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We consider ordered multi-pushdown automata, a multi-stack extension of pushdown
automata that comes with a constraint on stack operations: a pop can only be performed

on the first non-empty stack (which implies that we assume a linear ordering on the

collection of stacks). We show that the emptiness problem for multi-pushdown automata
is 2ETIME-complete. Containment in 2ETIME is shown by translating an automaton

into a grammar for which we can check if the generated language is empty. The lower

bound is established by simulating the behavior of an alternating Turing machine working
in exponential space. We also compare ordered multi-pushdown automata with the model

of bounded-phase (visibly) multi-stack pushdown automata, which do not impose an

ordering on stacks, but restrict the number of alternations of pop operations on different
stacks.
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1. Introduction

Various classes of pushdown automata with multiple stacks have been proposed and

studied in the literature. The main goals of these efforts are twofold. First, one may

aim at extending the expressive power of pushdown automata, going beyond the

class of context-free languages. Second, multi-stack systems may model recursive

concurrent programs, in which any sequential process is equipped with a finite-state

control and, in addition, can access its own stack to connect procedure calls to their
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corresponding returns. In general, however, multi-stack extensions of pushdown

automata are Turing powerful and therefore come along with undecidability of

basic decision problems. To retain desirable decidability properties of pushdown

automata, such as emptiness, one needs to restrict the model accordingly. In [9],

Breveglieri et al. define ordered multi-pushdown automata (OMPA)a, which impose

a linear ordering on stacks. Stack operations are constrained in such a way that

a pop operation is reserved to the first non-empty stack. Another way to regain

decidability in the presence of several stacks is to restrict the domain of input words.

In [26], La Torre et al. define bounded-phase visibly multi-stack pushdown automata

(BVMPA). Only those runs are taken into consideration that can be split into a

given number of phases, where each phase admits pop operations of one particular

stack only. In the above-mentioned cases, the emptiness problem is decidable. The

usefulness of such results is demonstrated in [27], where the results of [26] are used

to show decidability results for restricted queue systems.

In this paper, we resume the study of OMPA and, in particular, consider their

emptiness problem. The decidability of this problem, which is to decide if an au-

tomaton admits some accepting run, is fundamental for verification purposes. We

show that the emptiness problem for OMPA is 2ETIME-complete. Recall that

2ETIME is the class of all decision problems solvable by a deterministic Turing

machine in time 22
dn

for some constant d. In proving the upper bound, we correct

an error in the decidability proof given in [9].b We keep their main idea: OMPA are

reduced to equivalent depth-n-grammars. Deciding emptiness for these grammars

then amounts to checking emptiness of an ordinary context-free grammar. For prov-

ing 2ETIME-hardness, we borrow an idea from [28], where a 2ETIME lower bound

is shown for bounded-phase pushdown-transducer automata. We also show that

OMPA with 2m stacks are strictly more expressive than BVMPA with m phases

providing an alternative proof of decidability of the emptiness problem for BVMPA.

Related work

In their full generality multi-stack pushdown automata are not analyzable as two

stacks can simulate the tape of a Turing machine. Decidable subclasses are obtained

by placing restrictions on the behaviours of the multi-stack pushdown automata.

In [9], Breveglieri et al. propose the class of OMPA which impose a linear ordering

on stacks. In this paper, we show that the emptiness problem for OMPA is in

2ETIME. In doing so, we correct an error in the decidability proof given in [9].

Context-bounding has been proposed in [20] as a suitable technique for the

analysis of multi-stack pushdown automata. The idea is to consider only runs of

the automaton that can be split into a given number of contexts, where in each

context pop and push operations are exclusive to one stack. The emptiness problem

aOMPA are called multi-pushdown automata in [9].
bA similar correction of the proof has been done independently by the authors of [9] themselves [10].

They give a construction for three stack OMPA generalizable to arbitrarily many stacks.
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for bounded-context multi-stack pushdown automata is shown to be NP-complete

in [18,20].

in [26], La Torre, Madhusudan and Parlato propose the class of BVMPA as

a strict generalization of the notion of a context. They show that runs of such

automata can be represented as trees and the emptiness problem can be reduced to

the emptiness problem for tree automata. In this paper, we show that OMPA are

strictly more expressive than BVMPA (and, thus, than bounded-context multi-stack

pushdown automata).

In [2], Atig proposes a uniform framework which can be used to prove the decid-

ability of the emptiness problem for OMPA and BVMPA. This is done by showing

that each of their emptiness problem can be reduced to the one for a class of single-

stack machines.

In [19], Madhusudan, and Parlato show the benefits of studying the structure

of runs of multi-pushdown systems as graphs. Such graphs, with linear edges to

describe ordering of the events in the runs and nesting edges relating push events

to corresponding pop events, called multiply nested words, generalize the nested

word representation of runs of single pushdowns [1]. They show that the classes of

multiply nested words arising from bounded context, bounded phase and ordered

multi-stack pushdown automata have bounded tree-width (tree-width is a measure

of the complexity of a graph). Using the decidability of the satisfiability problem

of monadic second-order logic (MSO) on bounded tree-width graphs [13, 22], the

authors show the decidability of the emptiness problem for BVMPA and OMPA.

Uniform approaches that also rely on tree-automata techniques and, moreover,

are suitable for showing complementability of OMPA were given in [11,16].

The techniques used in [2,11,16,19] and the one proposed in this paper to prove

the decidability of the emptiness problem for OMPA are quite different since we

prove the decidability of OMPA by reducing it to a decidable class of grammars

(following [9]).

A more general version of the control state reachability problem, called the

global state reachability problem has also been studied. Given a regular set of

configurations the aim is to construct a representation (usually again as a regular

language) for the set of configurations from where the given set is reachable. Anil

Seth [24] describes a 2EXPTIME decision procedure for the global state reachability

for BVMPA systems while [3] solves the same problem for OMPA in 2EXPTIME.

The techniques used in [3, 24] are also different from the ones used in this paper.

In [28], La Torre, Madhusudan and Parlato prove that the emptiness problem for

BVMPA is 2ETIME-hard. Our proof of the 2ETIME-hardness is done by adapting

the construction given in [28].

In [17, 29], La Torre and Napoli propose the concept of bounded scope runs,

where each symbol in a stack can be popped only if it has been pushed within a

given number of context switches. The authors show that the emptiness problem for

multi-stack pushdown automata under scope-bounding is decidable (and PSPACE-

complete). Moreover, they show that the class of multi-stack pushdown automata
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under scope-bounding is incomparable with BVMPA. It is not clear how this decid-

ability result for multi-stack pushdown automata under scope-bounding is related

to the one we prove in this paper. Simulating scope-bounded computations using

the order restriction on stacks does not seem to be possible. Moreover, the complex-

ity of the emptiness problem for OMPA is clearly higher than for scope-bounded

multi-stack pushdown automata.

Recently, it has been shown that multi-stack pushdown automata under scope-

bounding have bounded tree-width [14,31]. In [14] a new measure of complexity for

multiply nested words called split-width is proposed, which is bounded whenever

tree-width is, but seems to yield easier proofs of boundedness.

In the setting of infinite runs, [3] describes a 2EXPTIME decision procedure

for the repeated reachability and LTL model-checking problems for OMPA. The

procedure described in [3] is based on the decision problem for the global state

reachability problem for OMPA.

In [5], the authors investigate the existence of ultimately periodic infinite runs,

i.e. runs of the form uvω, in multi-stack pushdown systems. They show that if we

place a bound on the number of context switches permitted in u and v the resulting

problem becomes decidable in EXPTIME.

Recently, [6, 30] showed that LTL model checking for multi-stack pushdown

automata under scope-bounded can be solved in EXPTIME.

Finally, it should be noted that a restriction of OMPA has been defined that

has single exponential complexity [7]. The idea is that pushs are only possible on

the lowest non-empty stack or one of its neighbours.

Outline

The paper is structured as follows: In Section 2, we first introduce multi-stack push-

down automata (MPA) in their full generality. OMPA and BVMPA then arise as

proper subclasses of MPA. After some first expressivity results on our basic models,

we introduce, also in Section 2, depth-n-grammars. Sections 3 and 4 then establish

the 2ETIME upper and, respectively, lower bound of the emptiness problem for

OMPA, which constitutes our main result. In Section 5, we compare OMPA with

BVMPA. We conclude by identifying some directions for future work.

An extended abstract of this paper appeared as [4].

2. Multi-Pushdown Automata and Depth-n-Grammars

Let us fix some basic notation. We call any non-empty finite set an alphabet. For

an alphabet Σ, Σ∗ is the set of finite words over Σ; the empty word is denoted by

ε. The concatenation uv of words u, v ∈ Σ∗ is denoted by u · v (though we often

simply write uv instead). For two natural numbers n,m ∈ N with 1 ≤ m ≤ n, we

write [n] (resp. [m..n]) to denote the set {1, . . . , n} (resp. {m, . . . , n}).
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2.1. Multi-Pushdown Automata and Subclasses

In this section, we define ordered multi-pushdown automata and bounded-phase

multi-pushdown automata. Both appear as a special case of multi-pushdown au-

tomata: they have one read-only left to right input tape and n ≥ 1 read-write mem-

ory tapes (stacks) with a last-in-first-out rewriting policy. A transition is of the form

t = (q,A1, . . . , An)
a→ (q′, α1, . . . , αn). Being in a configuration 〈p, aw; γ1, . . . , γn〉,

which is composed of a control state p, the word aw to be read, and a stack

content γi for any stack i, t can be applied if both p = q and the i-th stack

is of the form γi = Aiγ
′
i for some γ′i. Taking the transition and reading the a

(which might be the empty word), the system moves to the successor configuration

〈q′, w;α1γ
′
1, . . . , αnγ

′
n〉. I.e., the new control state is q′, and Ai is replaced with αi

on the i-th stack.

Definition 1. A multi-pushdown automaton (MPA) is a structure M =

(Q,n,Σ,Γ,→, q0, Z0, F ) where

• Q is the finite non-empty set of states,

• n ≥ 1 is the number of stacks,

• Σ is the finite set of input symbols,

• Γ is the finite set of stack symbols (disjoint from Σ ∪ {⊥}),

• → ⊆
[
Q× (Γ∪{⊥}∪{ε})n

]
× (Σ∪{ε})×

[
Q× (Γ∗ ∪ Γ∗{⊥})n

]
is the finite

transition relation such that, for all ((q, A1, . . . , An), a, (q′, α1, . . . , αn)) ∈
→ and i ∈ [n], Ai = ⊥ iff αi = α⊥ for some α ∈ Γ∗,

• q0 is the initial state,

• Z0 ∈ Γ is the initial memory symbol, and

• F ⊆ Q is the set of final states.

For the sake of readability, we may write (q, A1, . . . , An)
a→ (q′, α1, . . . , αn) if

((q, A1, . . . , An), a, (q′, α1, . . . , αn)) ∈ →. A stack content of M is an element

from StackM = Γ∗{⊥}. The symbol ⊥ marks the bottom of a stack. According

to the transition relation, ⊥ can never be popped. A configuration of M is an

(n + 2)-tuple 〈q, w; γ1, . . . , γn〉 with q ∈ Q, w ∈ Σ∗, and γ1, . . . , γn ∈ StackM.

The set of configurations is denoted by ConfM. The behavior of M is described

by its step relation. For a transition t = (q, A1, . . . , An)
a→ (q′, α1, . . . , αn), we

define `tM ⊆ ConfM × ConfM to be the least set satisfying the following: if

γ1, . . . , γn ∈ StackM ∪ {ε} such that Aiγi ∈ StackM for all i ∈ [n], then

〈q, aw;A1γ1, . . . , Anγn〉 `(t)M 〈q, w;α1γ1, . . . , αnγn〉. Let

`M =
⋃
t∈→

`(t)M

A configuration 〈q, w; γ1, . . . , γn〉 is final if w = ε and q ∈ F . It is empty if w = ε

and γ1 = . . . = γn = ⊥. We may declare a configuration accepting if it is final or
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M = ({q0, . . . , q3, qf}, 2, {a, b, c}, {A,B,Z0, Z1},→, q0, Z0, {qf})

(q0, Z0, ε)
ε→ (qf , ε, ε) (q1, A, ε)

a→ (q1, AA,B) (q3,⊥, Z1)
ε→ (q0, Z0⊥, ε)

(q0, Z0, ε)
a→ (q1, AZ0, BZ1) (q2, b, A)

b→ (q2, ε, ε) (q3,⊥, B)
c→ (q3,⊥, ε)

(q1, A, ε)
ε→ (q2, A, ε) (q2, Z0, ε)

ε→ (q3, ε, ε)

Table 1. A 2-OMPA for {anbncn | n ≥ 0}∗

empty. For M, we therefore define two possible semantics:

L(M) = {w ∈ Σ∗ | 〈q0, w;Z0⊥,⊥, . . . ,⊥〉 (`M)∗ c for some final configuration c}

L⊥(M) = {w ∈ Σ∗ | 〈q0, w;Z0⊥,⊥, . . . ,⊥〉 (`M)∗ c for some empty configuration c}

We now introduce our main automata model, in which one can pop only from

the first non-empty stack (i.e., all preceding stacks equal ⊥).

