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Abstract. We revisit decidability results for resource-bounded logics and use de-
cision problems for vector addition systems with states (VASS) to characterise the
complexity of (decidable) model-checking problems. We show that the model-
checking problem for the logic RB±ATL is 2EXPTIME-complete by using recent
results on alternating VASS. In addition, we establish that the model-checking
problem for RBTL is decidable and has the same complexity as for RBTL∗ (the
extension of RBTL with arbitrary path formulae), namely EXPSPACE-complete,
proving a new decidability result as a by-product of the approach. Finally, we
establish that the model-checking problem for RB±ATL∗ is decidable by a reduc-
tion to parity games, and show how to synthesise values for resource parameters.

1 Introduction

Resource-bounded logics [11,10,29,3,2,12] extend alternating-time temporal logic (ATL)
[5] by adding transitions that produce and consume resources to the models. As shown
in [2], the introduction of implicit counters in the models (i.e. variables interpreted by
natural numbers) and the ability to quantify over strategies for a given set of agents can
lead to undecidability, or decidability with a very high worst-case upper bound on the
complexity of the model checking problem.

The nature of the strategy modalities means that reasoning about resources has sim-
ilarities to the analysis of runs of vector addition systems with states (a.k.a. VASS) [27],
and more specifically to games on VASS, see e.g. [9]. In this paper, we exploit results
on VASS in order to analyse the model-checking problem for resource-bounded log-
ics. Model-checking problems on VASS based on temporal logics and games are not
always decidable, or at least quite difficult to solve, but sharp results exist. Temporal
logics on VASS often lead to undecidable model-checking problems, see e.g. [17,18],
and this is more common with branching-time temporal logics such as CTL [18], or
when the atomic formulae can state properties about the counter values [22]. How-
ever, there are exceptions. For example, CTL model-checking on one-counter VASS is
PSPACE-complete [32,19] (see also [34]). Similarly, the control-state repeated reacha-
bility problem for VASS is shown to be decidable in [23], and this is generalised to
full LTL (for which the atomic formulae are exactly control states) in [21], where the
model-checking problem for LTL on VASS is shown to be EXPSPACE-complete. Also
in [23], a strict fragment of LTL restricted to the “infinitely often” temporal operator
GF and atomic formulae stating properties on counter values is shown decidable by a
reduction into the reachability problem for VASS.

As far as games for VASS are concerned, the situation is even less encouraging.
Two-player games on VASS in which each player can freely update the counter values



are undecidable, even with simple winning conditions such as the reachability of a
given control state [9]. However, asymmetric VASS games in which at most one player
can freely update the counter values and where the winning conditions are simple, are
decidable [31]. In addition, the game on asymmetric VASS with reachability of a control
state (a slight variant of single-sided VASS in [1] or alternating VASS in [13]) has been
shown to be 2EXPTIME-complete [13], and decidable with parity conditions [1,24].
The non-termination problem for symmetric games is 2EXPTIME-complete (the upper
bound is from [26] and the lower bound is from [13]).

In this paper, we establish formal relationships between model-checking problems
for resource-bounded logics and decision problems for alternating VASS (also known
as single-sided VASS). We then use these relationships to show new results for the
decidability and complexity of model-checking resource-bounded logics. Ours is not
the first work in this direction. There are clear similarities between resource values
and counter values, and the semantics of resource-bounded logics are inherently game-
based. Previous work has explored the connections with counter machines, either to
obtain undecidability, or to obtain lower bounds on complexity, e.g., [11,2].

We give optimal complexity upper bounds and new decidability results, including
for resource-bounded logics with enriched path formulae as those in CTL∗ [16]. First,
we show that the model-checking problem for RB±ATL is 2EXPTIME-complete (The-
orem 1 and Theorem 2), and that RB±ATL restricted to a bounded number of resources
is in EXPTIME. The 2EXPTIME lower bound is obtained by a reduction from the state
reachability problem for alternating VASS (AVASS) [13], whereas the upper bound is
established by a reduction to the state reachability and the termination problems for
AVASS (both problems are needed). These results are obtained by using formal rela-
tionships between strategies in concurrent game structures and proofs in AVASS, and
the key observation is that only asymmetric VASS are needed. The formal relationships
also allow us to show that the model-checking problem for RB±ATL∗ (a new logic
naturally extending RB±ATL) is decidable by a reduction to the parity game problem
for AVASS [1] (Theorem 4). To the best of our knowledge, the complexity of the par-
ity game problem for AVASS is still open. We also show that resource parameters can
be effectively computed in the parameterised version of RB±ATL∗ (Theorem 5), due
to the fact that the Pareto frontier for any parity game on single-sided VASS is com-
putable [1, Theorem 4]. As far as we know, this is the first time that resource values are
synthesised in resource-bounded logics (see also [25]). Lastly, we show that the model-
checking problems for RBTL [10] and its extension RBTL∗ are EXPSPACE-complete,
and that RBTL restricted to a bounded number of resources is in PSPACE.

