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Abstract

We introduce an automata-theoretic method for the verification of distributed algorithms
running on ring networks. In a distributed algorithm, an arbitrary number of processes
cooperate to achieve a common goal (e.g., elect a leader). Processes have unique identifiers
(pids) from an infinite, totally ordered domain. An algorithm proceeds in synchronous
rounds, each round allowing a process to perform a bounded sequence of actions such as
send or receive a pid, store it in some register, and compare register contents wrt. the
associated total order. An algorithm is supposed to be correct independently of the number
of processes. To specify correctness properties, we introduce a logic that can reason about
processes and pids. Referring to leader election, it may say that, at the end of an execution,
each process stores the maximum pid in some dedicated register.

We show that the verification problem of distributed algorithms can be reduced to sat-
isfiability of a formula from propositional dynamic logic with loop and converse (LCPDL),
interpreted over grids over a finite alphabet. This translation is independent of any restric-
tion imposed on the algorithm. However, since the verification problem (and satisfiability
for LCPDL) is undecidable, we propose an underapproximation technique, which bounds
the number of rounds. This is an appealing approach, as the number of rounds needed by
a distributed algorithm to conclude is often exponentially smaller than the number of pro-
cesses. Using our reduction to LCPDL, we provide an automata-theoretic solution, reducing
model checking to emptiness for alternating two-way automata on words. Overall, we show
that round-bounded verification of distributed algorithms over rings is PSPACE-complete,
provided the number of rounds is given in unary.
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1. Introduction

Distributed algorithms are a classic discipline of computer science and continue to be
an active field of research [33, 9, 23]. A distributed algorithm employs several processes,
which perform one and the same program to achieve a common goal. It is required to
be correct independently of the number of processes. A prominent example is the class
of leader-election algorithms, whose task is to determine a unique leader process and to
announce it to all other processes. Those algorithms are often studied for ring architectures.
One practical motivation comes from local-area networks that are based on a token-ring
protocol. Moreover, rings generally allow one to nicely illustrate the main conceptual ideas
of an algorithm.

However, it is well-known that there is no (deterministic) distributed algorithm over
rings that elects a leader under the assumption of anonymous processes. Therefore, classical
algorithms, such as Franklin’s algorithm [25] or the Dolev-Klawe-Rodeh/Peterson algorithm
[15, 35], assume that every process is equipped with a unique process identifier (pid) from
an infinite, totally ordered domain. In this paper, we consider such distributed algorithms,
which work on ring architectures and can access unique pids as well as the associated total
order.

Distributed algorithms are difficult to analyze. Correctness proofs are often intricate
and use subtle inductive arguments. Therefore, it is worthwhile to consider automatic
verification methods such as model checking [14]. Besides a formal model of an algorithm,
this requires a generic specification language that is feasible from an algorithmic point of
view but expressive enough to formulate correctness properties. In this paper, we propose
a language that can reason about processes, states, and pids. In particular, it will allow us
to formalize when a leader-election algorithm is correct: At the end of an execution, every
process stores, in register r, the maximum pid among all processes. Our language is inspired
by Data-XPath, which can reason about trees over infinite alphabets [10, 11, 20].

However, formal verification of distributed algorithms cumulates various difficulties that
already arise, separately, in more standard verification: First, the number of processes is
unknown, which amounts to parameterized verification [18]; second, processes manipulate
data from an infinite domain [11, 20]. In each case, even simple verification questions are
undecidable, and so is in the combination of both.

In various other contexts, a successful approach to retrieving decidability has been a form
of bounded model checking. The idea is to consider correctness up to some parameter, which
restricts the set of runs of the algorithm in a non-trivial way. In multi-threaded recursive
programs, for example, one may restrict the number of control switches between different
threads [36]. Actually, this idea seems even more natural in the context of distributed
algorithms, which usually proceed in rounds. In each round, a process may emit some
messages (here: pids) to its neighbors, and then receive messages from its neighbors. Pids
can be stored in registers, and a process can check the relation between stored pids before
it moves to a new state and is ready for a new round. It turns out that the number of
rounds is often exponentially smaller than the number of processes (cf. the above-mentioned
leader-election algorithms). Thus, roughly speaking, a small number of rounds allows us to
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verify correctness of an algorithm for a large number of processes.
The key idea of our method is to interpret an execution of a distributed algorithm

symbolically as a grid-like structure over a finite alphabet. The finite alphabet is constituted
by the transitions that occur in the algorithm and possibly contain tests of pids wrt. equality
or the associated total order. To determine feasibility of a symbolic execution (i.e., is there
a ring that satisfies all the guards employed? ), we use propositional dynamic logic with loop
and converse (LCPDL) [26]. Basically, we translate a given distributed algorithm into a
formula that detects cyclic (i.e., contradictory) smaller-than tests. Its models are precisely
the feasible symbolic executions. A specification is translated into LCPDL as well so that
verification amounts to checking satisfiability of a single formula. Note that both translations
do not impose any restriction on the algorithm or the formula. In other words, verification
of distributed algorithms is reduced to satisfiability in a logic over a finite alphabet, which
is interesting on its own. Decidability is then obtained by bounding the number of rounds
so that satisfiability can be reduced to a non-emptiness problem for alternating two-way
automata over words. We then obtain a PSPACE procedure for round-bounded model
checking. Note that the bound can be adjusted gradually without changing the already
computed LCPDL formula.

Related Work. Our work is situated in the field of parameterized verification, which aims
at showing correctness of a system independently of the number of processes. Parameterized
verification has mainly focused on systems without data, i.e., over a finite message alphabet
(see [2] for a comprehensive bibliography). For example, [17, 16] consider communication
through token passing in ring-based architectures, which was later extended to more general
architectures in [7, 8]. The paper [37] also addresses some kind of parameterized-verification
problem in an automata-theoretic/logical framework, but the goal is to reason about robots
that explore an unknown and unbounded environment. A symbolic encoding of an infinite
number of configurations, though very different from ours, has been used in [3]. Another
branching-time temporal logic that, like LCPDL, can explicitly talk about cycles is presented
in [24].

Actually, some of the above-mentioned papers rely on a generic approach that reduces
model checking to verifying finite-state systems up to a certain number of processes, which
is referred to as a cut-off [17, 16, 7, 39, 8]. Note that, due to general undecidability, cut-
offs do not exist in our setting, though it would be interesting to find restrictions that
come with cut-offs while preserving the combination of a parameterized process topology
and unbounded data. Other parameterized systems can be modeled as Petri nets or well-
structured transition systems, which enjoy positive decidability results [1, 21]. In the context
of data words, well-structured transition systems are at the heart of satisfiability checking
for a variety of temporal logics [19].

As far as distributed algorithms are concerned, considerable effort has been devoted to
the verification of fault-tolerant algorithms, which have to cope with obstacles such as lost
or corrupted messages (e.g., [22, 13, 30]). After all, there have been only very few generic
approaches to model checking distributed algorithms. In [29], several possible reasons for
this are identified, among them the presence of unbounded data types and an unbounded
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number of processes, which we have to treat simultaneously in our framework.
The theory of words and trees over infinite alphabets (aka data words/trees) provides

an elegant formal framework for database-related notions such as XML documents [11], or
for the analysis of programs with data structures such as lists and arrays [5, 6]. Notably,
streaming transducers [5] also work over an infinite, totally ordered domain. The difference
to our work is that we model distributed algorithms and provide a logical specification
language. The latter borrows concepts from [10, 11, 20], whose logics are designed to reason
about XML documents. A fragment of MSO logic over ordered data trees was studied in [40].
The paper [12] also pursued a symbolic model-checking approach to systems involving data.
But the model was purely sequential and pids could only be compared for equality. The
ordering on the data domain actually has a subtle impact on the choice of the specification
language.

Outline. In Section, 2, we present our model of a distributed algorithm. Section 3 demon-
strates how valid computations of a given algorithm can be represented as a formula from
LCPDL over a finite alphabet. Essentially, we show that a symbolic representation of a
concrete run is enough to keep track of pids and to validate its feasability. Section 4 intro-
duces a specification language to express correctness criteria. We first present a logic that
allows us to talk about (dis)equality of process identifiers. We then extend that logic to also
talk about a linear order on pids. Finally, we explain how our logic can be translated to
LCPDL. In Section 5, we exploit the results from Sections 3 and 4 and show how to solve
the round-bounded model-checking problem in polynomial space. We conclude in Section 6.

This paper is a revised and extended version of [4].

2. Distributed Algorithms

Let N = {0, 1, 2, . . .} denote the set of natural numbers and Z = {. . . ,−1, 0, 1, . . . }
denote the set of integers. For n ∈ N, let (Zn,⊕, 0) be the cyclic group, where Zn = Z/nZ
and ⊕ is addition modulo n. The set of finite words over an alphabet A is denoted by A∗,
and the set of nonempty finite words by A+.

Syntax of Distributed Algorithms. We consider distributed algorithms that run on
arbitrary ring architectures. A ring architecture of size n is described by the cyclic group
(Zn,⊕, 0). Every process has a unique right neighbor (referred to by right) and a unique
left neighbor (referred to by left). The right (resp. left) neighbor of process i ∈ Zn is
process i ⊕ 1 (resp. i ⊕ n − 1). In a concrete ring, each process has a unique identifier
(pid). So a ring R is an injective map R : Zn → N that we will often describe as the tuple
R = (R(0), . . . , R(n − 1)). A distributed algorithm will not be able to distinguish between
cyclic permutations of rings, for example, between R = (4, 1, 5, 2) and R′ = (5, 2, 4, 1).

We denote by pids(R) = R(Zn) the set of pids of processes participating in the ring. We
also define the collection of processes that are located between two distinguished processes
i, j ∈ Zn (i.e., those processes that we see when we start from i and go to the right until we
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reach j). Formally, we let Between(i, j)
def
= {i + 1, . . . , j − 1} if i < j, and Between(i, j)

def
=

{i+ 1, . . . , n− 1, 0, . . . , j − 1} if j ≤ i.
One given distributed algorithm can be run on any ring. It is given by a single program

D, but each process will actually run a copy of D. It is convenient to think of D as a
(finite) automaton with registers. Processes proceed in synchronous rounds. In one round,
every process executes one transition of its program. In addition to the change of state,
it may optionally perform the following phases within a transition: (i) send a message,
possibly incuding pids, to its neighbors, (ii) receive a message from its neighbors and store
the included pids in registers, (iii) compare register contents with one another, (iv) update
its registers.

We will now give the formal syntax of distributed algorithms. To this end, we fix a
countably infinite supply N of names. A name may refer to a message type, a register, or a
proposition (i.e., a state property in the algorithm such as “leader”). Thus, N is partitioned
into N =M]R]P . We assume that there is a special register id ∈ R, which will never be
updated so that a process can, at any time, access its own pid in terms of id. In addition,
every message type a ∈ M comes with an arity k ∈ N, which determines the number of
pids that can be sent along with a. Messages with arity k are collected in M(k) so that
M =

⋃
k∈NM(k). We assume all those sets to be infinite.

Definition 1. A distributed algorithm D = (S, init,∆, µ) consists of a nonempty finite set
S of (local) states, an initial state init ∈ S, a nonempty finite set ∆ of transitions, and a
mapping µ : S → 2P assigning to each state s the finite set of propositions that hold in s.
A transition is of the form

〈s: send ; rec ; guard ; update ; goto s′〉

where s, s′ ∈ S and the components send , rec, guard , and update are built according to the
grammar given in Figure 1. There, k, k′ ∈ N, a ∈ M(k), a′ ∈ M(k′) and r, r′, r1, . . . , rk,
r′1, . . . , r

′
k′ range over R. In addition, we require that

(1) in a rec statement of the form left?a(r1, . . . , rk) ; right?a′(r′1, . . . , r
′
k′) (resp. left?a(r1, . . . , rk)

or right?a′(r′1, . . . , r
′
k′)), the registers r1, . . . , rk, r

′
1, . . . , r

′
k′ (resp. r1, . . . , rk or r′1, . . . , r

′
k′)

are pairwise distinct (in particular, the order of the two receive actions does not mat-
ter),

(2) in an update statement, every register occurs at most once as a left-hand side, and

(3) id occurs neither in a rec statement nor as a left-hand side of an update statement.

In the following, occurrences of “skip ;” are omitted; this will not affect the semantics. C

By Names(D) ⊆ N , we denote the (finite) set of messages, registers, and propositions
that occur in D, with one exception: we always assume id ∈ Names(D).

In an execution of an algorithm, registers will be instantiated with pids. We will refer to
a(p1, . . . , pk), with a ∈ M(k) and p1, . . . , pk ∈ N, as a message, while a is its message type.
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send ::= (skip | fwd-left | left!a(r1, . . . , rk)) ; (skip | fwd-right | right!a′(r′1, . . . , r
′
k′))

rec ::= (skip | left?a(r1, . . . , rk)) ; (skip | right?a′(r′1, . . . , r
′
k′))

guard ::= skip | r < r′ | r = r′ | guard ; guard

update ::= skip | r := r′ | update ; update

Figure 1: Transition labels

However, when convenient, we may also refer to a(r1, . . . , rk), with r1, . . . , rk registers, as a
message.

