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Abstract We are interested in modeling behaviors and verifying properties of systems in
which time and concurrency play a crucial role. We introduce a model of distributed au-
tomata which are equipped with event clocks as in [3], which we call Event Clock Message
Passing Automata (ECMPA). To describe the behaviors of such systems we use timed partial
orders (modeled as message sequence charts with timing).

Our first goal is to extend the classical Büchi-Elgot-Trakhtenbrot equivalence to the
timed and distributed setting, by showing an equivalence between ECMPA and a timed ex-
tension of monadic second-order (MSO) logic. We obtain such a constructive equivalence in
two different ways: (1) by restricting the semantics by bounding the set of timed partial or-
ders (2) by restricting the timed MSO logic to its existential fragment. We next consider the
emptiness problem for ECMPA, which asks if a given ECMPA has some valid timed execu-
tion. In general this problem is undecidable and we show that by considering only bounded
timed executions, we can obtain decidability. We do this by constructing a timed automaton
which accepts all bounded timed executions of the ECMPA and checking emptiness of this
timed automaton.

Keywords Message Passing Automata · Timed automata ·MSO logic ·Message sequence
charts

1 Introduction

In today’s world, we encounter computational devices all around us. These devices do not act
in isolation but interact in increasingly complex ways. For example, Automatic Teller Ma-
chines (ATMs), online banking systems, car braking systems, railway gate controllers are all
composed of several components that communicate with each other over an extended period
of time. A common factor in many such systems is the interplay between concurrency and
timing. Concurrency plays an important role since systems usually consist of independent
components that interact periodically to coordinate their behaviour. Timing considerations
play an important role in describing how these interactions proceed.
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Our goal is to use formal methods to reason about systems where time and concurrency
play a significant role. The first challenge is to choose a suitable formalism that admits au-
tomated analysis. For instance, if a system exhibits regular, finite-state behaviour, we can
use model checking to efficiently explore the state space and determine various behavioural
properties. Finite-state automata provide an intuitively appealing machine model for gener-
ating regular behaviours in this setting. The regular behaviours can be represented as a set
of words over an alphabet. Monadic second order logic is an elegant language to describe
abstract properties of sets of words. The Büchi-Elgot-Trakhtenbrot Theorem [10,16] links
the two formalisms: a behaviour can be described by a finite-state automaton if and only if it
can be expressed in monadic second order logic. This correspondence is effective and forms
the basis for model checking behavioural properties of finite-state systems. We would like
to lift this approach to the timed and distributed setting.

In the timed but sequential setting, event clock automata are a well-known formalism,
which have nice properties and describe timed behaviors as timed words. An event clock
automaton uses implicit “event clocks” that record or predict time lapses with respect to the
last or the next occurrence of an event. In [14], it was proved that a timed language, i.e.,
a set of timed words, can be recognized by an event clock automaton if and only if it can
be defined in a timed version of MSO logic. On the other hand, in the concurrent setting,
message passing automata (MPA) form a natural machine model for distributed systems.
MPA comprise of several finite state automata communicating via fifo channels and their
runs can be described as Message sequence charts, which are labelled partial orders (over
a labeling alphabet of sends and receives). In this case, it was proved in [19,17] that with
different restrictions on the MSC languages (which will be made precise later), such an
MSC can be described by a MPA if and only if it can be expressed in a MSO logic over
MSCs. In [7], this result was proved without any restriction on the language of MSCs by
considering only the existential fragment of the MSO logic.

In this work, we unify the above approaches by defining a machine model for timed and
concurrent systems, namely the Event clock message passing automata (event clock MPA).
Event clock MPA are message passing automata which are equipped with event clocks (as
in the event clock automaton in the sequential timed setting) to reason about timed and
concurrent behavior. To describe the behavior of such automata, we generalize MSCs to
their timed extension, which we do in two ways. We first consider timed MSCs which are
just MSCs with time-stamps at events (as in timed words). These are ideal to describe real-
time system executions, while keeping the causal relation between events explicit. Next, we
consider MSCs with timing constraints or time-constrained MSCs, where we associate time-
intervals to some pairs of events (instead of attaching time-stamps to individual events). The
endpoints of the interval give us the upper and lower bounds on the time allowed to elapse
between the events.

Results on Event Clock Message Passing Automata: Our first result is to lift the Büchi-Elgot
equivalence [10,16] to the timed and distributed setting. For the logical framework, we use a
timed version of MSO logic. We interpret both event clock MPAs and timed MSO formulae
over timed MSCs and prove a constructive equivalence between them, with and without
restriction on the MSC languages. Thus, we provide a logical characterization for event
clock MPA. This is done by lifting the corresponding results from the untimed case [19,
17,7]. An important intermediary step in this translation is the reinterpretation of the timed
MSO and event clock MPA in terms of time-constrained MSCs rather than timed MSCs.
The time-constrained MSCs provide a dual link: they can be seen as MSCs whose labelings
are extended by timing information and they can also be seen as a representation of infinite
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sets of timed MSCs. Once this translation is done, we can essentially follow the technique
of [14] where such an equivalence is shown for (sequential) timed words.

Next, we consider the emptiness problem, which is one of the most basic verification
questions that one may wish to ask. In our setting, the emptiness problem for event clock
MPAs asks if a given event clock MPA has any run, i.e., a timed MSC which is accepted
by it. It can be easily seen that without any restriction on the timed MSCs, this problem is
undecidable, since this is already the case in the untimed setting. However we prove that
if we restrict to timed MSCs with at least one bounded linearization (i.e., in which any
send and its matching receive are apart by at most K events), then the emptiness problem
is decidable. Indeed, this condition is subsumed by one of restricted settings under which
we proved the above equivalence result. Therefore, as a corollary, we also obtain that the
satisfiability problem for our logic is decidable. Our approach to prove decidability consists
of constructing a global finite timed automaton that can simulate the runs of an event clock
MPA (which is a distributed machine) and so, reduce the problem to checking emptiness
for a timed automaton. The hard part of the construction lies in “cleverly” maintaining the
partial-order information (of the timed MSC) along the sequential runs of the global timed
automaton, while using only finitely many clocks.

Related work: Providing a timed partial order semantics as we have done above allows us to
apply partial order reduction techniques [18] to address the model-checking problem. But
indeed, there are several other models that also handle time and concurrency in a comparable
way. Many timed extensions of Petri nets have been considered, for instance, time Petri
nets [6], timed Petri nets [23]. Unfoldings of Petri nets provide a way to model the partial
order behaviour of these systems and by lifting these unfoldings to the timed extensions,
they provide a timed partial order semantics [12]. However, these unfoldings are seldom
graphically representable in a compact manner unlike MSCs (and their timed extensions).
Further, unfoldings in Petri nets correspond to “branching time” whereas MSCs express
“linear time” behaviour. Other models dealing with time and concurrency include networks
of timed automata [2] and products of timed automata [13]. In [8], unfolding techniques
were applied to study such networks of timed automata. However, none of these models
allow communication via explicit message passing, which is one of the main features of the
event clock MPA that we have introduced.

The formal semantics and analysis of timing in MSCs has been addressed earlier in [4,5,
11,20]. In [4] and [5], only single timed MSCs or high-level timed MSCs were considered,
while in [20] one of the first models of timed MPAs was introduced. However, the latter
do not consider MSCs as semantics but rather look at restricted channel architectures (e.g.,
one-channel systems) to transfer decidability of reachability problems from the untimed
to timed setting. The automaton model in [11] links the two approaches by considering a
similar automaton model with semantics in terms of timed MSCs and proposes a practical
solution to a very specific matching problem using the tool UPPAAL.

A preliminary version of the results in this paper was presented in [1].

2 Preliminaries

We denote by N = {0, 1, 2, . . .} the set of natural numbers. For an alphabet Σ, a Σ-labeled
poset is a structure (E,≤, λ) over Σ, where E is a set of events, ≤ is a partial order on
the set of events E called its ordering relation and λ : E → Σ is the labeling function.
A linearization of a Σ-labeled poset (E,≤, λ) is any Σ-labeled poset (E,≤′, λ) such that
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≤′ is a linear extension of ≤. Then, the set of events E = {e1, . . . , en} can be rewritten
as a sequence ei1 ≤

′ ei2 . . . ≤
′ ein s.t., λ(ei1) . . . λ(ein) ∈ Σ

∗. Thus, any linearization of
(E,≤, λ) can be identified with a unique word over Σ.

Message sequence charts (MSCs) Let Proc = {p, q, r, . . .} be a non-empty finite set of
processes (agents) that communicate through messages via reliable FIFO channels using
an alphabet of messages M. For p ∈ Proc, let Actp = {p!q(m), p?q(m) | q ∈ Proc, q 6=
p,m ∈ M} be the set of communication actions of process p . The action p!q(m) is read
as p sends the message m to q and the action p?q(m) is read as p receives the message m
from q. We set Act =

⋃
p∈Proc Actp. We also denote the set of channels by Ch = {(p, q) ∈

Proc×Proc | p 6= q}. For an action a ∈ Act , we will sometimes write a ∈ p!q (respectively,
a ∈ p?q) to denote a = p!q(m) (respectively, p?q(m)) for some m ∈M.

Let M = (E,≤, λ) be an Act-labeled partial order. For e ∈ E, let ↓e = {e′ ∈ E |
e′ ≤ e}. For X ⊆ E, let ↓X =

⋃
e∈X ↓e. We call X ⊆ E a prefix of M if X = ↓X. For

p ∈ Proc and a ∈ Act , we set Ep = {e ∈ E | λ(e) ∈ Actp} to be the set of all p-events
and Ea = {e ∈ E | λ(e) = a} to be the set of a-events. For each (p, q) ∈ Ch, we define
a relation <pq as follows, to capture the fact that channels are FIFO with respect to each
message—if e <pq e′, the message m read by q at e′ is the one sent by p at e.

e <pq e
′ if ∃m,λ(e) = p!q(m), λ(e′) = q?p(m) and |↓e ∩ Ep!q(m)| = |↓e′ ∩ Eq?p(m)|

Finally, for each p ∈ Proc, we define the relation ≤pp = (Ep × Ep) ∩ ≤, with <pp
standing for the largest irreflexive subset of≤pp. Also,<·pp denotes the immediate successor
relation on process p: for e, e′ ∈ Ep, e <·pp e′ if e <pp e′ and for all e′′ ∈ Ep, we have
e <pp e

′′ ≤pp e′ implies e′′ = e′.

Definition 2.1 A message sequence chart (MSC) over Act is a finite Act-labelled poset
M = (E,≤, λ) such that:

1. Each relation ≤pp is a total order on Ep. (1)

2. If p 6= q then for each m ∈M, |Ep!q(m)| = |Eq?p(m)| (2)

3. If e <pq e′, then |↓e ∩
( ⋃
m∈M

Ep!q(m)

)
| = |↓e′ ∩

( ⋃
m∈M

Eq?p(m)

)
| (3)

4. The partial order ≤ is the reflexive, transitive closure of
⋃

p,q∈Proc

<pq (4)

p q r
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′

1

e2

e
′

2
e3

e
′

3

m1

m2

m3

Fig. 1 An MSC

As each linearization of an MSC M = (E,≤, λ) over
Act corresponds to a word over Act , we will use these no-
tions interchangeably. Under the FIFO assumption an MSC
can be reconstructed, up to isomorphism, from any of its
linearizations. In diagrams, the events of an MSC are pre-
sented in visual order. Events of a process are arranged
in a vertical line and messages are displayed as horizontal
or downward-sloping directed edges. The adjoining Figure 1
shows an example of an MSC with three processes {p, q, r}
and six events {e1, e′1, e2, e′2, e3, e′3} corresponding to three
messages—m1 from p to q, m2 from q to r and m3 from p to r. Then, for instance,
p!q(m1) q?p(m1) q!r(m2) p!r(m3) r?q(m2) r?p(m3) is one linearization or execution of
this MSC seen as a word over Act .



5

User1 Rail Server User2

p q r

1, u1

3.5, u2

6, u3

a1, 1

2, a2

a3, 3.5

a4, 6

7, a5

8, a6

s1, 1

s2, 5

s3, 7

req
req

grant/book?

confirm

deny

req

T M1

User1 Rail Server User2

p q r

u1

u2

u3

a1

a2

a3

a4

a5

a6

s1

s2

s3

req
req

grant/book?

confirm

deny

req

[0,1]
[0,3]
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Fig. 2 (a) A timed MSC T and (b) a TCMSC M1 describing the interaction of two users with a server

An MSC language over Act is a set of MSCs over Act . An important subclass of MSCs
is the set of bounded MSCs that correspond to systems whose channel capacity is restricted.
These systems turn out to enjoy nice algorithmic properties and have liberal logical cor-
respondences too. Let B ∈ N>0 be a positive integer. Then, a word w ∈ Act∗ is said to
be B-bounded if for each prefix u of w and any p, q ∈ Proc, the number of occurrences
of p!q exceeds the number of occurrences of q?p by at most B. This means that along the
sequential execution of M described by w, no channel ever contains more than B-messages.

Definition 2.2 An MSC M is called universally B-bounded (or ∀-B-bounded) if every lin-
earization of M is B-bounded. It is said to be existentially B-bounded (or ∃-B-bounded) if
there exists a linearization which is B-bounded.

A set of MSCs is said to be ∃-B-bounded (respectively, ∀-B-bounded) if each MSC in
the set is ∃-B-bounded (respectively, ∀-B-bounded). Further such a set is called existentially
bounded (respectively, universally bounded) if there exists a B such that it is ∃-B-bounded
(respectively, ∀-B-bounded). As shown in [19], any regular MSC language (i.e., the set of
all possible linearizations is regular) is universally bounded.

3 Formalisms to describe timed and concurrent behaviours

The first natural attempt while trying to add timing information to MSCs would be to add
time stamps to the events of the MSCs. This is motivated from timed words where we have
words with time stamps added at each letter (action). This approach is quite realistic when
we want to model the real-time execution of concurrent systems.

Definition 3.1 A timed MSC (TMSC) over Act is a pair (M, t) where M = (E,≤, λ) is an
MSC over Act and t : E → R≥0 is a function such that if e ≤ e′ then t(e) ≤ t(e′) for all
e, e′ ∈ E. The set of all TMSCs over Act is denoted TMSC(Act).

In the above definition note that over events e, e′, ≤ is the partial order relating events,
while over reals t(e), t(e′), ≤ refers to the usual ordering between real numbers.

Example 3.1 Consider the TMSC T presented in Figure 2 which shows a scenario where
two user processes p and r interact with a railway ticket-booking server process q to book the
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last available ticket for a certain train journey. Actions are of the form p!q(req) meaning that
User1 sends the Server a request for a ticket. In the scenario shown, both users send booking
requests to the Server at time instant 1. The Server grants User1’s request since it is received
first. Then, User1 confirms his/her booking which leads to the server denying the booking to
User2. Meanwhile, User2 repeats her request at instant 5 which reaches the Server at time
8. An execution or linearization of this scenario is: (p!q(req), 1)(r!q(req), 1)(q?p(req), 1)
(q?r(req), 2)(q!p(grant), 3.5)(p?q(grant), 3.5)(r!p(req), 5)(p!q(conf ), 6)(q?p(conf ), 6)

(q!r(deny), 7)(r?q(deny), 7)(q?r(req), 8).

Note that in the above execution, the ordering on the time stamps is preserved, thus
making it a timed word over the alphabet of actions. Such an execution is called a timed
linearization of T . A single TMSC might have more than one timed linearization if con-
current events on different processes have the same time stamp. For instance, if we swap
the first two pairs in the above execution we obtain another execution which respects the
time stamps. Finally, observe that not all linearizations are timed linearizations as seen by
swapping the last two pairs in the above execution.

Formally, let T = (M, t) be a TMSC over Act with M = (E,≤, λ). Consider a lin-
earization (E,≤′, λ) of (E,≤, λ) according to which the events of E can be written as a
sequence e1 ≤′ e2 . . . ≤′ en. Then (E,≤′ λ, t) is said to be a linearization of TMSC T .
If in addition, for all 1 ≤ j < k ≤ n, we have t(ej) ≤ t(ek), then it is said to be a timed
linearization. Indeed, this can be seen as a timed word σ over Act by uniquely identify-
ing it with σ = (λ(e1), t(e1)) . . . (λ(en), (t(en))). We let TWAct denote the set of timed
words over Act and t-lin(T ) ⊆ TWAct denote the set of timed linearizations of a TMSC
T , seen as a timed word language over Act . As with untimed MSCs, a timed MSC can
be faithfully reconstructed from any of its timed linearizations under FIFO assumption on
channels. A TMSC language L over Act is a set of TMSCs over Act . Then, t-lin(L) is the
timed word language over Act consisting of all timed linearizations of TMSCs in L, i.e.,
t-lin(L) =

⋃
{t-lin(T ) | T ∈ L}.

Bounded channel setting As in the case of untimed MSCs, restricting the channel capacity
in TMSCs gives rise to an interesting, more “tractable” subclass of TMSCs. We extend the
definition of existential and universal bounds from MSCs to TMSCs.