2 Alternating VASS Preliminaries

We write N (resp. Z) for the set of natural numbers (resp. integers) and [m,m′] with
m,m′ ∈ Z to denote the set { j ∈ Z : m ≤ j ≤ m′}. Given a dimension r ≥ 1 and a ∈ Z,
we write a ∈ Zr to denote the vector of dimension r with all components equal to a. For
each x ∈ Zr, we write x(1), . . . , x(r) for the entries of x. For each x, y ∈ Zr, x � y def

⇔

for every i ∈ [1, r], we have x(i) ≤ y(i). We also write x ≺ y when x � y and x , y.
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A binary tree T, which may contain nodes with one child, is a non-empty subset of
{1, 2}∗ such that, for all n ∈ {1, 2}∗ and i ∈ {1, 2}, n · i ∈ T implies n ∈ T and, n · 2 ∈ T
implies n · 1 ∈ T. The nodes of T are its elements. The root of T is ε, the empty word.
All notions such as parent, first child, second child, subtree and leaf, have their standard
meanings. The height of T is the length, i.e. the number of nodes, of the longest simple
path from the root to a leaf.

An alternating VASS (AVASS) [13] is a tupleA = (Q, r,R1,R2) such that (1) Q is a
finite set of locations (a.k.a. control states) and r ≥ 0 is the number of resource values,
(2) R1 is a finite subset of Q ×Zr

×Q (unary rules) and (3) R2 is a finite subset of Q3

(fork rules). A derivation skeleton ofA is a labellingD : T→ (R1∪R2∪{⊥}) such that:
(1)T is a (possibly infinite) binary tree (subset of {1, 2}∗ with standard conditions), (2) if
n has one child in T, thenD(n) ∈ R1, (3) if n has two children in T, thenD(n) ∈ R2 and
(4) if n is a leaf in T, thenD(n) =⊥. A derivation ofA based onD is a labelling D̂ :
T→ Q×Zr such that: (1) if n has one child n′ inT,D(n) = (q,u, q′) and D̂(n) = (q,v),
then D̂(n′) = (q′,v+ u) and (2) if n has two children n′ and n′′ in T,D(n) = (q, q1, q2)
and D̂(n) = (q,v), then D̂(n′) = (q1,v) and D̂(n′′) = (q2,v). So, fork rules do not
update the resources and whence, there is an asymmetry between unary rules and fork
rules (this makes a difference with branching VASS, see e.g. [33,15]). This is a useful
feature when dealing with the proponent restriction condition in RB±ATL. A derivation
D̂ is admissible whenever D̂ : T → Q ×Nr, i.e. only natural numbers occur in it. An
admissible derivation is also called a proof .

The state reachability problem for AVASS is as follows: given an AVASS A and
control states q0 and q f , is there a finite proof of AVASS whose root is equal to (q0, 0)
and each leaf belongs to {q f } × N

r? When A has no fork rules, A is essentially a
VASS [27] and the above problem is an instance of the coverability problem, which is
known to be EXPSPACE-complete [28,30] (see also [7,14]). The non-termination prob-
lem for AVASS is as follows: given an AVASSA and a control state q0, is there a proof
whose root is equal to (q0, 0) and all the maximal branches are infinite?

Proposition 1. [13,26] The state reachability and non-termination problems for AVASS
are 2EXPTIME-complete.

Decidability of these problems were first established in [31] by using monotonicity
of the games. The 2EXPTIME upper bound is preserved if we assume that the root is
labelled by (q0, b) with b ∈Nr encoded with a binary representation (see Lemma 1).

In the sequel, we shall also admit fork rules of any arity α ≥ 1, and therefore, in
such slightly extended AVASS the set of fork rules R2 is a finite subset of

⋃
β≥2 Qβ.

Lemma 1. The following extension of the state reachability and non-termination prob-
lems for AVASS remains in 2EXPTIME:

– Fork rules can be α-ary for any α ≥ 1 (but there are only a finite amount of them).
– Reachability is related to a subset Q f ⊆ Q (instead of a singleton set).
– The initial configuration is (q0, b) with b ∈Nr instead of the fixed tuple 0.
– The value ω is allowed in b in the initial configuration (q0, b), where for all n ∈ Z,

we have ω = n + ω = ω + n.

3



The rather standard proof consists in using Proposition 1 by simulating a non-binary
fork by a linear-size gadget made of unary and binary fork rules and by adding binary
fork rules from states in Q f to a new single final state (alternatively, one could add
unary rules with effect 0). The third item in Lemma 1 can be handled by adding a new
unary rule with effect b whereas the fourth one amounts to ignore the components with
the root value ω.

The notions of derivation skeleton, derivation and proof are also extended to general
trees T ⊆ (N \ {0})∗. The set of finite words T ⊆ (N \ {0})∗ is a (not necessarily binary)
tree iff for all n ∈ (N \ {0})∗ and i ∈ (N \ {0}), n · i ∈ T implies n ∈ T and, n · i ∈ T and
i > 1 imply n · (i − 1) ∈ T. Such AVASS correspond to a single-sided VASS [6,1].