To give an example of a transition, consider

t = 〈s: left!a(r1, r2) ; right!b(r′) ; right?a(r′1, r
′
2) ; r1 < r′1 ; r := r′1 ; goto s′〉 .

A process can execute t if it is in state s. It then sends a along with the contents of registers
r1 and r2 to its left neighbor, as well as b and the contents of r′ to its right neighbor. If,
afterwards, it receives a with attached pids (p1, p2) from its right neighbor, it stores p1 and
p2 in r′1 and r′2, respectively. If p1 is strictly greater than what has been stored in r1, it
sets r to p1 and goes to state s′. Otherwise, the transition is not applicable. In the send
statement, we could also employ a forward command like fwd-left, which will forward a
message that is received from the right, to the left. Note that a message can be forwarded,
in one and the same synchronous round, across several processes provided they all execute
fwd-left. Forwards can be understood as a kind of acceleration. They will allow us to save
a certain number of rounds in favor of a more efficient verification algorithm. Note that each
forward-step corresponds to one step in an asynchronous system like in [15].

Note that a guard r ≤ r′ can be simulated in terms of guards r < r′ and r = r′, using
several transitions. We separate < and = for convenience. They are actually quite different
in nature, as we will see later in the proof of our main results.

In the semantics, we will suppose that all updates of a transition happen simultane-
ously, i.e., after executing r := r′ ; r′ := r, the values previously stored in r and r′ will
be swapped (and do not necessarily coincide). Moreover, the order of two sends and the
order of two receives within a transition do not matter, even though we assume sends
happen before receives. This allows us to associate with a transition the set of its instruc-
tions and guards as well as the local state of the process. To this end, from a transition
t = 〈s: left!a(r1, r2) ; right!b(r′) ; right?a(r′1, r

′
2) ; r1 < r′1 ; r := r′1 ; goto s′〉, we extract a set

of propositions which we denote by PropSetOf(t):

PropSetOf(t)
def
= {s , left!a(r1, r2) , right!b(r′) , right?a(r′1, r

′
2) , r1 < r′1 , r := r′1 , goto s′}

We call its elements propositions, because in our logic we will later reason about them just
like about propositions from P .
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states: active0, active1 t1 = 〈active0: right!a(r) ; left?a(r′) ; goto active1〉
passive, found t2 = 〈active1: right!a(r′) ; left?a(r′′) ; r′′ < r′ ; r < r′ ; r := r′ ; goto active0〉

initial state: active0 t3 = 〈active1: ; r′ < r ; goto passive〉
registers: id, r, r′, r′′ t4 = 〈active1: ; r′ < r′′ ; goto passive〉

t5 = 〈active1: ; r = r′ ; goto found〉
t6 = 〈passive: fwd-right ; left?a(r) ; goto passive〉

Figure 2: Dolev-Klawe-Rodeh/Peterson leader-election algorithm DLE

Before defining the semantics of a distributed algorithm formally, we will look at an
example. Note that, at the beginning of an execution of an algorithm, every register (from
the finite set of registers that the algorithm uses) contains the pid of the respective process.

Example 1 (Dolev-Klawe-Rodeh/Peterson Leader-Election Algorithm). We con-
sider the leader-election algorithm by Dolev-Klawe-Rodeh/Peterson [15, 35], which deter-
mines a leader in a ring. In fact, it is an adaptation of Franklin’s algorithm [25] to cope
with unidirectional rings. That is, a process can only, say, send to the right and receive
from the left. The algorithm, denoted DLE, is given in Figure 2. Here, we assume that a
state s ∈ {active0, active1, passive, found} is also the only proposition that holds in s, i.e.,
µ(s) = {s}. The rough idea of the algorithm is that every process determines whether its pid
is a local maximum among its (active) neighbors. If so, it continues to compare its pid with
active neighbors that are further away. Otherwise, it becomes passive and will henceforth
forward any pid it receives.

However, as we assume the ring to be unidirectional, the local maximum among the
processes i − 2, i − 1, i is actually determined by i (rather than i − 1). Therefore, each
process i will execute two transitions, namely t1 and t2, and store the pids sent by i− 2 and
i−1 in r′′ and r′, respectively. After two rounds, since r still contains the pid of i itself, i can
test if i−1 is a local maximum among i−2, i−1, i using the guards in transition t2. If both
guards are satisfied, i stores the pid sent by i − 1 in r. It henceforth ”represents” process
i− 1, which is still in the race, and goes to state active0. Otherwise, it enters passive. The
algorithm is correct in the following sense: At the end of an accepting run (each process
ends in passive or found), (i) there is exactly one process that terminates in found (but not
necessarily the one with the highest pid), and (ii) all processes store the maximal pid in
register r. The algorithm terminates after at most 2blog2 nc+ 2 rounds. C

Semantics of Distributed Algorithms. Now, we give the formal semantics of a dis-
tributed algorithm D = (S, init,∆, µ). Let RegsD = Names(D) ∩ R denote the set of
registers that occur in D (which includes id). Recall that D can be run on any ring
R : Zn → N, for any n ∈ N. An (R-)configuration of D is a pair (s, ρ) with s : Zn → S
and ρ : Zn → RegsD → pids(R). We often write s = (s0, . . . , sn−1) and ρ = (ρ0, . . . , ρn−1)
where si = s(i) is the current state of process i and ρi = ρ(i) : RegsD → pids(R) maps
each register to a pid. Note that ρi(id) will not change throughout a run. The configuration
is called initial if, for every process i ∈ Zn, we have si = init and ρi(r) = R(i) for all
r ∈ RegsD. Note that there is a unique initial R-configuration.
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In one synchronous round, the algorithm moves from one configuration to another one.
This is described by a relation

C
t
 C ′

where C = (s, ρ) and C ′ = (s′, ρ′) are R-configurations and t : Zn → ∆. Again, we often
write t = (t0, . . . , tn−1) where ti = t(i) is the transition executed by process i. To determine
when C

t
 C ′ holds, we first define some auxiliary relations.

Let i, j ∈ Zn be processes. For a ∈ M(k), we write i
a� j if a (together with k process

identifiers) is sent by i to the right and received by j (from the left). Similarly, for registers
r, r′ ∈ RegsD, we write r@i � r′@j if the contents of r is sent to the right from i to j,
where it is stored in r′. Formally, we let i

a� j (respectively r@i� r′@j) if

right!b(r1, . . . , rk) ∈ PropSetOf(ti) ∧ left?b(r′1, . . . , r
′
k) ∈ PropSetOf(tj) ∧ fwd-right ∈

PropSetOf(ti′) for all i′ ∈ Between(i, j)

such that b = a (respectively r` = r and r′` = r′ for some `). Note that, due to the fwd-right
command, i

a� j and r@i � r′@j may hold for several j and r′. That is, a process may
receive a message and forward it at the same time, as for instance in transition t6 of algorithm
DLE (see Figure 2).

The meaning of j
a� i and r′@j � r@i is analogous, we just replace “right” by “left”:

left!b(r1, . . . , rk) ∈ PropSetOf(ti) ∧ right?b(r′1, . . . , r
′
k) ∈ PropSetOf(tj) ∧ fwd-left ∈

PropSetOf(ti′) for all i′ ∈ Between(j, i)

such that b = a (respectively r` = r and r′` = r′ for some `).
The guards in the transitions of t are checked against “intermediate” register assignments

ρ̂ : Zn → RegsD → pids(R), which are defined as follows:

ρ̂j(r
′) =

{
ρi(r) if r@i� r′@j or r′@j � r@i

ρj(r
′) if, for all r, i, neither r@i� r′@j nor r′@j � r@i

Note that this is well-defined, due to condition (1) in Definition 1.

Now, there is a synchronous round from C to C ′ with transitions t, denoted C
t
 C ′ if,

for all j ∈ Zn, k ∈ N, a ∈M(k), and r1, . . . , rk, r, r
′ ∈ RegsD, the following hold:

(R1) sj ∈ PropSetOf(tj) and (goto s′j) ∈ PropSetOf(tj),

(R2) if left?a(r1, . . . , rk) ∈ PropSetOf(tj), then there is i ∈ Zn such that i
a� j,

(R3) if right?a(r1, . . . , rk) ∈ PropSetOf(tj), then there is i ∈ Zn such that j
a� i,

(R4) ρ̂j(r) = ρ̂j(r
′) if (r = r′) ∈ PropSetOf(tj),

(R5) ρ̂j(r) < ρ̂j(r
′) if (r < r′) ∈ PropSetOf(tj),

(R6) ρ′j(r) =

{
ρ̂j(r

′) if (r := r′) ∈ PropSetOf(tj)

ρ̂j(r) if tj does not contain an update of the form r := r′′
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pi = 4 8 3 1 6 5 7

i = 0 1 2 3 4 5 6
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left?a(r ′)

right!a(r)
left?a(r ′)

right!a(r)
left?a(r ′)

right!a(r)
left?a(r ′)

right!a(r)
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r := r ′
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right!a(r ′)
left?a(r ′′)
{r ′′, r} < r ′

r := r ′

right!a(r ′)
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right!a(r ′)
left?a(r ′′)
r ′ < r

right!a(r ′)
left?a(r ′′)
{r ′′, r} < r ′

r := r ′

right!a(r ′)
left?a(r ′′)
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left?a(r ′)

fwd-right

left?a(r)
right!a(r)
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fwd-right
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fwd-right

left?a(r)
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left?a(r ′′)
r ′ < r

fwd-right

left?a(r)
fwd-right

left?a(r)

right!a(r ′)
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{r ′′, r} < r ′

r := r ′

fwd-right

left?a(r)

fwd-right
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fwd-right
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fwd-right
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fwd-right
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fwd-right
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fwd-right
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r = r ′
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active0
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active0
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6 6 6
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active1
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6 1 6
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active0
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passive
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active0
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active0
6 6 1
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passive

8 1 3
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passive
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passive

8 7 6
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7 3 8
passive
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active0
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passive
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8 1 3
active1
8 8 7

passive

8 5 6

passive

8 6 8
passive

8 4 7
passive

8 7 6
passive

8 3 8
passive

8 1 3
found

8 8 8
passive

8 5 6

➊

➋

➌

➍

➎

➏

➊

➋

➌

➍

➎

πr′ :

➊ ➋ ➋ ➌ ➍ ➎ ➎

↓ · msg
r,r′

{upd
r′,r′

}? ↓ · nomsg
r′

{r := r′}? ↓ · msg
r,r′

{upd
r′,r′

}? ↓ · nomsg
r′

πr′′ :

➊ ➋ ➋ ➌ ➍ ➎ ➏

↓ · msg
r,r′

{upd
r′,r′

}? ↓ · nomsg
r′

{r := r′}? ↓ · msg
r,r′

{upd
r′,r′

}? ↓ · msg
r′,r′′

Figure 3: Run of Dolev-Klawe-Rodeh algorithm and runs of path automata

Here, (R6) is well-defined thanks to condition (2) in Definition 1.

An (R-)run of D is a sequence χ = C0 t1
 C1 t2

 . . .
tk
 Ck where k ≥ 1, C0 is the initial

R-configuration, and tj : Zn → ∆ for all 1 ≤ j ≤ k. We call k the length of χ. Note that χ
uniquely determines the underlying ring R.

Remark 1. A receive command has to be matched by a corresponing send, while a message
that has been sent may not necessarily be received. However, adopting alternative semantics,
such as non-blocking receives, would not change any of the forthcoming results. C

Example 2. A run of DLE from Example 1 on the ring R = (4, 8, 3, 1, 6, 5, 7) is depicted in
Figure 3 (for the moment, we may ignore the blue and violet lines). A colored row forms a
configuration. The three pids in a cell refer to registers r, r′, r′′, respectively (we ignore id).
Moreover, a non-colored row forms, together with the states above and below, a transition

9



tuple. When looking at the step from C3 to C4, we have, for example, r′@2 � r@3 and
r′@2� r′′@5. Moreover, r′@5� r@6 and r′@5� r′′@0 (recall that we are in a ring). Note
that the run conforms to the correctness property formulated in Example 1. In particular,
in the final configuration, all processes store the maximum pid in register r. C

Example 3 (Odd-even transposition sort [27]). We will now consider a distributed
sorting algorithm, called odd-even transposition sort, which sorts the elements of an ar-
ray by parallel compare-and-swaps. We adapt the algorithm to rings in which the process
with the highest pid is assumed to be the leader. At the end of the algorithm, the ring will
store the pids in a sorted order starting from the leader.