Definition 2. An ordered multi-pushdown automaton (OMPA) is an

MPA (Q,n,Σ,Γ,→, q0, Z0, F ) where, for each transition (q, A1, . . . , An)
a→

(q′, α1, . . . , αn), there is j ∈ {1, . . . , n} such that A1 = . . . = Aj−1 = ⊥,

Aj ∈ Γ ∪ {⊥} ∪ {ε}, and Aj+1 = . . . = An = ε.

Table 1 shows an example of a 2-OMPA accepting the language {anbncn | n ≥
0}∗. Notice that it accepts the same language by final state and by empty stacks.

Next, let us define visibly multi-pushdown automata [26], another subclass of

MPA, where an action is associated with a particular stack operation. An action

can be a push, pop, or internal action. In our general setting, these automata can

be defined as follows:

Definitions 3–5 are only needed in Section 5. They can be skipped for the moment

and may be consulted for later reference.

Definition 3. A visibly multi-pushdown automaton (VMPA) is an MPA

(Q,n,Σ,Γ,→, q0, Z0, F ) such that there is a mapping type : Σ → ({push,pop} ×
[n]) ∪ {int} satisfying, for all transitions (q, A1, . . . , An)

a→ (q′, α1, . . . , αn):

• a 6= ε,

• if type(a) = (push, i) for some i ∈ [n], then A1 = . . . = An = ε, αi ∈ Γ,

and αj = ε for all j ∈ [n] \ {i},
• if type(a) = (pop, i) for some i ∈ [n], then Ai ∈ Γ ∪ {⊥}, αi ∈ {⊥} ∪ {ε},

and Aj = αj = ε for all j ∈ [n] \ {i}, and

• if type(a) = int, then Ai = αi = ε for all i ∈ [n].

If, in an MPA, we restrict the number of phases, where in one phase pop oper-

ations are exclusive to one stack, then we obtain bounded-phase multi-pushdown

automata.
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Definition 4. A bounded-phase multi-pushdown automaton (BMPA) is a

pair B = (M, k) where k ≥ 1 and M is an MPA (Q,n,Σ,Γ,→, q0, F ) such that,

for each transition (q, A1, . . . , An)
a→ (q′, α1, . . . , αn), we have A1 · . . . · An ∈ Γ ∪

{⊥} ∪ {ε}.

For defining the language of B, we require the notion of a phase. To this aim, we

identify those transitions that correspond to a read/pop operation on a given stack.

A transition (q, A1, . . . , An)
a→ (q′, α1, . . . , αn) is a pop transition on stack i ∈ [n] if

Ai ∈ Γ ∪ {⊥}. We collect in Ph(i) the transitions t ∈ → such that, for all j ∈ [n],

the following holds: if t is a pop transition on stack j, then j = i. We define

`(i)B =
⋃

t∈Ph(i)

(
`(t)M

)∗
and `B =

⋃
i∈[n]

`(i)B

Finally, the language of B is

L(B) = {w ∈ Σ∗ | 〈q0, w;Z0⊥,⊥, . . . ,⊥〉 (`B)k c for some final configuration c}

Combining VMPA and BMPA, we obtain bounded-phase visibly MPA:

Definition 5. A bounded-phase visibly multi-pushdown automaton (BVMPA) is

a BMPA (M, k) such that M is a VMPA.

We introduce some abbreviations: For a natural number n ≥ 1, we

call an MPA/OMPA/VMPA/BMPA/BVMPA an n-MPA/n-OMPA/n-VMPA/n-

BMPA/n-BVMPA, respectively, if its number of stacks is n. A k-phase (n-)BMPA

is a BMPA of the form (M, k) (with M an n-MPA). An MPA over Σ is an MPA

with input alphabet Σ.

2.2. First results

Lemma 6 ([9]) Let Σ be an alphabet, n ≥ 1, and L ⊆ Σ∗. The following statements

are equivalent:

• There is an n-MPA M over Σ such that L(M) = L.

• There is an n-MPA M′ over Σ such that L⊥(M′) = L.

We need the following normal form of n-OMPA for the proof of our main theo-

rem. The normal form restricts the operation on stacks 2 to n: pushing one symbol

on these stacks is only allowed while popping a symbol from the first stack, and

popping a symbol from them pushes a symbol onto the first stack. Furthermore,

the number of symbols pushed on the first stack is limited to two.

Definition 7. An n-OMPA (Q,n,Σ,Γ,→, q0, Z0, F ) with n ≥ 2 is in normal form

if → contains only the following types of transitions:

• (q, A, ε, . . . , ε)
a→ (q′, BC, ε, . . . , ε) for some A,B,C ∈ Γ and a ∈ Σ ∪ {ε}

• (q, A, ε, . . . , ε)
a→ (q′, ε, . . . , ε, B, ε, . . . , ε) for some A,B ∈ Γ and a ∈ Σ∪{ε}

(B is pushed on one of stacks 2 to n)
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• (q,⊥, . . . ,⊥, A, ε, . . . , ε) a→ (q′, B⊥,⊥, . . . ,⊥, ε, ε, . . . , ε) for some A,B ∈ Γ

and a ∈ Σ ∪ {ε} (A is popped from one of the stacks 2 to n)

• (q, A, ε, . . . , ε)
a→ (q′, ε, . . . , ε) for some A ∈ Γ and a ∈ Σ ∪ {ε}

Lemma 8. An n-OMPA M can be transformed into an n-OMPA M ′ in normal

form with linear blowup in its size such that L(M) = L(M ′).

Proof. An easy generalization of the proof for the Chomsky normal form for

context-free grammars.

Next, we recall some properties of the class of languages recognized by n-OMPA

and n-BVMPA. We start by defining a renaming operation: A renaming of Σ to Σ′

is a function f : Σ → Σ′. It is extended to strings and languages in the natural

way: f(a1 . . . ak) = f(a1) · . . . · f(ak) and f(L) =
⋃
w∈L f(w).

Lemma 9 ([9]) (Closure Properties of OMPA) The class of languages recognized

by n-OMPA is closed under union, renaming and Kleene-star.

Lemma 10 ([26]) (Closure Properties of BVMPA) The class of languages recog-

nized by n-BVMPA is closed under union and renaming; but not under Kleene-star.

2.3. Depth-n-grammars

We now define the notion of a depth-n-grammar. Let VN and VT be finite disjoint

alphabets and let “(“ and “)i“ for i ∈ {1, . . . , n} be n+1 characters not in VN ∪VT .

An n-list is a finite string of the form α = w(α1)1(α2)2 . . . (αn)n where w ∈ V ∗T and

αi ∈ V ∗N for all i with 1 ≤ i ≤ n.

Definition 11. A depth-n-grammar (Dn-grammar) is a tuple G = (VN , VT , P, S)

where VN and VT are the finite disjoint sets of non-terminal and terminal symbols,

respectively, S ∈ VN is the axiom, and P is a finite set of productions of the form

A→ α with A ∈ VN and α an n-list.

For clarity, we may drop empty components of n-lists in the productions as

follows: A → w(ε)1 . . . (ε)n is written as A → w, A → (ε)1 . . . (ε)n is written as

A→ ε, and A→ w(ε)1 . . . (ε)i−1(αi)i(ε)i+1 . . . (ε)n is written as A→ w(αi)i.

We define the derivation relation on n-lists as follows. Let i ∈ {1, . . . , n} and

let β = (ε)1 . . . (ε)i−1(Aβi)i(βi+1)i+1 . . . (βn)n be an n-list, where βj ∈ V ∗N for all

j ∈ {i, . . . , n}. Then,

xβ ⇒ xw(α1)1(α2)2 . . . (αi−1)i−1(αiβi)i(αi+1)i+1 . . . (αnβn)n

if A→ w(α1)1(α2)2 . . . (αn)n is a production and x ∈ V ∗T . Notice that only leftmost

derivations are defined. As usual we denote by ⇒∗ the reflexive and transitive

closure of ⇒. A terminal string x ∈ V ∗T is derivable from S if (S)1(ε)2 . . . (ε)n ⇒∗
x(ε)1 . . . (ε)n. This will be also denoted by S ⇒∗ x. The language generated by a

Dn-grammar G is L(G) = {x ∈ V ∗T | S ⇒∗ x}.

8
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For example the language {anbncn | n ≥ 0} is generated by the depth-2 grammar

G2 = ({S,B,C}, {a, b, c}, {S → ε, S → a(SB)1(C)2, B → b, C → c}, S)

Definition 12. Let G = (VN , VT , P, S) be a Dn-grammar. Then, the underlying

context-free grammar is Gcf = (VN , VT , Pcf , S) with Pcf = {A→ wα1 . . . αn | A→
w(α1)1 . . . (αn)n ∈ P}.

For example, for G2 we have

G2
cf = ({S,B,C}, {a, b, c}, {S → ε, S → aSBC,B → b, C → c}, S)

Notice that the language generated by G2
cf is {an(bc)n | n ≥ 0}.

The following lemma from [9] is obtained by observing that the language gen-

erated by a Dn-grammar is empty iff the language generated by its underlying

context-free grammar Gcf is empty. Furthermore, it is well-known that, on Turing

machines, emptiness of context-free grammars can be decided in time linear in its

size.

Lemma 13. The emptiness problem of Dn-grammars is decidable in linear time.

3. Emptiness of OMPA is in 2ETIME

Here, we show that the emptiness problem of OMPA is in 2ETIME. First, we show

that n-OMPA correspond to Dn-grammars with a double exponential number of

non-terminal symbols by correcting the construction of [9]. Then, emptiness of Dn-

grammars is decidable using the underlying context-free grammar (Lemma 13).

Theorem 14. A language L is accepted by an n-OMPA iff it is generated by a

Dn-grammar.

The rest of the section is devoted to the proof of this theorem. The “if”-

direction is obvious, as a grammar is just an automaton with one state. For the

other direction, let L be a language accepted by empty stacks by an n-OMPA

M = (Q,n,Σ,Γ,→, q0, Z0, F ). We assume without loss of generality (Lemma 8),

that M is in normal form. We construct a Dn-grammar GM = (VN ,Σ, P, S) such

that L(GM ) = L⊥(M) = L.

Intuitively, we generalize the proof for the case of 2-OMPA [21]. In [9], an in-

correct proof was given for the case of n-OMPA. Please note that the authors of [9]

independently gave a generalizable proof for 3-OMPA, which is similar to ours [10].

The general proof idea is the same as for the corresponding proof for pushdown au-

tomata. To eliminate states, one has to guess the sequence of states through which

the automaton goes by adding pairs of state symbols to the non-terminal symbols

of the corresponding grammar. We do this for the first stack. However, when the

first stack gets empty, the other stacks may be not empty and one has to know the

state in which the automaton is in this situation. For this, we have to guess for all

9
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the other non-empty stacks and each of their stack symbols the state in which the

automaton will be when reading these symbols.c

To do this for the n-th stack, a pair of state symbols is enough. For the (n−1)-th

stack, in addition to guessing the state, we also have to know the current state

on top of the n-th stack to be able to push correctly symbols onto the n-th stack.

Therefore, a pair of pairs of states (4 in total) is needed. For the (n−2)-th stack,

we need to remember the current state and the states on top of the (n−1)-th stack

and on top of the n-th stack (in total 8 states) and so on. Therefore, there will be

2n state symbols to be guessed in the first stack. Furthermore we have special state

symbols (denoted qei ) to indicate that the i-th stack is empty (contains ⊥). In Fig.