Definition 3.2 A TMSC (M, t) is called untimed-existentially-B-bounded (∃u-B-bounded)
if the MSC M is ∃-B-bounded. Similarly (M, t) is untimed-universally-B-bounded (∀u-B-
bounded) if M is ∀-B-bounded.

p q

1, u1

2, u2
v1, 3

v2, 4

Fig. 3 TMSC T ′

Note that an existential untimed bound may not be achiev-
able by a timed linearization. For instance, consider the TMSC
T ′ in the adjoining figure. T ′ is ∃u-1-bounded as there exists a
linearization of the untimed MSC which is 1-bounded, namely,
u1v1u2v2. However, this does not correspond to a timed lin-
earization. In fact, the only timed linearization of T , namely
(u1, 1)(u2, 2)(v1, 3)(v2, 4), is 2-bounded.

Message sequence charts with timing constraints TMSCs (and in-
deed timed linearizations) essentially capture only the operational/global behaviour of dis-
tributed systems. In some sense, this is due to the fact that TMSCs and their timed lineariza-
tions are not very different. In other words, by attaching time-stamping to events of an MSC,
we lose much of its partial order information. The only partial-order information retained is
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through events on different processes with the same time-stamps. The remaining are totally
ordered due to the global time-stamping.

A richer partial order behaviour can be retained by attaching timing constraints to pairs
of events of the MSC. This approach has two other major advantages:

– Firstly, from a specification point of view, it allows the specifier to decide and enforce
constraints between occurences of events as he chooses.

– Secondly, a single MSC with timing constraints can describe a whole family of TMSCs
(with the same underlying MSC) thus being a much more succinct description of the
timed behaviours of a system.

For instance, consider Example 3.1 again where two users interact with a railway book-
ing server. It might be that after granting a User request, the Server waits only for a bounded
amount of time for him/her to respond before cancelling the request. The family of TMSCs
satisfying such a constraint is easier to capture using a scenario with timing constraints as
shown in M1 of Figure 2. The label [0, 3] from a3 to a4 specifies that User1 must respond
to the grant within 3 time units. The label [0, 1] on the message from a3 to u2 specifies the
bounds on the delay of message delivery and so on.

In the above example we can, a priori, define timing constraints between any two distinct
but arbitrary events. But is this really what we want? In fact, this might defeat our purpose
for introducing timing constraints in MSCs in the first place. For instance, in the TCMSC
M1 in Figure 2, should a specifier be allowed to have a choice of imposing constraints
between the first event of User1 and the first event of User2? Or, from an implementation
point of view, can a machine that implements such a constraint really be called a distributed
machine?

In other words, the vital question is how flexible we want this timing to be, i.e., between
which pairs of events we allow constraints. To define this formally, we fix an MSC M =

(E,≤, λ) over Act and define the following relations that will relate the pairs of events on
which we wish to impose timing constraints. First, we denote the set of all irreflexive pairs
of E by P(E) = {(e, e′) ∈ E × E | e 6= e′}. Then,

– The message relation, which is defined as:
MsgM = {(e, e′) ∈ P(E) | e <pq e′ for some (p, q) ∈ Ch}

– The previous occurence of an action a ∈ Act is defined as:
PrevMa = {(e, e′) ∈ P(E) | λ(e′) = a, e′ ≤ e and ∀e′′ ∈ E, (e′′ ≤ e ∧ λ(e′′) = a) =⇒
e′′ ≤ e′}

– The next occurence of an action a ∈ Act is defined as:
NextMa = {(e, e′) ∈ P(E) | λ(e′) = a, e ≤ e′ and ∀e′′ ∈ E, (e ≤ e′′ ∧ λ(e′′) = a) =⇒
e′ ≤ e′′}

Thus, the above relations form a flexible timing formalism, as they allow timing between
the next and previous occurence of any action from an event in the MSC along with the
messages. Let I denote the set of all intervals over the real line with rational end-points.

Definition 3.3 Let S ⊆ I be a set of intervals. An MSC with timing constraints or a time-
constrained MSC (denoted TCMSC) over (Act ,S) is a pair M = (M, τ) where M =

(E,≤, λ) is an MSC over Act and τ is a partial map from the set of irreflexive pairs of
events P(E) to the set of intervals S such that dom(τ) ⊆ MsgM ∪

⋃
a∈Act

(NextMa ∪PrevMa ).

With the above definition, TCMSCs can be considered as abstractions of TMSCs and
timed words. Here and for the rest of the paper, we let S ⊆ I be some fixed set of intervals.
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u4

u5

v1

v2
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v5
v6
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w2
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[0,1]

[1,5)

(2,4)

Fig. 4 A TCMSC M2

Also, when S = I, i.e., if M is a TCMSC over (Act , I), we ignore the latter component and
say that M is a TCMSC over Act . As usual, when the set of actions is clear from context,
we may ignore Act as well. This notion of MSCs with interval constraints on arbitrary pairs
of events is in fact similar to the approach adopted by Alur et al. [4]. Thus we can use their
MSC analysis tool to check consistency of the timing constraints in a single TCMSC.

We remark here that the expressiveness of the relations Preva, Msg and Nexta are in
fact incomparable and we cannot always subsume/replace one by the other. We illustrate
this by the following example. Consider the TCMSC M2 from Figure 4. We have abstracted
away the message contents M for simplicity. M2 has timing constraints defined between
the following pairs of events: The pair (w3, v3) is a message constraint. The pair (w1, u1) is
related by Prevp!q . However, note that this constraint can also be seen as between (u1, w1)

which are related by the Nextr?q . In such cases, our definition requires us to have the same
interval as a constraint. Finally, the third pair of events (u3, v4) are related by the Nextq?p
relation. We observe that this pair of events is not related by Msg or Preva relation for any
a ∈ Act . Similarly, the pair of events (u3, v5) can be timed only by a message constraint.
And again timing is allowed between the pair (v5, u4) only because of the Prevp!q relation.
Thus Preva, Msg , and Nexta are expressively incomparable.

Definition 3.4 Let M = (M, τ) be a TCMSC over Act with M = (E,≤, λ). A TMSC T =

(M, t) is said to realize M if for all (e1, e2) ∈ dom(τ) we have |t(e2)− t(e1)| ∈ τ(e1, e2).
The set of all TMSCs that realize M is denoted Ltime(M).

For instance, the TMSC T of Figure 2 realizes the TCMSC M1 from Figure 2. Now,
if all possible allowed pairs have explicit timing constraints defined, then we call such a
TCMSC maximally defined. That is, a TCMSC M = (M, τ) over (Act ,S) is said to be
maximally defined if dom(τ) = MsgM ∪

⋃
a∈Act

(NextMa ∪ PrevMa ).

4 Event clock message passing automata

In this section we introduce our machine model which implements TMSCs as well as
TCMSCs. We begin by fixing a formal set TC of symbols as follows:

TC = {Msg} ∪ {Preva | a ∈ Act} ∪ {Nexta | a ∈ Act} (5)

When interpreted over a TCMSC M = (M, τ) over Act , each symbol α ∈ TC is interpreted
as the relation αM defined in the previous section. We set TCM =

⋃
α∈TC α

M and we let
[TC 99K I] denote the set of partial maps from the set of symbols TC to the set I.
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Msg ∈ [0, 4]

Fig. 5 An ECMPAA1

Definition 4.1 An event clock message passing automaton (ECMPA) is a tuple
A = ({Ap}p∈Proc ,Act ,∆, F ), where

– ∆ is a finite set of auxiliary messages,
– Act is the alphabet
– For each p ∈ Proc, the component Ap is a structure (Sp,→p, ιp) where

– Sp is a finite set of p-local states
– ιp ∈ Sp is the p-local initial state
– →p is a finite subset of (Sp ×Actp × [TC 99K I]×∆× Sp)

– F ⊆
∏
p∈Proc Sp is a set of global final states.

With the above definition, ECMPA are extensions of both event clock automata (over
timed words) [3] and message passing automata (over MSCs) [9].

Example 4.1 A simple example of an ECMPA is shown in Figure 5. It describes the inter-
action between a user and a server, with the server trying to authenticate the user. The user
component is denoted Ap and the server Aq . The set of actions Act consists of: p!q(pswd)
(user sends password to server), q?p(pswd) (server receives password), q!p(correct) and
q!p(wrong) (server sends appropriate message to user) and p?q(correct), p?q(wrong) (user
receives message from server). Thus, in the above automaton, the user starts by sending its
password. If the password received by server is correct, it acknowledges this and goes to
final state. Else, it sends message wrong which must reach in 4 time units and waits in state
t1. If the user receives correct it goes to its final state. If not, it must receive wrong in a
bounded amount of time since it last sent its password. And in this case, the user tries to re-
send password. Otherwise, the current interaction is considered void and the run is rejected.

In Figure 5 the auxiliary data set ∆ is a singleton and not depicted for the sake of
simplicity. In general, ECMPAs allow every message to be tagged with auxiliary data from
a finite set ∆. The ability to convey this finite amount of extra information is quite useful,
even in the (untimed) case of message passing automata [9], and it increases the expressive
power significantly. For further discussion on message passing automata with and without
auxiliary data we refer to the survey at [21].

Semantics over TCMSCs. We define the run of an ECMPA A over a TCMSC M = (M, τ)

over Act , where M = (E,≤, λ). Consider r : E →
⋃
p∈Proc Sp labeling each event of
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Fig. 6 TCMSC M3 and TMSC T3

process p with a local state from Sp. Define r− : E →
⋃
p∈Proc Sp as follows: For event

e ∈ Ep, if there is another event e′ ∈ Ep such that e′ <·pp e, then r−(e) = r(e′) and
r−(e) = ιp otherwise. Then r is a run of A on M if, for all e, e′ ∈ E, with e <pq e′ for
some channel (p, q) ∈ Ch, there are g, g′ ∈ [TC 99K I] and an auxiliary message d ∈ ∆
such that,

• (r−(e), λ(e), g, d, r(e)) ∈ →p and (r−(e′), λ(e′), g′, d, r(e′)) ∈ →q, (6)

• ∀α ∈ dom(g), ∃ẽ ∈ E s.t., (e, ẽ) ∈ αM and τ(e, ẽ) ⊆ g(α), (7)

• ∀α ∈ dom(g′), ∃ẽ′ ∈ E s.t., (e′, ẽ′) ∈ αM and τ(e′, ẽ′) ⊆ g′(α). (8)

Note that given e, e′ as above and αM , ẽ and ẽ′ are uniquely defined since αM is a partial
function. We define sp = r(ep), where ep is the maximal event on process p. If there are no
events on process p, we set sp = ιp. Then run r is successful if (sp)p∈Proc ∈ F . A TCMSC
over Act is accepted by an ECMPA A if it admits a successful run. We denote by LTC (A),
the set of all TCMSCs over Act that are accepted by A. As an example, we may observe
that the TCMSC M3 from Figure 6 is accepted by A1, the ECMPA shown in Figure 5.

Semantics over TMSCs. The semantics of ECMPAs over TMSCs is obtained similarly. The
definition of a run ofA over a TMSC T = (M, t) is the same as over a TCMSC M = (M, τ),
except that conditions (7) and (8) are respectively replaced by (9) and (10) below:

• for all α ∈ dom(g),∃ẽ ∈ E s.t., (e, ẽ) ∈ αM and |t(ẽ)− t(e)| ∈ g(α) (9)

• for all α ∈ dom(g′), ∃ẽ′ ∈ E s.t., (e′, ẽ′) ∈ αM and |t(ẽ′)− t(e′)| ∈ g′(α) (10)

Then, with the notion of acceptance as above, we can denote the set of all TMSCs
accepted by a given ECMPAA as Ltime(A). Again, as an example, the TMSC T3 from Fig-
ure 6 is accepted by the ECMPA A1 shown in Figure 5. We may notice here that T3 realizes
M3. This is not a coincidence. In fact, we can make the following general observation.

Lemma 4.1 Suppose a TMSC T over Act realizes a TCMSC M over Act . Then for an
ECMPA A, M ∈ LTC (A) implies T ∈ Ltime(A).

Proof The lemma follows directly from the definitions. Let T = (M, t) be the TMSC over
Act with M = (E,≤, λ) and M = (M, τ). Also let A = ({Ap}p∈Proc ,Act ,∆, F ) from
Definition 4.1. Then, any run r of A on M satisfies Conditions (6–8). Now, since T realizes
M, for all (e1, e2) ∈ dom(τ), we have |t(e1) − t(e2)| ∈ τ(e1, e2). This along with (7),
implies that for all α ∈ dom(g) there exists ẽ ∈ E such that (e, ẽ) ∈ αM and |t(e)− t(ẽ)| ∈
τ(e, ẽ) ⊆ g(α). Thus, (9) holds. Similarly, from (8) we obtain (10) and conclude that r is a
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run of A on T . As every run of A on M is also a run of A on T and the acceptance criterion
is the same in both cases we conclude that if M ∈ LTC (A) then T ∈ Ltime(A). ut

5 Timed monadic second-order logic

We introduce the logical framework for timed partial orders, which will serve as our spec-
ification formalism. As usual, we start with a supply of individual variables x, y, . . ., and
set variables X,Y, . . . which range over events (and sets of events) of the timed MSC. We
generalize the usual MSO logic by using (other than unary predicates Pa(x) for a ∈ Act)
timing predicates of the form δα(x) ∈ I for a variable x, α ∈ TC, and I ∈ I. Here TC is the
same set of symbols defined by Equation (5) and are interpreted as relations over the events.
Again, as for MSO over MSCs, the logic depends on a set R of (binary) relation symbols,
which settles the access to the partial order relation. Thus,

Definition 5.1 The set TMSO(Act ,R) of all timed monadic second-order logic formulae
over Act with relational symbols from R, is generated inductively using the grammar:

ϕ ::= Pa(x) | x ∈ X | x = y | R(x, y) | δα(x) ∈ I | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃Xϕ

where, x, y are individual variables,X is a set variable, a ∈ Act , R ∈ R, α ∈ TC and I ∈ I.

The existential fragment of TMSO(Act ,R), denoted ETMSO(Act ,R), consists of all for-
mulas ∃X1 . . .∃Xnϕ such that ϕ does not contain any set quantifier. Though we have de-
fined the logic above for arbitrary sets of relational symbols R, we are in fact interested
only in two restricted sets, namely R≤ = {≤} and R<· = {<·pp| p ∈ Proc} ∪ {<pq| p 6=
q}. Then a formula ϕ from any of these logics, i.e., TMSO(Act ,R≤), TMSO(Act ,R<·),
ETMSO(Act ,R≤) or ETMSO(Act ,R<·) can be interpreted over TMSCs as well as over
TCMSCs as follows. We write TMSO to denote TMSO(Act ,R≤ ∪R<·), i.e., the union of
all formulae from these logics, when there is no scope for confusion.

Now, we will give the semantics for this logic over both TMSCs and TCMSCs. Given an
MSCM , let µ be an interpretation mapping first order variables to elements inE and second
order variables to subsets of E. Then, for ϕ ∈ TMSO and a TMSC T = (M, t), we define
the satisfaction relation T, µ |= ϕ, by induction on the structure of ϕ. For all operators,
except the timing predicate, this is given as usual. For instance, the unary predicate Pa(x)
expresses that µ(x) is labeled with a ∈ Act , i.e., λ(µ(x)) = a. The only novelty is the timing
predicate, for which we define the satisfaction relation as follows. Intuitively, by δα(x) ∈ I
we mean that there is an event e ∈ E such that µ(x) and e are related by αM and the time
difference between the events µ(x) and e is in I. Formally for each α ∈ TC we define,

T, µ |= δα(x) ∈ I if ∃e ∈ E, s.t., (µ(x), e) ∈ αM and |t(e)− t(µ(x))| ∈ I (11)

Then, as usual, for sentences ϕ (i.e, formulae without free variables) we write T |= ϕ

instead of T, µ |= ϕ and denote by Ltime(ϕ) the set of all TMSCs T over Act such T |= ϕ.
Turning to TCMSCs, we can give a formula ϕ ∈ TMSO(Act) a natural semantics over
M = (M, τ) exactly as done for TMSCs above. The only noteworthy difference is in the
timing predicate δα(x) ∈ I, where for any α ∈ TC, we define:

M, µ |= δα(x) ∈ I if ∃e ∈ E s.t., (µ(x), e) ∈ αM ∩ dom(τ) and τ(µ(x), e) ⊆ I (12)

The set of TCMSCs over Act that satisfy a TMSO sentence ϕ is denoted by LTC (ϕ).
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Example 5.1 Consider again the interaction scenario in Example 4.1, where a server is au-
thenticating a user. Suppose we wish to specify that every Message wrong sent by the server
is conveyed within 4 time units. This can be written as the following sentence in our logic:

∀x (Pq!p(wrong)(x)→ δMsg(x) ∈ [0, 4]) (13)

Similarly, we may require that whenever Message wrong is received by the user, the time
elapsed since it last sent its password is within 3 and 7 time units. This can be expressed as:

∀x (Pp?q(wrong)(x)→ δPrevp!q(pswd)
(x) ∈ [3, 7]) (14)

We observe immediately that both these sentences (13) and (14) are satisfied by TCMSC
M3 and TMSC T3 from Figure 6.

The following proposition relates the expressiveness of TMSO and ETMSO under the
different signatures that we have introduced above, namely R≤ and R<·.