Towards this, every process is equipped with a dedicated register, say r, which can store
some pid value (not necessarily its own). Initially, this register contains its own pid. We
assume that the ring has a leader, and further that the leader is the process with the highest
pid. Once the distributed sorting is finished, the pid stored in the register r of every process
(other than the leader) will be higher than the pid stored in register r of its left neighbor.
This can be achieved by the odd-even transposition sort, in two phases. In the first phase, the
processes will determine whether they are at an odd distance (parity 1) or an even distance
(parity 0) from the leader. Every process will send its guessed parity b to the right, and
ensures that it receives the dual parity 1− b from its left. The leader will deterministically
send even to the right, and discards what it receives from the left.

The second phase is the actual sorting phase where processes alternate between their
neighbors to perform a compare-and-swap. A process which guessed parity 0 will first send
its stored pid to the right, receive a pid from the right, and store the minimum of these two
in register r. Next, it will send its stored pid to the left, receive a pid from the left, and
store the maximum of these two in register r. Symmetrically, a process which guessed parity
1 will send its stored pid to the left, receive a pid from the left, and store the maximum of
these two in its register r. Next, it will send its stored pid to the right, receive a pid from
the right, and store the minimum of these two in register r. The leader will only compare
and swap with its right neighbor. It tricks its left neighbor to not swap by always sending
its own pid (which is the highest pid in the ring) to the left.

Simultaneously to the compare-and-swap rounds, a token is sent to the right neighbor
by the leader, and moves one step to the right with every round. Once the token reaches
back the leader, the algorithm terminates. Correctness of this distributed sorting algorithm,
i.e., the fact that the pids are sorted when the algorithm terminates, is not obvious. C

3. From Distributed Algorithms to Propositional Dynamic Logic

In this section, we provide a symbolic abstraction of runs of distributed algorithms. A
symbolic abstraction ignores pids while keeping all the other information such as states and
transitions.

We will provide a translation of distributed algorithms into propositional dynamic logic
with loop and converse (LCPDL) [26] over finitely labeled cylinders. The models of an
LCPDL formula will be precisely the symbolic runs that give rise to some concrete runs.
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ℓ1 ℓ2

ℓ3

ℓ4

left!a(id); right!ā(r)
right?a(r′)

r := min(r, r′)

left!a(id)

left!a(id)
right!a(r)
right?a(r′)

r := min(r, r′)

left!a(id); left?ā(r′′)

left!a(id); right!a(r)
left?ā(r′′); right?a(r′)

r := min(r, r′)

e2

e1

e3

left!a(r); left?a(r′)
r := max(r, r′)

right!a(r); right?a(r′)
r := min(r, r′)

left!a(r); left?ā(r′)
r := max(r, r′)

right!ā(r); right?a(r′)
r := min(r, r′)

o2

o1

o3

left!a(r); left?a(r′)
r := max(r, r′)

right!a(r); right?a(r′)
r := min(r, r′)

left!a(r); left?ā(r′)
r := max(r, r′)

right!ā(r); right?a(r′)
r := min(r, r′)

Figure 4: Distributed sorting algorithm for a ring of size at least 2. In the automata above, messages ā carry
the token, whereas messages a are regular. Moreover, r := min(r, r′) actually stands for two transitions,
one with guard r′ < r and update r := r′ and the other with guard r ≤ r′ and no update. The situation is
symmetric for r := max(r, r′). The top automaton is for the leader. The bottom left (resp. right) automaton
is for a process whose distance from the leader is even (resp. odd).

We will first define labeled cylinders and propositional dynamic logic with loop and
converse over them.

3.1. PDL with Loop and Converse (LCPDL)

Let Props be a finite set of propositions. A valuation of the propositions is a function
γ : Props → {0, 1}. For k ∈ N, we set [k] = {0, 1, . . . , k}. An (n × k)-cylinder is a
mapping ζ : Zn × [k] → 2Props. The set of positions (or coordinates) of an (n× k)-cylinder
is Pos(ζ)

def
= Zn × [k]. Thus a cylinder has n columns and k + 1 rows. Further, the columns

are cyclically arranged such that every column has a neighboring column on its right (and
its left). A cylinder ζ associates a valuation of the propositions γ = ζ(x) to every position
x = (i, j) of the cylinder. Let Cyl(Props) denote the set of all (n×k)-cylinders over Props,
for all possible n and k.

Propositional dynamic logic has modalities that allows one to “walk” in a cylinder just
like a tree-walking automaton walks in a tree. Therefore, apart from local formulas which
check that a property holds at the current position of a cylinder, there will be path formulas.
The latter allow us to go to the right-/down- neighboring coordinate. We can even describe
paths of unbounded length using regular expressions over the basic steps and their converses.
There is also a special loop construct that requires a path to describe a cycle in the cylinder
(i.e., it starts and ends in one and the same coordinate).
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ζ |= Eψ if ζ, x |= ψ for some x ∈ Pos(ζ)

ζ, x |= ‡ if x = (0, j) for some j

ζ, x |= p if p ∈ ζ(x)

ζ, x |= 〈π〉ψ if ζ, x, y |= π and ζ, y |= ψ for some y ∈ Pos(ζ)

ζ, x |= loop(π) if ζ, x, x |= π

ζ, x, y |= {ψ}? if ζ, x |= ψ and x = y

ζ, x, y |=→ if x = (i, j) and y = (i⊕ 1, j) for some i, j

ζ, x, y |= ↓ if x = (i, j) and y = (i, j + 1) for some i, j

ζ, x, y |= π + π′ if ζ, x, y |= π or ζ, x, y |= π′

ζ, x, y |= π · π′ if ζ, x, z |= π and ζ, z, y |= π′ for some z ∈ Pos(ζ)

ζ, x, y |= π∗ if there are positions z0, . . . , z` ∈ Pos(ζ) (` ≥ 0) such that x = z0,
y = z` and ζ, zi, zi+1 |= π for all 0 ≤ i < `

ζ, x, y |= π−1 if ζ, y, x |= π

ζ, x, y |= A if ζ, x, y |= π1 · π2 · · · π` and there is an accepting path in A:

q0
π1−→ q1

π2−→ · · · π`−→ q` from its initial state q0 to some final state q`.

Table 1: Semantics of LCPDL. ζ ∈ Cyl(Props) is an (n× k)-cylinder, x, y ∈ Pos(ζ) are positions.

The syntax of formulas in LCPDL(Props) is given as follows:

Ψ,Ψ′ ::= Eψ | ¬Ψ | Ψ ∧Ψ′

ψ, ψ′ ::= ‡ | p | ¬ψ | ψ ∧ ψ′ | 〈π〉ψ | loop(π)

π, π′ ::= {ψ}? | → | ↓ | π + π′ | π · π′ | π∗ | π−1 | A

where p ∈ Props and A is a path automaton1: a non-deterministic finite automaton whose
transitions are labeled with formulas π. We call ψ a local formula, π a path formula, and Ψ
a sentence. We include a special marker ‡ in local formulas which refers to process 0. This
marker will not be used in this section but is necessary for specifications (see next section).

A sentence Ψ ∈ LCPDL(Props) is interpreted over a cylinder ζ over Props. We write
ζ |= Ψ if Ψ is satisfied in ζ. A local formula ψ is interpreted over a position x ∈ Pos(ζ). When
it is satisfied, we write ζ, x |= ψ. A path formula π depends on two positions x, y ∈ Pos(ζ).
We write ζ, x, y |= π when we can walk from x to y using a path matching π. The semantics
of the boolean operators is as expected, and that of other modalities is defined in Table 1.
Finally, a sentence Ψ defines the language L(Ψ) = {ζ ∈ Cyl(Props) | ζ |= Ψ}.

We use common abbreviations to include disjunction, implication, true, and false. For
path formulas, we let ← = →−1 (go left), ↑ = ↓−1 (go up), ε = {true}? (stay on the

1We explicitly add path automata for complexity reasons. Indeed, we could replace an automaton by an
equivalent rational expression, but the latter could be exponentially larger.
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current position), π+ = π · π∗, [π]ψ = ¬〈π〉¬ψ, and 〈π〉 = 〈π〉true. For sentences, we let
Aψ = ¬E¬ψ.

3.2. Translating Distributed Algorithms into LCPDL

We will now describe runs of distributed algorithms using LCPDL. This looks mysterious
because we do not have any provision for reasoning about data in LCPDL. On the other
hand, runs of distributed algorithm progress by comparing pids and updating registers.
Thus, this section demonstrates how to get rid of unbounded data and still reason about
the data-dependent decisions taken along the run using LCPDL. This translation depends
crucially on the loop modality of LCPDL.

A symbolic run of a distributed algorithm on a ring of size n is an (n× k)-cylinder, for
some k ∈ N that corresponds to the number of rounds. The label of position (i, j) will
carry information about which transition was taken by process i in round j. We will have
an LCPDL formula that describes such symbolic runs of an algorithm. We will require
additional formulas to track the flow of pids between the processes through messages.

Recall that PropSetOf(t) denotes the set of propositions that occur in a transition t.
Let D = (S, init,∆, µ) be a distributed algorithm. The set of propositions induced by D is
PropsD =

⋃
s∈S µ(s). As the LCPDL formula associated with D will talk about transitions,

too, we also set Propstr
D = PropsD ∪

⋃
t∈∆ PropSetOf(t).

For the remainder of this section, we fix a distributed algorithm D = (S, init,∆, µ).
Wlog., we assume that ∆ contains a dummy transition dt = 〈s: goto init〉 where s is distinct
from init, does not carry any proposition, and does not occur in any other transition.

Let R : Zn → N be a ring and χ = C0 t1
 C1 t2

 . . .
tk
 Ck be an R-run of D, where

tj : Zn → ∆ for all 1 ≤ j ≤ k. We simply write tji for tj(i). From χ, we extract the symbolic
run ζχ ∈ Cyl(Propstr

D) given by

ζχ(i, j) = µ(sji ) ∪ PropSetOf(tji )

for all (i, j) ∈ Pos(ζχ), where sji is the (unique) state such that the proposition goto sji is
present in PropSetOf(tji ) and t0i = dt is the dummy transition whose purpose is simply to
match the number of configurations in a run. For instance, Figure 3 represents a run χ. By
keeping only the transition-rows (including, however, states and the associated propositions)
and adding on top the row of dummy transitions, we obtain the associated symbolic (7×6)-
cylinder ζχ. Every distributed algorithm D gives rise to a set of symbolic runs (cylinders):
CylD = {ζχ | χ is a run of D on some ring}.

Theorem 1. From a distributed algorithm D, we can construct in polynomial time a formula
ΨD ∈ LCPDL(Propstr

D) such that

L(ΨD) = CylD .

In particular, ΨD will verify that the table defines a symbolic abstract run (Conditions
R1–R3), registers in equality guards can be traced back to the same origin (to ensure R4),

13



and there are no cyclic dependencies that arise from <-guards (to ensure R5). In that case,
the symbolic run is consistent and corresponds to a “real” run of D.

We will now explain how to check in LCPDL that a cylinder defines a symbolic run. For
each transition t = 〈 . . . goto s〉 ∈ ∆, it is easy to write a local formula ψt checking that
the label of the current position is precisely µ(s) ∪ PropSetOf(t). Then, the local formula
Ψ1

run = A
∨
t∈∆ ψt states that all positions of the cylinder are labeled with transitions from

∆. We can also check that row 0 is labeled with the dummy transition and that at least
one “real” transition is taken: Ψ2

run = A(¬〈↑〉 =⇒ (ψdt ∧ 〈↓〉)). Next, we make sure that
the target state of a transition matches the source state of the transition in the next round,
i.e., Condition (R1): Ψ3

run = A(¬
∨
s,s′∈S|s 6=s′(goto s) ∧ 〈↓〉s′). In order to check Conditions

(R2–R3) we introduce path formulas corresponding to the relations i
a� j and j

a� i defined
in Section 2. For a ∈M(k), we define

a� = {right!a}? · (→ · {fwd-right}?)∗ · → · {left?a}?
a� = {left!a}? · (← · {fwd-left}?)∗ · ← · {right?a}?

with right!a =
∨

right!a(r1, . . . , rk) where the disjunction ranges over all (r1, . . . , rk) such
that right!a(r1, . . . , rk) ∈ Propstr

D, and similarly for left?a, left!a and right?a. Clearly, we
have ζ, (i, `), (j, `) |= a� iff during round ` message a is sent to the right by the ith process
and received from the left by the jth process. Then, Condition (R2) can be checked with

Ψ4
run = A(left?a =⇒ 〈 a�−1〉). Condition (R3) can be checked with a similar formula Ψ5

run.
Finally, we let Ψrun = Ψ1

run ∧Ψ2
run ∧Ψ3

run ∧Ψ4
run ∧Ψ5

run.

Lemma 1. Let ζ be a cylinder. Then, ζ |= Ψrun iff ζ describes a symbolic abstract run
satisfying (R1–R3).