1 we give an intuitive example illustrating the construction. In the following we will

use the term stack for the stacks in the OMPA and for the lists in the corresponding

grammar.

Now we define the grammar GM = (VN ,Σ, P, S) formally. To define VN , we first

provide symbols of level i denoted by Vi. For i with 2 ≤ i ≤ n, let qei be states

pairwise different and different from any state of Q (these symbols indicate that the

corresponding stack is empty). States of level i are denoted by Qi and defined as :

Qn = Q∪{qen} and for all i such that 2 ≤ i < n, Qi = (Q×Qi+1×· · ·×Qn)∪{qei },
and Q1 = Q×Q2× · · ·×Qn. We denote by ~qi states of Qi. Then, Vi = Qi×Γ×Qi
and VN = {S} ∪

⋃n
i=1 Vi. Notice that a state in Qi different from qei has up to

2n−i components. Therefore |VN | ≤ (|Q|+1)2
n+1 |Γ|. The set P contains exactly the

following productions partitioned into five types (a ∈ Σ ∪ {ε}):

T1 S → ([(q0, q
e
2, . . . , q

e
n), Z0, (q

1, ~q12, . . . , ~q
1
n)])1

if there is k with 2 ≤ k ≤ n+ 1 such that

– for all i with 2 ≤ i < k we have ~q1i = qei
– if k ≤ n, then ~q1k = (q1, ~q1k+1,. . ., ~q

1
n)

T2 [(q1, ~q12, . . . , ~q
1
n), A, ~q21]→ a([(q4, ~q12, . . . , ~q

1
n), B, ~q31][~q31, C, ~q

2
1])1

if (q1, A, ε, . . . , ε)
a→ (q4, BC, ε, . . . , ε)

T3 [(q1, ~q12,. . ., ~q
1
j−1, ~q

1
j , ~q

1
j+1,. . ., ~q

1
n), A, (q2, ~q12, . . . , ~q

1
j−1, ~q

2
j , ~q

1
j+1, . . . , ~q

1
n)]

→ a([~q2j , B, ~q
1
j ])j if ~q2j 6= qej and (q1, A, ε, . . . , ε)

a→ (q2, ε, . . . , ε, B, ε, . . . , ε)

and B is pushed on stack j for 2 ≤ j ≤ n.

T4 [(q1, ~q1j+1, . . . , ~q
1
n), A, ~q1j ]

→ a([(q4, qe2, . . . , q
e
j−1, ~q

1
j , ~q

1
j+1, . . . , ~q

1
n), B, (q2, ~q22, . . . , ~q

2
n)])1

if (q1,⊥, . . . ,⊥, A, ε, . . . , ε) a→ (q4, B⊥,⊥, . . . ,⊥, ε, ε, . . . , ε), A is popped

from stack j with 2 ≤ j ≤ n and there is k with 2 ≤ k ≤ n+ 1 such that

– for all i with 2 ≤ i < min(k, j) we have ~q2i = qei
– for all i with min(k, j) ≤ i < k we have ~q1i = ~q2i = qei
– if k ≤ n, then ~q2k = (q2, ~q2k+1,. . ., ~q

2
n)

cThe proof in [9] incorrectly assumes that this state is the same for each stack when the first stack
gets empty.

10
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

(q, (q5, (q2, q3), q7), q
e
3 , q3)

A(1)

(q1, (q5, (q2, q3), q7), (q3, q4), q3)
(q1, (q5, (q2, q3), q7), (q3, q4), q3)

B(1)

(q3, (q2, (q3, q4), q8), (q3, q4), q3)
(q3, (q2, (q3, q4), q8), (q3, q4), q3)

C(1)

(q2, (q2, (q3, q4), q8), (q3, q4), q8)


 (q5, (q2, q3), q7)

A(2)

qe2

 [ ]
 q3
A(4)

qe4




(q1, (q5, (q2, q3), q7), (q3, q4), q3)

B(1)

(q3, (q2, (q3, q4), q8), (q3, q4), q3)
(q3, (q2, (q3, q4), q8), (q3, q4), q3)

C(1)

(q2, (q2, (q3, q4), q8), (q3, q4), q8)


 (q5, (q2, q3), q7)

A(2)

qe2


 (q3, q4)

A(3)

qe3


 q3
A(4)

qe4



 (q3, (q2, (q3, q4), q8), (q3, q4), q3)

C(1)

(q2, (q2, (q3, q4), q8), (q3, q4), q8)





(q2, (q3, q4), q8)

B(2)

(q5, (q2, q3), q7)
(q5, (q2, q3), q7)

A(2)

qe2


 (q3, q4)

A(3)

qe3


 q3
A(4)

qe4



[ ]



(q2, (q3, q4), q8)

B(2)

(q5, (q2, q3), q7)
(q5, (q2, q3), q7)

A(2)

qe2


 (q3, q4)

A(3)

qe3





q8
A(4)

q3
q3
A(4)

qe4


Fig. 1. A sketch of a partial derivation (from top to bottom) of a depth-4-grammar which cor-

responds to the partial run of a 4-OMPA M of the form 〈q, ε;A(1)B(1]C(1), A(2), ε, A(4)〉 `M
〈q1, ε;B(1)C(1), A(2), A(3), A(4)〉 `M 〈q3, ε;C(1), B(2)A(2), A(3), A(4)〉 `M 〈q2, ε; ε, B(2)A(2), A(3),
A(4)A(4)〉 `∗M 〈q3, ε; ε,A

(3), A(4)A(4)A(4)〉 `∗M 〈q4, ε; ε, ε, A
(4)A(4)A(4)〉 `∗M 〈q8, ε; ε, ε, A

(4)A(4)〉
`∗M 〈q3, ε; ε, ε, A

(4)〉 `∗M 〈q4, ε; ε, ε, ε〉, where in the first three steps three symbols are popped from
the first stack while three symbols are pushed onto the other stacks. In each configuration, if the

first stack is non-empty, then the state symbols on top of the other stacks can be found on top of

the first stack as well. In the last configuration, the top symbols of the other stacks can be found
on top of the second stack. Here, the meaning of (q2, (q3, q4), q8) is that the automaton is currently

in state q2 and that on top of stack 3 there is (q3, q4) and on top of stack 4 there is q8. (q3, q4)

means that once the automaton gets to this point (the corresponding symbol is on top of the stack
and the first two stacks are empty) it is in state q3 and on top of stack 4 there is q4 which in turn
means that q4 is the state of the automaton once it arrives at this point (the first three stacks

are empty). q8 is the state of the automaton once it reaches the corresponding point. As in the
classical simulation of pushdown-automata by context-free grammars, two adjacent state symbols

are always equal.

T5 [(q1, ~q12, . . . , ~q
1
n), A, (q2, ~q12, . . . , ~q

1
n)]→ a if (q1, A, ε, . . . , ε)

a→ (q2, ε, . . . , ε)

The intuition behind the productions is the following. T1 corresponds to the

initial productions of the grammar. Here k corresponds to the (guessed) first non-

empty stack reached after the first stack is emptied. As explained before and for-

malised in Lemma 16 it is important that the (guessed) top-most state of level k

11
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appearing on stack k correponds to the (guessed) states on top of the stacks > k.

T2 corresponds to the productions simulating the transitions of the n-OMPA M

changing an A to BC in the first stack. In this case, an intermediate state of level

1, namely ~q31, is guessed. T3 corresponds to the productions simulating transitions

of M pushing B into stack j while popping A from the first stack. This is only

possible, if the guessed states match. T4 corresponds to the productions simulating

transitions of M popping an A from the first non-empty stack and pushing a B on

top of the first stack. Here, k corresponds to the (guessed) first non empty stack

after B will be popped. T5 corresponds to the productions simulating transitions

of M where an A is being popped from the first stack. This is only possible if the

guessed states match.

Example 15. Here we give the corresponding grammar for the 2-OMPA of Table

1. Notice that the language accepted by empty stacks is the same as the one accepted

by final state. First we bring M into normal form:

M = ({q0, . . . , q3, qf}, n, {a, b, c}, {A,B,C, . . . , I, J, Z0, Z1},→, q0, Z0, {qf})

(q0, Z0, ε)
ε→ (qf , ε, ε) (q1, A, ε)

ε→ (q2, GA, ε) (q2, A, ε)
b→ (q2, ε, ε)

(q0, Z0, ε)
a→ (q1, CZ0, ε) (q2, G, ε)

ε→ (q2, ε, ε) (q2, Z0, ε)
ε→ (q3, ε, ε)

(q1, C, ε)
ε→ (q1, DA, ε) (q1, A, ε)

a→ (q1, HA, ε) (q3,⊥, Z1)
ε→ (q0, Z0⊥, ε)

(q1, D, ε)
ε→ (q1, EF, ε) (q1, H, ε)

ε→ (q1, IA, ε) (q3,⊥, B)
ε→ (q3, J⊥, ε)

(q1, E, ε)
ε→ (q1, ε, Z1) (q1, I, ε)

ε→ (q1, ε, B) (q3, J, ε)
c→ (q3, ε, ε)

(q1, F, ε)
ε→ (q1, ε, B)

The corresponding grammar GM is given in Table 2. We only give the produc-

tions containing productive symbols.

The following key lemma formalizes the intuition about derivations of the gram-

mar GM by giving invariants satisfied by them (illustrated in Fig. 1). It is the basic

ingredient of the proof of Theorem 14. Intuitively, condition 1 says that the first

element of the first stack contains the state symbols on top of the other stacks.

Condition 3 says that if the first stack is empty, then the top of the first non-empty

stack contains the same state symbols as the top of the other stacks. Condition 2

says that the last state symbols in the first stack are of the form allowing condition

3 to be true when the corresponding symbol is popped. Conditions 4 and 5 say

that the state symbols guessed form a chain through the stacks. In the following,

to avoid confusion we write A(j) to indicate that the non-terminal symbol appears

in the j-th list (stack).

Lemma 16. Let w(γ1)(γ2) . . . (γn) be an n-list different from (ε)1 . . . (ε)n appearing

in a derivation of the grammar GM .

(1) If γ1 = [(q1, ~q12, . . . , ~q
1
n), A(1), (q2, ~q22, . . . , ~q

2
n)]γ′1 with γ′1 ∈ V ∗1 , then for all i

with 2 ≤ i ≤ n, if γi is empty, then ~q1i = qei , else γi = [~q1i , B
(i), ~q3i ]γ

′
i with

12
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S → ([(q0, q
e
2), Z0, (qf , q

e
2)])1 + ([(q0, q

e
2), Z0, (q3, q3)])1

[(q0, q
e
2), Z0, (qf , q

e
2)] → ε

[(q0, q
e
2), Z0, (q3, q3)] → a([(q1, q

e
2), C, (q2, q3)][(q2, q3), Z0, (q3, q3)])1

[(q1, q
e
2), C, (q2, q3)] → ([(q1, q

e
2), D, (q1, q3)][(q1, q3), A, (q2, q3)])1

[(q1, q
e
2), D, (q1, q3)] → ([(q1, q

e
2), E, (q1, q3)][(q1, q3), F, (q1, q3)])1

[(q1, q
e
2), E, (q1, q3)] → ([q3, Z1, q

e
2])2

[(q1, q3), F, (q1, q3)] → ([q3, B, q3])2
[(q1, q3), A, (q2, q3)] → ([(q2, q3), G, (q2, q3)][(q2, q3), A, (q2, q3)])1
[(q2, q3), G, (q2, q3)] → ε

[(q1, q3), A, (q2, q3)] → a([(q1, q3), H, (q2, q3)][(q2, q3), A, (q2, q3)])1
[(q1, q3), H, (q2, q3)] → ([(q1, q3), I, (q1, q3)][(q1, q3), A, (q2, q3)])1
[(q1, q3), I, (q1, q3)] → ([q3, B, q3])2
[(q2, q3), A, (q2, q3)] → b

[(q2, q3), Z0, (q3, q3)] → ε

[q3, Z1, q
e
2] → ([(q0, q

e
2), Z0, (qf , q

e
2)])1 + ([(q0, q

e
2), Z0, (q3, q3)])1

[q3, B, q3] → ([(q3, q3), J, (q3, q3)])1
[(q3, q3), J, (q3, q3)] → c

Table 2. The grammar GM

γ′i ∈ V ∗i .