Proposition 5.1

1. For all ϕ ∈ TMSO(Act ,R≤) there exists ψ ∈ TMSO(Act ,R<·) such that Ltime(ϕ) =

Ltime(ψ).
2. Let ϕ be a (E)TMSO(Act ,R<·) formula and B ∈ N such that Ltime(ϕ) is a set of
∃u-B-bounded TMSCs over Act . Then, there exists ψ ∈ (E)TMSO(Act ,R≤) such that
Ltime(ϕ) = Ltime(ψ).

3. There exists a formula γB ∈ TMSO(Act ,R≤) (respectively, in MSO(Act ,R≤)) such
that Ltime(γB) is the set of all ∃u-B-bounded TMSCs (respectively, all ∃-B-bounded
MSCs) over Act .

The first part of the proposition is a generic result which works as in the untimed case.
It follows since the partial order relation can be recovered from the immediate successor
and message relations in TMSO. Note however that this is not true if we restrict to ETMSO.
Indeed, even in the untimed case, it is an open question whether the transitive closure rela-
tion, i.e., x ≤ y can be expressed as an EMSO(Act ,R<·) formula over the set of all MSCs
over Act . The second part of the proposition says that the converse is true when restricted
to B-bounded setting. The third part says that in both the timed and untimed settings, the
set of all existentially(-untimed)-B-bounded MSCs over Act can be expressed as a for-
mula in the (timed) MSO over (Act ,R≤). In the untimed setting, the second part is proved
in [17, Prop. 6.2] where the proof uses the (very difficult) construction of a message passing
automaton accepting all ∃-B-bounded MSCs. The third part then follows as an easy conse-
quence of this construction. However, it turns out that both these results can be proved on
the same lines as [17], but without refering to the expensive automaton construction. This
consequently reduces the complexity of these constructions. For this reason, and for the sake
of completeness (in the timed setting) we provide proofs of both these statements below.

Proof (of Proposition 5.1(2)) The first two steps are exactly the same as in [17, Prop. 6.2].
First, notice that lpp can be easily expressed with a first-order formula over (Act ,R≤),
hence the difficulty is to express <pq for channels (p, q) ∈ Ch. We consider set variables
X0, . . . XB−1 that are not used in ϕ. These will represent variables that count the number
of p!q (resp. q?p) actions modulo B. This is ensured by a formula ϕ0 which expresses that
each Xn contains precisely the set of events e such that for some channel (p, q) ∈ Ch, either
e is the n-th send from p to q modulo B, or e is the n-th receive on q from p modulo B.
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Second, for each channel (p, q) ∈ Ch, we define the abbreviation x <′pq y by

∨
n<B

 x ∈ Xn ∧ λ(x) ∈ p!q
∧ y ∈ Xn ∧ λ(y) ∈ q?p ∧ x ≤ y
∧ ∀z (z ∈ Xn ∧ λ(z) ∈ q?p ∧ x ≤ z) =⇒ y ≤ z


This expresses that for this channel, x is a send event and y is the least receive event above
x which has the same number modulo B. Note that, for any send event e from p to q, there
exists a (unique) event f such that e <′pq f . Moreover, f ≤ g where g is the matching
receive, i.e., is such that e <pq g. This follows from the FIFO assumption which implies
that e and g have the same number modulo B. Thus <′pq can be seen as a total function
from the set of send events to the set of receive events. Then, we define formula ϕ1 which
is
∧

(p,q)∈Ch ∀x, x
′, y (x <′pq y ∧ x′ <′pq y) =⇒ x = x′ saying that each <′pq is injective

function (and thus a bijection from sends to receives).
Now, denoting α = ∃X0, . . . XB−1 ϕ0 ∧ ϕ1, we make the following crucial claims:

Claim For a TMSC T = (M, t) over Act with M = (E,≤, λ),

(1) if T |= α, then the relations <pq and <′pq coincide on T , and
(2) if T is ∃u-B-bounded, then T |= α.

Proof (of Claim) (1) Let e ∈ E. If e is not a send event from p to q then e 6<pq f and
e 6<′pq f for all f ∈ E. So we assume in the following that e is a send event from p to q. Let
f, g ∈ E be the unique events with e <′pq f and e <pq g. We have already seen that f ≤ g.
Assume towards a contradiction that f < g. By induction, we may assume that for all send
event e′ < e from p to q, if e′ <′pq f ′ and e′ <pq g′ then f ′ = g′. Event f is a receive on q
from p hence there is a unique event e′ ∈ E such that e′ <pq f . Using the FIFO assumption
and f < g we get e′ < e. By induction we obtain e′ <′pq f , a contradction with ϕ1.

(2) We will use an alternate characterization of ∃u-bounded TMSCs obtained by lifting
from the untimed setting in [22]. First, we define a relation rev which associates receive
events to some send events. Formally, f rev e′ if there is a channel (p, q) ∈ Ch and an event
e ∈ E such that e <pq f and λ(e′) ∈ p!q and |{e′′ ∈ E | λ(e′′) ∈ p!q ∧ e < e′′ ≤ e′}| = B.

Now, [22] states that an MSCM is ∃-B-bounded iff the relation≺B = <∪rev is acyclic.
Recalling that a TMSC is ∃u-B-bounded iff its underlying MSC is ∃-B-bounded, we con-
clude that the above characterization holds for TMSCs as well.

p q

n, e

n, ẽ

n, e′ f, n

f ′, n

<′
pq

<
pq

<′
pq

rev

Next, observe that in any TMSC T over Act , by counting for
each channel the send (resp. receive) events modulo B, we
get unique sets Xi ⊆ E for i < B such that T, (Xi)i<B |=
ϕ0. Assume that T, (Xi)i<B 6|= ϕ1. Then, there exists a
channel (p, q) ∈ Ch and send events e < e′ from p to q such
that e <′pq f and e′ <′pq f . Let f̃ be such that e <pq f̃ .
Since e <′pq f we get f ≤ f̃ . By definition of <′pq , the
events e, e′, f have the same number modulo B. Since e <
e′, it follows that there exists ẽ ≤ e′ such that f̃ rev ẽ. Therefore, we have a ≺B cycle
ẽ ≤ e′ <′pq f ≤ f̃ rev ẽ (observing that e <′pq f implies e < f ), as depicted in the
adjoining figure. ut

Now, we are in a position to complete the proof of Part (2) of this proposition. Starting
from a formula ϕ ∈ (E)TMSO(Act ,R<·), let ϕ′ be the formula obtained by replacing every
occurrence of <pq by x <′pq y. Now, consider the formula ψ = ∃(Xi)i<B ϕ0 ∧ ϕ1 ∧
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ϕ′. Clearly it is a (E)TMSO(Act ,R≤) formula. We claim that Ltime(ϕ) = Ltime(ψ). If
T |= ϕ, then T is ∃u-B-bounded over Act therefore T |= α by Claim 2 above. But since
T |= α, by Claim 1, <′pq and <pq coincide on T , which implies that T, (Xi)i<B |= ϕ′. Thus
combining the two, we obtain T |= ψ. Conversely, assume that T |= ψ. Since T |= α, we
know that <′pq and <pq coincide on M . Hence T, (Xi)i<B |= ϕ′ implies T |= ϕ. ut

Proof (of Proposition 5.1(3)) Now, we prove the final part of the proposition in the timed
case (the untimed setting follows in exactly the same way). We use freely the formulas from
the proof above. First, we let y rev ′ z stand for∨

(p,q)∈Ch

∃x x < z ∧ x <′pq y ∧ λ(z) ∈ p!q ∧
∨
n<B

x, z ∈ Xn

If T |= α then Claim 1 implies that <′pq and <pq coincide and it follows easily that y rev z

implies y rev ′ z and that y rev ′ z′ implies y rev z for some z ≤ z′. Therefore, there is a
≺B cycle iff there is a ≺′B cycle where ≺′B = <∪ rev ′. We define below a new formula ϕ2

to check, in the context of α, the existence of a ≺′B cycle.
In fact, it suffices to test for short cycles. Indeed, let x0 ≺′B x1 ≺′B · · · ≺

′
B xk ≺′B x0

be a cycle with k > 0 and xi 6= xj for 0 ≤ i < j ≤ k. If two events xi and xj are on the
same process for some 0 < i + 1 < j < k then either xi < xj and we have a shorter cycle
by removing xi+1, . . . , xj−1; or xj < xi and xi, . . . , xj is a shorter cycle. Hence, it suffices
to test for the existence of a ≺′B cycle of length bounded by 2|Proc| + 1, which can easily
be expressed with a first-order formula ϕ2 over (Act ,R≤).

Finally, let γB = ∃X0 . . . XB−1 ϕ0 ∧ ϕ1 ∧ ¬ϕ2 which is in TMSO(Act ,R≤). We can
easily check that γB defines the set of all ∃u-B-bounded TMSCs. ut

In the above sections, we have introduced our models to describe as well as implement
timed and distributed scenarios. In the next sections, we state and prove our main results.

6 Equivalence between ECMPA and TMSO logic over TMSCs

We now state our main results showing an effective equivalence between ECMPAs and
TMSOs over TMSCs, which we will prove in this section.

Theorem 6.1 Let L be a set of TMSCs over Act . Then, the following are equivalent:

1. There is an ECMPA A such that Ltime(A) = L.
2. There is ϕ ∈ ETMSO(Act ,R<·) such that Ltime(ϕ) = L.

Theorem 6.2 Let B ∈ N>0 and let L be a set of ∃u-B-bounded TMSCs over Act . Then,
the following are equivalent:

1. There is an ECMPA A such that Ltime(A) = L.
2. There is ϕ ∈ TMSO(Act ,R≤) such that Ltime(ϕ) = L.

This equivalences are effective in the sense that we can explicitly construct the (E)TMSO
formula from the ECMPA and vice versa.

The construction of an (E)TMSO formula from an ECMPA follows the similar con-
structions applied, for example, to finite and asynchronous automata. In addition, we have
to cope with the timing predicate. Assume that g : TC 99K I is such a guard occurring on a



15

local transition of the given ECMPA. To ensure that the timing constraints that come along
with g are satisfied we use the formula

∧
α∈dom(g) δα(x) ∈ g(α).

The difficult part is the construction of an ECMPA from an (E)TMSO formula. The
basic idea is to reduce this to an analogous untimed case, which has also been applied
in the settings of words and traces [14,15]. Usually, the untimed formalisms need to be
parameterized by a finite alphabet, so that we can speak of structures whose labelings are
extended with this alphabet. Hence, in our framework, we need to find a finite abstraction
of the infinite set of possible time stamps. For this, we move from TMSCs to TCMSCs over
a finite alphabet, using Lemma 6.2 which strengthens Lemma 4.1 and Lemma 6.3 which
is the corresponding result for TMSO. This allow us to establish a translation of (E)TMSO
formulas into ECMPAs.

6.1 From TMSCs to TCMSCs

TCMSCs are abstractions of TMSCs. Thus, if a TCMSC exhibits a property, the correspond-
ing TMSC should also do so. This is illustrated in Lemma 4.1 where the property is having
a run on an automaton. In this section, we are interested in the converse question. In other
words, if a TMSC exhibits a property, when can we say that a TCMSC that it realizes also
exhibits the same property? For this, given a TMSC, we derive a canonical representative
TCMSC using intervals from a specific set which depends on the property. Then it turns out
that, this representative exhibits the property iff a TMSC realizing it exhibits the property.

We formalize these ideas now. We begin by introducing the notion of a proper interval
set from [14], which will play an important role in what follows.

Definition 6.1 A set of intervals S ⊆ I is said to be proper if it forms a finite partition of
R≥0. An interval set S is said to refine another interval set S′ if every interval I ′ ∈ S′ is the
union of some collection of intervals of S.

Example 6.1 Consider the set of intervals S1 = {[0, 4], [3, 7]}. Then, we may observe that
the interval set S2 = {[0, 3), [3, 4], (4, 7]} refines S1 and if we add the interval (7,∞) to S2
we obtain a proper interval set S3 that refines S1.

Now, observe that if S is a proper interval set which refines another interval set S′, then for
all I ∈ S and I ′ ∈ S′, we have, either I ⊆ I ′ or I ∩ I ′ = ∅. Also, we have,

Proposition 6.1 For any finite interval set, there exists a proper interval set that refines it.

Proof Let S ⊆ I be a finite interval set. Then, we define a canonical proper interval set
of S denoted prop(S) as follows. If R is empty, we define prop(S) = {[0,∞)}. Oth-
erwise, we let R = (t1, . . . , tn) be the sequence of bounds that appear in S, arranged
in increasing order t1 < . . . < tn and which are different from 0,∞. Then, we define
prop(S) = {[0, 0], (0, t1), [t1, t1], (t1, t2), . . . , [tn, tn], (tn,∞)}. With this definition it fol-
lows that prop(S) is a proper interval set and that prop(S) refines S. ut

Now we can show that for a proper interval set S and a TMSC T , there is a unique
maximally defined TCMSC using intervals only from S such that T realizes it. Formally,

Lemma 6.1 Let S be a proper interval set and T = (M, t) be a TMSC over Act . Then, there
exists a unique TCMSC M = (M, τ) over (Act ,S) such that τ : TCM → S, T realizes M
and M is maximally defined. This unique TCMSC is denoted MST .
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Fig. 7 TMSC T4 and its representative TCMSC MS3
T4

Proof We first observe that, for each (e, e′) ∈ TCM , the real number |t(e′) − t(e)| is in
a unique interval of S. Thus, consider the maximally defined TCMSC defined as: MST =

(M, τ) where, for any (e, e′) ∈ TCM , τ(e, e′) is defined to be the unique interval of S
containing |t(e′) − t(e)|. Then, T realizes MST by definition and the uniqueness follows
since S is a proper interval set. ut

It turns out that this unique TCMSC is the “canonical representative” for a TMSC that
we were searching for. As an example, consider the TMSC T4 from Figure 7, which repre-
sents a part of the scenario of TMSC T3 from Figure 6 (and abstracting away the message
contents). Now, let S3 be the proper interval set defined in Example 6.1. Then, the unique
maximally defined TCMSC over (Act ,S3) which is realized by T4 is the TCMSC MS3T4

shown in Figure 7.
Now, given an ECMPA A, let Int(A) denote the finite set of intervals that occur in A as

guards. Now look at any proper interval set S that refines Int(A). By Proposition 6.1, there
exists at least one, namely prop(Int(A)). Then,

Lemma 6.2 Given a TMSC T , an ECMPAA and a proper interval set S that refines Int(A),
we have T ∈ Ltime(A) iff MST ∈ LTC (A).

Proof Let T = (M, t) be the TMSC over Act with M = (E,≤, λ) and let the ECMPA
be A = ({Ap}p∈Proc ,Act ,∆, F ) with Ap = (Sp, ιp,→p). Now, since T realizes MST , by
Lemma 4.1, we obtain one direction of the result, MST ∈ LTC (A) implies T ∈ Ltime(A).

For the reverse direction, assume T ∈ Ltime(A). Then by definition there is a successful
run r of A on T . Since r is a run, for all e, e′ ∈ E s.t., e <pq e′ for (p, q) ∈ Ch, we find
g, g′ ∈ [TC 99K I] and d ∈ ∆ such that conditions (6),(9) and (10) hold. We show then
that r is also a run of A on MST , for which it is enough to show that conditions (7) and
(8) hold. We start from (9), which says that for each α ∈ dom(g), there is ẽ ∈ E such
that (e, ẽ) ∈ αM . Since MST is maximally defined, τ(e, ẽ) exists and as T realizes MST
we obtain |t(ẽ) − t(e)| ∈ τ(e, ẽ). But again from (9), |t(ẽ) − t(e)| ∈ g(α). Thus, we find
τ(e, ẽ)∩g(α) 6= ∅. Now, τ(e, ẽ) ∈ S, g(α) ∈ Int(A) and we know that S is a proper interval
set that refines Int(A), which implies τ(e, ẽ) ⊆ g(α) concluding that (7) holds. Similarly
(8) can be shown starting from (10). Thus any run of A on T is also a run on MST . Since
acceptance criterion for a run is the same, T ∈ Ltime(A) implies MST ∈ LTC (A). ut

We can do the same for TMSO as well. That is, given a TMSO formula ϕ, we let Int(ϕ)
denote the finite set of intervals I for which ϕ has a sub-formula of the form δα(x) ∈ I.
Again we can consider a proper interval set S which refines Int(ϕ).

Lemma 6.3 Given a TMSC T , a TMSO formula ϕ, and a proper interval set S that refines
Int(ϕ), we have T |= ϕ iff MST |= ϕ.
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Proof Let T = (M, t) be a TMSC with M = (E,≤, λ). Then, by Lemma 6.1, we have the
TCMSC MST = (M, τ) such that, for all α ∈ TC, and all (e, e′) ∈ αM , |t(e′)−t(e)| ∈ τ(α).