Now, we have to check that guards are satisfied, i.e., Conditions (R4–R5). This is the
most difficult part. Every register contains the identifier of some process taking part in
the run. The idea is to write, for each register r, a path formula πr that describes the
transmission of pids in a symbolic run, up to a point where they are checked in some guard.
A path satisfying πr walks from some initial position (i, 0) to some position (i′, j′) iff the
identity of process i is contained in register r of process i′ after the message exchanges of
round j′, i.e., when guards are checked in round j′. The path formula πr will only focus on
transmission of register values through updates and message exchanges. It does not check
whether guards are satisfied along the way.

In Section 3.3 below, we will explain how the path formulas πr are constructed. But first
we describe how they are used to check that guards are satisfied. For equality guards, using
the expressive power of loop and converse, we define the LCPDL formula

Ψ= = A
∧
r,r′∈RegsD

(
r = r′ =⇒ loop(π−1

r · πr′)
)
.

It says that, whenever an equality check r = r′ occurs in the symbolic run, then the pids
stored in r and r′ have a common origin. The next path formula connects the first coordinate
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of a process i with the first coordinate of another process i′ if some guards force the pid of
i to be smaller than that of i′:

π< =
(∑

r,r′∈RegsD
πr · {r < r′}? · π−1

r′

)+

.

Note that, here, we use the (strict) transitive closure. Consistency of <-guards now reduces
to saying that there is no π<-loop:

Ψ< = A(¬〈↑〉 =⇒ ¬loop(π<)) .

Finally, the formula announced in Theorem 1 is defined as

ΨD = Ψrun ∧Ψ= ∧Ψ< .

In the next subsection, we will define the path formulas πr and show that they conform
to the semantics given above. Then, in Section 3.4, we prove that the formula ΨD defined
above satisfies the statement of Theorem 1.

3.3. The path formulas πr

First, we introduce a local formula updr,r′ which states that the current transition updates
register r′ with the contents of register r.

updr,r′ =

{
(r′ := r) if r′ 6= r

(r := r) ∨ ¬
∨
r′′(r := r′′) if r′ = r .

Note that, when r′ = r, the formula also takes care of the absence of an update command
for the register.

Next, we define a path formula rightmsgr,r′ . It describes paths across several processes
which relate the sending of r to the right and a corresponding receive in r′ from the left,
requiring that messages are forwarded by all intermediate processes. This corresponds to the
relation r@i � r′@i′ defined in Section 2. Similarly, we define a path formula leftmsgr,r′
corresponding to the relation r′@i′ � r@i. We also define nomsgr which states that no
received messages update register r. Formally, these formulas are defined by

rightmsgr,r′ =
∑

(α,α′)∈Mg(r,r′) {right!α}? · (→ · {fwd-right}?)∗ · → · {left?α′}?

leftmsgr,r′ =
∑

(α,α′)∈Mg(r,r′) {left!α}? · (← · {fwd-left}?)∗ · ← · {right?α′}?

nomsgr = {¬
∨
α∈Rc(r) left?α ∨ right?α}?

where Mg(r, r′) is the finite set of pairs (α, α′) of messages occurring in D and which may
transmit r to r′: α = a(r1, . . . , rk), α

′ = a(r′1, . . . , r
′
k) with r` = r and r′` = r′ for some

1 ≤ ` ≤ k and right!α, left?α′ ∈ Propstr
D or left!α, right?α′ ∈ Propstr

D. Also, Rc(r) is the
set of receive messages α of D in which register r occurs: α = a(r1, . . . , rk) with r = r` for
some 1 ≤ ` ≤ k and left?α ∈ Propstr

D or right?α ∈ Propstr
D.
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We can easily check that ζ, (i, j), (i′, j′) |= rightmsgr,r′ (resp. leftmsgr,r′) iff j′ = j (same
round) and r@i� r′@i′ (resp. r′@i′� r@i). Then, register updates through messages are
described by the path formula

msgr,r′ =

{
rightmsgr,r′ + leftmsgr,r′ if r′ 6= r

rightmsgr,r + leftmsgr,r + nomsgr if r′ = r .

It follows that ζ, (i, j), (i′, j′) |= msgr,r′ iff j′ = j (same round) and register r′ of process
i′ after the exchange of messages of the round contains the value that was in register r of
process i before the round.

Now we can define the main path formula:

roundr,r′ =
∑

r′′∈RegsD
msgr,r′′ · {updr′′,r′}?

We deduce that ζ, (i, j), (i′, j′) |= roundr,r′ iff j′ = j (same round) and register r′ of process
i′ after round j contains the value of register r of process i before round j.

Now, remember that our goal was to write, for each register r, a path formula πr which
walks from some initial position (i, 0) to some position (i′, j′) iff the identity of process i is
contained in register r of process i′ when guards are checked in round j′. We are actually
almost done. Basically, πr should describe a path of the form

↓ · roundr1,r2 · ↓ · roundr2,r3 · · · ↓ · roundrj′−1,rj′
· ↓ · msgrj′ ,r .

This is a kind of iteration, but we have to ensure a correct flow through the intermediary
registers. More precisely, the expression (

∑
r1,r2
↓·roundr1,r2)

∗ is not correct for the iteration
since the ‘output’ register of one iteration may be different from the ‘input’ register of the
next iteration. This is where using a path automaton A will be convenient.2 The state
of A remembers the register between two iterations. For instance, Figure 5 gives the path
automaton A when we only have two registers: RegsD = {r1, r2}.

Formally, the set of states of A is {ι} ] RegsD and its initial state is ι. We have two
types of transitions. For all r, r′ ∈ RegsD:

• (ι, {¬〈↑〉}?, r): transitions from the initial state check that the path starts at the top
row and non-deterministically chooses some register r, which is initialized with the pid
of the current process.

• (r, ↓ · roundr,r′ , r′): these transitions go to the next round and check that the pid
contained in register r is transmitted to register r′ during that round.

2Indeed we can write a rational expression which is equivalent to the path automaton, but the size of this
rational expression would be exponential in the number of registers, whereas the size of A is only polynomial
in the number of registers.
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ι

r1 r2

{¬〈↑〉}? {¬〈↑〉}?

↓ · roundr1,r2

↓ · roundr2,r1

↓ · roundr1,r1 ↓ · roundr2,r2

Figure 5: Path automaton A when RegsD = {r1, r2}.

We denote by Ar the path automaton A with single final state r. We show below
(Lemma 2) that an accepting run of Ar describes a path expression which connects some
initial position (i, 0) to some position (i′, j′) iff the pid of process i is contained in register
r of process i′ after round j′. Figure 3 describes (partial) paths (illustrated by the blue and
violet lines, respectively) satisfying πr′ and πr′′ which allow us to identify the origin of r′

and r′′ when applying the guard r′ < r′′.
Finally, the path formula πr is simply given by

πr =
∑

r′∈RegsD
Ar′ · ↓ · msgr′,r .

To formally state and prove Lemma 2, we introduce some notation. A pseudo (R-)run

of D is like an (R-)run χ = C0 t1
 C1 t2

 . . .
tk
 Ck, but conditions (R4–R5) are not checked.

That is, =-guards and <-guards are ignored. Thus, every run is a pseudo run, but not vice
versa. We define ζχ in exactly the same way as for runs.

Given a (pseudo) run χ = C0 t1
 C1 t2

 . . .
tk
 Ck of D (where Cj = (sj, ρj)) and (i, j) ∈

Pos(ζχ), we set χji = ρj(i). Moreover, for j ≥ 1, χji = ρ̂j−1(i) defines the corresponding j-th
intermediate register assignment, which was defined in Section 2.

Lemma 2. For all pseudo runs χ of D, positions (i, j), (i′, j′) ∈ Pos(ζχ), and registers
r ∈ RegsD, the following hold (recall that id is the register holding the pid of the respective
process):

ζχ, (i, j), (i
′, j′) |= Ar ⇐⇒

(
χj
′

i′ (r) = χ0
i (id) ∧ j = 0

)
(1)

ζχ, (i, j), (i
′, j′) |= πr ⇐⇒

(
χj
′

i′ (r) = χ0
i (id) ∧ j = 0 ∧ j′ > 0

)
(2)

Proof. Let the pseudo R-run in question be given by χ = C0 t1
 C1 t2

 . . .
tk
 Ck.

From the definitions of the formulas updr,r′ and msgr,r′ , it is easy to see that, for all
positions (i, j), (i′, j′) ∈ Pos(ζχ) with j ≥ 1 and registers r, r′ ∈ RegsD, the following hold:

ζχ, (i, j), (i
′, j′) |= msgr,r′ ⇐⇒

(
χj
′

i′ (r
′) = χj−1

i (r) ∧ j′ = j
)

(3)

ζχ, (i, j), (i
′, j′) |= updr,r′ ⇐⇒

(
χj
′

i′ (r
′) = χji (r) ∧ j′ = j ∧ i′ = i

)
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We deduce that

ζχ, (i, j), (i
′, j′) |= roundr,r′ ⇐⇒

(
χj
′

i′ (r
′) = χj−1

i (r) ∧ j′ = j
)

Now, ζχ, (i, j) |= ¬〈↑〉 iff j = 0 and χ0
i (r) = χ0

i (id) for all r ∈ RegsD. We deduce that (1)
holds. Using (3) we obtain (2). �

3.4. Proof of Theorem 1

Recall that CylD = {ζχ | χ is a run of D}. For a cylinder ζ ∈ Cyl(Propstr
D), let

Runs(ζ) = {χ | χ is run of D such that ζχ = ζ}. Note that Runs(ζ) 6= ∅ for all ζ ∈ CylD.

Lemma 3. For all ζ ∈ CylD and (i, 0), (i′, 0) ∈ Pos(ζ), we have

ζ, (i, 0), (i′, 0) |= π< ⇐⇒ ∀χ ∈ Runs(ζ) : χ0
i (id) < χ0

i′(id) .

Proof. Assume that ζ ∈ CylD is an (n×k)-cylinder. Note that run conditions (R1–R3) are
satisfied, since ζ ∈ CylD. There are two directions to show.

(⇒): Suppose ζ, (i, 0), (i′, 0) |= π<. Then, there are ` > 0 and i = i0, . . . , i` = i′ such that

ζ, (im−1, 0), (im, 0) |=
∑

r,r′∈RegsD

πr · {r < r′}? · π−1
r′

for all m ∈ {1, . . . , `}. Let χ ∈ Runs(ζ). By Lemma 2, we have χ0
im−1

(id) < χ0
im(id) for all

m ∈ {1, . . . , `}. We deduce χ0
i (id) < χ0

i′(id).

(⇐): We denote the processes in question by u and u′. Suppose that ζ, (u, 0), (u′, 0) 6|= π<.
We are going to show that there is χ ∈ Runs(ζ) such that χ0

u(id) ≥ χ0
u′(id). Let ≺ = {(i, i′) |

ζ, (i, 0), (i′, 0) |= π<}. In particular, u 6≺ u′. By direction (⇒) and using Runs(ζ) 6= ∅, we
have that ≺ is a strict partial order.

Let R be any ring such that (i) R(u) ≥ R(u′) and (ii) for all i, i′ ∈ Zn, i ≺ i′ implies
R(i) < R(i′). Since ≺ is a strict partial order and u 6≺ u′, such a ring must exist. Now, note
that there is a unique pseudo R-run

χ = C0 t1
 C1 t2

 . . .
tk
 Ck

such that ζχ = ζ. We will show that χ is indeed also an R-run, which concludes the proof.
Let (i, j) ∈ Pos(ζ) with j ≥ 1 and r, r′ ∈ RegsD such that (r < r′) ∈ PropSetOf(tji ). We

have to show that χji (r) < χji (r
′). By Lemma 2, there are `, `′ ∈ Zn such that

• χ0
`(id) = χji (r) and χ0

`′(id) = χji (r
′), and

• ζχ, (`, 0), (i, j) |= πr and ζχ, (`
′, 0), (i, j) |= πr′ .

The latter implies ζχ, (`, 0), (`′, 0) |= πr · {r < r′}? · π−1
r′ . In particular, ζχ, (`, 0), (`′, 0) |= π<.

We deduce ` ≺ `′. This implies χ0
`(id) < χ0

`′(id). We conclude that χji (r) < χji (r
′).

Finally, let (i, j) ∈ Pos(ζ) with j ≥ 1 and r, r′ ∈ RegsD such that (r = r′) ∈
PropSetOf(tji ). Since Runs(ζ) 6= ∅, there is a run that validates guard r = r′ at coordi-
nate (i, j). By Lemma 2, this is actually true for all pseudo runs of ζ. We deduce that
χji (r) = χji (r

′). �
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Proof (of Theorem 1). We have to show L(ΨD) = CylD = {ζχ | χ is a run of D}, where
ΨD is given as Ψrun ∧Ψ= ∧Ψ<.

(⊆): Let ζ be an (n×k)-cylinder such that ζ |= ΨD. We will show ζ ∈ CylD by constructing
a run χ of D such that ζχ = ζ.