(2) If γ1 = γ′1[(q1, ~q12, . . . , ~q
1
n), A(1), (q3, ~q32, . . . , ~q

3
n)] with γ′1 ∈ V ∗1 , then there exists

k with 2 ≤ k ≤ n + 1 such that we have both for all i with 2 ≤ i < k, ~q3i = qei
and k ≤ n implies ~q3k = (q3, ~q3k+1, . . . , ~q

3
n).

(3) Suppose that γ1 = ε. Let i be the smallest k such that γk is not empty and let

γi = [(q1, ~q1i+1, . . . , ~q
1
n), A(i), ~q2i ]γ

′
i with γ′i ∈ V ∗i . Then, for all j > i, we have:

if γj is empty, then ~q1j = qej , else γj = [~q1j , A
(j), ~q3j ]γ

′
j with γ′j ∈ V ∗j .

(4) For all i with 2 ≤ i ≤ n, if γi is not empty then for some j ≥ 1,

γi = [~q1i , A
(i)
1 , ~q2i ][~q

2
i , A

(i)
2 , ~q3i ] . . . [~q

j−1
i , A

(i)
j−1, ~q

j
i ][~q

j
i , A

(i)
j , qei ] and for all l with

1 ≤ l ≤ j, ~qli 6= qei .

(5) If γ1 is not empty, then for some j ≥ 1,

γ1 = [~q11, A
(1)
1 , ~q21][~q21, A

(1)
2 , ~q31] . . . [~qj−11 , A

(1)
j−1, ~q

j
1][~qj1, A

(1)
j , ~qj+1

1 ].

Proof. We prove the five conditions simultaneously by induction.

Base case: Starting from S the type 1 rules produce n-lists of the form

([(q0, q
e
2, . . . , q

e
n), Z0, (q

1, ~q12, . . . , ~q
1
n)])1(ε)2 . . . (ε)n for a k with 2 ≤ k ≤ n+ 1 and

• for all i with 2 ≤ i < k we have ~q1i = qei
• if k ≤ n, then ~q1k = (q1, ~q1k+1, . . . , ~q

1
n)

The n-lists satisfy the 5 conditions (the third and forth condition are trivially

satisfied, the others are satisfied by construction).

Inductive step:

13
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Let γ = (γ1)1(γ2)2 . . . (γn)n be an n-list satisfying the five conditions. We

show that any n-list γ′ = (γ′1)1(γ′2)2 . . . (γ
′
n)n such that (γ1)1(γ2)2 . . . (γn)n ⇒

w(γ′1)1(γ′2)2 . . . (γ′n)n satisfies the five conditions. We use a case split on the type

of rule applied.

• A rule of type 2 is applied. It is of the form [(q1, ~q12, . . . , ~q
1
n), A(1), ~q21]→ a([(q4,

~q12, . . . , ~q
1
n), B(1), ~q31][~q31, C

(1), ~q21])1. Then, γ1 must be of the form [(q1, ~q12,

. . . , ~q1n), A(1), ~q21]γ′′1 . Then γ′1 = [(q4, ~q12, . . . , ~q
1
n), B(1), ~q31][~q31, C

(1), ~q21]γ′′1 .

For condition 1 we have to show that for all i with 2 ≤ i ≤ n, if γ′i is empty,

then ~q1i = qei , else γ′i = [~q1i , B
(i), ~q3i ]γ

′′
i with γ′′i ∈ V ∗i . If γ′i is empty, then γi is

empty as well and by induction hypothesis ~q1i = qei . If γ′i is not empty, then by

induction hypothesis we know that γi = [~q1i , B
(i), ~q3i ]γ

′′
i with γ′′i ∈ V ∗i . Since

rules of type 2 do not modify γi we have γ′i = [~q1i , B
(i), ~q3i ]γ

′′
i and therefore

condition 1 is satisfied for γ′.

Condition 2 concerns the rightmost element of γ′1. There are two cases: |γ1| =
1 or |γ1| > 1. In the latter case the rightmost element of γ′1 does not change and

condition 2 remains true. In the former case, we have γ1 = [(q1, ~q12, . . . , ~q
1
n),

A(1), ~q21] and γ′1 = [(q4, ~q12, . . . , ~q
1
n), B(1), ~q31] [~q31, C

(1), ~q21]. Then, clearly if γ1
satisfies condition 2, then γ′1 as well (due to ~q21 not changing).

Condition 3 is trivially satisfied and condition 4 is clearly true for γ′i, if it

is true for γi, since all γi with i such that 2 ≤ i ≤ n are not modified by rules

of type 2. Condition 5 is true, since if γ1 is of the required form, then so is γ′1
due to the construction of rules of type 2.

• A rule of type 3 is applied. It is of the form

[(q1, ~q12,. . ., ~q
1
j−1, ~q

1
j , ~q

1
j+1,. . ., ~q

1
n), A(1), (q2, ~q12, . . . , ~q

1
j−1, ~q

2
j , ~q

1
j+1, . . . , ~q

1
n)]

→ a([~q2j , B
(j), ~q1j ])j where ~q2j 6= qej . We consider two cases: |γ1| = 1 and |γ1| > 1.

Case |γ1| = 1. Then, conditions 1 and 2 are trivially satisfied, since γ′1 = ε.

We have γ1 = [(q1, ~q12, . . . , ~q
1
j−1, ~q

1
j , ~q

1
j+1, . . . , ~q

1
n), A(1), (q2, ~q12, . . . , ~q

1
j−1, ~q

2
j ,

~q1j+1, . . . , ~q
1
n)]. Applying the induction hypothesis (condition 1), we know that

(1) if γi with 2 ≤ i ≤ n is empty, then ~q1i = qei , else γi = [~q1i , B
(i), ~q3i ]γ

′′
i

with γ′′i ∈ V ∗i . Furthermore, there exists some k such that (q2, ~q12, . . . , ~q
1
j−1,

~q2j , ~q
1
j+1, . . . , ~q

1
n) satisfies the property of condition 2. Since ~q2j 6= qej , there are

two cases: k < j or k = j. If k < j we have (2) for all i with 2 ≤ i < k, ~q1i = qei
and ~q1k = (q2, ~q1k+1, . . . , ~q

1
j−1, ~q

2
j , ~q

1
j+1, . . . , ~q

1
n).

If k = j we have (3) for all i with 2 ≤ i < k, ~q1i = qei and ~q2k =

(q2, ~q1j+1, . . . , ~q
1
n)).

Using this, we show that condition 3 is satisfied on γ′. Let i be the smallest

k such that γ′k is not empty. Notice that since γ′j is not empty, there are two

cases: i = j or i < j.

In the case i = j, we have γ′j = [~q2j , B
(j), ~q1j ]γj and with (1) we have

~q1l = qel for all l with 2 ≤ l < j. Therefore case (3) must apply and ~q2j =

(q2, ~q1j+1, . . . , ~q
1
n). Therefore, if for l > j, γ′l is empty, then γl is empty and

14
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with (1) we have ~q1l = qel , else with (1) we have γ′l = γl = [~q1l , B
(l), ~q3l ]γ

′′
l

showing condition 3.

In the case i < j, we have γ′i = γi = [(q1i , ~q
1
i+1, . . . , ~q

1
j−1, ~q

2
j , ~q

1
j+1, . . . ,

~q1n), B(i), ~q3i ]) γ
′′
i with γ′′i ∈ V ∗i because of (1) and (2). Let l > i and l 6= j.

Then, if γ′l is empty, then γl is empty as well and ~q1l = qel with (1). If γ′l is

not empty, then with (1) we have γ′l = γl = [~q1l , B
(l), ~q3l ]γ

′′
l . For l = j we have

γ′l = γ′j = [~q2j , B
(j), ~q1j ]γj and condition 3 is satisfied.

Conditions 4 and 5 are clearly satisfied for γ′, if they are satisfied for γ.

Case |γ1| > 1. Then, γ1 is of the form [(q1, ~q12, . . . , ~q
1
j−1, ~q

1
j , ~q

1
j+1, . . . , ~q

1
n),

A(1), (q2, ~q12, . . . , ~q
1
j−1, ~q

2
j , ~q

1
j+1, . . . , ~q

1
n)][(q2, ~q12, . . . , ~q

1
j−1, ~q

2
j , ~q

1
j+1, . . . , ~q

1
n),

B(1), ~q31]γ′′1 with γ′′1 ∈ V ∗1 . Then γ′1 = [(q2, ~q12, . . . , ~q
1
j−1, ~q

2
j , ~q

1
j+1, . . . ,

~q1n), B(1), ~q31]γ′′1 . For all i with 2 ≤ i ≤ n we have that if γ′i is empty, then

γi is empty as well and by induction hypothesis condition 1 is satisfied. If γ′i
is not empty, then for i 6= j we have γ′i = γi and by induction hypothesis con-

dition 1 is true. For i = j we have γ′j = [~q2j , B
(j), ~q1j ]γj and so condition 1 is

true. Condition 2 is true for γ′1 since by induction hypothesis it is true for γ1.

Condition 3 is trivially true. Conditions 4 and 5 are clearly satisfied for γ′ if

they are satisfied for γ.

• A rule of type 4 is applied: [(q1, ~q1j+1, . . . , ~q
1
n), A(j), ~q1j ]

→ a([(q4, qe2, . . . , q
e
j−1, ~q

1
j , ~q

1
j+1, . . . , ~q

1
n), B(1), (q2, ~q22, . . . , ~q

2
n)])1

for some k with 2 ≤ k ≤ n+ 1 and

– for all i with 2 ≤ i < min(k, j) we have ~q2i = qei
– for all i with min(k, j) ≤ i < k we have ~q1i = ~q2i = qei
– if k > 0, then ~q2k = (q2, ~q2k+1, . . . , ~q

2
n)

We show that condition 1 is satisfied.

γ′1 = [(q4, ~q12, . . . , ~q
1
j−1, ~q

1
j , ~q

1
j+1, . . . , ~q

1
n), B(1), (q2, ~q22, . . . , ~q

2
n)] with for all i

with 2 ≤ i < j, ~q1i = qei .

Take an i with 2 ≤ i ≤ n such that γ′i is empty. Then, there are three

cases: i < j, i = j or i > j. If i < j, we have ~q1i = qei and condition 1 is

satisfied. If i = j, we have due to the induction hypothesis (condition 4) that

γi = γj = [(q1, ~q1j+1, . . . , ~q
1
n), A(j), qej ]. Therefore ~q1j = qei . In the case i > j we

have γ′i = γi and with induction hypothesis (condition 3) we have ~q1i = qei .

Take an i with 2 ≤ i ≤ n such that γ′i is not empty. Due to the definition of

a derivation j is the smallest k such that γk is not empty. Therefore, we have

i ≥ j. For i = j we have γj = [(q1, ~q1j+1, . . . , ~q
1
n), A(j), ~q1j ]γ

′
j . Due to condition 4

applied inductively on γj we have γ′j = [~q1j , B
(j), ~q5j ]γ

′′
i for some γ′′j ∈ S∗j . This

shows condition 1 for the case i = j. For the case i > j we have with induction

hypothesis (condition 3) that γi = [~q1i , A
(i), ~q4i ]γ

′′
i . Since γ′i = γi condition 1 is

satisfied. Clearly, condition 2 is satisfied by construction. Condition 3 is trivially

satisfied. Conditions 4 and 5 are clearly satisfied.

• A rule of type 5 is applied: This case is very similar to the case of rules of type
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3. We have to distinguish two cases: |γ1| = 1 and |γ1| > 1. Then, the reasoning

is the same as for rules of type 3.

This concludes the proof of Lemma 16.

Now, we continue the formal proof of Theorem 14 by showing that the grammar

GM constructed from the automaton M accepts the same language.

3.1. From a derivation in GM to a run of the automaton M

We prove that for any x ∈ Σ∗, S ⇒∗ x implies 〈q0, x;Z0⊥,⊥, . . .⊥〉 `∗M
〈q, ε;⊥, . . . ,⊥〉 for some q ∈ Q. Let us fix S ⇒∗ x (which is a shorthand for

(S)1(ε)2 . . . (ε)n ⇒∗ x(ε)1 . . . (ε)n).