We prove the lemma by structural induction on ϕ. Let µ be any interpretation. The only
interesting case is the timing predicate. The others are routine deductions. We have,

T, µ |= δα(x) ∈ I

⇐⇒ ∃e ∈ E, (µ(x), e) ∈ αM ∧ |t(e)− t(µ(x))| ∈ I

⇐⇒ ∃e ∈ E, (µ(x), e) ∈ αM ∩ dom(τ) ∧ |t(e)− t(µ(x))| ∈ I ∩ τ(µ(x), e)

⇐⇒ ∃e ∈ E, (µ(x), e) ∈ αM ∩ dom(τ) ∧ τ(µ(x), e) ⊆ I

⇐⇒MST , µ |= δα(x) ∈ I

using successively the definition of the semantics (11) for TMSCs, MST is maximally defined
and T realizes MST , S is proper and refines Int(ϕ), and the semantics (12) for TCMSCs. ut

6.2 Extending the alphabet

In this subsection, we provide the final pieces of our jigsaw. In particular, we fix a finite
set Π and lift MSCs over Act to MSCs over Γ = Act × Π . A Π-extended MSC over Act
or an MSC over Γ is a finite Γ -labeled poset M = (E,≤, λ) such that Conditions (1–4)
are satisfied, ignoring the extra labeling. Note that the definition of boundedness can be
immediately adapted to this setting.

We lift the MPA and MSO definitions to include the additional alphabet. Since such a
lift is purely syntactical, we preserve the validity of the equivalence theorems 6.3 and 6.4
in these settings. We define an MPA A = ({Ap}p∈Proc ,∆, F ) over Γ as in Definition 4.1
with the only change being the transition relation →p ⊆ (Sp × Actp × Π × ∆ × Sp) of
component Ap. Runs of A over an MSC over Γ is defined as in Section 4, ignoring guards
g, g′ and conditions 7 and 8. LMSC (A) denotes the set of all MSCs over Γ that are accepted
by A.

Similarly, dropping the timing predicate, we define the logics MSO(Act ×Π,R≤) and
MSO(Act×Π,R<·) over MSCs over Γ as in Section 5. For a sentence ϕ, LMSC (ϕ) denotes
the set of MSCs over Γ that satisfy it. With the above definitions, it is easy to see that we
can lift the results from [7,17]. We restate the relevant theorems in our terminology.

Theorem 6.3 (from [7]) Let L be a language of MSCs over Γ . Then L = LMSC (ϕ) for
some ϕ ∈ EMSO(Γ,R<·) iff L = LMSC (A) for some MPA A over Γ .

Theorem 6.4 (from [17]) Let B ∈ N>0. Let L be a language of ∃-B-bounded MSCs over
Γ . Then, L = LMSC (ϕ) for some sentence ϕ ∈ MSO(Γ,R≤) iff L = LMSC (A) for some
MPA A over Γ .

TCMSCs as extended MSCs. Let S ⊆ I be a finite set of intervals. Then, we can consider
the alphabet Γ = Act × [TC 99K S] where [TC 99K S] is a finite set of partial maps
from TC to S. Recall that TC is the finite set of symbols defined in Section 4. A TCMSC
over (Act ,S) can be directly seen as an MSC over Γ . We make this precise by defining an
untiming function U which maps TCMSCs over (Act ,S) to MSCs over Γ .

Let M = (M, τ) be any TCMSC over (Act ,S), with M = (E,≤, λ), τ : TCM 99K S.
Then U(M) = (E,≤, λ′) is an MSC over Γ with the same set of events E and partial order
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≤. Also, λ′ : E → Γ is defined for all e ∈ E, by λ′(e) = (λ(e), ge) where ge : TC 99K S is
such that, for all α ∈ TC, ge(α) = τ(e, e′) if there exists e′ ∈ E, s.t., (e, e′) ∈ αM ∩dom(τ)

(and ge(α) is undefined otherwise). Recall that given e ∈ E, α ∈ TC, there exists at most
one event e′ ∈ E s.t., (e, e′) ∈ αM .

Lemma 6.4 Let S be a finite set of intervals and Γ = Act × [TC 99K S]. We can build an
MPA B over Γ such that for all TCMSC M over (Act ,S) we have U(M) ∈ LMSC (B) iff M
is maximally defined.

Proof (sketch) First, we check that for each event labeled (b, g) we have Msg ∈ dom(g) iff
b is a send action. Then, we have to check that Preva ∈ dom(g) iff some action a occurs
in the past of the current event. The set of actions occurring in the past can be computed
(deterministically) by an MPA using the set ∆ of auxiliary messages. Finally, we have to
check that Nexta ∈ dom(g) iff some action a occurs in the future of the current event. The
set of actions occurring in the future can be guessed non-deterministically by an MPA. Such
guesses can be checked using the set ∆ of auxiliary messages and the set Fin of global
accepting states. ut

TMSO as MSO over the extended alphabet. We will now see that each TMSO formula
can be rewritten as an MSO formula over the extended alphabet of guards Γ introduced
above. Let S be a finite set of intervals and Γ = Act × [TC 99K S]. Then from a TMSO
formula ϕ, we obtain ϕS ∈ MSO(Γ ) by replacing each sub-formula of the form Pa(x)

by the formula
∨

{(b,g)∈Γ | b=a}
P(b,g)(x) and each sub-formula of the form δα(x) ∈ I (i.e.,

timing predicate) by the formula
∨

{(b,g)∈Γ | g(α)⊆I}
P(b,g)(x). This translation preserves the

existential fragment, for instance, if ϕ ∈ ETMSO(Act ,R<·), then ϕS ∈ EMSO(Γ,R<·).
As before, we can easily obtain the semantics of a formula from this logic in terms of MSCs
over Γ . Then, we can relate the TCMSC-language of a TMSO formula and the extended
MSC language of its MSO translation as follows:

Lemma 6.5 Let ϕ be a TMSO sentence and S be a finite set of intervals. Then for a TCMSC
M over (Act ,S), M |= ϕ if and only if U(M) |= ϕS .

Proof Let M = (M, τ) be a TCMSC over (Act ,S) with M = (E,≤, λ) and let U(M) =

(E,≤, λ′) as defined above. We show the lemma for any interpretation µ by induction on
structure of ϕ. As before, the only interesting cases are atomic and timing predicates. The
others are routine deductions.

– Suppose ϕ is of the form Pa(x) for some a ∈ Act . Then, we obtain easily,

M, µ |= Pa(x) iff U(M), µ |=
∨

{(b,g)∈Γ |b=a}

P(b,g)(x)

– Suppose ϕ be of the form δα(x) ∈ I for some α ∈ TC, I ∈ I. Then, we show that,

M, µ |= δα(x) ∈ I iff U(M), µ |=
∨

{(b,g)∈Γ |g(α)⊆I}

P(b,g)(x)

( =⇒ ) Assume M, µ |= δα(x) ∈ I where µ(x) = e ∈ E. By definition, this means that
there exists e′ ∈ E such that (e, e′) ∈ αM and τ(e, e′) ⊆ I. By the definition of U(M),
we then have λ′(e) = (λ(e), ge) with ge : TC 99K S such that ge(α) = τ(e, e′) ⊆ I.



19

This implies that U(M), µ |= P(λ(e),ge)(x) with ge(α) ⊆ I. Hence we have, U(M), µ |=∨
{(b,g)∈Γ |g(α)⊆I}

P(b,g)(x).

(⇐=) Conversely assume U(M), µ |= P(b,g)(x) for some (b, g) ∈ Γ such that g(α) ⊆ I
and let µ(x) = e ∈ E. Then by definition λ′(e) = (b, g), λ(e) = b and g : TC 99K S
with g(α) ⊆ I. Since g(α) is defined, there exists e′ ∈ E s.t., (e, e′) ∈ dom(τ) ∩ αM
and g(α) = τ(e, e′) ⊆ I. Thus, we conclude that M, µ |= δα(x) ∈ I. ut

ECMPA as MPA over the extended alphabet. Let us fix a finite set of intervals S and an
alphabet of guards Γ = Act × [TC 99K S]. Then, observe that any MPA A over Γ is itself
an ECMPA which uses intervals from S as guards, i.e, Int(A) ⊆ S.

Lemma 6.6 Let S be a finite set of intervals andA be an MPA over Γ = Act× [TC 99K S].
Then for any TCMSC M over (Act ,S), U(M) ∈ LMSC (A) implies M ∈ LTC (A).

Proof Let A be the MPA over Γ and let M = (M, τ) over (Act ,S) with M = (E,≤, λ).
Let U(M) = (E,≤, λ′) ∈ LMSC (A), i.e., there exists a run r of the MPA A on the MSC
U(M) which is accepting. Now r : E →

⋃
p∈Proc Sp satisfies for all e, e′ ∈ E such that

e <pq e
′ with (p, q) ∈ Ch, there exists d ∈ ∆ such that,

(r−(e), λ′(e), d, r(e)) ∈ →p and (r−(e′), λ′(e′), d, r(e′)) ∈ →q

We claim that r is a run of ECMPA A on the TCMSC M. Since λ′(e) = (λ(e), ge) and
λ′(e′) = (λ(e′), ge′), Condition (6) follows at once with g = ge and g′ = ge′ . Again, by
definition of λ′, ge ∈ [TC 99K S] has the property that for all α ∈ dom(ge), there exists
ẽ ∈ E such that (e, ẽ) ∈ αM ∩ dom(τ) and ge(α) = τ(e, ẽ). Thus Condition (7) is satisfied.
Similarly, ge′ satisfies Condition (8). Thus, r is a run of A on M. It is accepting since the
acceptance condition is the same and depends on reaching the final state. Thus we conclude
that M ∈ LTC (A). ut

Lemma 6.7 Let S be a proper finite set of intervals and A be an MPA over Γ = Act ×
[TC 99K S]. Then, for any TMSC T ∈ Ltime(A), there exists a TCMSC M over (Act ,S)
such that U(M) ∈ LMSC (A) and T realizes M.

Proof We begin with an accepting run r of A on TMSC T = (M, t). Thus, for all e, e′ ∈ E
with e <pq e′ for some (p, q) ∈ Ch, there are ge, ge′ ∈ [TC 99K I] and d ∈ ∆ such that
Conditions (6,9,10) hold. But since Int(A) ⊆ S, we obtain ge, ge′ ∈ [TC 99K S].

We recall that by Condition (9), for all α ∈ dom(ge) there exists ẽ ∈ E such that
(e, ẽ) ∈ αM and |t(e)− t(ẽ)| ∈ ge(α). Similarly from Condition (10), for all α ∈ dom(ge′)

there exists ẽ′ ∈ E such that (e′, ẽ′) ∈ αM and |t(e′) − t(ẽ′)| ∈ ge′(α). Using these partial
maps, we define another partial function τ ∈ [TCM 99K S] as

τ(e, ẽ) =

{
ge(α) if ∃ α ∈ dom(ge) s.t. (e, ẽ) ∈ αM

undefined otherwise

Observe that τ is well-defined. If we find α, α′ ∈ dom(ge) such that (e, ẽ) ∈ σM ∩α′M then
|t(e)− t(ẽ)| ∈ ge(α′)∩ ge(α) by (9,10). Now S is a proper interval set implies that ge(α) =
ge(α

′). Now using the above map we define a TCMSC over (Act ,S) as M = (M, τ). T
realizes M by definition, since for all (e, ẽ) ∈ dom(τ), |t(e) − t(ẽ)| ∈ ge(α) = τ(e, ẽ) for
some α ∈ dom(ge). We are done if we show that U(M) ∈ LMSC (A). But this follows since
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r is itself a run of A over U(M). It is enough to observe that λ′(e) = (λ(e), ge) where ge
is the partial map given above from the run on the TMSC. Then, for all e, e′ ∈ E such that
e <pq e

′ for some (p, q) ∈ Ch, there exists d ∈ ∆ such that (r−(e), λ′(e), d, r(e)) ∈ →p,
(r−(e′), λ′(e′), d, r(e′)) ∈ →q . Thus r is an accepting run of A on U(M). ut

6.3 Proof of Theorems 6.1 and 6.2

Proof (of Theorem 6.1) (1 =⇒ 2) Given an ECMPA A, we construct an ETMSO formula
ϕ ∈ ETMSO(Act ,R<·) such that Ltime(A) = Ltime(ϕ). This direction of the proof is
standard and does not need the lemmas we proved in the two previous subsections.

Let A = ({Ap}p∈Proc ,Act ,∆, F ) be the ECMPA at hand with Ap = (Sp, ιp,→p). For
any local state s ∈ S =

⋃
p∈Proc Sp, we introduce a second order variable Xs. The formula

we are targeting guesses a run of A in terms of an assignment of events to the variables
(Xs)s∈S . Accordingly, (Xs)s∈S needs to be a partition of all the events of an MSC. This
can easily be done by a first order formula Partition((Xs)s∈S) with free variables (Xs)s∈S .
We now define some further macros. For a synchronization message d ∈ ∆, we define
Transd(x, (Xs)s∈S) by∨

p∈Proc
(s,g,a,d,s′)∈→p

(
Pa(x) ∧ x ∈ Xs′ ∧

[
∃y (y <·pp x ∧ y ∈ Xs)

]
∧

∧
α∈dom(g)

δα(x) ∈ g(α)
)

∨
∨

p∈Proc
(ιp,g,a,d,s

′)∈→p

(
Pa(x) ∧ x ∈ Xs′ ∧

[
¬∃y (y <·pp x)

]
∧

∧
α∈dom(g)

δα(x) ∈ g(α)
)

This formula describes that, under the assignment (Xs)s∈S , the execution of x actually
corresponds to a local transition of A that communicates d ∈ ∆. Moreover, for a global
state s = (sp)p∈Proc ∈

∏
s∈Proc Sp, we define Finals((Xs)s∈S) by∨

Proc′⊆Proc
∀p∈Proc′: sp=ιp

( ∧
p∈Proc\Proc′

∃x
(
maxp(x) ∧ x ∈ Xsp

)
∧

∧
p∈Proc′

a∈Actp

¬∃xPa(x)
)

Hereby, given a process p ∈ Proc, maxp(x) =
∨
a∈Actp

Pa(x) ∧ (¬∃y (x <·pp y)). More-
over, observe that Proc′ comprises those processes that are assumed not to move. Hence,
Finals((Xs)s∈S) formulates that the run described by (Xs)s∈S ends up in global state s.

We are now prepared to give the formula ϕ with Ltime(ϕ) = Ltime(A). Namely,

ϕ = ∃(Xs)s∈S Partition((Xs)s∈S) ∧
∨
s∈F

Finals((Xs)s∈S)

∧ ∀x∀y
∧

(p,q)∈Ch

(
x <pq y →

∨
d∈∆

(
Transd(x, (Xs)s∈S) ∧ Transd(y, (Xs)s∈S)

))
This concludes the proof in one direction.

(2 =⇒ 1) For the other direction we will require all the machinery that we set up in the two
previous subsections.

Let ϕ be the given ETMSO(Act ,R<·) formula and let S be a proper interval set which
refines Int(ϕ). Fix an alphabet Γ = Act× [TC 99K S]. Thus, we have ϕS ∈ EMSO(Γ,R<·)
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T |= ϕ

MS

T
|= ϕ

U(MS

T
) |= ϕS

T ∈ Ltime(A
′)

MS

T
∈ LTC (A′)

U(MS

T
) ∈ LMSC (A′)

to show

Lemma 6.3

Lemma 6.5

Theorem 6.3 and Lemma 6.4

Theorem 6.3

Lemma 6.6

Lemma 6.2

Lemmas 6.7, 6.4, 6.1

Fig. 8 Proof schematic for 2 =⇒ 1 direction of Theorem 6.1 (arrows depict implication).

using the translation from Section 6.2. Then, by Theorem 6.3 we obtain an MPA A over Γ
such that LMSC (A) = LMSC (ϕS). Let B be the MPA over Γ from Lemma 6.4 accepting
(images of) maximally defined TCMSCs. We view A′ = A∩B as an ECMPA with Int(A∩
B) ⊆ S, hence S refines Int(A ∩ B). Now we claim that this A′ is, in fact, the ECMPA that
we require. That is, we will show that Ltime(ϕ) = Ltime(A′), thus completing the proof
the theorem.

The proof follows the scheme depicted in Figure 8. We start by showing thatLtime(ϕ) ⊆
Ltime(A∩B). Let T |= ϕ. Since S is a proper interval set that refines Int(ϕ), we can apply
Lemma 6.3 to get MST |= ϕ. Since, S is proper, it is finite and hence we use Lemma 6.5 to
obtain U(MST ) |= ϕS . But LMSC (ϕS) = LMSC (A) and MST is maximally defined, so we
have U(MST ) ∈ LMSC (A ∩ B). As S is finite and MST is a TCMSC over (Act ,S), we can
then use Lemma 6.6 to conclude that MST ∈ LTC (A ∩ B). Then, we can use Lemma 6.2 to
obtain T ∈ Ltime(A ∩ B).

Conversely, we show that Ltime(ϕ) ⊇ Ltime(A ∩ B). Let T ∈ Ltime(A ∩ B). Then as
S is a proper interval set, and A ∩ B is an MPA over Act × [TC 99K S], by Lemma 6.7,
there exists a TCMSC M over (Act ,S) such that U(M) ∈ LMSC (A ∩ B) and T realizes
M. Using Lemmas 6.1 and 6.4 we deduce that M = MST . But LMSC (ϕS) = LMSC (A)
implies U(MST ) |= ϕS . Now, by Lemma 6.5 we have MST |= ϕ. Finally, by Lemma 6.3 we
conclude that T |= ϕ. ut

Along the lines of the proof above, we can also get a characterization of the full TMSO.
However, we have to restrict to untimed-existentially-bounded TMSCs.