As in the proof of Lemma 3, let ≺ = {(i, i′) ∈ Pos(ζ) | ζ, (i, 0), (i′, 0) |= π<}. As ζ |= Ψ<

we get ζ, (i, 0) |= ¬loop(π<) for all i ∈ Zn. We deduce that ≺ is a strict partial order.
Choose any ring R such that, for all i, i′ ∈ Zn, i ≺ i′ implies R(i) < R(i′). There is a unique
pseudo R-run

χ = C0 t1
 C1 t2

 . . .
tk
 Ck

of D such that ζχ = ζ. Let 1 ≤ j ≤ k. We have to show Cj−1 tj
 Cj where, this time, all run

conditions (R1–R6) are checked. Condition (R6) of the definition of  is satisfied thanks to
the definition of a pseudo run. Conditions (R1–R3) are ensured by ζ |= Ψrun and Lemma 1.
Let i ∈ Zn and suppose (r = r′) ∈ PropSetOf(tji ). We have ζ, (i, j) |= loop(π−1

r · πr′). By
Lemma 2, we have χji (r) = χji (r

′). Finally, suppose (r < r′) ∈ PropSetOf(tji ). We proceed
like in the reverse direction of the proof of Lemma 3 to show that χji (r) < χji (r

′).
Altogether, it follows that χ is a run.

(⊇): Let ζ be an (n×k)-cylinder such that ζ 6|= ΨD. To show ζ 6∈ CylD, we distinguish three
(non-disjoint) cases.

• Suppose ζ 6|= Ψrun. By Lemma 1, this implies ζ 6∈ CylD.

• Suppose ζ 6|= Ψ=. Recall that Ψ= = A
∧
r,r′∈RegsD

(
r = r′ =⇒ loop(π−1

r · πr′)
)

. Thus,

there are a coordinate (i, j) ∈ Pos(ζ) and registers r1, r2 ∈ RegsD such that we have
(r1 = r2) ∈ PropSetOf(tji ) (hence j ≥ 1) and ζ, (i, j) 6|= loop(π−1

r1
· πr2). Towards a

contradiction, suppose there is χ ∈ Runs(ζ). By Lemma 2, there are (unique) i1, i2 ∈
Zn such that χ0

i1
(id) = χji (r1) and χ0

i2
(id) = χji (r2), as well as ζ, (i1, 0), (i, j) |= πr1 and

ζ, (i2, 0), (i, j) |= πr2 . Since ζ, (i, j) 6|= loop(π−1
r1
· πr2), we have that i1 6= i2. We deduce

χji (r1) 6= χji (r2), which contradicts χ ∈ Runs(ζ). Altogether, we obtain ζ 6∈ CylD.

• Suppose ζ 6|= Ψ<. Then, there is i ∈ Zn such that ζ, (i, 0) |= loop(π<). By Lemma 3,
we have χ0

i (id) < χ0
i (id) for all runs χ ∈ Runs(ζ). Thus, Runs(ζ) = ∅ and, therefore,

ζ 6∈ CylD. �

Remark 1. Note that, in the translation from distributed algorithms to LCPDL, the set
of propositions include the propositions that arise from the transitions and also P . The
latter, however, are only used in the formulas to form the link with the specification. More
specifically, the specification is independent of the details of the algorithm such as the states,
or the registers it uses or the number of transitions it has. The specification in DataPDL only
talks about a pre-agreed set of propositions from P , and a pre-agreed set of registers. The
actual algorithm may use registers. The LCPDL formulas to which both the algorithm and
the specification is translated, will include the propositions that arise from both sides. The
mapping µ is employed to link the symbolic runs labeled by transition-generated propositions
to the propositions from the specification.
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4. The Specification Language

In Example 1, we informally stated a correctness criterion for the presented algorithm
(e.g., “at the end, there is one leader and all processes store the pid of the leader in register
r”). Now, we introduce a formal language to specify correctness properties.

While LCPDL provides good expressive power over abstract runs, it is not sufficient for
specifying requirements of distributed algorithms. The specification must be able to reason
about the process identities and make comparisons between them. For instance, it may need
to say that the process with the maximum pid is elected as the leader.

Toward this purpose, we will first extend cylinders to data cylinders, where each position
carries some register valuation also in addition to the valuation of the propositions. Then
we extend PDL to reason about the values stored in registers, thus obtaining DataPDL.

However, it poses a problem with expressing some properties – like, there exist at least
two nodes satisfying a particular proposition in the same row. We may “get lost” by moving
cyclically to the right indefinitely without realizing whether all the nodes in the current row
have been visited.

As a solution to this problem we provide a special proposition ‡ to act as a reference
point in the ring. We let the proposition ‡ be true at, and only at, the process 0 (process
0 ∈ Zn may have arbitrary pid assigned to it). Notice that this is available only to the
specification; the distributed algorithm is oblivious to which process was process 0. We will
now see the formal definitions of data cylinders and DataPDL over them.

4.1. Data cylinders and DataPDL

Let Props be a finite set of propositions and let Regs be a finite set of registers. An
(n×k)-data-cylinder over Props and Regs is a mapping ξ : Zn× [k]→ 2Props×NRegs. The
set of positions (or coordinates) of an (n×k)-cylinder ξ is Pos(ξ)

def
= Zn×[k]. That is, ξ labels

a position x of a cylinder with both a valuation of the propositions γ : Props→ {0, 1}, and
a valuation of the registers ν : Regs → N. Suppose ξ(x) = (γ, ν). Abusing notations we
write p ∈ ξ(x) for γ(p) = 1, and ξ(x)(r) for ν(r).

Let DCyl(Props,Regs) denote the set of all (n × k)-data-cylinders over Props and
Regs, for all possible n and k.

We will now present a data-aware navigational logic DataPDL that walks through the
positions of a data cylinder using path formulas π as in the case of LCPDL. At a given
position of the data cylinders, we can check local (or positional) properties like a proposition
from Props, or whether we are on the marked column ‡. Such a property can be combined
with a regular path expression π like in the case of LCPDL.

The most interesting construct in our logic is 〈π〉r ./ 〈π′〉r′, where ./ ∈ {=, 6=}, which has
been used for reasoning about XML documents [10, 11, 20]. It says that, from the current
position, there are a π-path and a π′-path that lead to positions y and y′, respectively, such
that the value stored in register r at y and the value stored in r′ at y′ satisfy the relation
./. Later in the section, we will also extend the logic with register comparisons < or ≤.

We will now introduce a (first) logic to reason about data cylinders. It is parametrized
by finite sets Props and Regs.
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Definition 2. The logic DataPDL(Props,Regs) is given by the following grammar:

Φ,Φ′ ::= Eϕ | ¬Φ | Φ ∧ Φ′

ϕ, ϕ′ ::= ‡ | p | ¬ϕ | ϕ ∧ ϕ′ | [π]ϕ | 〈π〉r ./ 〈π′〉r′

π, π′ ::= {ϕ}? | → | ↓ | π + π′ | π · π′ | π∗ | π−1

where p ∈ Props, r, r′ ∈ Regs, and ./ ∈ {=, 6=}. C

We call Φ a sentence, ϕ a local formula, and π a path formula. A sentence is interpreted
on a data cylinder; a local formula is interpreted on a position; and a path formula on a pair
of positions of a data cylinder. Let ξ be a (n × k)-data cylinder and x, y be positions of ξ.
As in the case of LCPDL, we write ξ |= Φ, ξ, x |= ϕ, and ξ, x, y |= π to indicate whether the
model satisfies the formula. The semantics is as in the case of LCPDL (cf. Table 1) for the
operators that also appear in LCPDL syntax. Further we have

• ξ, x |= p if p ∈ ξ(x).

• ξ, x |= [π]ϕ if, for all y such that ξ, x, y |= π, we have ξ, y |= ϕ

• ξ, x |= 〈π〉r ./ 〈π′〉r′ (where ./ ∈ {=, 6=}) if there exist x1, x2 such that ξ, x, x1 |= π
and ξ, x, x2 |= π′ and ξ(x1)(r) ./ ξ(x2)(r′).

Once again, we use common abbreviations as in the case of LCPDL. Notice that the
logic DataPDL does not have the loop modality of the logic LCPDL.

Data cylinders of distributed algorithms Let D = (S, init,∆, µ) be a distributed algo-
rithm. Recall that PropsD =

⋃
s∈S µ(s) and that RegsD is the set of registers that occur

in D, including id. Let R : Zn → N be a ring of size n. Consider an R-run of D

χ = C0 t1
 C1 t2

 . . .
tk
 Ck

where Cj = (sj, ρj). This run gives rise to the (n × k)-data cylinder ξχ over PropsD and
RegsD defined by ξχ(i, j) = (µ(sj(i)), ρj(i)). Every distributed algorithm D gives rise to a
set of data cylinders: DCylD = {ξχ | χ is a run of D on some ring}.

Given a distributed algorithm D and a sentence Φ ∈ DataPDL(PropsD,RegsD), we
write D |= Φ if ξ |= Φ for every ξ ∈ DCylD.

Note that our logic allows one to simulate temporal operators (in terms of ↓) as well
as quantification over processes (in terms of →) as used in the indexed temporal logics
from [17]. For example, ¬[↓∗]¬ϕ means that the “current” process eventually satisfies ϕ
(which corresponds to the future modality in LTL), and [→∗]ϕ says that every process
satisfies ϕ.

4.2. The model checking problem

Given a distributed algorithm and a specification written in DataPDL, the model check-
ing problem asks whether all runs of the distributed algorithm satisfy the specification:

Input: A distributed algorithm D, a sentence Φ ∈ DataPDL(PropsD,RegsD)
Question: Is it the case that D |= Φ?
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Example 4. Let us formalize, in DataPDL, the correctness criteria for DLE that we stated
informally in Example 1. Consider the following local formulas (again, propositions are
chosen to be the states themselves):

ϕacc = [→∗](passive ∨ found)

ϕfound = 〈πfound→({¬found}?→)∗〉‡ ϕr=r = ¬
(
〈ε〉r 6= 〈→∗〉r

)
where πfound = ({¬found}?→)∗{found}?. Consider the DataPDL formulas

Φ1 = A
(
(‡ ∧ ϕacc) =⇒ (ϕfound ∧ ϕr=r)

)
These formulas say that, after reaching accepting states, expressed by (‡ ∧ ϕacc) =⇒ · · ·,
we have that

(i) there is exactly one process that ends in state found (guaranteed by ϕfound),

(ii) all processes store the same pid in r (ϕr=r),

Thus, DLE |= Φ1. C

It is unsurprising that model checking distributed algorithms against DataPDL is unde-
cidable when the number of rounds is unbounded :

Theorem 2. The following problem is undecidable: Given a distributed algorithm D and
Φ ∈ DataPDL(PropsD,RegsD), do we have D |= Φ ? (Actually, undecidability even holds
for formulas Φ that express simple state-reachability properties and do not use any guards
on pids.)

Proof. We give a reduction from the non-halting problem of Turing machines starting
from an empty tape. Let STM be the set of control states of TM, and let BTM be its tape
alphabet. We assume that if the Turing machine halts, it halts in a special state halt. We
also assume that halt is a proposition, i.e., halt ∈ STM ∩ P . We describe the distributed
algorithm DTM.

Intuitively, the number of processes in the ring gives an upper bound on the space needed
by the Turing machine. Every process will correspond to a cell in the Turing machine’s tape.
Since there is no specific starting process for a ring, we run a leader election algorithm first,
and the leader will act as the leftmost cell of the tape. The i-th process to the right of the
leader acts as the i-th tape cell. The local state of a process indicates the corresponding
cell contents. It also indicates whether the head is currently present at the respective cell,
and in that case remembers the current state of TM. Thus, the local states are pairs of
the form (sym, head). Here, sym ∈ BTM indicates the content of a tape cell. Moreover,
head ∈ STM ∪ {⊥} indicates the current state of TM if the head is present in the current
cell, and it is ⊥ otherwise. We assume that proposition halt is true precisely in those local
states whose second component is halt. The messages (message types) are the states from
STM, each having arity 0. A message will denote the target control state upon simulating
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one transition of the Turing machine. Initially, only the leader process has head 6= ⊥. In the
simulation, only the process with head 6= ⊥ can send messages, and once it emits a message,
the head tag is set to ⊥. The process that receives a message s ∈ STM would turn the head
tag to s.

We describe the construction in detail now. First, there is a preliminary phase which
simulates a leader-election protocol, say, the Dolev-Klawe-Rodeh algorithm. The pid of the
leader is stored in all processes in a special register rleader. Recall that the leader process will
act as the leftmost cell of the tape. A process can always check whether it is the leftmost
by comparing the value of rleader to the register id. This check will be used in guards later
in transitions involving moving the head of TM to the left.