Let γ = (γ1)1(γ2)2 . . . (γn)n be an n-list such that (S)1(ε)2 . . . (ε)n ⇒+ wγ ⇒+

x(ε)1 . . . (ε)n. Notice that at least one of γi is not empty. The configuration cwγ of

M corresponding to wγ is defined as follows : cwγ = 〈q, w′;α1, . . . , αn〉 where

• w′ ∈ Σ∗ such that x = ww′

• for all i ∈ {1, . . . , n} we have if γi = ε, then αi = ⊥ and

if γi = [~q1i , A
(i)
1 , ~q2i ][~q

2
i , A

(i)
2 , ~q3i ] . . . [~q

j−1
i , A

(i)
j−1, ~q

j
i ][~q

j
i , A

(i)
j , ~qj+1

i ] for some

~q1i , . . . , ~q
j+1
i ∈ Qi, then αi = A

(i)
1 A

(i)
2 . . . A

(i)
j ⊥.

• Let i be the smallest k such that γk 6= ε. If γi = [(q1i , ~q
1
i−1, . . . , ~q

1
1), A

(i)
1 , ~q2i ]γ

′
i

with γ′i ∈ V ∗i , then q = q1i .

Now it is enough to show that (4) if (S)1(ε)2 . . . (ε)n ⇒ γ, then cγ =

〈q0, x;Z0⊥,⊥, . . . ,⊥〉, (5) if wγ ⇒ x(ε)1 . . . (ε)n then there exists q ∈ Q with

cwγ `M 〈q, ε;⊥, . . . ,⊥〉 and (6) for each step (S)1(ε)2 . . . (ε)n ⇒+ wγ ⇒ waγ′ ⇒+ x

with a ∈ Σ ∪ {ε} in the derivation we have cwγ `M cwaγ′ .

(4) is true by construction of the rules of type 1. To prove (5) let us con-

sider γ such that wγ ⇒ x(ε)1 . . . (ε)n. This derivation is only possible using

a rule of type 5 being of the form [(q1, ~q12, . . . , ~q
1
n), A(1), (q2, ~q12, . . . , ~q

1
n)] → a

such that (q1, A(1), ε, . . . , ε)
a→ (q2, ε, . . . , ε). Therefore using Lemma 16 (condi-

tion 1) γ is of the form ([(q1, qe2, . . . , q
e
n), A(1), (q2, qe2, . . . , q

e
n)])1(ε)2 . . . (ε)n. Hence

cwγ = 〈q1, a;A(1)⊥,⊥, . . . ,⊥〉 and cwγ `M 〈q2, ε;⊥, . . . ,⊥〉 using the transition.

We prove (6) by considering the rules of type 2 to type 5 (rules of type 1 can

only be applied once in the beginning).

• Rules of type 2 have the form

[(q1, ~q12, . . . , ~q
1
n), A(1), ~q21] → a([(q4, ~q12, . . . , ~q

1
n), B(1), ~q31][~q31, C

(1), ~q21])1 and

there is a transition in M such that (q1, A(1), ε, . . . , ε)
a→ (q4, B(1)C(1), ε, . . . , ε).

Then, γ is of the form ([(q1, ~q12, . . . , ~q
1
n), A(1), ~q21]γ′1)1(γ2)2 . . . (γn)n and γ′

is of the form ([(q4, ~q12,. . ., ~q
1
n), B(1), ~q31][~q31, C

(1), ~q21]γ′1)1 (γ2)2 . . . (γn)n. Fur-

thermore cwγ is of the form 〈q1, w′;A(1)α1, α2, . . . , αn〉 and cwaγ′ is of the form

〈q4, w′′;B(1)C(1)α1, α2, . . . , αn〉. Then, clearly cwγ `M cwaγ′ using the corre-

sponding transition.
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• Rules of type 3 have the form:

[(q1, ~q12,. . ., ~q
1
j−1, ~q

1
j , ~q

1
j+1, . . . , ~q

1
n), A(1), (q2, ~q12, . . . , ~q

1
j−1, ~q

2
j , ~q

1
j+1, . . . , ~q

1
n)]

→ a([~q2j , B
(j), ~q1j ])j with ~q2j 6= qej and there is a transition (q1, A(1), ε, . . . , ε)

a→
(q2, ε, . . . , ε, B(j), ε, . . . , ε) in M . We distinguish two cases: |γ1| > 1 or

|γ1| = 1. In the former case (there are at least 2 non terminals in

the first list), because of Lemma 16 (condition 5), γ is of the form

([(q1, ~q12, . . . , ~q
1
n), A(1), ~q21] [~q21, B

(1), ~q31]γ′1)1(γ2)2 . . . (γn)n. Furthermore ~q21 =

(q2, ~q12, . . . , ~q
1
j−1, ~q

2
j , ~q

1
j+1, . . . , ~q

1
n) as a rule of type 3 is applied and there-

fore γ′ is of the form ([~q21, B
(1) , ~q31]γ′1)1 (γ2)2 . . . (γj−1)j−1([~q2j , B

(j), ~q1j ]γj)j
(γj+1)j+1 . . . (γn)n.

Furthermore cwγ is of the form 〈q1, w′;A(1)B(1)α1, α2, . . . , αn〉 and cwaγ′

is of the form 〈q4, w′′;B(1)α1, α2, . . . , αj−1, B
(j)αj , αj+1, . . . , αn〉. Then clearly

cwγ `M cwaγ′ using the corresponding transition.

In the case |γn| = 1, γ is of the form ([(q1, ~q12, . . . , ~q
1
n), A(1), ~q21])1 (γ2)2

. . . (γn)n with ~q21 = (q2, ~q12, . . . , ~q
1
j−1, ~q

2
j , ~q

1
j+1, . . . , ~q

1
n) and γ′ is of the form

(ε)1(γ2)2 . . . (γj−1)j−1([~q2j , B
(j), ~q1j ]γj)j(γj+1)j+1. . .(γn)n.

Let i be the smallest k such that γk is not ⊥.

– if i < j, then due to Lemma 16 (condition 1) applied on γ we have γi =

[~q1i , A
(i), ~q3i ]γ

′
i and for all l such that l < i, ~q1l = qe1. Therefore (7) ~q1i =

(q2, ~q1i+1, . . . , ~q
1
j−1, ~q

2
j , ~q

1
j+1, . . . , ~q

1
n) with Lemma 16 (condition 2).

– if i ≥ j, then according to Lemma 16 (conditions 1 and 2) for all l such

that l < i, ~q1l = qe1 and since ~q2j 6= qej we have (8) ~q2j = (q2, ~q1j+1, . . . , ~q
1
n).

Furthermore, cwγ is of the form 〈q1, w′;A(1)⊥, α2, . . . , αn〉 and it is easy to

see using (7) and (8) that cwaγ′ is of the form 〈q2, w′′;⊥, α2, . . . , αj−1, B
(j)αj ,

αj+1, . . . , αn〉. Then clearly cwγ `M cwaγ′ using the corresponding transition.

• Rules of type 4 have the form [(q1, ~q1j+1, . . . , ~q
1
n), A(j), ~q1j ]

→ a([(q4, qe2, . . . , q
e
j−1, ~q

1
j , ~q

1
j+1, . . . , ~q

1
n), B(1), (q2, ~q22, . . . , ~q

2
n)])1 and there is a

transition (q1,⊥, . . . ,⊥, A(j), ε, . . . , ε)
a→ (q4, B(1)⊥,⊥, . . . ,⊥, ε, ε, . . . , ε) with

2 ≤ j ≤ n in M .

So, γ is of the form (ε)1 . . . (ε)j−1([(q1, ~q1j+1, . . . , ~q
1
n), A(j), ~q1j ]γj)j . . . (γn)n

and γ′ is of the form ([(q4, qe2, . . . , q
e
j−1, ~q

1
j , ~q

1
j+1, . . . , ~q

1
n), B(1), (q2, ~q22, . . . ,

~q2n)])1 (ε)2 . . . (ε)j−1(γj)j . . . (γn)n.

Furthermore cwγ is of the form 〈q1, w′;⊥, . . . ,⊥, A(j)αj , αj+1, . . . , αn〉 and

cwaγ′ is of the form 〈q4, w′′;B(1)⊥,⊥, . . . ,⊥, αj , . . . , αn〉. Then clearly cwγ `M
cwaγ′ using the corresponding transition.

• Rules of type 5: The reasoning is the same as for rules of type 3.

3.2. From a run of the automaton M to a derivation in GM

Here we prove that for any x ∈ Σ∗, 〈q0, x;Z0⊥,⊥, . . .⊥〉 `∗M 〈q1, ε;⊥, . . . ,⊥〉 for

some q1 ∈ Q implies S ⇒∗ x.

Let us fix the sequence 〈q0, x;Z0⊥,⊥, . . .⊥〉 `∗M 〈q1, ε;⊥, . . . ,⊥〉. Let c0 =
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〈q0, x;Z0⊥, ⊥, . . . , ⊥〉. To each configuration c appearing in the configuration se-

quence we will give a corresponding n-list αc in the grammar. In the following we

will often use αi, α
′
i and α′′i for 1 ≤ i ≤ n for some string in V ∗i as well as γi, γ

′
i, γ
′′
i

and γ′′′i for 1 ≤ i ≤ n for some string in StackM.

Let c = 〈q, w; γ1, . . . , γn〉 be a configuration with c0 `∗M c `∗M 〈q, ε;⊥, . . . ,⊥〉.
We will define αc = u(αc1)1 . . . (α

c
n)n with x = uw inductively. If c = 〈q, ε;⊥, . . . ,⊥〉

then αc = x(ε)1 . . . (ε)n, else there are two cases: γ1 = ⊥ or not.

In the case γ1 = ⊥ let i be the smallest k such that γk is not ⊥. Let γi =

A
(i)
1 . . . A

(i)
j ⊥. Then, αci = [~q1i , A

(i)
1 , ~q2i ][~q

2
i , A

(i)
2 , ~q3i ] . . . [~q

j
i , A

(i)
j , qei ] such that ~q1i =

(q, ~q1,ii+1, . . . , ~q
1,i
n ) where for l with i < l ≤ n,

• if γl is ⊥, then ~q1,il = qel , else let c′ = 〈q′, x′;⊥, . . . ,⊥, γl, γ′l+1 . . . , γ
′
n〉 be the

configuration later in the run, just before the top symbol of γl is read. Induc-

tively we have αc
′

l = [~q1l , B
(l)
1 , ~q2l ]α

′
l. Then, ~q1,il = ~q1l .

The ~q2i , . . . , ~q
j
i are defined inductively by considering the configuration later in the

sequence where the corresponding symbols A
(i)
2 . . . A

(i)
j are read. The other αci are

then also defined inductively.

In the case γ1 6= ⊥, let γ1 = A
(1)
1 . . . A

(1)
j ⊥. Then, αc1 = [~q11, A

(1)
1 , ~q21] [~q21, A

(1)
2 ,

~q31] . . . [~qj1, A
(1)
j , ~qj+1

1 ], such that ~q11 = (q, ~q1,i2 , . . . , ~q1,in ) where for l with 2 ≤ l ≤ n,

• if γl is ⊥, then ~q1,il = qel , else let c′ = 〈q′, x′;⊥, . . . ,⊥, γl, γ′l+1 . . . , γ
′
n〉 be the

configuration later in the run, just before the top symbol of γl is read. Induc-

tively we have αc
′

l = [~q1l , B
(l)
1 , ~q2l ]α

′
l. Then, ~q1,il = ~q1l .

The ~q21, . . . , ~q
j
1 are defined inductively by considering the configuration later in

the sequence just before the corresponding symbols A
(i)
2 . . . A

(i)
j are read. Finally,

~qj+1
1 is defined as follows. Let c′ = 〈q′, x′; γ′1, . . . , γ′n〉 be the first configuration

later in the run where γ′1 is ⊥. Then ~qj+1
1 = (q′, ~q1,j+1

2 , . . . , ~q1,j+1
n ) where for l with

2 ≤ l ≤ n, if γl is ⊥, then ~q1,j+1
l = qel , else inductively we have αc

′

l = [~q1l , B
(l)
1 , ~q2l ]α

′
l

and ~q1,j+1
l = ~q1l . The other αci are then also defined inductively.