Proof (of Theorem 6.2) Let B ∈ N>0 and L be a set of ∃u-B-bounded TMSCs over Act .
(1 =⇒ 2) Let A be an ECMPA with Ltime(A) = L. By Theorem 6.1, we obtain an
ETMSO(Act ,R<·) formula ϕ such that Ltime(A) = Ltime(ϕ) and by Proposition 5.1(2),
we obtain an ETMSO(Act ,R≤) formula ψ such that Ltime(ψ) = Ltime(ϕ) which com-
pletes the proof in this direction.

(2 =⇒ 1) Let ϕ be a TMSO(Act ,R≤) formula with Ltime(ϕ) = L and let S be a proper
interval set which refines Int(ϕ). Fix an alphabet Γ = Act × [TC 99K S]. Thus, we have
ϕS ∈ MSO(Γ,R≤) using the translation from Section 6.2. Now from Proposition 5.1(3),
we obtain a formula γB ∈ MSO(Γ,R≤) such that LMSC (γB) is the set of all ∃-B-bounded
MSCs over Γ . Then, indeed LMSC (ϕS∧γB) is an ∃-B-bounded set of MSCs over Γ and so,
we apply Theorem 6.4 to obtain an MPAA over Γ such that LMSC (ϕS ∧γB) = LMSC (A).
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Consider again the MPA B over Γ from Lemma 6.4. We view A ∩ B as an ECMPA and S
refines Int(A ∩ B). We show that Ltime(ϕ) = Ltime(A ∩ B).

The proof follows the same basic structure as depicted in Figure 8. However, to cap-
ture full MSO (and not just its existential fragment), we use Theorem 6.4 in the place of
Theorem 6.3, and to do this, we replace ϕS by ϕS ∧ γB .

First observe that if T realizes M, then T is ∃u-B-bounded iff U(M) is ∃-B-bounded.
Indeed a (untimed) linearization of a TMSC only depends on its set of events and the partial
order, which are the same for T , M and U(M).

Thus, let us consider T ∈ Ltime(ϕ). Then, T is ∃u-B-bounded and T |= ϕ. By
Lemma 6.3, we obtain that MST |= ϕ. Again since S is proper, it is finite and hence by
Lemma 6.5 we get U(MST ) |= ϕS . Since T realizes MST , U(MST ) is ∃-B-bounded, and so
we get U(MST ) |= γB . Thus we conclude that U(MST ) ∈ LMSC (ϕS ∧ γB) = LMSC (A).
Since MST is maximally defined, we obtain U(MST ) ∈ LMSC (A∩B). Using Lemma 6.6 we
get MST ∈ LTC (A ∩ B). Finally, Lemma 6.2 implies T ∈ Ltime(A ∩ B).

Conversely, let T ∈ Ltime(A ∩ B). Then as S is a proper interval set, and A ∩ B is an
MPA over Act × [TC 99K S], by Lemma 6.7, there exists a TCMSC M over (Act ,S) such
that U(M) ∈ LMSC (A ∩ B) and T realizes M. Using Lemmas 6.1 and 6.4 we deduce that
M = MST . But LMSC (ϕS ∧ γB) = LMSC (A) implies U(MST ) |= ϕS and by Lemma 6.5
we get MST |= ϕ. Finally, Lemma 6.3 implies T |= ϕ. ut

7 Checking Emptiness of ECMPAs

In this section, we investigate emptiness checking for ECMPAs, leading to a partial solution
to the satisfiability problem for TMSO formulas, which is undecidable in its full generality.
Since the MSCs are used in early protocol design, this problem is of vital interest as it allows
detection of possible design failures at this stage.

Theorem 7.1 The following problem:

INPUT: An ECMPA A = ({Ap}p∈Proc ,Act ,∆, F ), and an integer B > 0.
QN: Does there exist T ∈ Ltime(A) such that T has a B-bounded timed linearization?

is decidable in space P (|A|, (B + 1)|Act|) for some polynomial P .

Note that the size of A also depends on Act via the transition relations→p of the com-
ponentsAp. But the space complexity above is only exponential in |Act | and not in the much
bigger size |A|.

Then, using Theorem 6.2 we can conclude that,

Corollary 7.1 The following problem is decidable:

INPUT: A TMSO formula ϕ and an integer B > 0.
QN: Does there exist T ∈ Ltime(ϕ) such that T has a B-bounded timed linearization?

The rest of the section formulates the proof of the above theorem. Let A be an ECMPA
and let B > 0. We construct a (finite) timed automaton B (denoted TA) that accepts a timed
word w over Act iff w is a B-bounded timed linearization of some TMSC accepted by A.
Since emptiness is decidable for finite timed automata [2], we are done.

The remainder of this section is dedicated to the construction of such a B, which is done
in three steps as sketched below:
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– First, we address the main hurdle in simulating an ECMPA by a TA, namely, a run
of a TA is totally ordered, while ECMPAs have partially ordered runs. Hence, to keep
track of clock constraints used in the ECMPA, the TA needs to recover the partial order
information from its runs, i.e, words. This is done using gadgets that we will define as
our first step.

– Next, using these gadgets, we describe an infinite TA which simulates the ECMPA.
– Though we allow infinitely many clocks and states in this intermediate construction, on

any run we will see that only finitely many states and clocks are used. We modify this
automaton to obtain finitely many states and clocks thus completing our construction.

7.1 Recovering the partial order

We begin by introducing some notations that will be used to classify the set of actions. For
any channel (p, q) ∈ Ch, and each θ ∈ {!, ?}, pθq denotes the set of actions {pθq(m) ∈ Act |
m ∈ M}. Recall that, we write a ∈ p!q (respectively, a ∈ p?q) if a = p!q(m) (respectively,
p?q(m)) for some m ∈M.

Now, recall that the partial order of an MSC can be recovered from any of its lin-
earizations under the fifo assumption. Indeed, if w = a1 . . . an ∈ Act∗ is a linearization
of MSC M = (E,≤M , λ) over Act , then M is isomorphic to the unique MSC Mw =

(Ew,≤M
w

, λw) over Act , where Ew = {1, . . . , n} (i.e., the set of positions of the word
w), λw(i) = ai, and ≤M

w

is defined as the reflexive transitive closure of
⋃
p,q∈Proc <

Mw

pq

where, for all p ∈ Proc, <M
w

pp is the set of pairs (i, j) ∈ Ew × Ew such that i < j and
λw(i), λw(j) ∈ Actp, and for all (p, q) ∈ Ch, <M

w

pq is the set of pairs (i, j) ∈ Ew × Ew
such that λw(i) = p!q(m) and λw(j) = q?p(m) for some m ∈ M and |{k ≤ i | λw(k) ∈
p!q}| = |{k ≤ j | λw(k) ∈ q?p}|.

Therefore, we can consider the partial order relation of M to be a relation over the
positions of a given linearization of M . Thus, given a linearization w of an MSC M , we
can identify M with Mw and write i ≤M j for 1 ≤ i, j ≤ |w|, to mean i ≤M

w

j, i.e, the
isomorphic images of positions i, j are related by ≤M . Similarly, we may write i <Mpp j,
i <Mpq j, (i, j) ∈ PrevMa and (i, j) ∈ NextMa for a ∈ Act to mean that the corresponding
events are related inM , respectively by, the local-process relation<Mpp, the message relation
<Mpq , the previous and the next occurence of a relations. In the same way, we can also write
λ(i) instead of λw(i). Note that i ≤M j implies i ≤ j but the converse need not be true
(where ≤ is the usual ordering between i and j as elements of N). However, if λ(i) = λ(j),
then i ≤ j implies i ≤M j.

Now, we describe gadgets, which are deterministic finite-state automata that run on
words which are linearizations of an MSC and accept if the first and last position of the
word are related under the partial order. For this, we restrict to B-bounded linearizations.

Definition 7.1 Let M = (E,≤, λ) be an MSC over Act and B ∈ N>0. Then a B-well-
stamping for M is a map ρ : E → {0, . . . , B − 1} s.t., for any e ∈ E with λ(e) = pθq(m)

for some p, q ∈ Proc,m ∈M, θ ∈ {!, ?}, we have ρ(e) = |↓e∩
⋃
m′∈MEpθq(m′)| mod B.

Then, by the above considerations, given a linearization w of M , ρ is also a map from
the positions of w to {0, . . . , B − 1}. Now, the following property is immediate from the
definitions of the message relation in an MSC (Section 2) and B-boundedness.
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Proposition 7.1 Let w = a1 . . . an ∈ Act∗ be a B-bounded linearization of an MSC M

over Act and ρ be a B-well-stamping for M . Then, for 1 ≤ i < j ≤ n and (p, q) ∈ Ch, we
have i <Mpq j iff the following conditions hold:

(a) ai ∈ p!q, aj ∈ q?p,
(b) ρ(i) = ρ(j)

(c) for all k, i < k < j, ak ∈ q?p implies ρ(k) 6= ρ(i).

Proof First, for any i ∈ {1, . . . , n}, if ai = pθq(m) for some θ ∈ {!, ?},m ∈ M, we fix the
notation ⇓i =

(
↓i∩

⋃
m′∈M

Epθq(m′)

)
= {i′ ≤ i | λ(i′) ∈ pθq}. Now, the proof follows once

we recall the relevant definitions in this setting.

(1) For 1 ≤ i < j ≤ n, i <Mpq j iff λ(i) = p!q(m), λ(j) = q?p(m) for some m ∈ M and
|⇓i| = |⇓j|.

(2) For all 1 ≤ i ≤ n, ρ(i) = |⇓i| mod B.
(3) w is B-bounded iff for all 1 ≤ ` ≤ n, (p, q) ∈ Ch, |{i′ | i′ ≤ `, λ(i′) ∈ p!q}| − |{j′ |

j′ ≤ `, λ(j′) ∈ q?p}| ≤ B.

Now, for the first direction, let i <Mpq j. Then, by (1), (a) holds and |⇓i| = |⇓j| = α · B +

b. Then, b = ρ(i) = ρ(j) and so (b) holds. Now, suppose (c) did not hold. Then there exists
k, i ≤ k < j such that ak ∈ q?p and ρ(k) = ρ(i) = ρ(j). Then, by (2), |⇓k| = α′ ·B+b. But
then ⇓k ⊆ ⇓j and j ∈ ⇓j, j 6∈ ⇓k implies that |⇓j| > |⇓k| =⇒ α ·B+ b > α′ ·B+ b =⇒
(α − α′) · B > 0. Thus |⇓j| − |⇓k| ≥ B and so |⇓i| − |⇓k| ≥ B. But now, i < k and
λ(k) ∈ q?p implies that |⇓k| ≥ |{i′ ≤ i | λ(i′) ∈ q?p}| + 1 and so we can conclude that
|⇓i| − |{i′ ≤ i | λ(i′) ∈ q?p}| > B. This means |{i′ ≤ i | λ(i′) ∈ p!q}| − |{i′ ≤ i | λ(i′) ∈
q?p}| > B and so by (3) (in particular, by letting ` = i) it contradicts the B-boundedness of
w. Thus (c) also holds.

Conversely, let conditions (a), (b) and (c) be true. Then, (a) and (b) together imply that
|⇓i| mod B = |⇓j| mod B. That is |⇓i| = α · B + b and |⇓j| = α′ · B + b for some
α, α′ ∈ N. We now show that α = α′. First, observe that between i and j, there can be at
most B − 1 actions labelled q?p(m′) for some m′ ∈ M. Otherwise, we can find an event
k, i < k < j such that ak ∈ q?p and |⇓k| = (α′ − 1)B + b. And for this k, ρ(k) = ρ(j)

which contradicts condition (c). Also, we have i < j and aj ∈ q?p. Thus, (α′− 1) ·B+ b <

|{j′ ≤ i | ai ∈ q?p}| < α′ · B + b. Now, if α > α′, then |{i′ ≤ i | λ(i′) ∈ p!q}| − |{j′ ≤
i, λ(j′) ∈ q?p}| > α ·B−α′ ·B > B which contradicts B-boundedness of w by (3). Else if
α′ > α, then |{j′ ≤ i, λ(j′) ∈ q?p}| − |{i′ ≤ i | λ(i′) ∈ p!q}| > (α′−1−α) ·B ≥ 0 which
is a contradiction since in a linearization we cannot have the number of receives exceeding
the number of sends. Thus α = α′. Now since number of p!q events below i is equal to the
number of q?p events below j, we conclude by fifo property that j is the matching receive
for i, i.e, ai = p!q(m) and aj = q?p(m) for some m ∈M. Thus, by (1), i <Mpq j. ut

Constructing the gadgets. The first gadget we build is a deterministic finite-state automaton
C≤ over Act ×{0, . . . , B − 1}, that detects if the first and last positions of a word, provided
the word corresponds to some factor of a B-bounded MSC linearization, are related with
respect to the associated partial ordering. In what follows, we let Send denote the set of
symbols {p!q | (p, q) ∈ Ch}.

We define C≤ = (Q≤, δ≤, s≤0 , F
≤) where a state of Q≤ is a triple of the form (P,O, f)

where f ∈ {0, 1}, P ∈ 2Proc and O : Send 99K {0, . . . , B − 1} s.t., if p!q ∈ dom(O) for
some (p, q) ∈ Ch, then p ∈ P . Intuitively, the triple (P,O, f) represents the information we
need to recover the partial order. The set P contains the processes in the future partial view,
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O indicates the stamp/numbering of each “open send”, and f will be 1 iff the first and the
last position are in fact related as desired. Note that, letting n = |Proc|, we have

|Q≤| = 2 ·
n∑
k=0

((
n

k

)
· (B + 1)k(n−1)

)
= O

(
(B + 1)|Proc|2

)
. (15)

The initial state of C≤ is s≤0 = (∅, ∅, 0) ∈ Q≤ and the set of final states F≤ = {(P,O, f) ∈
Q≤ | f = 1}. The transition function δ≤ : Q≤ × (Act × {0, . . . , B − 1})→ Q≤ is defined
as δ≤((P,O, f), (a, β)) = (P ′, O′, f ′) where

P ′ =


P ∪ {p} if a ∈ Actp and either (P = ∅) or (∃q ∈ P such that,

a ∈ p?q and O(q!p) = β)

P otherwise

O′ =


O[p!q 7→ β] if a ∈ p!q 6∈ dom(O) for some (p, q) ∈ Ch and

either p ∈ P or P = ∅
O otherwise

f ′ =

{
1 if a ∈ Actp for p ∈ P ′

0 otherwise

As usual, a run of C≤ on (a1, β1) . . . (an, βn) ∈ (Act × {0, . . . , B − 1})∗ is a se-

quence s≤0
(a1,β1)−−−−−→ . . .

(an,βn)−−−−−→ s≤n , where s≤i ∈ Q≤ for each i ∈ {0, . . . , n} and
(s≤i , ai+1, βi+1, s

≤
i+1) ∈ δ

≤ for all i ∈ {0, . . . , n − 1} and is accepting if s≤n ∈ F≤. Then,
L(C≤) denotes the set of words over Act ×{0, . . . , B− 1} having accepting runs. Note that
with this definition, C≤ has a run (which may be accepting or non-accepting) on every word
of (Act × {0, . . . , B − 1})∗. For linearizations, C≤ has the desired property:

Lemma 7.1 Let w = a1 . . . an ∈ Act∗ be a B-bounded linearization of an MSC M over
Act and ρ be a B-well-stamping for M . Then, for 1 ≤ i ≤ j ≤ n, (ai, ρ(i)) . . . (aj , ρ(j)) ∈
L(C≤) iff i ≤M j.

Proof Let us fix 1 ≤ i ≤ n and let ai ∈ Actp for some p ∈ Proc. For each j such that
i ≤ j ≤ n, we denote wρij = (ai, ρ(i)) . . . (aj , ρ(j)). Then for each j, i ≤ j ≤ n, there is

a run rij of C≤ on wρij , namely, s≤0
(ai,ρ(i))−−−−−−→ (Pi, Oi, fi) . . .

(aj ,ρ(j))−−−−−−→ (Pj , Oj , fj) where

s≤0 = (∅, ∅, 0) and for each k ∈ {i, . . . , j}, (Pk, Ok, fk) ∈ Q≤ is given by the definition
of C≤. Indeed each rij is a prefix of rij′ for j ≤ j′ ≤ n. For simplicity of notation, let
Pi−1 = ∅, Oi−1 = ∅, fi−1 = 0, i.e, s≤0 = (Pi−1, Oi−1, fi−1). Now by definition of C≤,
Pi−1 = ∅, ai ∈ Actp implies that Pi = {p}. Once a process gets into P it is never removed,
and so, p ∈ Pj for all i ≤ j ≤ n. Also for each j, i ≤ j ≤ n, rij is an accepting run iff
fj = 1 i.e, iff aj ∈ Actq for some q ∈ Proc and q ∈ Pj .

We now distinguish two cases. First, suppose aj ∈ Actp. Then we already have p ∈ Pj
and so rij is accepting. Also in this case, ai, aj belong to the same process p and so i ≤Mpp j
which implies i ≤M j. Thus,

∀j ∈ {i, . . . , n}, aj ∈ Actp =⇒ (rij is accepting) ∧ (i ≤M j). (16)
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On the other hand, for all j ∈ {i + 1, . . . , n} such that aj ∈ Actq for some q 6= p, we
will show that rij is an accepting run iff i ≤M j which completes the proof of the lemma.
We proceed by induction on j − i.