Once the preliminary phase is completed, the configuration of the ring proceeds to repre-
sent the initial configuration of TM. For this, the leader sends a message which is forwarded
and received by all processes, so that all processes other than the leader move to state ($,⊥),
i.e., representing the empty tape cell and indicating the absence of the head. The leader
process will move to the state ($, sin) where sin is the initial state of the Turing machine.

The simulation of the Turing machine works as follows. Consider a transition of the
Turing machine which checks that the current state is s and the current cell contains a,
updates the cell content to b, moves the head to the left and updates the control state to
s′. The distributed algorithm will have a transition which moves from local state (a, s)
to (b,⊥) which also (i) ensures (by a guard) that it is not the leftmost cell (rleader 6= id),
and (ii) sends s′ to the left. For this transition to take place, there are complementary
transitions at the receive end which go from (-,⊥) to (-, s′) upon receiving an s′-message
from a neighbor (left or right). In fact, such a receive transition is enabled for all processes
in all the states. Other transitions of the Turing machine are also implemented similarly.
Notice that message transmissions are performed by a process only if head 6= ⊥. Notice also
that the leader process neither sends to the left nor receives from the left. Also, there are
no forwarding states.

Finally, the specification ϕTM = ¬Ehalt checks that no process visits a state whose
second component is halt. This concludes the proof of Theorem 2. �

4.3. Model checking can be reduced to satisfiability of LCPDL

In this subsection, we will show that the model-checking problem can be reduced to
the satisfiability checking of LCPDL. The models of a DataPDL formula are data-cylinders,
while that of LCPDL are finitely labeled cylinders. We will get rid of the register comparisons
in the logic, and this depends crucially on the loop construct of LCPDL. Further the
translation from DataPDL to LCPDL also depends on the distributed algorithm. In fact, it
relies on the runs of the distributed algorithm to track the flow of data values. Thanks to this
reduction, it follows from Theorem 2 that LCPDL satisfiability checking is also undecidable.

Data abstraction For a given distributed algorithm D, when we refer to DataPDL, we
actually mean DataPDL(PropsD,RegsD). Recall that the (extended) vocabulary Propstr

D
induced by D is Propstr

D = PropsD ∪
⋃
t∈∆ PropSetOf(t). As in Section 3, we now explain
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how to abstract away the data. We show how to inductively translate every DataPDL for-
mula Φ, ϕ, or π into a corresponding LCPDL(Propstr

D) formula Φ̃, ϕ̃, or π̃. This translation
depends on the distributed algorithm D.

The translation of sentences is trivial, we simply set ẼΦ = E Φ̃, ¬̃Φ = ¬Φ̃, and Φ̃1 ∧ Φ2 =
Φ̃1 ∧ Φ̃2. The translation π̃ of a path formula π is simply obtained by replacing tests {ϕ}?
by {ϕ̃}?. For atomic propositions of local formulas, we set ‡̃ = ‡ and p̃ = p. Boolean

connectives are unchanged, i.e., ¬̃ϕ = ¬ϕ̃ and ϕ̃1 ∧ ϕ2 = ϕ̃1 ∧ ϕ̃2. We also simply set

[̃π]ϕ = [π̃]ϕ̃. The interesting case is for data comparisons. Consider ˜〈π〉r 6= 〈π′〉r′ (the
equality case is simpler). To “prove” 〈π〉r 6= 〈π′〉r′ at a given position in a symbolic run, we
require that there are a π̃-path and a π̃′-path to coordinates x and x′, respectively, whose
registers r and r′ have different values. To guarantee the latter, the pids stored in r and r′

have to originate from distinct processes. Again, using converse, this can be expressed with
a loop as below:

˜〈π〉r = 〈π′〉r′ = loop(π̃ · (Ar)−1 · Ar′ · (π̃′)−1)

˜〈π〉r 6= 〈π′〉r′ = loop(π̃ · (Ar)−1 · (({¬‡}?←)+ + ({¬‡}?→)+ + {‡}?→+{¬‡}?) · Ar′ · (π̃′)−1)

Note that, Ar and Ar′ (cf. page 17) refer to register contents after updates, which reflects
the fact that DataPDL speaks about configurations.

Lemma 4. Let χ be a run of D. Recall that the symbolic run associated to χ is ζχ and the
associated data-cylinder is ξχ. Note that Pos(ζχ) = Pos(ξχ), which we denote by Pos(χ).
For all DataPDL sentences Φ, local formulas ϕ, path formulas π, and all x, y ∈ Pos(χ), we
have

ζχ |= Φ̃⇐⇒ ξχ |= Φ (4)

ζχ, x |= ϕ̃⇐⇒ ξχ, x |= ϕ (5)

ζχ, x, y |= π̃ ⇐⇒ ξχ, x, y |= π. (6)

Proof. The proof is by structural induction on the formulas. Notice that (4) follows
directly from (5). The atomic cases when ϕ = ‡, and π =→ or π = ↓ are trivial.

• Suppose ϕ = p ∈ P . By the definition of ξχ and ζχ, for all x ∈ Pos(χ), we have
ζχ, x |= p̃ = p ⇐⇒ ξχ, x |= p.

• The inductive steps for local formulas are obvious for negation, conjunction, and [π]ϕ.

• The inductive step for path formulas are also obvious for tests {ϕ}? and for all regular
operations π−1, π + π′, π · π′, and π∗.

• Suppose ϕ =
(
〈π1〉r1 6= 〈π2〉r2

)
. This is the most interesting case. For all x = (i, j) ∈

Pos(χ) we have

ζχ, x |= ˜〈π1〉r1 6= 〈π2〉r2
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⇐⇒ ζχ, x |= loop(π̃1 · (Ar1)−1 · (({¬‡}?←)+ + ({¬‡}?→)+ + {‡}?→+{¬‡}?) · Ar2 · (π̃2)−1)

⇐⇒ there are coordinates x1, x2, (i1, 0), (i2, 0) ∈ Pos(χ) such that:

1. ζχ, x, x1 |= π̃1 and ζχ, x, x2 |= π̃2

2. ζχ, (i1, 0), x1 |= Ar1 and ζχ, (i2, 0), x2 |= Ar2
3. ζχ, (i1, 0), (i2, 0) |= ({¬‡}?←)+ + ({¬‡}?→)+ + {‡}?→+{¬‡}?

⇐⇒ (by (6) and Lemma 2)
there are coordinates x1, x2, (i1, 0), (i2, 0) ∈ Pos(χ) such that:

1. ξχ, x, x1 |= π1 and ξχ, x, x2 |= π2

2. ξχ(i1, 0)(id) = ξχ(x1)(r1) and ξχ(i2, 0)(id) = ξχ(x2)(r2)

3. i1 6= i2

⇐⇒ ξχ, x |= 〈π1〉r1 6= 〈π2〉r2

• The case ϕ =
(
〈π1〉r1 = 〈π2〉r2

)
is almost identical. We just have to adapt 3. accord-

ingly.

This concludes the proof of Lemma 4. �

We say that two runs χ, χ′ of D are similar, denoted χ ∼ χ′ if they induce the same
symbolic run: ζχ = ζχ′ . This is an equivalence relation. Basically, two similar runs differ by
the pid assignments of the processes. We immediately deduce from Lemma 4 the following
closure properties.

Corollary 1. Let χ, χ′ be two similar runs of D. Then, for all DataPDL sentences Φ, local
formulas ϕ, path formulas π, and all x, y ∈ Pos(χ), we have

ξχ |= Φ⇐⇒ ξχ′ |= Φ

ξχ, x |= ϕ⇐⇒ ξχ′ , x |= ϕ

ξχ, x, y |= π ⇐⇒ ξχ′ , x, y |= π

Completing the reduction In Section 3, we showed how to translate a distributed al-
gorithm into LCPDL. In the previous subsection, we showed how to translate a DataPDL
specification into LCPDL. We will now combine these two results and reduce model checking
of a distributed algorithm to (non-)satisfiability of a single LCPDL formula. More precisely,
we reduce model checking to non-satisfiability of the conjunction of two LCPDL formulas
of polynomial size: the formula representing the algorithm, and the negation of the formula
representing the specification.

Lemma 5. Let D be a distributed algorithm and let Φ ∈ DataPDL(PropsD,RegsD) be a
sentence. We have

D |= Φ ⇐⇒ L(ΨD ∧ ¬Φ̃) = ∅ .
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Proof. (⇒): Suppose D |= Φ. Let ζ ∈ L(ΨD). By Theorem 1, there is a run χ of D such
that ζχ = ζ. Moreover, since D |= Φ, for all runs χ of D, we have ξχ |= Φ. By Lemma 4, we

have, for all runs χ of D, ζχ |= Φ̃. We conclude L(ΨD ∧ ¬Φ̃) = ∅.
(⇐): Suppose D 6|= Φ. Then, there are a ring R, and an R-run χ of D such that ξχ 6|= Φ.

By Lemma 4, ζχ 6|= Φ̃ and, therefore, ζχ |= ¬Φ̃. Due to Theorem 1, we also have ζχ |= ΨD.

We conclude L(ΨD ∧ ¬Φ̃) 6= ∅. �

4.4. Extension with inequalities

Now, we will show that the results above all hold for an extended version of the logic.
More precisely, we consider an extension of DataPDL with modalities for checking inequality
between registers. We define the model-checking problem as before, but the specification
can be from the extended logic. We show that the model checking problem against the richer
specification can also be reduced to satisfiability of LCPDL.

In some cases, the specification might need to compare data values that are stored in
registers wrt. the total order. For instance, the specification of the leader-election algorithm
may require that the process with the highest pid is elected. Moreover, a specification for
a sorting algorithm clearly should compare data values wrt. <. Thus, we will extend the
comparisons 〈π〉r ./ 〈π′〉r′ by allowing ./ ∈ {<,≤}. But we have to be a bit careful since
the closure properties of Corollary 1 do not hold in general with this extension. Indeed,
let χ, χ′ be two similar runs (i.e., ζχ = ζχ′). We may have ξχ(0, 0)(r) < ξχ(1, 0)(r) but
ξχ′(0, 0)(r) > ξχ′(1, 0)(r) depending on the pid assignment in the ring. Therefore, the
formula 〈ε〉r < 〈→〉r is not invariant under similar runs. Our extension of DataPDL is
defined as follows.

Definition 3. The logic DataPDL⊕(Props,Regs), which is parameterized by finite sets
Props and Regs, is given by the following grammar:

Φ,Φ′ ::= Aφ | Φ ∧ Φ′

φ, φ′ ::= ϕ | φ ∧ φ′ | ϕ ∨ φ | [π]φ | 〈η〉r ./′ 〈η′〉r′

ϕ, ϕ′ ::= ‡ | p | ¬ϕ | ϕ ∧ ϕ′ | [π]ϕ | 〈π〉r ./ 〈π′〉r′

π, π′ ::= {ϕ}? | → | ↓ | π + π′ | π · π′ | π∗ | π−1

η, η′ ::= {ϕ}? | ← | → | ↓ | ↑ | η · η′ | Fηϕ

where p ∈ Props, r, r′ ∈ Regs, ./ ∈ {=, 6=}, and ./′ ∈ {<,≤}. The macro Fηϕ stands for
({¬ϕ}? · η)∗ · {ϕ}?. It moves to the very next position where ϕ holds using steps defined by
the path formula η. C

In the following, when Props and Regs are clear from the context or not important,
we just write DataPDL⊕.

Notice that we have no negations or disjunctions at the level of sentences Φ. Also, we have
no negations on local formulas φ. So we include disjunction, but one of its arguments should
be a local formula from DataPDL. In fact, there is a subtle point concerning disjunction. In
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the following, let us write r < r′ instead of 〈ε〉r < 〈ε〉r′. Satisfaction of a formula r < r′ can
only be guaranteed in a symbolic execution if the flow of pids provides evidence that r < r′

really holds. More concretely, the (hypothetic) formula (r < r′) ∨ (r = r′) ∨ (r′ < r) is a
tautology, but it may not be possible to prove any of its disjuncts on the basis of a symbolic
run.

Also, the path formulas η, η′ used for data inequalities are syntactically restricted to
unambiguous path formulas. It can be easily checked that, for all rings R, R-runs χ of D,
and positions x ∈ Pos(χ), there is at most one x′ ∈ Pos(χ) such that ξχ, x, x

′ |= η. Notice
that union (+) and arbitrary stars (∗) are not allowed since they may introduce ambiguous
path formulas such as ←+→ and →∗.

Example 5. Notice that the path formula πfound = F→found of Example 4 is unambiguous.