Now, it is sufficient to prove that (9) S ⇒ αc0 and (10) for each step c0 `∗M
c `M c′ `∗M 〈q, ε;⊥, . . . ,⊥〉 we have αc ⇒ αc′ .

(9) is true by construction of the rules of type 1. We prove (10) by consid-

ering all types of transitions of the automaton applied to go from c to c′. Let

c = 〈q, w; γ1, . . . , γn〉 and c′ = 〈q′, w′; γ′1, . . . , γ′n〉 with aw′ = w for some a ∈ Σ∪{ε}.

• A transition of the form (q,A(1), ε, . . . , ε)
a→ (q′, B(1)C(1), ε, . . . , ε) is applied.

Then, γ1 is of the form A(1)γ′′1 and γ′1 is of the form B(1)C(1)γ′′1 . Therefore, αc

is of the form u([(q, ~q12, . . . , ~q
1
n), A(1), ~q21]α1)1 . . . (αn)n and αc′ is of the form

ua([(q′, ~q12, . . . , ~q
1
n) , B(1), ~q31][~q31, C

(1), ~q21]α1)1 . . . (αn)n since the contents of

the other stacks is not changed by application of the rule. Then, by construction

of GM there is a rule of type 2 allowing αc ⇒ αc′ .
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• A transition of the form (q, A(1), ε, . . . , ε)
a→ (q′, ε, . . . , ε, B(j), ε, . . . , ε) is ap-

plied. Then c is of the form 〈q, w;A(1)γ′′1 , . . . , γj−1, γj , γj+1, . . . , γn〉 and c′ is of

the form 〈q′, w′; γ′′1 , . . . , γj−1, B(j)γj , γj+1, . . . , γn〉. There are two cases: γ′′1 is

⊥ or not.

Case γ′′1 = ⊥. Then, let i be the smallest k such that γk is not ⊥. There

are three cases: i < j, i = j or i > j.

In the case i < j we have that αc is of the form u([(q, qe2, . . . , q
e
i−1, ~q

1
i , . . . ,

~q1j , . . . , ~q
1
n), A(1), (q′, qe2, . . . , q

e
i−1, ~q

1
i , . . . , ~q

1
j−1, ~q

2
j , ~q

1
j+1, . . . , ~q

1
n)])1 (ε)2

. . . (ε)i−1([~q1i , C
(i), ~q3i ]αi)i (αi+1)i+1 . . . (αn)n. with ~q1i = (q′, ~q1i+1, . . . , ~q

1
j−1,

~q2j , ~q
1
j+1, . . . , ~q

1
n). Furthermore, αc′ must then be of the form ua(ε)1 . . . (ε)i−1

([~q1i , C
(i), ~q3i ]αi)i (αi+1)i+1 . . . (αj−1)j−1 (α′j)j(αj+1)j+1 . . . (αn)n. α′j consists

of one symbol of Vj followed by αj . By construction of GM there is a rule of

type 3 allowing αc ⇒ αc′ .

In the case i = j we have that αc is of the form u([(q, qe2, . . . , q
e
j−1, ~q

1
j ,

. . . , ~q1n), A(1), (q′, qe2, . . . , q
e
j−1, ~q

2
j , ~q

1
j+1, . . . , ~q

1
n)])1 (ε)2 . . . (ε)j−1([~q1j , C

(i),

~q3j ]αj)j (αj+1)j+1 . . . (αn)n with ~q2j = (q′, ~q1j+1, . . . , ~q
1
n). Then, αc′ must be of

the form ua(ε)1 . . . (ε)j−1([~q2j , B
(j), ~q1j ][~q

1
j , C

(j), ~q3j ]αj)j (αj+1)j+1 . . . (αn)n

and by construction of GM there is a rule of type 3 allowing αc ⇒ αc′ .

In the case i > j we have that αc is of the form u([(q, qe2, . . . , q
e
i−1, ~q

1
i , . . . ,

~q11), A(1), (q′, qe2, . . . , q
e
j−1, ~q

2
j , q

e
j+1, . . . , q

e
i−1, ~q

1
i , . . . , ~q

1
n)])1 (ε)2 . . . (ε)j−1

(ε)j(ε)j−1 . . . (αi)i . . . (αn)n with ~q2j = (q′, qej+1, . . . , q
e
i−1, ~q

1
i , . . . , ~q

1
n). Further-

more, αc′ must then be of the form ua(ε)1 . . . (ε)j−1([~q2j , B
(i), qej ])i (ε)j+1 . . .

(ε)i−1 (αi)i . . . (αn)n and by construction of GM there is a rule of type 3

allowing αc ⇒ αc′ .

Case γ′′1 6= ⊥. Then, γ′′1 is of the form C(1)γ′′′1 . Let αc′ be of the form

ua([(q′, ~q12, . . . , ~q
1
j−1, ~q

2
j , ~q

1
j+1, . . . , ~q

1
n), C(1), ~q31] α′′1)1)(α2)2 . . . (αn)n. Since

the only stack which has changed by applying the rule is stack j, we have

that αc is of the form u([(q, ~q12, . . . , ~q
1
n), A(1), (q′, ~q12, . . . , ~q

1
j−1, ~q

2
j , ~q

1
j+1, . . . ,

~q1n)][(q′, ~q12, . . . , ~q
1
j−1, ~q

2
j , ~q

1
j+1, . . . , ~q

1
n), C(1), ~q31] α′′1)1) (α2)2 . . . (αj−1)j−1

(α′j)j (αj+1)j+1 . . . (αn)n.

Then, by construction of GM there is a rule of type 3 allowing αc ⇒ αc′ .

• A transition of the form (q,⊥, . . . ,⊥, A(j), ε, . . . , ε)
a→ (q′, B(1)⊥,⊥, . . . ,⊥, ε,

ε, . . . , ε) is applied. Then c is of the form 〈q, w;⊥, . . . ,⊥, A(j)γ′′j , γj+1, . . . , γn〉
and c′ is of the form 〈q′, w′;B(1), ⊥, . . . , ⊥, γ′′j , γj+1, . . . , γn〉. Then, αc is of

the form u(ε)1 . . . (ε)j−1 ([(q, ~q1j+1, . . . , ~q
1
n), A(j), ~q1j ]α

′′
j )j (αj+1)j+1 . . .(αn)n

and αc′ is of the form ua([(q′, qe2,. . ., q
e
j−1, ~q

1
j , . . . , ~q

1
n), B(1), (q2, ~q22, . . . ,

~q2n)])1 . . . (ε)j−1 (α′′j )j (αj+1)j+1 . . . (αn)n. It can be easily verified using the

definition of αc′ that there exists k with 2 ≤ k ≤ n+ 1

– for all i with 2 ≤ i < min(k, j) we have ~q2i = qei
– for all i with min(k, j) ≤ i < k we have ~q1i = ~q2i = qei
– if k > 0, then ~q2k = (q2, ~q2k+1, . . . , ~q

2
n)
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Then, by construction of GM there is a rule of type 4 allowing αc ⇒ αc′ .

• A transition of the form (q,A(1), ε, . . . , ε)
a→ (q′, ε, . . . , ε) where a ∈ Σ ∪ {ε} is

applied. In this case, the reasoning is the same as for transitions of the form

(q, A(1), ε, . . . , ε)
a→ (q′, ε, . . . , ε, B(j), ε, . . . , ε)

This concludes the proof. By observing that the size of the grammar GM corre-

sponding to an OMPA M is double exponential in the number of stacks and using

Lemma 13 we obtain the following corollary.

Corollary 17. The emptiness problem of OMPA is in 2ETIME.

It is worth mentioning that the emptiness problem of OMPA is in PTIME when

we fix the number of stacks.

4. Emptiness of OMPA is 2ETIME-hard

In this section, we prove that the double exponential upper bound established in

Section 3 is tight.

In [28], it is shown that the complexity class 2ETIME is captured by infinite-

state automata whose transition rules are defined by a form of multi-stack rewriting

that is different from our ordered stack policy. To show that the emptiness problem

of OMPA is 2ETIME-hard, we adapt one of the constructions from [28].d

Theorem 18. The emptiness problem for OMPA is 2ETIME-hard under log-lin

reductions.e

Proof. It is well-known that the class of problems solvable by alternating Turing

machines in space bounded by 2dn for some d (call it AESPACE) equals 2ETIME

[12]. Thus, it is sufficient to show that any problem in AESPACE can be reduced,

under log-lin reductions, to the emptiness problem for OMPA.

So let T be an alternating Turing machine working in space bounded by 2dn and

let w be an input for T of length n. We construct an OMPA M with 2dn+ 4 stacks

such that the language of M is non-empty iff w is accepted by T . The simulation

of T proceeds in two phases: (1) M guesses a possible accepting run of T on w; (2)

M verifies if the guess is indeed a run.

Without loss of generality, we assume that a transition of T is of the form

(q, a) → op1 ∧ op2 (there may be several transitions sharing the same left-hand

side). The meaning of the transition is as follows: If the current state is q and

the current symbol is a, then T may branch, simultaneously, into the configurations

obtained when applying operations op1 and op2 (which may overwrite a and change

the position of the head). This allows us to represent a run of T as a finite binary

dNote that this does not imply that OMPA capture the class 2ETIME.
eRecall that a problem A is called log-lin reducible to some problem B if A can be reduced to B

by a logspace bounded deterministic Turing machine producing an output tape of linear size [25].
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cε

c0

c00

c000 c001

c01

c1

c10 c11

Fig. 2. A run of an alternating Turing machine

tree, as shown in Fig. 2, whose nodes are labeled with configurations. The run is

accepting if all leaf configurations are accepting.

The main idea is to encode the (tree) run of a Turing machine as a string so

that it can be stored and be manipulated on stacks. Following [28], we write the

labeled tree from Fig. 2 as the following string (let cr denote the reverse of c):(
cε
(
c0 ( c00 ( c000 c

r
000 )( c001 c

r
001 ) cr00 )( c01 c

r
01 ) cr0

)(
c1 ( c10 c

r
10 )( c11 c

r
11 ) cr1

)
crε

)
This string corresponds to a depth-first-left-to-right traversal of the tree. Note that,

in turn, the tree can be uniquely recovered from the well bracketing of the string.

The encoding allows us to access, locally, those pairs of configurations that are

related by an edge in the tree and thus need to agree with a transition. The trick is

to represent each configuration twice, once written from left to right, and once from

right to left. Then, every two configurations that are connected by an edge in the

tree run can be written side by side in the string encoding. For example, the edge

cε — c0 can be retrieved at the beginning of the string, while cε — c1 is situated at

its end (in reverse order).

A configuration c = a1 . . . (q, ai) . . . a2dn (with ai being the i-th symbol on the

tape of T ) is actually encoded as a string

(−, a1, a2, e)(a1, a2, a3, e) . . . (ai−3, ai−2, ai−1, e)
(ai−2, ai−1, (q, ai), e)(ai−1, (q, ai), ai+1, e)((q, ai), ai+1, ai+2, e)

(ai+1, ai+2, ai+3, e) . . . (a2dn−1, a2dn ,−, e)

where each letter is a quadruple. The second component of the i-th letter/quadruple

indicates the symbol ai at the i-th position of T in configuration c. Exactly one such

position is also equipped with the current state q. Moreover, the first and third

component of a letter maintain, for technical reasons, the symbol of the predecessor

and, respectively, successor position on the tape. It is crucial that the encoding of

configuration c also contains, at each position, the transition e chosen at c that

determines the two successor configurations (if any).

Now, the string encodings of possible run trees of T are generated by the

(sketched) context-free grammar

A → (C )

C → αCα | αAAα | αα
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Fig. 3. Guessing and verifying a run of an alternating Turing machine

where α ranges over the quadruples described above, i.e., the atomic building blocks

of an encoding of a configuration of T . Note that the grammar can be modified so

as to make sure that it produces only valid encodings of configurations, all leaves

are accepting configurations, and the initial configuration corresponds to the input

w. Using two stacks, we can generate a string encoding of a (possible) run of T

and write it onto the second stack, with cε at the top, while leaving the first stack

empty behind us (cf. Fig. 3(a)).