The base case is when j− i = 1, i.e wρij = (ai, ρ(i))(aj , ρ(j)). Then, Pj−1 = Pi = {p}.
Now, since aj ∈ Actq , rij is accepting iff q ∈ Pj . By definition of C≤, this happens iff
aj ∈ q?p and Oj−1(p!q) = ρ(j). But since j − 1 = i we have p!q ∈ dom(Oi) and along
with Oi−1 = ∅, this implies that ai ∈ p!q and Oi(p!q) = ρ(i). Thus we can conclude that
q ∈ Pj iff ai ∈ p!q, aj ∈ q?p and ρ(i) = ρ(j) which by Proposition 7.1 happens iff i <Mpq j
(by noting that there is no event between i and j). But again i+1 = j and i, j are not on the
same process, thus, i <Mpq j iff i ≤M j, which completes the proof of the base case.

Now, suppose j − i > 1. Then, rij is accepting implies q ∈ Pj . But since q 6∈ Pi = {p},
there exists j′ for i < j′ ≤ j such that q 6∈ Pj′−1, q ∈ Pj′ . By the definition of C≤, since
Pj′−1 6= ∅, there is p′ ∈ Proc such that aj′ ∈ q?p′ and Oj′−1(p′!q) = ρ(j′). But since
Oi−1 = ∅, there is k, i ≤ k < j′ such that p′!q ∈ dom(Ok) and p′!q 6∈ dom(Ok−1). Then
at k, ak ∈ p′!q and Ok(p′!q) = ρ(k) and either p′ ∈ Pk−1 or k = i and Pk−1 = ∅. In
both cases, p′ ∈ Pk since ak ∈ Actp′ . Thus, in fact fk = 1 and so rik is an accepting
run of C≤ on wρik. Now, if p′ = p, i.e., ak ∈ Actp, by (16), we conclude that i ≤M k.
Otherwise, ak ∈ Actp′ , p′ 6= p and since, k < j′ ≤ j, we can apply the induction hypothesis
to conclude that i ≤M k. Now, the values in O, once defined, are never modified and so
Ok(p

′!q) = Oj′−1(p
′!q) which implies ρ(k) = ρ(j′). Also for any j′′, k ≤ j′′ < j′, if

aj′′ ∈ q?p′ and ρ(j′′) = ρ(j′), then at j′′, we have Oj′′(p′!q) = ρ(k) = ρ(j′′) and so
q ∈ Pj′′ . This is a contradiction since we assumed that q ∈ Pj′−1. Thus, by Proposition 7.1,
k <Mp′q j

′. Also aj′ , aj ∈ Actq implies that j′ ≤Mqq j. Thus we have i ≤M k <Mp′q j
′ ≤Mqq j

and so by definition of ≤M , we conclude that i ≤M j.
Conversely, let i ≤M j, be such that i is a p-event and j is a q-event for p 6= q. Then

let j′ be the earliest event on process q which is related to i. This implies that aj′ is a
receive action from some process, say p′ ∈ Proc. In other words, there exists k, j, such that
i ≤ k < j′ ≤ j and i ≤M k <Mp′q j

′ ≤Mqq j and for all j′′ with j′′ <Mqq j′, i 6≤M j′′,
where ak = p′!q(m) and aj′ = q?p′(m) for some p′ ∈ Proc, m ∈ M. Then, if p′ = p, then
by (16), and otherwise by induction hypothesis, rik is an accepting run of C≤ on wik. Thus
fk = 1 and so p′ ∈ Pk. But since, ak ∈ p′!q, we find that either Pk = Pk−1 or k = i. Thus
either p′ ∈ Pk−1 or Pk−1 = ∅. Also, p′!q 6∈ dom(Ok−1), for otherwise, we can find k′,
i ≤ k′ < k with ak′ = p′!q, whose corresponding receive contradicts the minimality of j′

under fifo condition. So by definition ofO, we haveOk(p′!q) = ρ(k) and by Proposition 7.1,
ρ(k) = ρ(j′). Thus, by definition of C≤, we have Pj′ = Pj′−1 ∪ {q}. Thus, q ∈ Pj′ ⊆ Pj
and along with aj ∈ Actq , we get that fj = 1 and so rij is an accepting run. ut

An ECMPA uses Preva and Nexta in the guards, which along a run constrain the previ-
ous and next occurence of an action a respectively. Hence, we need to recover not only the
general partial order relation but also these previous and next occurrence relations from the
linearization. For this, we build two more gadgets using the gadget described above.

We begin by defining a deterministic finite-state automaton C/ = (Q/, δ/, s/0, F
/),

which we refer to as the C/ gadget and use to recover the previous occurence relation.
Its state space is given by Q/ = Q≤ ×Q≤ ×Act . Thus, using Equation 15 we obtain

|Q/| = O
(
(B + 1)2|Proc|2 × |Act |

)
. (17)

Now, the idea is that the first component, mimicking the automaton C≤, is started when
reading the first occurence of an action a, which is henceforth stored in the third component.
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The second component is run if and when a is executed for the second time. Any further
event that is related in the partial order to the first occurence of a but not to the second
occurence matches the Preva relation so that F / = F≤ × (Q≤ \ F≤) × Act . We let s/0 =

(s≤0 , s
≤
0 , b) for some arbitrary action b ∈ Act . Finally, for any (s1, s2, a) ∈ Q/, b ∈ Act , and

n ∈ {0, . . . , B − 1}, we set δ/((s1, s2, a), (b, n)) =
(δ≤(s1, (b, n)), s2, b) if s1 = s≤0
(δ≤(s1, (b, n)), s2, a) if s1 6= s≤0 , s2 = s≤0 and b 6= a

(δ≤(s1, (b, n)), δ
≤(s2, (b, n)), a) otherwise.

Similarly, the C. gadget is defined as C. = (Q., δ., s.0, F
.) with Q. = Q≤ × 2Act ×

{0, 1}. Again by Equation 15 we obtain,

|Q.| = O
(
(B + 1)|Proc|2 × 2|Act|) . (18)

The idea here is that the second component of a state keeps track of the actions we have
seen so far in the future of the first action, and the third component indicates a final state.
Accordingly, s.0 = (s≤0 , ∅, 0), F

. = F≤ × 2Act × {1} and for any (s,A, f) ∈ Q., a ∈ Act ,
n ∈ {0, . . . , B − 1}, we set δ.((s,A, f), (a, n)) ={

(δ≤(s, (a, n)), A ∪ {a}, 1) if δ≤(s, (a, n)) ∈ F≤ and a 6∈ A
(δ≤(s, (a, n)), A, 0) otherwise.

Then, the following lemma describes the nice property of the above gadgets.

Lemma 7.2 Let w = a1 . . . an ∈ Act∗ be a B-bounded linearization of an MSC M over
Act and ρ be a B-well-stamping for M . Then, for all 1 ≤ i ≤ j ≤ n, letting wρij =

(ai, ρ(i)) . . . (aj , ρ(j)) ∈ (Act × {0, . . . , B − 1})∗, we have (1) wρij ∈ L(C
/) iff (j, i) ∈

PrevMai and (2) wρij ∈ L(C
.) iff (i, j) ∈ NextMaj .

Again, recalling that there is an isomorphism that maps positions of w to events of M ,
in the above statement (j, i) ∈ PrevMai means that the events in M corresponding to the
positions i, j are related by PrevMai and so on.

Proof (1) By definition of C/, there is a run r of C/ on wρij , namely, s/0 = s/i−1
(ai,ρ(i))−−−−−−→

s/i . . .
(aj ,ρ(j))−−−−−−→ s/j where for all k, i − 1 ≤ k ≤ j, s/k = (s≤k , s

′≤
k , bk). Further note that,

s≤i−1 = s≤0 and s′≤i = s′≤i−1 = s≤0 and for all k, i ≤ k ≤ j, bk = ai. Now s′≤j ∈ F≤

implies there is k, i < k ≤ j such that s′≤k+1 6= s≤0 which means that ak = bk. But bk = ai

and so ak = ai. Also, for this k, s′≤k
(ak,ρ(k))−−−−−−→ . . .

(aj ,ρ(j))−−−−−−→ s′≤j is an accepting run of
C≤ on wρkj . Conversely, if ∃k, i < k ≤ j such that ak = ai and there is an accepting run

of C≤ on wρkj then in r we find that s′≤j ∈ F
≤. Thus, we can conclude that s′≤j ∈ F

≤ iff
there is k, i < k ≤ j such that ak = ai and there is an accepting run of C≤ on wρkj . But by

Lemma 7.1 there is an accepting run of C≤ on wρkj iff k ≤M j. Thus s′≤j ∈ F
≤ iff there

is k, i < k ≤ j such that ak = ai and k ≤M j. Also by Lemma 7.1 we have s≤j ∈ F
≤ iff

i ≤M j. Finally r is an accepting run of C. on wρij iff s/j ∈ F
/, i.e, s≤j ∈ F

≤ and s′≤j 6∈ F
≤.

And by the above arguments, this happens iff i ≤M j and for all k, i < k ≤ j, either
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ak 6= ai or k 6≤M j. But this is exactly the definition of (j, i) ∈ PrevMai . Thus wρij ∈ L(C
/)

iff (i, j) ∈ PrevMai .

(2) Similarly, there is a run r′ of C. on wρij , namely, s.0 = s.i−1
(ai,ρ(i))−−−−−−→ s.i . . .

(aj ,ρ(j))−−−−−−→
s.j where for all k, i − 1 ≤ k ≤ j, s.k = (s≤k , Ak, bk) for bk ∈ {0, 1}, such that r′1 =

s≤i−1
(ai,ρ(i))−−−−−−→ . . .

(aj ,ρ(j))−−−−−−→ s≤j is a run of C≤ on wρij . Then r′ is accepting iff s≤j ∈ F
≤

and bj = 1 i.e, iff r′1 is accepting and aj 6∈ Aj−1. By Lemma 7.1, r′1 is accepting iff i ≤M j.
Also aj 6∈ Aj−1 implies aj 6∈ Ak for all i ≤ k < j which means that for all k, i ≤ k < j,
ak 6= aj . Thus, we conclude that r′ is accepting iff i ≤M j and for all k, i ≤ k < j, ak 6= aj
i.e, iff (i, j) ∈ NextMaj . ut

7.2 From ECMPA to timed automata

If we ignore the clock constraints and timing issues, then this simulation is the same as
giving an alternate semantics of an MPA directly over linearizations of MSCs. However,
when we include the timing constraints of the ECMPA, then along the run of the TA we
need to know when to verify these constraints and against which clocks. We maintain this
information in the state space using the gadgets.

Intuitively, at each position of a run of the TA, we start a new copy of the Prev gadget and
reset a corresponding clock z. Thus, at a later position, if we encounter a Preva constraint
for some a ∈ Act , and if this copy of the Prev gadget is in a final state, then we know
that these positions are related by the Preva relation, hence the constraint must be checked
against clock z.

Similarly, at each position of the run where we encounter a Nexta constraint, we start a
new copy of the Next gadget and reset a clock z′. Then, when it reaches an accepting state
and the last transition is an a-action, we know that these positions are related by the Nexta
relation. Hence, at this point we verify that clock z′ satisfies the constraint mentioned when
the gadget was started. However, for this we also need to maintain in the state space the
constraint itself so that we can recover it and verify it at the later position.

Finally, for message constraints, we reset a clock when we encounter the send action
and verify it when we reach the correct receive. This information is already contained in the
state space as we will see. In addition however, we need to maintain the message constraint
itself in the state space, so that when we reach the receive we know which constraint to
check the clock against.

We formalize these ideas below. Let us first recall the well known notion of timed au-
tomata [2]. Unlike event-clock automata, whose clocks are implicit, timed automata have a
set Z of explicit clocks that can be guarded by means of clock formulas. The set Form(Z)
of clock formulas over Z is given by the grammar

ϕ ::= true | x ./ c | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

where x ranges over Z , ./ ∈ {<,≤, >,≥,=}, and c ranges over N. A clock valuation over
Z is a mapping ν : Z → R≥0. We say that ν satisfies ϕ ∈ Form(Z), written ν |= ϕ, if
ϕ evaluates to true using the values given by ν. For R ⊆ Z , we let ν[R 7→ 0] denote the
clock valuation defined by ν[R 7→ 0](x) = 0 if x ∈ R, and ν[R 7→ 0](x) = ν(x), otherwise.
A timed automaton (over Act) is a tuple B = (QB,ZB, δB, ιB, FB) where QB is its set of
states, ZB is its set of clocks, δB ⊆ QB × Form(ZB) × Act × 2ZB × QB is the set
of transitions, ι ∈ QB is the initial state, and FB ⊆ QB is the set of final states. We say
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that B is finite if both QB and ZB are finite. The language of B is a set of timed words
Ltw (B) ⊆ (Act ×R≥0)∗. For σ = (a1, t1) . . . (an, tn) ∈ (Act ×R≥0)∗, we let σ ∈ Ltw (B)
iff there is an accepting run r of B on σ, i.e., there is a sequence

r = (st0, ν0)
a1,t1−−−→ (st1, ν1)

a2,t2−−−→ . . .
an,tn−−−−→ (stn, νn)

(where, for all i ∈ {0, . . . , n}, sti ∈ QB and νi : ZB → R≥0 with ν0(x) = 0 for all x ∈ ZB)
such that st0 = ιB, stn ∈ FB, and, for each i ∈ {1, . . . , n}, there exist ϕi ∈ Form(ZB)
and Ri ∈ 2ZB satisfying (sti−1, ϕi, ai, Ri, sti) ∈ δB, (νi−1 + ti − ti−1) |= ϕi, and νi =
(νi−1 + ti − ti−1)[Ri 7→ 0] (where we assume t0 = 0).

Theorem 7.2 (from [2]) Given a finite timed automaton B, one can decide if Ltw (B) 6= ∅.

For the rest of this section, we fix an ECMPA A = ({Ap}p∈Proc ,Act ,∆, F ), with
Ap = (Sp, ιp,→p), and an integer B > 0. We also fix an (infinite) set of indices Ind =

Act × N which will be used to index the “copies” of the gadgets that we will use. We will
define an infinite timed automaton B = (QB,ZB, δB, ιB, FB) such that Ltw (B) = {σ ∈
(Act × R≥0)∗ | there is T ∈ Ltime(A) such that σ is a B-bounded timed linearization of
T}. A state st ∈ QB is a 6-tuple (s, χ, η, ξ/, ξ., γ) where:

– s = (sp)p∈Proc ∈
∏
p∈ProcSp is a tuple of local states from the ECMPA.

– χ : Ch → (M×∆)≤B describes the contents of the channels.
– η : Act → {0, . . . , B − 1} gives the B-stamping number that should be assigned to the

next occurrence of an action.
– ξ/ : Ind 99K Q/ associates with certain indices, states of C/. Thus, the indices in

dom(ξ/) of a state specify which copies of the gadgets are “active” in that state.
– ξ. : Ind 99K Q. × Int(A) associates with some indices, states of C. along with con-

straints that need to be maintained
– γ : Ch × {0, . . . , B − 1} 99K Int(A) describes the guards attached to messages.

The initial state is ιB = ((ιp)p∈Proc , χ0, η0, ξ
/
0 , ξ

.
0 , γ0) where χ0 and η0 map any argu-

ment to the empty word and 0 respectively, and the partial maps ξ/0 , ξ.0 and γ0 are nowhere
defined. We will use clocks from the set ZB = {z/a,i, z

.
a,i | (a, i) ∈ Ind} ∪ {zγp,q,i | (p, q) ∈

Ch, i ∈ {0, . . . , B − 1}}. Also, we fix some notations regarding how we write constraints
using these clocks. For a clock z ∈ ZB and an interval I ∈ I with endpoints l, r ∈ N, we
write “x ∈ I” to denote a constraint from Form(ZB). More specifically, x ∈ (l, r) denotes
x > l ∧ x < r, whereas x ∈ [l, r) refers to x ≥ l ∧ x < r, and so on.

The transition relation δB ⊆ QB × Form(ZB)×Act × 2ZB ×QB is defined by,

((s, χ, η, ξ/, ξ., γ), ϕ, a,R, (s′, χ′, η′, ξ′/, ξ′., γ′)) ∈ δB

if there are p, q ∈ Proc,m ∈ M, θ ∈ {!, ?} such that a = pθq(m) and there exists a p-local
transition of the ECMPA, (sp, a, g, d, s′p) ∈ →p for some g ∈ [TC 99K I] and d ∈ ∆, such
that the following conditions (i.– ix.) hold:

i. s′r = sr for all r ∈ Proc \ {p}.
ii. if θ = ! then χ′(p, q) = (m, d) · χ(p, q), χ′(r, s) = χ(r, s) for all (r, s) ∈ Ch \ {(p, q)}.

iii. if θ = ? then χ(q, p) = χ′(q, p) · (m, d), χ′(r, s) = χ(r, s) for all (r, s) ∈ Ch \ {(q, p)}.
iv. for all b ∈ Act ,

η′(b) =

{
(η(b) + 1) mod B if b ∈ pθq
η(b) otherwise
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v. The states of the previous automata are updated and we have initialized a new copy of
C/ starting at the current position so that we can determine which later positions are
related with the current one by the previous relation.

