparently much richer work-
flow specification languages mentioned earlier. Beyond the
specifics of the XML-based model, the results provide in-
sight into the power of the various workflow specification
paradigms, the trade-offs involved in choosing one over an-
other, and the relation to static constraints. Finally, we com-
pared BAXML to tuple artifacts, a variant of IBM’s Busi-
ness Artifact model using relational databases. We showed
that BAXML can simulate tuple artifacts whereas the con-
verse is false. To compare these very different models, we
used again the views framework to render them compatible.
This illustrates the usefulness of the view-based framework
to reconcile seemingly incomparable workflow models.
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