The OMPA M now checks if the word written onto stack 2 stems from a run

of T that corresponds to the transitions. To this aim, we first extract, from stack

2, any pair of configurations that need to be compared wrt. the transition relation

of T , namely configurations that are connected by an edge in the tree run. Since

configurations at inner tree nodes have to be compared with several other configu-

rations, they need to be duplicated, so that we have to use two further stacks. Let

us explain, by means of Fig. 3(b), how we transfer the contents of stack 2 onto new

stacks 3 and 4 (and, in doing so, reverse its order), so that all neighboring config-

urations to be checked are written side by side. The bottom of stack 3 will consist

of cr0 c
r
ε (bottom meant to be at the end of the word). Now, configuration c0, in the

tree run, is connected with both cε and c00. Therefore, we shall have two copies of

cr0. To do so, we take c0 from stack 2 and simultaneously write cr0 both onto stack 3

and stack 4. We continue like this and write every further configuration that we see

on stack 2, both onto stack 3 and stack 4, until we discover two consecutive letters
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of the form (. . . ,−, e)(−, . . . , e), which corresponds to reaching a leaf.f

At the end of this procedure, there are an even number of configurations on both

3 and 4. Two consecutive configurations (which, in Fig. 3(b), share a white or gray

region) have to be compared with each other and shall differ only locally, since T

modifies its tape locally. Moreover, it still remains to verify that cε and c0, c0 and

c01, etc. correspond to a transition of T . The encoding of one single configuration will

now allow us to compare two configurations letter by letter. Recall that the encoding

includes a component for a transition e, which has been selected to be executed next

and which has been guessed in the above grammar. We would like to compare the k-

th letter of one with the k-th letter of another configuration. To access corresponding

letters simultaneously, we divide the configurations on stacks 3 and 4 into two,

using two further stacks, 5 and 6. We continue this until corresponding letters are

arranged one below the other. This procedure, which requires 2dn additional stacks,

is illustrated in Fig. 3(c) where each of the αi, α
′
i, βi, β

′
i stands for a quadruple plus

some information on how it has to be compared with its neighbor. This is discussed

below.

Note that, in some cases, we encounter pairs of the form (c, c′) whereas, in

some other cases, we face pairs of the form (cr, (c′)r). Whether we deal with the

reverse of a configuration or not can be recognized on the basis of its border symbols

(i.e., (−, a1, a2, e) or (a2dn−1, a2dn ,−, e)). Consider, for example, stacks 3 and 4 in

Fig. 3(b). We want to compare cε and c1 (written on stack 4) where cε is of the form

(−, a1, a2, e) . . ., i.e., it is read from left to right. Suppose the chosen transition e is

such that cε branches into c and c′. Then, locally comparing cε and c1, we can check

whether c′ = c1. If, at the bottom of stack 3, we compare crε = (a2dn−1, a2dn ,−, e) . . .
with cr0, then we need to check whether c = c0. In other words, the order in which

a configuration is read indicates if we follow the right or left successor in the run

tree. This information has to be added to the quadruples.

From Corollary 17 and Theorem 18, we deduce our main result:

Theorem 19. The emptiness problem of OMPA is 2ETIME-complete under log-lin

reductions.g

5. Comparison to bounded-phase multi-stack pushdown automata

In this section, we consider bounded-phase multi-stack (visibly) pushdown automata

(BMPA/BVMPA). We refer to Definitions 3–5. We will show that, given a BVMPA

B, it is possible to construct an OMPA O such that B and O accept the same

fLeaf configurations need only be written once. The OMPA will simply guess when we reach such

a configuration and not write, for example, cr000 onto stack 4.
gThe emptiness problem of OMPA is 2EXPTIME-complete, too. Hereby, 2EXPTIME denotes the

class of all decision problems solvable by a deterministic Turing machine in time exp(exp(nd)) for
some constant d (exp(x) denoting 2x). Note that 2EXPTIME is a robust complexity class. On the

other hand, 2ETIME is not robust, as it is not closed under logspace reductions.
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language (i.e., L(O) = L(B)). In addition, we prove that OMPA are strictly more

expressive than BVMPA.

Theorem 20. OMPA are strictly more expressive than BVMPA.

Proof. In the following, we show that the class of languages recognized by BVMPA

is included in the class of the languages recognized by OMPA. Once this result is

proved, it easy to show the strict inclusion since the class of languages recognized

by OMPA is closed under Kleene-star (Lemma 9), whereas the class of languages

recognized by BVMPA is not (Lemma 10).

Let us fix a n-BVMPA B = (M, k) where k ≥ 1 and M = (Q,n,Σ, γ,→
, q0, Z0, F ) is a VMPA and type : Σ → ({push,pop} × [n]) ∪ {int} is a mapping

satisfying conditions of the Definition 3. The schema of the proof is as follows:

First, we show that the language L(B) can be written as a finite union of languages

which are all recognizable by 2k-OMPA. Then, we use the property that the class

of languages recognized by 2k-OMPA is closed under union (Lemma 9) to build a

2k-OMPA accepting exactly the language L(B).

Definition 21. For every sequence i1, . . . , ik ∈ [n], let Li1,...,ik(B) = {w ∈
Σ∗| 〈q0, w;Z0⊥,⊥, . . . ,⊥〉 `(i1)B · `(i2)B · · · `(ik)B c for some final configuration c}.

Then, we have that L(B) is the union of all these languages Li1,...,ik(B).

Lemma 22. L(B) =
⋃
i1,...,ik∈[n] Li1,...,ik(B).

Proof. An immediate consequence of the definition of the language L(B) and Def-

inition 21.

Next, we prove that each language Li1,...,ik(B), where i1, . . . , ik ∈ [n], is recog-

nized by a 2k-OMPA.

Proposition 23. For every sequence i1, . . . , ik ∈ [n], it is possible to construct a

2k-OMPA Oi1,...,ik such that L(Oi1,...,ik) = Li1,...,ik(B).

Proof. In the following, we show that it is possible to construct an 2k-OMPA

Oi1,...,ik over Σ such that L(Oi1,...,ik) = Li1,...,ik(B). The constructed 2k-OMPA

Oi1,...,ik will only use its first (2k−1) during the simulation and its 2k-th stack will

never be manipulated. In fact, we use 2k stacks instead of (2k − 1) stacks in the

only aim to simplify the notation and avoiding to deal with the (2k − 1)-th stack

as a special case.

First, we observe that any computation accepting a word w ∈ Li1,...,ik(B) can

be decomposed into k phases, where in each phase (say j), M can only pop from

the stack ij (but it can push onto all stacks).

Let j ∈ [k] be the current phase of M. For every l ∈ [k], we define next≥j(l) to

be min
(
{m | j ≤ m ≤ k ∧ im = l} ∪ {k + 1}

)
(i.e., the closest phase to j in [j..k]
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such thatM is allowed to pop from the l-th stack. Note that next≥j(ij) = j and if

a such phase does not exist, then next≥j(l) = k + 1.

We give hereafter the details of the construction of the 2k-OMPA Oi1,...,ik over

Σ such that L(Oi1,...,ik) = Li1,...,ik(B). Oi1,...,ik is built up from M such that the

following invariant is preserved during the simulation of M when its current phase

is j: the content of the l-th stack of M is stored in the (2 · next≥j(l)− 1)-th stack

of Oi1,...,ik if next≥j(l) 6= k + 1 (while for every r ∈ [2j − 2], the r-th stack of

Oi1,...,ik is empty). Then, an internal move (labeled by a symbol a ∈ Σ such that

type(a) = int) of M is simulated by an internal move (labeled by a) of Oi1,...,ik ; a

pop rule (labeled by a symbol a ∈ Σ such that type(a) = (pop, ij)) of M from the

ij-th stack corresponds to a pop rule (labeled by a) of Oi1,...,ik from the (2j− 1)-th

stack; and a push rule (labeled by a symbol a ∈ Σ such that type(a) = (push, l))

onto the l-th stack ofM is simulated by a push rule (labeled by a) of Oi1,...,ik onto

the (2next≥j(l)− 1)-th stack if next≥j(l) 6= (k + 1), and an internal move (labeled

by a) of Oi1,...,ik otherwise .

On switching phase from j to (j + 1), Oi1,...,ik moves the content of the (2j −
1)-th stack onto the (2next≥j+1(ij) − 1)-th stack using the (2j)-th stack as an

intermediary one if next≥j+1(ij) 6= k+1, and empties the (2j−1)-th stack otherwise.

Observe that all the above described behaviours maintain the stated invariant since

next≥(j+1)(l) = next≥j(l) for all l 6= ij .

Formally, the 2k-OMPA Oi1,...,ik = (Q′, 2k,Σ,Γ′,→′, q′0, Z ′0, F ′) is defined as:

• Q′ =
((
Q ∪

(
Q× {↓}

))
× [2k]

)
∪ {q′0} is a finite set of states with q′0 /∈ Q,

• Γ′ = Γ ∪ {Z ′0} is a finite stack alphabet with Z ′0 /∈ Γ,

• F ′ = F × {2k − 1} is the set of final states,

• The transition relation →′ is given as the union of the following three relations

→init (for the initialisation phase), →(j)
sim (for the simulation of a phase), and

→(`)
sw (for the simulation of a phase switch), with j ∈ [k] and ` ∈ [k − 1]. These

three relations are defined as the smallest relations satisfying the following

conditions:

– Initialisation phase: (q′0, Z
′
0, ε, . . . , ε)

ε→ ((q0, 1), α1, . . . , α2k) ∈→init

where α2·next≥1(1)−1 = Z0 if and only if next≥1(1) 6= k + 1 and αl = ε

for all l ∈ ([2k] \ {2 · next≥1(1) − 1}). This corresponds to a move from

the initial configuration of Oi1,...,ik to a configuration encoding the initial

configuration of M w.r.t. the invariant (stated above).

– Simulation of a phase of M: For every l ∈ [n], for every j ∈ [k], and for

every transition rule (q, A1, . . . , An)
a→ (q′, α1, . . . , αn) ∈→ , we have:

∗ Simulation of an internal move: If type(a) = int (i.e., Ai = αi = ε for

all i ∈ [n]), then ((q, 2j − 1), ε, . . . , ε)
a→ ((q′, 2j − 1), ε, . . . , ε) ∈→(j)

sim.

∗ Simulation of a push move: If type(a) = (push, l) (i.e., A1 = . . . =

An = ε, αl ∈ Γ, and αi = ε for all i ∈ [n] \ {l}), then ((q, 2j −
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1), ε, . . . , ε)
a→ ((q′, 2j − 1), α′1, . . . , α

′
2k) ∈→(j)

sim where: (1) α′r = ε for

all r ∈
(
[2k] \ (2 · next≥j(l) − 1)

)
, and (2) α′(2·next≥j(l)−1) = αl if

next≥j(l) 6= k + 1.

∗ Simulation of a pop move: If type(a) = (pop, l) (i.e., Al ∈ Γ ∪ {⊥},
αl ∈ {⊥} ∪ {ε}, and Ai = αi = ε for all i ∈ [n] \ {l}) and next≥j(l) =

j, then ((q, 2j − 1), A′1, . . . , A
′
2k)

a→ ((q′, 2j − 1), α′1, . . . , α
′
2k) ∈→(j)

sim

where: (1) A′r = α′r = ⊥ for all r ≤ [2j − 2], (2) A′2j−1 = Al and

α′2j−1 = αl, (3) A′s = α′s = ε for all s ∈ [2j..2k].

– Simulation of a phase switch of M: For every ` ∈ [k − 1] and for every

q ∈ Q, we have:

∗ A nondeterministic choice of phase switch: The transition rule

((q, 2`− 1), ε, . . . , ε)
ε→ ((q, ↓, 2`− 1), ε, . . . , ε) is in →(`)

sw .

∗ Moving the content of the (2`− 1)-th stack into the 2`-stack (in a

reversed order): For every stack symbol A ∈ Γ, the transition rule

((q, ↓, 2` − 1), A1, . . . , A2k)
ε→ ((q, ↓, 2` − 1), α1, . . . , α2k) is in →(`)

sw

where: (1) Ar = αr = ⊥ for all r ∈ [2`− 2], (2) A2`−1 = α2` = A and

A2` = α2`−1 = ε, and (3) As = αs = ε for all s ∈ [2`+ 1..2k].

∗ Checking the emptiness of the (2`− 1)-th stack: The transition rule

((q, ↓, 2`− 1), A1, . . . , A2k)
ε→ ((q, ↓, 2`), α1, . . . , α2k) is in →(`)

sw where:

(1) Ar = αr = ⊥ for all r ∈ [2` − 1], and (2) As = αs = ε for all

s ∈ [2`..2k].