ξ′/(b, i) =


δ/(s/0, (a, η(a))) if b = a and i = min(N \ dom(ξ/(a)))

δ/(ξ/(b, i), (a, η(a))) if (b, i) ∈ dom(ξ/)

undefined otherwise

vi. The states of the next automata are updated along with the corresponding guards. A new
copy of C. is initialized for each b ∈ Act , if there is a Nextb constraint on the local
transition. The guard itself is stored in the second component, so that it can be verified
when we reach the next occurence of the action. Once verified, we release the guard and
the corresponding copy of C..

ξ′.(b, i) =



(δ.(s.0, (a, η(a))), g(Nextb)) if Nextb ∈ dom(g) and
i = min(N \ dom(ξ.(b)))

(δ.(s., (a, η(a))), I) if ξ.(b, i) = (s., I) and
¬
(
a = b ∧ δ.(s., (a, η(a))) ∈ F .

)
undefined otherwise.

vii. The guards attached to message constraints are maintained as expected. A send event
introduces a constraint, which is retained until its matching receive releases it.

γ′((r, s), i) =


g(Msg) if a ∈ r!s, i = η(a),Msg ∈ dom(g)

undefined if a ∈ s?r and i = η(a)

γ((r, s), i) otherwise.

viii. A clock is reset for every new copy of C/, C. and message constraint introduced at this
transition.

R = {z/a,i | i = min(N \ dom(ξ/(a)))} ∪ {zγp,q,i | a ∈ p!q, i = η(a),Msg ∈ dom(g)}
∪ {z.b,i | Nextb ∈ dom(g) and i = min(N \ dom(ξ.(b)))}.

ix. The guard must ensure that all constraints that get matched at the current event are
satisfied. Thus ϕ = ϕ/ ∧ ϕ. ∧ ϕm where

ϕ/ =
∧

{(b,i) | Prevb∈dom(g)
and ξ′/(b,i)∈F/}

z/b,i ∈ g(Prevb) ∧
∧

{b | Prevb∈dom(g)
and {i|ξ′/(b,i)∈F/}=∅}

false

ensures that all previous constraints that are matched are satisfied. Thus if the local
transition contains a Prevb constraint, then we have to check z/b,i ∈ g(Prevb) for the
(unique) i such that ξ′/(b, i) ∈ F /. If there is no such i then there is no b-action in
the past of the current event and the Prevb constraint of the local transition cannot be
satisfied. In this case, we set ϕ/ to false. For next constraints, we have

ϕ. =
∧

{i∈dom(ξ.(a)) | ξ.(a,i)=(s.,I),
δ.(s.,(a,η(a)))∈F.}

z.a,i ∈ I
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If the current action is the next occurence of a from some positions where a next guard
was registered, for each there is a copy (a, i) of C. which reaches a final state. Thus,
we verify the corresponding clock with the constraint recovered from ξ.. For message
constraints, we have

ϕm =
∧

{((q,p),i)∈dom(γ) |
a∈p?q, η(a)=i}

zγq,p,i ∈ γ((q, p), i)

The set of final states is FB = {(s, χ, η, ξ/, ξ., γ) ∈ QB | s ∈ F, χ = χ0,dom(ξ.) =

dom(γ) = ∅}. This ensures that each registered guard has been checked. Indeed, a next or
message constraint is released only when it is checked with the guard ϕ.

One critical observation here is that, once we have specified the local transition of A,
this global transition of B gets determined uniquely. Thus, this step is always deterministic.
Note that the above automaton B has no ε-transitions either. Now, we prove that Ltw (B)
contains precisely the B-bounded timed linearizations of Ltime(A).

Theorem 7.3 Ltw (B) = {σ ∈ (Act × R≥0)∗ | there is T ∈ Ltime(A) such that σ is a
B-bounded timed linearization of T}.

Proof Let T = (M, t) withM = (E,≤, λ) over Act . Then, aB-bounded timed linearization
σ = (a1, t1) . . . (an, tn) of T generates the corresponding B-bounded linearization of M ,
namely a1 . . . an over the same set of positions {1, . . . , n}. Thus, as stated in the previous
section, we can interpret the events from E to be positions from {1, . . . , n}.

Then, recall that T ∈ Ltime(A) iff there is an accepting run r ofA on T , where r : E →⋃
p∈Proc Sp is given by Definition 4.1. Also, let us recall that σ ∈ Ltw (B) iff there is an

accepting run r′ of B on σ, i.e., there is a sequence,

r′ = (st0, ν0)
a1,t1−−−→ (st1, ν1)

a2,t2−−−→ . . .
an,tn−−−−→ (stn, νn) (19)

where for all i ∈ {0, . . . , n}, sti = (si, χi, ηi, ξ
/
i , ξ

.
i , γi) ∈ QB (with si = (sip)p∈Proc ∈∏

p∈Proc Sp), st0 = ιB, stn ∈ FB and νi : ZB → R≥0 (with ν0(x) = 0 for all x ∈ ZB),
and for each i ∈ {1, . . . , n}, there exist ϕi ∈ Form(ZB) and Ri ∈ 2ZB such that,

(sti−1, ϕi, ai, Ri, sti) ∈ δB (20)

(νi−1 + ti − ti−1) |= ϕi (21)

νi = (νi−1 + ti − ti−1)[Ri 7→ 0] (22)

Now we construct an accepting run r′ of B on σ from an accepting run r ofA on T and vice
versa.

(=⇒) Let r be an accepting run of A on T . Then, we construct run r′ inductively from
i = 0 to i = n. Further, we maintain two further state invariants at each step i ∈ {0, . . . , n}:

for all p ∈ Proc: sip =

{
r(j) if ∃j ≤ i, j ∈ Ep,@k ∈ Ep, j < k ≤ i
ιp otherwise

(23)

for all b ∈ Act with b = pθq(m): ηi(b) = |{i′ ≤ i | λ(i′) ∈ pθq}| mod B (24)

Then, indeed at i = 0, we have st0 = ιB = (s0, χ0, η0, ξ
/
0 , ξ

.
0 , γ0). This satisfies our

state invariants (23–24) since s0p = ιp for all p ∈ Proc and η0(a) = 0 for all a ∈ Act . Now
for some i ∈ {1, . . . , n} assuming we have constructed the run r′ until (sti−1, νi−1), let
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ai = pθq(m) for some p, q ∈ Proc, m ∈ M, and θ ∈ {!, ?}. We then extend the run r′ to
stage i by exhibiting sti, νi, ϕi, and Ri such that Conditions (20–24) hold.

From the definition of r, we have a local transition on the ECMPA on event i. More
precisely, (r−(i), ai, gi, di, r(i)) ∈ →p for some guard gi and di ∈ ∆. Recall that r−(i) =
r(i′) for i′ <·pp i, and r−(i) = ιp if such an event i′ does not exist. Thus, by Condi-
tion (23) at stage i − 1, we have si−1p = r−(i). And by choosing sip = r(i) we obtain
(si−1p , ai, gi, di, s

i
p) ∈ →p. Again, by choosing for all p′ 6= p, sip′ = si−1p′ , Condition (23)

holds at stage i. (This follows since for p, the largest j ≤ i such that j ∈ Ep is i itself. And
for p′ 6= p, the largest j′ ≤ i such that j′ ∈ Ep′ is the largest such event j′ ≤ i− 1.)

Now, as we commented in our construction, the local transition fully specifies the global
transition and thus we get a transition of B,

((si−1, χi−1, ηi−1, ξ
/
i−1, ξ

.
i−1, γi−1), ϕi, ai, Ri, (si, χi, ηi, ξ

/
i , ξ

.
i , γi)) ∈ δB ,

where ϕi, Ri, χi, ηi, ξ/i , ξ
.
i , γi are defined from their values at stage i − 1 and the local

transition. Thus Condition (20) holds at i, with sti = (si, χi, ηi, ξ
/
i , ξ

.
i , γi). Again Condi-

tion (24) continues to hold at i if it holds at i − 1. (If b ∈ pθq, then ηi(b) = (ηi−1(b) +
1) mod B = |{i′ ≤ i − 1 | λ(i′) ∈ pθq}| + 1 mod B= |{i′ ≤ i | λ(i′) ∈ pθq}|
mod B. And for b ∈ Act \ pθq, it follows since ηi(b) = ηi−1(b).) Now, we just define
νi = (νi−1 + ti − ti−1)[Ri 7→ 0], so that Condition (22) holds at i. Thus, we have extended
run r′ of B on σ to i, if we prove Condition (21).

Claim (νi−1 + ti − ti−1) |= ϕi

Proof (of Claim) The proof of this claim is by induction on the structure of ϕi. But first we
observe that the mapping ρ : E → {0, . . . , B − 1} which maps ρ(i) = ηi(ai) is a B-well-
stamping for M . This follows from the fact that the state invariant, Condition (24), holds
until stage i. We have the following cases to consider.

(1) Previous constraint of the form z/a,k ∈ gi(Preva) or false: If for some a ∈ Act,
Preva ∈ dom(gi), then by the definition of a run r of A on T (i.e., Condition (9) or
(10)), there exists an event j such that (i, j) ∈ PrevTa (thus, aj = a). By Lemma 7.2,
(aj , ηj(aj)) . . . (ai, ηi(ai)) ∈ L(C/). And so, in the run of B at stage i, ξ/i (a, k) ∈ F /

where k = min(N \ dom(ξ/j−1(a))). Hence, for any a such that Preva ∈ dom(gi), the set
{` | ξ′/(a, `) ∈ F /} 6= ∅ and so the false constraint cannot occur as a guard in this simula-
tion, i.e, as part of ϕi. Now, at stage j, we have z/a,k ∈ Rj (there cannot be another Preva
guard for some other k′ since there is a unique preceding occurrence of each letter). Also
z/a,k 6∈ R

′
j for all j′ ∈ {j +1, . . . , i}, since (a, j′) ∈ dom(ξ/j′−1). Therefore in the valuation

(νi−1+ ti− ti−1)(z/a,k) = νi−1(z
/
a,k)+ ti− ti−1 = νi−2(z

/
a,k)+ ti−1− ti−2+ ti− ti−1 =

. . . = νj(z
/
a,k) + ti − tj and νj(z/a,k) = 0. Thus νj(z/a,k) + ti − tj = ti − tj and so we

are done if we show that ti − tj ∈ gi(Preva). But this follows from Condition (9) or (10),
where we have |t(j) − t(i)| ∈ gi(Preva) where t(j) = tj and t(i) = ti. Thus we conclude
that the valuation satisfies any previous clock constraint of the form z/a,k ∈ gi(Preva).

(2) Next constraint of the form z.ai,k ∈ I: This implies that there is k ∈ dom(ξ.i−1(ai))
such that, ξ.i−1(ai, k) = (s., I) and δ.(s., (ai, ηi(ai))) ∈ F .. Then, by the definition
of the next update function ξ., we can conclude that there exists j < i, k = min(N \
dom(ξ.j−1(ai))) such that ξ.j (ai, k) = (δ.(s.0, (aj , η(aj)), I)) such that I = gj(Nextai).
Thus, (aj , ηj(aj)) . . . (ai, ηi(ai)) ∈ L(C.) and by Lemma 7.2, we can conclude that (j, i) ∈
NextTai . Hence from the definition of run r on TMSC T , we get |t(j)−t(i)| ∈ gj(Nextai) =

I. Also, z.ai,k ∈ Rj and it is not reset until i. If not, let j′ with j < j′ < i be the first in-
stance where z.ai,k ∈ Rj′ . This (ai, k) 6∈ dom(ξ.j′) and (ai, k) ∈ dom(ξ.j′−1) implies that
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aj′ = ai and (aj , η(j)) . . . (aj′ , η(j
′)) ∈ L(C.) which contradicts (j, i) ∈ Nextai . Thus, for

all j < j′ < i we get z.ai,k 6∈ Rj′ , (vi−1 + ti − ti−1)(z.ai,k) = ti − tj ∈ I and so we are
done.

(3) Message constraint of the form zγq,p,k ∈ γi−1(q, p, k): Here, (q, p, k) ∈ dom(γi−1)
such that ai ∈ p?q, ηi−1(ai) = k. Then we look at the largest j ≤ i such that aj = q!p and
ηj−1(aj) = k. Such a j exists since if not it would contradict the fact that σ is a linearization
of a valid TMSC T . Further, for all j′ with j < j′ < i, it is not the case that aj′ ∈ p?q and
ηj′−1(aj′) = k. Then it follows that for all j′, j ≤ j′ < i, γj′(q, p, k) = gj(Msg). Also
(j, i) ∈ MsgT and so by definition of r on TMSC, |tj − ti| ∈ gj(Msg) = γi−1(q, p, k). And
again, zγq,p,k ∈ Rj and for all j < j′ ≤ i, zγq,p,k 6∈ Rj′ , so (vi−1 + ti − ti−1)(zγq,p,k) =

ti − tj ∈ γi−1(q, p, k) and thus we are done. 3

Now it is easy to see that the state s̃n = (sn, χn, ηn, ξ
/
n, ξ

.
n, γn) reached at the end of the

above run, is a final state. This follows from the fact that r is a successful run of A on T ,
since then we have sn ∈ F and χn = χ0 (since at the end of r the channel contents must be
empty), and the partial maps ξ. and γ are nowhere defined (since if that were not the case
then this means that a constraint was not checked with its guard).

(⇐=) For the converse, from r′ as defined in (19) above, we want to construct a run r :

E →
⋃
p∈Proc Sp of A on T . We define, for each event i ∈ {1, . . . , n}, r(i) = sipi . Now, at

each i ∈ {0, . . . , n}, by (20), we have (sti−1, ai, ϕi, Ri, sti) ∈ δB. By definition of B, for
each i ∈ {0, . . . , n}, we have (si−1pi , ai, gi, di, s

i
pi) ∈ →pi for some gi and di. We now show

that this map is a run of A on T by verifying Conditions (6,9–10) in Definition 4.1. First,
r−(i) = si−1pi , as can be proved by induction on i: For i = 1, st0 = ιB implies that s0p1 = ιp1
and r−(a1) = ιp1 since a1 is the minimal event in that process. For i > 1, r−(i) = r(j) if
there is j <·pipi i and r−(i) = ι otherwise. Thus we have si−1pi = sjpj . Now, for events i, j, if
i <Mpq j then (r−(i), ai, gi, di, r(i)) ∈ →pi and (r−(j), aj , gj , dj , r(j)) ∈ →pj implies that
di = dj which means that Condition (6) holds. This follows from the definition of χ in δB
ensuring that sent and received messages are synchronized. To prove the other conditions,
for any event i, and α ∈ TC, we need to show that, if α ∈ dom(gi), then there exists j with
(i, j) ∈ dom(αT ) such that |t(i) − t(j)| ∈ gi(α). We have three cases depending on α.

– α = Preva for some a ∈ Act : If Preva ∈ dom(gi), then firstly there exists some
(unique) k such that ξ/i (a, k) ∈ F /. If not, then the false constraint will occur in ϕi
which contradicts acceptance of σ by B. Thus we have that for this (a, k), the constraint
z/a,k ∈ gi(Preva) occurs in ϕi and (νi−1+ti−ti−1)(z/a,k) |= ϕi implies that (νi−1+ti−
ti−1)(z

/
a,k) ∈ gi(Preva). Now by definition of previous state updates in the run of B, we

can use Lemma 7.2 to conclude that there exists j ≤ i for which (i, j) ∈ PrevMa . Further,
at j, we can see that z/a,k ∈ Rj , and for all j′ with j < j′ < i, we have z/a,k 6∈ Rj′ . Thus,
(νi−1+ ti− ti−1)(z/a,k) = ti− tj . Hence (i, j) ∈ PrevTa and |t(i) − t(j)| ∈ gi(Preva).

– α = Nexta for some a ∈ Act : If Nexta ∈ dom(gi), then by definition of ξ., for
k = min(N \ dom(ξ.i−1(a))), we have ξ.i (a, k) = (δ.(s.0, (ai, η(ai)), gi(Nexta)). Also
we reset clock z.a,k. But as r′ is an accepting run, ξ.n(a, k) is undefined and so there
exists j such that a = aj and ξ.j (a, k) = (s, I) with s ∈ F .. Let j be the smallest such
j such that, for all j′ with i < j′ < j, we have (a, k) ∈ dom(ξ.j′). Thus I = gi(Nexta).
Also (ai, ηi(ai)) . . . (aj , ηj(aj)) ∈ L(C.) and by Lemma 7.2, (i, j) ∈ NextTa . Now, we
have (νj−1 + tj − tj−1)(z.a,k) = νi(z

.
a,k) + tj − ti = tj − ti. Again as the run was

successful, z.a,k ∈ I occurs in ϕj and (vj−1 + tj − tj−1)(z.a,k) ∈ I = gi(Nexta). Thus
tj − ti ∈ gi(Nextσ) and we are done.
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– α = Msg: This is similar to the above case (and easier, as the next automaton is not
needed).