Hence, the local formula φmax = [→∗]
(
〈ε〉id ≤ 〈πfound〉r

)
is in DataPDL⊕. So we can

strengthen the specification of a leader election algorithm by requiring that the process
with the highest pid is elected:

Φ′1 = A
(
(‡ ∧ ϕacc) =⇒ (ϕfound ∧ ϕr=r ∧ φmax)

)
The next example formulates the correctness constraint for a distributed sorting algorithm
(cf. Example 3). We would like to say that, when the algorithm terminates (leader is in
state/satisfies proposition `4), the pids stored in registers r are strictly totally ordered.
Then,

Φ2 = A
(
`4 =⇒ [→∗{¬`4}?](〈←〉r < 〈ε〉r)

)
makes sure that, whenever process j is not terminating in `4, its left neighbor i stores a
smaller pid in r than j does. Note that Φ′1 and Φ2 are DataPDL⊕ formulas. C

Our goal now is to show that Lemma 5 can be lifted to DataPDL⊕ as well. Towards
this, we lift the model-checking problem and the data abstraction to the new setting:

Input: A distributed algorithm D, a sentence Φ ∈ DataPDL⊕(PropsD,RegsD)
Question: Is it the case that D |= Φ?

We extend the data abstraction to DataPDL⊕ and augment the translation defined in
Section 4.3 as follows:

ϕ̃ ∨ φ = ϕ̃ ∨ φ̃
˜〈η〉r < 〈η′〉r′ = loop(η̃ · (Ar)−1 · π< · Ar′ · (η̃′)−1)

˜〈η〉r ≤ 〈η′〉r′ = loop(η̃ · (Ar)−1 · (π< + ε) · Ar′ · (η̃′)−1)

Lemma 6. For all runs χ of D, all DataPDL⊕ sentences Φ, local formulas φ, path formulas
π, and all x, y ∈ Pos(χ), we have

ζχ |= Φ̃⇐⇒ ∀χ′ ∼ χ : ξχ′ |= Φ (7)

ζχ, x |= φ̃⇐⇒ ∀χ′ ∼ χ : ξχ′ , x |= φ (8)

ζχ, x, y |= π̃ ⇐⇒ ∀χ′ ∼ χ : ξχ′ , x, y |= π . (9)
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Proof. We fix a run χ of D. The proof is by structural induction. First, we deduce from
Lemma 4 and Corollary 1 that property (8) holds for local formulas φ = ϕ ∈ DataPDL. We
deduce also that (9) holds for all path formulas π in DataPDL. This applies in particular
to unambiguous path formulas π = η. Notice also that (7) follows easily from (8).

We consider now the new cases of DataPDL⊕.

• Consider the formula ϕ∨φ with ϕ in DataPDL and φ in DataPDL⊕. Let x ∈ Pos(χ).

ζχ, x |= ϕ̃ ∨ φ = ϕ̃ ∨ φ̃ ⇐⇒ ζχ, x |= ϕ̃ or ζχ, x |= φ̃
(5,8)⇐⇒ (ξχ, x |= ϕ) or (ξχ′ , x |= φ for all runs χ′ ∼ χ)
Cor. 1⇐⇒ ξχ′ , x |= ϕ ∨ φ for all runs χ′ ∼ χ .

Notice that we use the closure property of Corollary 1 for the last equivalence. One
direction is easy. Conversely, assume that ξχ′ , x |= ϕ ∨ φ for all runs χ′ ∼ χ. Then,
either ξχ, x |= ϕ and we are done. Or, by Corollary 1, we know that ξχ′ , x 6|= ϕ for all
χ′ ∼ χ. We deduce that ξχ′ , x |= φ for all runs χ′ ∼ χ.

• Suppose φ = φ1 ∧ φ2. For all x ∈ Pos(χ), we have

ζχ, x |= φ̃1 ∧ φ2 = φ̃1 ∧ φ̃2 ⇐⇒ ζχ, x |= φ̃1 and ζχ, x |= φ̃2

(8)⇐⇒ (∀χ′ ∼ χ : ξχ′ , x |= φ1) and (∀χ′ ∼ χ : ξχ′ , x |= φ2)

⇐⇒ ∀χ′ ∼ χ : ξχ′ , x |= φ1 ∧ φ2 .

• Consider the formula [π]φ. For all x ∈ Pos(χ), we have

ζχ, x |= [̃π]φ = [π̃]φ̃ ⇐⇒ ∀y ∈ Pos(χ) : ζχ, x, y |= π̃ =⇒ ζχ, y |= φ̃
(8)⇐⇒ ∀y ∈ Pos(χ), ∀χ′ ∼ χ : ζχ, x, y |= π̃ =⇒ ξχ′ , y |= φ
(9)⇐⇒ ∀χ′ ∼ χ, ∀y ∈ Pos(χ) : ξχ′ , x, y |= π =⇒ ξχ′ , y |= φ

⇐⇒ ∀χ′ ∼ χ : ξχ′ , x |= [π]φ

• Suppose φ = 〈η1〉r1 ≤ 〈η2〉r2. Let x ∈ Pos(χ). We have

ζχ, x |= ˜〈η1〉r1 ≤ 〈η2〉r2 = loop(η̃1 · (Ar1)−1 · (π< + ε) · Ar2 · (η̃2)−1)

⇐⇒ ∃x1, x2, (i1, 0), (i2, 0) ∈ Pos(χ) such that:

1. ζχ, x, x1 |= η̃1 and ζχ, x, x2 ∈ η̃2

2. ζχ, (i1, 0), x1 |= Ar1 and ζχ, (i2, 0), x2 |= Ar2
3. i1 = i2 or ζχ, (i1, 0), (i2, 0) |= π<

⇐⇒ (by (9), Lemma 2, and Lemma 3)

∃x1, x2, (i1, 0), (i2, 0) ∈ Pos(χ) such that:

1. ∀χ′ ∼ χ : ξχ′ , x, x1 |= η1 and ξχ′ , x, x2 |= η2

2. ∀χ′ ∼ χ : ξχ′(i1, 0)(id) = ξχ′(x1)(r1) and ξχ′(i2, 0)(id) = ξχ′(x2)(r2)

3. i1 = i2 or ∀χ′ ∼ χ : ξχ′(i1, 0)(id) < ξχ′(i2, 0)(id)
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⇐⇒ ∃x1, x2, (i1, 0), (i2, 0) ∈ Pos(χ) such that ∀χ′ ∼ χ :

1. ξχ′ , x, x1 |= η1 and ξχ′ , x, x2 |= η2

2. ξχ′(i1, 0)(id) = ξχ′(x1)(r1) and ξχ′(i2, 0)(id) = ξχ′(x2)(r2)

3. ξχ′(i1, 0)(id) ≤ ξχ′(i2, 0)(id)

(∗)⇐⇒ ∀χ′ ∼ χ : ∃x1, x2, (i1, 0), (i2, 0) ∈ Pos(χ) such that:

1. ξχ′ , x, x1 |= η1 and ξχ′ , x, x2 |= η2

2. ξχ′(i1, 0)(id) = ξχ′(x1)(r1) and ξχ′(i2, 0)(id) = ξχ′(x2)(r2)

3. ξχ′(i1, 0)(id) ≤ ξχ′(i2, 0)(id)

⇐⇒ ∀χ′ ∼ χ : ξχ′ , x |= 〈η1〉r1 ≤ 〈η2〉r2

(∗) For the right to left direction, we may exchange the quantifications ∀∃ to ∃∀ since
the coordinates x1, x2 are uniquely determined by the run χ, the starting position x and
the unambiguous paths η1, η2. In turn, the indices i1, i2 are also uniquely determined
by the run χ, the registers r1, r2, and the positions x1, x2.

• The case ϕ = 〈η1〉r1 < 〈η2〉r2 is simpler than the previous one. We just have to adapt
3. accordingly.

This concludes the proof of Lemma 6. �

We are now ready to state the variant of Lemma 5 for DataPDL⊕:

Lemma 7. Let D be a distributed algorithm and let Φ ∈ DataPDL⊕(PropsD,RegsD) be a
sentence. We have

D |= Φ ⇐⇒ L(ΨD ∧ ¬Φ̃) = ∅ .

Proof. (⇒): Suppose D |= Φ. Let ζ ∈ L(ΨD). By Theorem 1, there is a run χ of D such
that ζχ = ζ. Moreover, since D |= Φ, for all runs χ of D, we have ξχ |= Φ. By Lemma 6, we

have, for all runs χ of D, ζχ |= Φ̃. We conclude L(ΨD ∧ ¬Φ̃) = ∅.

(⇐): Suppose D 6|= Φ. Then, there are a ring R and an R-run χ of D such that ξχ 6|= Φ. By

Lemma 6, ζχ 6|= Φ̃ and, therefore, ζχ |= ¬Φ̃. Due to Theorem 1, we also have ζχ |= ΨD. We

conclude L(ΨD ∧ ¬Φ̃) 6= ∅. �

5. (Round-Bounded) Model Checking

In the realm of multithreaded concurrent programs, where model checking is undecidable
in general, a fruitful approach has been to underapproximate the behavior of a system [36].
The idea is to introduce a parameter that measures a characteristic of a run such as the
number of thread switches it performs. One then imposes a bound on this parameter and
explores all behaviors up to that bound. In numerous distributed algorithms, the number
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B of rounds needed to conclude is exponentially smaller than the number of processes
(cf. Example 1). Therefore, B seems to be a promising parameter for bounded model
checking of distributed algorithms.

For a distributed algorithm D, a sentence Φ ∈ DataPDL⊕(PropsD,RegsD), and B ≥ 1,
we write D |=B Φ if, for all rings R, and all R-runs χ of length k ≤ B, we have ξχ |= Φ.

Theorem 3. The following problem is PSPACE-complete: Given a distributed algorithm
D, a sentence Φ ∈ DataPDL⊕(PropsD,RegsD), and a natural number B ≥ 1 (encoded in
unary), do we have D |=B Φ ?

Proof (of lower bound). To prove the lower bound, we give a polynomial reduction
from the intersection-emptiness problem of finite-state automata. That is, given k finite-
state automata A1, . . . ,Ak over a finite alphabet Σ, where Ai = (Qi,∆i, initi,Fi), to decide
whether

⋂
i L(Ai) = ∅. This problem is known to be PSPACE-complete [31].

We will need only unidirectional rings for our reduction. The number of processes in the
ring corresponds to the length of a candidate word accepted by all the automata Ai. Each
process thus corresponds to a position in the word. The local state of the process remembers
the letter from Σ at the respective position. The message contents will be the states of the
automata. At round i, all the processes try to simulate a transition of automaton Ai on the
respective position. Thus the local states will be (Σ∪ {$})× [k] and the set of messages (of
arity 0) will be

⋃
iQi.

A process non-deterministically moves to a local state from the set (Σ∪{$})×{0}. The
special symbol $ marks that a candidate word may start at the right of this process and end
at the left of this process. The local state may also remember an index 0 < i < k, indicating
that the next round will simulate Ai+1. For each a ∈ Σ and 0 < i ≤ k, if (s, a, s′) ∈ ∆i we
have a transition of the form 〈(a, i− 1): right!s′ ; left?s ; goto (a, i)〉. Further, if fi ∈ Fi we
have 〈($, i − 1): right!initi ; left?fi ; goto ($, i)〉. Notice that the symbol from Σ associated
to a process does not change in any of these transitions.

The size of the distributed algorithm D is polynomial in the size of the input to the
intersection-emptiness problem. The number of rounds needed is only k.

Finally, the DataPDL formula states that the state ($, k) cannot be reached:

Φ = A¬($, k)

Notice that, if the bounded model checking answers no, then there are a ring and a run
such that some process m eventually reaches the state ($, k). This means that, on all states
($, i− 1), m has received a state fi ∈ Fi. Let m′ be the first process on the left of m which
has a state of the form ($, i− 1). Note that m′ can be the same as m. The word represented
by the states of the processes between m′ and m is in

⋂
i L(Ai). Note that, even if this is

the empty word (that is, m′ is the left neighbor of m), it must be in the intersection since
initi ∈ Fi for every automaton Ai. On the other hand, if the intersection is nonempty, there
is a run that violates the specification.

Thus, the bounded model checking of D answers yes if, and only if, the intersection of
the L(Ai) is empty. This proves the PSPACE lower bound. �
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Currently, we do not know what happens when the number B is encoded in binary.
Before we prove the upper bound, let us discuss the result in more detail. We will first
compare it with “näıve” approaches to solve related questions. Consider the problem to
determine whether a distributed algorithm satisfies its specification for all rings up to size
n and all runs up to length B. This problem is in coNP: We guess a ring (i.e., essentially, a
permutation of pids) and a run, and we check, using [32], whether the run does not satisfy
the formula. Next, suppose only B is given and the question is whether, for all rings up to
size 2B and all runs up to length B, the property holds. Then, the above procedure gives
us a coNEXPTIME algorithm.

Thus, our result is interesting complexity-wise. Moreover it offers some other advantages.
First, it actually checks correctness (up to round number B) for all rings. This is essential
when verifying distributed protocols against safety properties. Second, it reduces to satisfi-
ability checking of LCPDL formulas [26], which in turn can be reduced to non-emptiness of
alternating two-way automata (A2As) over words [41, 34, 38]. The “näıve” approaches, on
the other hand, do not seem to give rise to viable algorithms.