∗ Moving the content of the (2`−1)-th stack into the
(
2 ·next`+1(i`)−

1
)
-stack (in reversed order): For every stack symbol A ∈ Γ, the

transition rule ((q, ↓, 2`), A1, . . . , A2k)
ε→ ((q, ↓, 2`), α1, . . . , α2k) is in

→(`)
sw where: (1) Ar = αr = ⊥ for all r ∈ [2` − 1], (2) A2` = A, (3)

As = ε for all s ∈ [2`+1..2k], and (4) αm = ε for every m ∈
(
[2`..2k]\

(2 · next≥`+1(i`)− 1)
)
, and (5) α2·next≥`+1(i`)−1 = A if next≥`+1(i`) 6=

k + 1.

∗ Checking the emptiness of the 2`-th stack: The transition rule ((q, ↓
, 2`), A1, . . . , A2k)

ε→ ((q, 2` + 1), α1, . . . , α2k) is in →(`)
sw where: (1)

Ar = αr⊥ for all r ∈ [2`], and (2) As = αs = ε for all s ∈ [2`+ 1..2k].

Before going into details of the proof, let us introduce some definitions. For every

j ∈ [k] and ` ∈ [k − 1], we define the relations `(j)sim and `(`)sw as follows:

`(j)sim =
( ⋃
t∈→(j)

sim

`(t)Oi1,...,ik

)∗
and `(`)sw =

( ⋃
t∈→(`)

sw

`(t)Oi1,...,ik

)∗
Definition 24. Let State be a mapping from the set of configurations of Oi1,...,ik
to its set of control states Q′ such that State(〈q′, w; γ1, . . . , γ2k〉) = q′.

Then, the relation between the set of configuration of M and Oi1,...,ik is given

by the following definition:
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Definition 25. Let µ : (ConfM × [k]) → ConfOi1,...,ik
be a mapping defined as

follows: µ(〈q, w; γ1, . . . , γn〉, j) = 〈(q, 2j − 1), w; γ′1, . . . , γ
′
2k〉 where for all i ∈ [2k],

γ′i = γl if i = 2 · next≥j(l)− 1 for some l ∈ [n], and γ′i = ⊥ otherwise.

Proposition 23 is an immediate consequence of Lemma 26 and Lemma 27 (since

c is final configuration of M iff µ(c, k) is a final configuration of Oi1,...,ik):

Lemma 26. For every word w ∈ Σ∗ and every configuration c of M, if

〈q0, w;Z0⊥,⊥, . . . ,⊥〉 `(i1)B · · · `(ik)B c, then

〈q′0, w;Z ′0⊥,⊥, . . . ,⊥〉 (`Oi1,...,ik
)∗ µ(c, k) .

Lemma 27. For every j ∈ [k], every w ∈ Σ∗, and every configuration c′ of Oi1,...,ik
such that State(c′) ∈ Q × {2j − 1}, if 〈q′0, w;Z ′0⊥,⊥, . . . ,⊥〉 (`Oi1,...,ik

)∗ c′, then

there is a configuration c of M such that 〈q0, w;Z0⊥,⊥, . . . ,⊥〉 `(i1)B · · · `(ij)B c and

c′ = µ(c, j).

5.1. Proof of Lemma 26

First, we need to prove the following lemma:

Lemma 28. For every configuration c1 and c2 of M and every j ∈ [k], if c1 `
(ij)
B

c2 then µ(c1, j) `(j)sim µ(c2, j). Moreover, for every configuration c′ of M and for

` ∈ [k − 1], we have µ(c′, `) `(`)sw µ(c′, `+ 1).

Proof. To show that for every two configurations c1 and c2 ofM and every j ∈ [k],

we have that if c1 `
(ij)
B c2 then µ(c1, j) `(j)sim µ(c2, j), it is sufficient to show that

for every t ∈ Ph(ij) and for every two configurations c1 and c2 of M, we have that

if c1 `(t)M c2, then there is a transition rule t′ ∈→(j)
sim such that µ(c1, j) `(t

′)
Oi1,...,ik

µ(c2, j). This can be easily proved using a case split on the type of rule t applied.

The fact that for every configuration c′ of M and every ` ∈ [k − 1], we have

that µ(c′, `) `(`)sw µ(c′, `+ 1) is due to that, during the simulation of a phase switch,

Oi1,...,ik first moves, in reverse order, the content of the 2`− 1 into the 2`-th stack

(so, the content of the 2`-th stack is the reverse of the content of the 2` − 1-

stack). Then, it moves, in reverse order, the content of the 2`-th stack into the(
2 · next≥`+1(i`) − 1

)
-stack if it exists (i.e., next≥`+1(i`) 6= k + 1). Moreover, we

have that next≥`(r) = next≥`+1(r) for all r 6= i` by definition. Thus, we get that

the reachable configuration from µ(c′, `) after the simulation of a phase switch is

exactly µ(c′, `+ 1).

Now, let c0 = 〈q0, w;Z0⊥,⊥, . . . ,⊥〉 be the initial configuration of B and

c0 `(i1)B · · · `(ik)B c be a computation of B. Then there are c1, . . . , ck−1 configura-

tions of M such that: c0 `(i1)B c1 `(i2)B c2 · · · ck−1 `(ik)B c. We use Lemma 28 to con-

struct the following computation: (1) 〈q′0, w;Z ′0⊥,⊥, . . . ,⊥〉 `
(t0)
Oi1,...,ik

µ(c0, 1) where
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t0 ∈→init, (2) For every j ∈ [k−1], we have µ(cj−1, j) `(j)sim µ(cj , j) `(j)sw µ(cj , j + 1),

and (3) µ(ck−1, k) `(k)sim µ(c, k). Hence, 〈q′0, w;Z ′0⊥,⊥, . . . ,⊥〉 (`Oi1,...,ik
)∗ µ(c, k).

5.2. Proof of Lemma 27

The proof of Lemma 27 is done by induction on j and based on the use of Lemma

29 and Lemma 30 which can be proved easily using the formal definition of Oi1,...,ik .

Lemma 29. For every j ∈ [k], every configuration c1 of B, every configurations c′1
and c′2 of Oi1,...,ik such that: µ(c1, j) = c′1 and State(c′1), State(c′2) ∈ Q× {2j − 1},
we have that if c′1 `

(j)
sim c′2, then there is a configuration c2 of B such that c1 `

(ij)
B c2.

Lemma 30. For every ` ∈ [k − 1], every configuration c1 of B, all configurations

c′1 and c′2 of Oi1,...,ik such that: µ(c1, `) = c′1, State(c′1) ∈ Q × {2` − 1}, and

State(c′2) ∈ Q× {2`+ 1}, we have that if c′1 `
(`)
sw c′2, then µ(c1, `+ 1) = c′2.

The base case where j = 1 is proved by Lemma 29 and by the fact that

the configuration c1 defined as follows: 〈q′0, w;Z ′0⊥, . . . ,⊥〉 `
(t0)
Oi1,...,ik

c1 with

t0 ∈→init satisfies the condition that µ(〈q0, w;Z0⊥, . . . ,⊥〉, 1) = c1. For the in-

duction step, suppose that Lemma 27 holds for j. Now, suppose that there is

a computation 〈q′0, w;Z ′0⊥,⊥, . . . ,⊥〉 (`Oi1,...,ik
)∗ c′ of Oi1,...,ik where State(c′) ∈

Q × {2j + 1}. Then, there exist two configurations c′2 and c′3 of Oi1,...,ik such

that State(c′2) ∈ Q × {2j − 1}, State(c′3) ∈ Q × {2j + 1}, and the com-

putation 〈q′0, w;Z ′0⊥,⊥, . . . ,⊥〉 (`Oi1,...,ik
)∗ c′ can be decomposed as follows: (1)

〈q′0, w;Z ′0⊥,⊥, . . . ,⊥〉 (`Oi1,...,ik
)∗ c′2, (2) c′2 `

(j)
sw c′3, and (3) c′3 `

(j+1)
sim c′. By induc-

tion hypothesis, there is a configuration c′′ of B such that 〈q0, w;Z0⊥,⊥, . . . ,⊥〉 `(i1)B
· · · `(ij)B c′′ and c′2 = µ(c′′, j). In addition, we can use Lemma 30, to show that

c′3 = µ(c
′′, j+ 1). Now, we can apply Lemma 29 to prove the existence of a configu-

ration c of B such that c′′ `(ij+1)
B c (hence, 〈q0, w;Z0⊥,⊥, . . . ,⊥〉 `(i1)B · · · `(ij+1)

B c)

and c = µ(c′, j + 1).

5.3. OMPA are strictly more expressive than BMPA

In the following, we extend the previous result to bounded-phase multi-pushdown

automata.

Theorem 31. OMPA are strictly more expressive than BMPA.

The idea behind proving the strict inclusion is the following: First, we trans-

form a n-BMPA B = (M, k) to a n-BVMPA B′ such that L(B) = f
(
L(B′)

)
for

some renaming function f . In fact, B′ extends the labelling of each transition of

B by the redundant information on its type (i.e., on which stack, this transition

is perfomered and if it is a push, pop, or internal action). Then, we apply The-

orem 20 and construct OMPA O′ such that L(O′) = L(B′). Finally, we use the

28



March 17, 2017 10:38 WSPC/INSTRUCTION FILE main

closure of OMPAs under renaming (Lemma 9) to construct an OMPA O such that

L(O) = f
(
L(O′)

)
= f

(
L(B′)

)
= L(B).

Formally, let B = (M, k) be a n-BMPA over Σ. Then, it is possible to construct

a B′ = (M′, k) over Σ′ = Σ′c ∪ Σ′r ∪ Σ′int where Σ′c =
(
Σ ∪ {ε}

)
× {c} × [n],

Σ′r =
(
Σ∪{ε}

)
×{r}× [n], and Σ′int =

(
Σ∪{ε}

)
×{int}, such that B′ extends the

transition labelling of B as follows: (1) every push transition of B on the i-th stack

labelled by a ∈ Σ ∪ {ε} is now labelled by (a, c, i) in B′, (2) every pop transition of

B from the i-th stack labelled by a ∈ Σ∪ {ε} is now labelled by (a, r, i), and (3) all

the remaining transitions of B labelled by a ∈ Σ ∪ {ε} are now labelled by (a, int).

Let f be a function that maps each symbol of the form (a, c, i), (a, r, i), and (a, int)

to a. Then, w ∈ L(B) iff there is some w′ ∈ L(B′) such that w = f(w′). It follows

that L(B) = f
(
L(B′)

)
. Consider now the OMPA O′ over Σ′ constructed from B′

such that L(O′) = L(B′), thanks to Theorem 20. Then, it is possible to construct

from O′ an OMPA O over Σ such that L(O) = f
(
L(O′)

)
(Lemma 9) which implies

that L(B) = L(O).

To prove the strict inclusion, it is easy to see that BMPA are not closed under

Kleene-star whereas OMPA are (Lemma 9).

6. Conclusion

We have shown that the emptiness problem for multi-pushdown automata (OMPA)

is 2ETIME-complete. The study of the emptiness problem is the first step of a

comprehensive study of verification problems for OMPA. For standard pushdown

automata, a lot of work has been done (see for example [8]) concerning various

model-checking problems. It will be interesting to see how these results carry over

to OMPA and at which cost. A basic ingredient of model-checking algorithms is

typically to characterize the set of successors or predecessors of sets of configura-

tions. For OMPA, this problem remains to be studied. Another class of extended

pushdown automata has been studied extensively: the class of higher-order push-

down automata (HPDA, see for example [15]). It is quite easy to see that HPDA of

order n can simulate OMPA with n stacks (which allows us to use all verification

results for HPDA also for OMPA). However, the converse is wrong, since emptiness

of pushdown automata of order n is (n−1)-EXPTIME-complete [15]. Therefore, it

is interesting to study dedicated algorithms for the verification of OMPA.

An extension towards ω-automata, allowing for infinite executions, would be

worthwhile. Adapting our techniques to that setting might lead to a generalization

of results by Seth [23], who provides a game-theoretic proof for decidability of

emptiness for Büchi BMPA.
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