This completes both directions of the proof. ut

7.3 A finite version of B

To get a finite version of B, we will bound the set of indices Ind to a finite set Indfin , thus,
constructing a finite timed automaton B′ that is equivalent to B. The state space of B′ is
the same as B except that it uses indices from Indfin to define the ξ/ and ξ. components.
We construct B′ in two steps. First, we describe how transitions of B are modified to han-
dle previous gadgets. Next, we describe how to modify the transitions of B to handle next
gadgets. Thus, B′, obtained after both these modifications will turn out to be a finite timed
automaton. To bound the set of indices, our basic idea is to reuse copies of the previous and
next gadgets when it is safe to do so. First, we handle the previous case by examining when
it is “safe” to release a copy of C/. The following proposition gives us the criterion required.

Proposition 7.2 Let (s, χ, η, ξ/, ξ., γ) be a reachable state of B. If there exist two indices
(a, i), (a, j) ∈ dom(ξ/), i 6= j, such that ξ/(a, i) = ξ/(a, j) = s/ ∈ Q/, then no final state
of s/f ∈ F

/ is reachable from s/.

Proof The copies of C/ indexed by (a, i) and (a, j) have been started at distinct positions
labeled a to keep track of two different pasts. Now suppose there exists s/f ∈ F

/ such that
s/f is reachable from s/. Then at s/f , this position is related by Preva with both starting
positions, i.e., when the clocks z/a,i and z/a,j were last reset. But this is not possible, because
there is at most one previous position labeled a for any position. Thus no final state is
reachable from s/. ut

This implies that we can safely remove the corresponding indices (a, i) and (a, j) from
dom(ξ/). Thus, we say that a state st = (s, χ, η, ξ/, ξ., γ) ∈ QB is /-safe if there are no
two indices (a, i), (a, j) ∈ dom(ξ/), i 6= j, such that ξ/(a, i) = ξ/(a, j). Otherwise, we say
that st is /-unsafe and that (a, i), (a, j) are /-unsafe indices at the state st. A transition from
B is retained in B′ if it is between /-safe states. Further, every transition (st, ϕ, a,R, st′)
in B from a /-safe state st to a /-unsafe state st′ = (s′, χ′, η′, ξ′/, ξ′., γ′) is replaced by
transition (st, ϕ, a,R, s̃t′) between /-safe states. Hereby, s̃t′ = (s′, χ′, η′, ξ̃′/, ξ′., γ′) with
ξ̃′/(b, i) = ξ′/(b, i) if (b, i) ∈ dom(ξ′/) and there is no j 6= i such that (b, j) ∈ dom(ξ′/)

and ξ′/(b, i) = ξ′/(b, j). Otherwise, ξ̃′/(b, i) is undefined. By Proposition 7.2,B′ still accepts
the same set of timed words as B. This is enough to ensure finiteness in the previous case as
shown below.

Lemma 7.3 For any reachable state (s, χ, η, ξ/, ξ., γ) ∈ QB′ , we have dom(ξ/) ⊆ Act ×
{0, . . . , |Q/|}.

Proof Suppose not, then, for some a ∈ Act , |dom(ξ/, a)| ≥ (|Q/| + 1). But this implies
that there must exist at least two indices (a, i), (a, j) ∈ dom(ξ/), i 6= j, such that ξ/(a, i) =
ξ/(a, j). By the above definition, they would have been undefined and, hence, cannot be in
the domain of ξ/. Thus, we have a contradiction. ut

The remaining source of infinity comes from next constraints. The situation is not as easy
as for previous constraints, since next constraints registered at several positions could be
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matched at the same time. Thus, the number of registered Nextb-constraints may be un-
bounded. In particular, in some state of B, suppose (b, i), (b, j) ∈ dom(ξ.) for some i 6= j

such that ξ.(b, i) = (s., I) and ξ.(b, j) = (s., I ′). Then, the constraints associated with i
and j will be matched simultaneously. When matched, the guard on the transition of B will
include both z.b,i ∈ I and z.b,j ∈ I ′. Our idea is to keep only the stronger constraint and
release the other. To determine the stronger constraint we deal separately with upper and
lower constraints.

Refining the constraints A clock constraint over ZB is called an upper-guard if it is of the
form x ∼ c where ∼ ∈ {<,≤} for some x ∈ ZB, c ∈ Q≥0. Similarly x ∼ c is a lower-
guard if ∼ ∈ {>,≥}. Note that each “x ∈ I” defines uniquely a lower and an upper guard,
depending upon the endpoints of the interval I.

Definition 7.2 Let x ∼ c and x′ ∼′ c′ be two upper-guards with ∼,∼′ ∈ {<,≤} or two
lower guards with∼,∼′ ∈ {>,≥}. We say x ∼ c is stronger than x′ ∼′ c′ if, when evaluated
at the same instant, x ∼ c holds implies that x′ ∼′ c′ holds as well.

The stronger constraint can be determined with a diagonal guard: For upper guards, x ∼ c

is stronger than x′ ∼′ c′ if either x′− x < c′− c or x′− x ≤ c′− c and (∼ = < or ∼′ = ≤).
The relation stronger than is transitive among upper-guards. It is also total: either x ∼ c

is stronger than x′ ∼′ c′, or the converse holds, or both in which case we say that the two
constraints are equivalent. The constraints are equivalent iff x′ − x = c′ − c and ∼ = ∼′.
The above properties are true for lower guards as well, where we have x ∼ c stronger than
x′ ∼′ c′ if either x′ − x > c′ − c or x′ − x ≥ c′ − c and (∼ = > or ∼′ = ≥).

Restricting the domain of ξ. Now we get back to our problem and change B so that the
size of dom(ξ.) in a state st = (s, χ, η, ξ/, ξ., γ) is bounded by |Act | · (2|Q.|+ 1). Note
that a transition of B may initiate at most |Act | new copies of C. (one for each b ∈ Act

such that Nextb ∈ dom(g)). Hence, we say that state st is .-safe if for all b ∈ Act we have
|dom(ξ.(b))| ≤ 2|Q.|. Only transitions between .-safe states of B are retained in B′.

For a state st, b ∈ Act , s. ∈ Q., we define Activst(b, s
.) = {i | ξ.(b, i) = (s., I), I ∈

I}. Also for i ∈ Activst(b, s
.), we denote by Ii the interval such that ξ.(b, i) = (s., Ii).

Now, if the state st is not .-safe, then there exist b ∈ Act and s. ∈ Q. such that we have
|Activst(b, s

.)| > 2. In this case, we say that st is .-unsafe for (b, s.). Now, for each (b, s.)

such that st is .-unsafe for (b, s.), we can find i`, iu ∈ Activst(b, s
.) such that the lower

guard defined by z.b,i` ∈ Ii` is stronger than all lower guards defined by z.b,j ∈ Ij for j ∈
Activst(b, s

.) and the upper guard defined by z.b,iu ∈ Iiu is stronger than all upper guards
defined by z.b,j ∈ Ij for j ∈ Activst(b, s

.). From the definition of the relation stronger
than, all constraints z.b,j ∈ Ij for j ∈ Activst(b, s

.) are subsumed by the conjunction of
z.b,i` ∈ Ii` and z.b,iu ∈ Iiu . Therefore, we can release all next constraints associated with
(b, j) with j ∈ Activst(b, s

.) \ {i`, iu}.
To do this in the automaton, we define guards of the form ϕ(ib,s

.

` , ib,s
.

u ) that evaluate to
true if ib,s

.

` and ib,s
.

u determine stronger lower and upper guards among those defined by
Activst(b, s

.). Since the relation stronger than can be expressed with diagonal constraints
as we have seen above, we have ϕ(ib,s

.

` , ib,s
.

u ) ∈ Form(ZB).
Thus, for each transition (st, ϕ, a,R, st′) in B from a .-safe state st to a state st′ =

(s′, χ′, η′, ξ′/, ξ′., γ′) that is not .-safe, we replace it by a transition (st, ϕ′, a, R, s̃t′), where
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ϕ′ = ϕ ∧
( ∧
|Activst′ (b,s

.)|>2

ϕ(ib,s
.

` , ib,s
.

u )
)

and s̃t′ = (s′, χ′, η′, ξ′/, ξ̃′., γ′) is such that

ξ̃′.(b, i) =


ξ′.(b, i) if ∃s. ∈ Q. s.t., i ∈ Activst′(b, s

.) and
(|Activst′(b, s

.)| ≤ 2) or
(
|Activst′(b, s

.)| > 2 ∧ i ∈ {ib,s
.

` , ib,s
.

u }
)

undefined otherwise

Then, observe that s̃t′ is a .-safe state. From the discussion above, we obtain that B
and B′ still accept the same set of timed words. Hence we may conclude that in B′, we can
restrict to the finite index set Indfin = Act × {0, . . . , n} where n = max{|Q/|, 2|Q.|}.
Consequently, B′ uses finitely many states and clocks.

Theorem 7.4 The timed automaton B′ is finite, and we have Ltw (B′) = Ltw (B). Moreover,
B′ has (B + 1)O(|Act|) many clocks.

Proof We first note that the finiteness of B′ follows immediately from the fact that Indfin =

Act × {0, . . . , n} is finite (where n = max{|Q/|, 2|Q.|}). Using Equations 17 and 18, we
deduce that the number of clocks of B′ is bounded by O

(
|Act | × 2|Act| × (B +1)2|Proc|2).

To prove that B and B′ accept the same timed language we will use an alternative defini-
tion of an accepting run of a timed automaton, which has moves with regard to time-elapse
instead of time stamps.

In the following, we say that (b, i) ∈ dom(ξ/1) is /-live if there is no j 6= i such
that (b, j) ∈ dom(ξ/1) and ξ/1(b, i) = ξ/1(b, j). Moreover, we call (b, i) ∈ dom(ξ.1) to be
.-live if i ∈ Activst(b, s

.) and either (|Activst′(b, s
.)| ≤ 2) or

(
|Activst′(b, s

.)| > 2 and
i ∈ {i`, iu}

)
.

We define a relation ; between configurations of B and B′ and let (st1, ν1) ; (st2, ν2)

if the following conditions (i)–(iii) hold:

(i) st1 = (s, χ, η, ξ/1 , ξ
.
1 , γ) and st2 = (s, χ, η, ξ/2 , ξ

.
2 , γ).

(ii) For all /-live (b, i) ∈ dom(ξ/1), there is k such that (b, k) ∈ dom(ξ/2), ξ
/
2(b, k) = ξ/1(b, i),

and ν1(z/(b,i)) = ν2(z
/
(b,k)). Conversely, for all (b, k) ∈ dom(ξ/2), there is i such that

(b, i) ∈ dom(ξ/1) is /-live, ξ/2(b, k) = ξ/1(b, i), and ν1(z/(b,i)) = ν2(z
/
(b,k)).

(iii) For all .-live (b, i) ∈ dom(ξ.1), there is k such that (b, k) ∈ dom(ξ.2), ξ
.
2(b, k) = ξ.1(b, i),

and ν1(z.(b,i)) = ν2(z
.
(b,k)). Conversely, for all (b, k) ∈ dom(ξ.2), there is i such that

(b, i) ∈ dom(ξ.1) is .-live, ξ.2(b, k) = ξ.1(b, i), and ν1(z.(b,i)) = ν2(z
.
(b,k)).

We show that the relation ; is a bisimulation. That is, if (st1, ν1) ; (st2, ν2), then

– for every move (st1, ν1)
a,τ−−→ (st′1, ν

′
1), there exists a move (st2, ν2)

a,τ−−→ (st′2, ν
′
2) such

that (st′1, ν
′
1) ; (st′2, ν

′
2), and

– conversely, for every move (st2, ν2)
a,τ−−→ (st′2, ν

′
2), there exists a move (st1, ν1)

a,τ−−→
(st′1, ν

′
1) such that (st′1, ν

′
1) ; (st′2, ν

′
2)

To prove the first direction, let st1 = (s, χ, η, ξ/1 , ξ
.
1 , γ) and st2 = (s, χ, η, ξ/2 , ξ

.
2 , γ). Then,

(st1, ν1)
a,τ−−→ (st′1, ν

′
1) with st′1 = (s′, χ′, η′, ξ′/1 , ξ

′.
1 , γ

′) if (st1, ϕ, a,R, st′1) ∈ δB for some
ϕ and R with ν1 + τ |= ϕ and ν′1 = (ν1 + τ)[R 7→ 0]. We can now define ϕ′ and R′

by replacing each occurence of z/(b,i) (and z.(b,i)) in ϕ by z/(b,k) (respectively z.(b,k)) for
some k given by condition (ii) (respectively, (iii)). Then, (st2, ϕ′, a, R′, st′2) ∈ δB′ where
st′2 = (s′, χ′, η′, ξ′/2 , ξ

′.
2 , γ

′) with ξ′/2 and ξ′.2 obtained from the definition of the respective
modified transition relation.
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Now, by Proposition 7.2, each previous clock mentioned in ϕ has an image in ϕ′ which,
by definition, has the same constraint. Again, if ϕ mentions a next clock, then either it itself
is in ϕ′ or there exists some other clocks in ϕ′ whose upper guards and lower guards are
stronger than it. We can conclude that ν1 + τ |= ϕ iff ν2 + τ |= ϕ′ and ν′2 = (ν2 + τ)[R′ 7→
0]. Thus, we have (st2, ν2)

a,τ−−→ (st′2, ν
′
2) and we are done once we see that (st′1, ν

′
1) ;

(st′2, ν
′
2). Condition (i) is already true. Consider Condition (ii). For (b, i) ∈ dom(ξ′/1 ), there

are two cases to consider. First, it was defined here, i.e., b = a and i = min(N\dom(ξ/1(a))).
In this case, (b, i) is not /-unsafe at st′1 iff (b, k) is not /-unsafe at st′2, for k = min(N \
dom(ξ/2(a))). Second, it was updated from the previous state (i.e., (b, i) ∈ dom(ξ/1)). Now,
if it was updated from the previous state st1 and it is not /-unsafe at st′1, then it was not
/-unsafe at st1 either (because, otherwise, there is (b, j) ∈ dom(ξ/1) such that ξ/1(b, i) =

ξ/1(b, j) which implies that δ/(ξ/1(b, i), (a, η(a))) = δ/(ξ/1(b, j), (a, η(a))) which implies
that (b, i) is /-unsafe at st′1). Then, as st1 ; st2, there exists k such that ξ/2(b, k) = ξ/1(b, i).
Now, (b, k) cannot be /-unsafe at st′2 since, otherwise, we obtain that (b, i) will be /-unsafe at
st′1. Thus, ξ′/2 (b, k) = δ/(ξ/2(b, k)(a, η(a))) = δ/(ξ/1(b, j)(a, η(a))) = ξ′/1 (b, i). Conversely,
if there exists (b, k) ∈ dom(ξ′/2 ) and ξ′/2 (b, k) = ξ′/1 (b, i), then there cannot exist (b, j) ∈
dom(ξ′/1 ) such that ξ′/1 (b, j) = ξ′/1 (b, i). By similar arguments, we see that Condition (iii)
also holds.

In the converse direction, for previous or next index (b, i) of st1 which does not have a
corresponding index in st2, we use a fresh previous or next clock and use the same arguments
as above.

Thus, ; is a bisimulation, and now from the fact that the final states of B and B′ coin-
cide, we conclude that the timed languages are the same. ut

From Theorems 7.2, 7.3, and 7.4, we obtain the proof of the main result, i.e., the de-
cidability of emptiness for ECMPA over existentially B-bounded timed MSCs. To conclude
the proof of Theorem 7.1, it remains to discuss the complexity of our algorithm.

Recall from [2] that the emptiness problem for timed automata is PSPACE-complete.
More precisely, the upper bound is obtained with an NLOGSPACE reachability analysis of
the region graph, the number of regions being polynomial in the number of states of the
automaton but exponential in the number of clocks.

By Theorem 7.4, the number of clocks of B′ is (B + 1)O(|Act|). Each state of B′ is
a tuple of the form (s, χ, η, ξ/, ξ., γ) as defined in Section 7.2 but using the finite set of
indices Indfin . From Equations 17 and 18 we deduce that |Q/|, |Q.| and |Indfin | are all
in (B + 1)O(|Act|). Then, we can check that the number of states of B′ is bounded by
2P (|A|,(B+1)|Act|) for some polynomial P .

Finally, combining the bounds above on the number of clocks and the number of states of
B′ with the NLOGSPACE reachability analysis of the region graph, we can check emptiness
using space polynomial in |A| and (B + 1)|Act| as announced in Theorem 7.1.

8 Conclusion

In this paper, we have introduced ECMPA as an automaton model to deal with timed and
distributed systems. These combine the generality of message passing automata (in the dis-
tributed untimed setting) with the tractability of event clock automata (in the sequential
timed setting). To describe the behaviors of such systems we have used two formalisms
of timed partial orders, i.e., TMSCs and TCMSCs. The first main result shows that timed
monadic second-order logic formulae and ECMPA are expressively equivalent over TMSCs.
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Indeed, this equivalence holds without assumptions on the bounds of channels, only when
we restrict to the existential fragment of the logic. Further, the proof of this equivalence is
constructive, since we are able to formulate an explicit translation between the two. The
second main result proves that checking emptiness for ECMPA is decidable in the bounded
case. These two results together allow us to check satisfiability for the timed logic.

Acknowledgements We thank the anonymous referees for their constructive suggestions which helped in
improving the presentation of the paper.
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