Proof (of Upper Bound of Theorem 3). We show the upper bound by a series of
polynomial reductions. First, we will reduce (cf. Lemma 8) round-bounded model checking
to satisfiability checking of LCPDL over height-bounded cylinders. We will then reduce (cf.
Lemma 9) the latter problem to satisfiability checking of LCPDL over words, which can
in turn be reduced (cf. Lemmas 11 and 10) to emptiness checking of alternating two-way
automata over words, which is in PSPACE.

For an LCPDL sentence Ψ and B ≥ 1, we denote by LB(Ψ) the set of (n, k)-cylinders
ζ ∈ L(Ψ) such that k ≤ B and n is arbitrary.

Lemma 8. Let D be a distributed algorithm, Φ ∈ DataPDL⊕(PropsD,RegsD) be a sen-
tence, and B ≥ 1. We have

D |=B Φ ⇐⇒ LB(ΨD ∧ ¬Φ̃) = ∅ .

The size of ΨD is only polynomial in the size of D and that of ¬Φ̃ is only O(|Φ| × |D|).

Further, the formulas ΨD and ¬Φ̃ can be constructed in polynomial time.

Proof. The proof proceeds in exactly the same way as for Lemma 7, restricting the height
of a cylinder and length of a run by the given bound B. �

Now, we will show that satisfiability checking of LCPDL over height-bounded cylinders
can be reduced, in polynomial time, to satisfiability checking of LCPDL over words. In fact,
a sentence from LCPDL(Props) can be interpreted over nonempty words w ∈ (2Props)+ or
w ∈ Props+ in a straightforward manner. A local formula is interpreted wrt. a position of
w. Moreover, → moves to the next word position. However, → cannot be applied on the
last position of w, and ← cannot be applied on its first position. Finally, ↓ is meaningless
(i.e., it cannot be applied at all).

An (n× k)-cylinder is called B-bounded if k ≤ B.
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Lemma 9. Let Props be a finite set. For every sentence Ψ ∈ LCPDL(Props) over cylin-
ders over Props and every B ≥ 1, we can construct a sentence ΨB ∈ LCPDL(Props ]
{#}) such that Ψ is satisfiable over B-bounded cylinders iff ΨB is satisfiable over words in
(2Props]{#})+. Further, |ΨB| is bounded by a polynomial in |Ψ|.

Proof. Let ζ : Zn × [k] → 2Props be an (n × k)-cylinder for some k ≤ B. We encode ζ as
the word wζ ∈ (2Props]{#})+ given as:

#ζ(0, 0)ζ(0, 1) . . . ζ(0, k)#ζ(1, 0)ζ(1, 1) . . . ζ(1, k)# . . .#ζ(n− 1, 0)ζ(n− 1, 1) . . . ζ(n− 1, k)#

Here, # acts as a delimiter for columns, which never appears along with another proposition
(note that we simply write # instead of {#}). Thus, the columns are written horizontally
rather than vertically. We write down the columns successively, starting from column 0.

We translate an LCPDL formula over cylinders of height k into an LCPDL formula over
their word encodings. Going down corresponds to going right without reaching the end-
marker #: ↓ is translated to →{¬#}?. Moreover, going to the right in the cylinder is same
as going k+2 steps to the right in the word, provided we are not at column n−1 (for right).
At the column n− 1, we go right as much as possible (say m steps), and take the remaining
k + 2−m steps from the beginning of the word. Thus → gets translated to

→k+2 + +m:0<m<k+2 →m · {¬〈→〉}? · ←∗ · {¬〈←〉}? · →k+2−m

The formula ‡ is true only in column 0 which corresponds to the first block between #.
Hence ‡ gets translated to 〈({¬#}? · ←)∗ · {# ∧ ¬〈←〉}?〉. We add a formula ϕk checking
that between two consecutive # there are k + 1 positions (which are not labeled #). That
is, ϕk checks that each column has length k + 1.

Let Ψk be the translation we obtained as above for the sentence Ψ when restricted to
cylinders of height k. The required ΨB is

∨
k≤B Ψk. �

Now, we have a polynomial sized formula in LCPDL(Props]{#}) over words. However,
the models of this formula are words over the alphabet 2Props]{#}. For the PSPACE upper
bound that we are aiming at, it is convenient to get rid of this exponential blow-up in the
alphabet.

Lemma 10. Let Props be a finite set. For every sentence Ψ ∈ LCPDL(Props) over words

in (2Props)+, we can construct a sentence Ψ̂ ∈ LCPDL({0, 1, 2}) over words in {0, 1, 2}+ such

that Ψ is satisfiable iff Ψ̂ is satisfiable. Further, |Ψ̂| = O(|Ψ| × |Props|).

Proof. Let Props = {p1, p2, . . . , pm}. That is, |Props| = m, and p1, p2, . . . , pm is an
enumeration of the propositions. Let σ ⊆ 2Props be an assignment of the propositions. We
encode σ by a bit vector σ̂ ∈ {0, 1}m of length m. The ith bit of σ̂ is 1 iff pi ∈ σ. We use
the letter 2 as a delimiter to separate the bit-vectors in the encoding.

Let w = σ1σ2 . . . σn ∈ (2Props)+. We encode w as the word

ŵ = 2 · σ̂1 · 2 · σ̂2 · 2 · · · 2 · σ̂n ∈ {0, 1, 2}+
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of length |w| × (1 +m).

In the translation from LCPDL(Props) we “relativize” to the positions labeled 2. In Ψ̂,
we reason about letters rather than propositions, but the semantics is exactly as if 0, 1 and
2 were propositions.

We can write an LCPDL({0, 1, 2}) sentence to ensure that a word is contained in ({2} ·
{0, 1}m)+. Further, we ensure that translations of node formulas are evaluated at positions

labeled 2. Eψ gets translated to E(2 ∧ ψ̂), where ψ̂ is the translation of ψ. Further, the
atomic formula pi gets translated to 〈→i〉1. The atomic path formula → gets translated to
→m+1. The translations for the other formulas/path expressions are as expected. �

Now we will show that we can construct an alternating two-way (word) automaton of
polynomial size corresponding to an LCPDL formula over words such that the former is
nonempty iff the latter is satisfiable.

Lemma 11. Given a sentence Ψ ∈ LCPDL(Γ) over words in Γ+, we can construct, in
polynomial time, an alternating two-way automaton AΨ such that L(AΨ) = L(Ψ) (where
L(Ψ) denotes the set of words over Γ+ that are a model of Ψ). Further, the number of states
of AΨ is only polynomial in |Ψ|, and the number of transitions is polynomial in |Ψ| and |Γ|.

Proof (sketch). The construction of the alternating two-way automaton is rather stan-
dard. Essentially, the states of the alternating two-way automaton are subformulas of Ψ.
The transition function δ of the automaton maps a state and an input letter to a positive
boolean combination of States×{−1, 0, 1}, where −1 means moving to the left on the word,
0 means staying at the current position of the word, and 1 means moving to the right on
the word. The initial state is the sentence Ψ and the accepting states are the formula true.

For a sentence Eψ, the automaton non-deterministically moves forward or decides to
launch the sub-automaton for ψ. For the other formulas, we proceed inductively. If the
state (i.e., the current subformula) is a letter a, the transitions ensure that the current letter
is a: δ(a, a) = true and δ(a, b) = false, if b 6= a. For conjuction, we have δ(ψ1 ∧ ψ2, a) =
(ψ1, 0) ∧ (ψ2, 0). For negation ¬ψ, we take the complement of the alternating automaton
for ψ. Notice that the complementing an alternating two-way automaton just amounts to
taking the dual of the transitions: conjunction replaced by disjunction and vice-versa, and
true replaced with false and vice-versa (in fact, it is slightly more complicated than that
when path expressions come into play, cf. below). Thus, it does not cause any blow-up in
the number of states or size of transitions.

We will now explain the path expressions, before dealing with 〈π〉ψ and loop(π). A path
expression is a rational expression over← and→, and it may have test formulas {ψ}? in addi-
tion. By following the standard algorithms for rational expression to automata translations,
for each path expression π, we get a polynomial-sized automaton Aπ = (Sπ, δπ, initπ, Fπ)
whose transitions are labeled with ←, →, or {ψ}? subformulas. The alternating two-way
automaton simulates a path expression by tracing a successful run of the automaton Aπ.
Thus, the states of the alternating two-way automaton also include the states of the au-
tomaton Aπ. We may assume that the states of Aπ and Aπ′ are disjoint if π 6= π′. In our
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alternating two-way automaton, we have the following transitions: δ(s, a) contains (s′,−1)
as a disjunct if (s,←, s′) ∈ δπ. Similarly δ(s, a) contains (s′, 1) as a disjunct if (s,→, s′) ∈ δπ.
Further, δ(s, a) contains (ψ, 0) ∧ (s′, 0) as a disjunct if (s, {ψ}?, s′) ∈ Aπ. Finally, δ(s, a)
contains true as a disjunct if s is a final state of Aπ.

Now, we can give the transition for 〈π〉true. Note that this case is not restrictive since
〈π〉ψ ≡ 〈π · {ψ}?〉true. We have δ(〈π〉true, a) = (initπ, 0) where initπ is the initial state of
the automaton Aπ.

Next, we look at loop(π). Again, we consider the polynomial-sized automaton Aπ. Fol-
lowing the construction of [26], we will track two states of the automaton Aπ — one from the
beginning and one from the end. Intuitively, if there is a loop on π, then π = π1 ·π2 such that
we reach the same node by π1 and π−1

2 , and moreover, the real moves in the word (← and→)
can be taken synchronously. Thus, δ(loop(π), a) =

∨
f∈Fπ((initπ, f), 0). Further, δ((s, t), a)

contains (ψ, 0) ∧ (s′, t, 0) as a disjunct if (s, {ψ}?, s′) ∈ Aπ. Symmetrically, δ((s, t), a) con-
tains (ψ, 0) ∧ (s, t′, 0) as a disjunct if (t′, {ψ}?, t) ∈ Aπ. Further, δ((s, t), a) contains the
disjunct (s′, t′, 1) if (s,→, s′) ∈ Aπ and (t′,←, t) ∈ Aπ. Symmetrically, δ((s, t), a) contains
the disjunct (s′, t′,−1) if (s,←, s′) ∈ Aπ and (t′,→, t) ∈ Aπ. Finally, δ((s, s), a) contains
true as a disjunct.

The above outlined construction suffices if we had to deal with only finite runs. Notice
that, even though the language of such an alternating two automaton consists of finite
words, it may have infinite runs since it is two-way. Hence, we have to resort to stronger
acceptance conditions, such as parity, for the sake of infinite runs. However, even in this
case, complementation does not cause any blow-up. �

Fact 1. [38, 34] Non-emptiness of alternating two-way word automata is in PSPACE.

From Lemma 10, Lemma 11, and Fact 1 we get:

Theorem 4. The following problem is PSPACE-complete:
Input: A finite set Props and a sentence Ψ ∈ LCPDL(Props)
Question: Is there a word from (2Props)+ that is a model of Ψ ?

Hardness follows from the PSPACE hardness of satisfiability for LTL and the fact that
LTL formulas can be linearly encoded in PDL. Using Lemma 9 and Theorem 4 we get:

Theorem 5. The following problem is PSPACE-complete:
Input: A finite set Props, a sentence Ψ ∈ LCPDL(Props), and B ≥ 1 encoded in unary
Question: Is there a B-bounded cylinder over Props that is a model of Φ ?

6. Conclusion

In this paper, we provided a conceptually new approach to the verification of distributed
algorithms.

Actually, we made some assumptions that simplify the presentation, but are not crucial
to the approach and results. For example, we assumed that an algorithm is synchronous,
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i.e., there is a global clock that, at every clock tick, triggers a round, in which every process
participates. This can be relaxed to handle communication via (bounded) channels. Though
the restriction to the class of rings is crucial for the complexity of our algorithm, the logical
framework we developed is largely independent of concrete (ring) architectures. Essentially,
we could choose any class of architectures for which LCPDL is decidable.

We leave open whether round-bounded model checking can deal with a more general
logic that does not restrict <-tests.

Another ambitious goal would be to find automata-theoretic proof techniques that would
allow us to relax the strict bound on the number of rounds (e.g., in terms of a restriction
that varies wrt. the number of processes).

Finally, it would be worthwhile to explore in how far our approach is practical and
allows one to verify little protocols such as the leader election algorithm given in the paper.
Unfortunately, there do not seem to be tools that could deal with LCPDL or alternating
automata on words. One may, however, employ tools for MSO logic though its complexity
is a priori much worse [28].

References

[1] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for infinite-state
systems. In Proceedings of LICS’96, pages 313–321. IEEE Computer Society Press, 1996.

[2] P. A. Abdulla and G. Delzanno. Parameterized verification. Int. J. Softw. Tools Technol. Transf.,
18(5):469–473, October 2016.
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