In what follows, by a VASS we mean an alternating VASS without any fork rule
and write it as V = (Q, r,R) where R is a finite set of unary rules. Given a VASS
V, its transition system TS(V) def

= (W,−→,L) is such that: (1) W
def
= Q ×Nr, (2) L is

a truth assigment with elements of Q also understood as propositional variables and
L(q) def
= {q} ×Nr and (3) −→ is a binary relation onW such that (q,v) −→ (q′,v′) iff there

is a unary rule (q,u, q′) in R such that v′ = v + u where ‘+’ is the component-wise
addition onNr. As usual, we also write

∗
−→ to denote the reflexive and transitive closure

of −→. Since TS(V) is a Kripke-style structure, it can be used to interpret modal or
temporal formulae (e.g., LTL or CTL formulae) where atomic formulae refer to control
states. Since alternating-time temporal logics such as ATL or ATL∗ are strict exten-
sions of CTL or CTL∗ respectively, complexity hardness results for temporal logics can
be lifted to such logics. A known result which will be useful in the sequel is that the
model-checking problem for LTL on VASS is EXPSPACE-complete (the atomic formu-
lae/propositions are control states) and it is PSPACE-complete for a fixed number of
resources [21].

Below, we consider AVASS with a finite set of fork rules included in
⋃
β≥2 Qβ, and

where the proofs are trees with nodes labelled by elements in Q × (N ∪ {ω})r. Given
an AVASS A = (Q, r,R1,R2), a colouring col is a map Q → [0, p] for some p ≥ 0.
The parity game problem for AVASS is as follows: given an AVASSA, a control state
q0, b ∈ (N ∪ {ω})r and col : Q → [0, p], is there a proof the root of which is equal
to (q0, b), all the maximal branches are infinite and the maximal colour that appears
infinitely often along each branch is even (the colour of each node is induced by col)?

Proposition 2. [1, Corollary 2] The parity game problem for AVASS is decidable.

To be precise, [1, Corollary 2] states the result for single-sided VASS that can be
viewed as AVASS such that the set Q of control states is partitioned into Q = Q1 ]Q2,
unary rules start by states in Q1, fork rules start by states in Q2 and there is at most one
fork rule starting in the same control state (necessarily, belonging to Q2). The problem
for AVASS can be reduced to that for single-sided VASS. It is not difficult to show
that the state reachability and non-termination problems for AVASS can be understood
as subproblems of the parity game problem and therefore their decidability also fol-
lows from [1]. However, the situation is different in the case of complexity. While
the exact complexity of the parity game problem is unknown, the state reachability
and non-termination problems for AVASS are shown to be 2EXPTIME-hard in [13], the
state reachability problem is shown to be in 2EXPTIME in [13] and the non-termination
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problem is proved to be in 2EXPTIME in [26]. It has been shown recently that the parity
game problem is in TOWER [24].

This decidability result has been strenghtened in [1] in the following way. GivenA,
q0 and col : Q → [0, p], the set of tuples b ∈ (N ∪ {ω})r for which there is a positive
solution to the parity game problem is upward closed and computable. This means that
it can be represented effectively by a Boolean combination of atomic constraints of the
form either xi ≥ k where i ∈ [1, r] and k ∈N or xi = ω. Indeed, since the set is upward
closed, by Dickson’s Lemma, it has a finite set of minimal elements (with respect to the
well-quasi-ordering � slightly extended to accomodate the addition of the value ω) that
allows one to define easily the symbolic representation in terms of atomic constraints
of the form x ≥ k. The Pareto frontier ofA, q0 and col : Q → [0, p] is defined as the
set of minimal elements in (N∪{ω})r for which there is a positive solution to the parity
game problem.

Proposition 3. [1, Theorem 4] The Pareto frontier for any parity game on single-sided
VASS is computable.

3 The Logic RB±ATL and Variants

We consider the logics RB±ATL and RB±ATL∗. The logic RB±ATL was introduced
in [3,4], and extends ATL [5] with resources. RB±ATL∗ extends RB±ATL to allow path
formulae to be any LTL-like formula.

Let PROP be a countably infinite set of atomic propositions. The models for the
logics RB±ATL and RB±ATL∗ are the structures introduced in Definition 1 below.
These are concurrent game structures from [5], but enriched with a cost function that
specifies how resources are produced or consumed. At some abstract level, a structure
is equipped with r counters and the transitions can perform increments and decrements.

Definition 1. A resource-bounded concurrent game structure M is a tuple of the form
(Agt,S,Act, r, act, cost, δ,L) such that:

– Agt is a non-empty finite set of agents (by default Agt = [1, k] for some k ≥ 1).
– S is a set of states and r ≥ 1 is the number of resources.
– Act is a non-empty set of actions with a distinguished action idle.
– act : Agt × S → P(Act) is the action manager function such that for all a and s

we have idle ∈ act(a, s).
– cost : S × Agt × Act → Zr is the (partial) cost function so that cost(s, a, a) is

defined exactly when a ∈ act(a, s). Moreover, cost(s, a, idle) = 0.
– δ : S × (Agt→ Act)→ S is the (partial) transition function such that δ is defined

on (s, f) whenever for all agents a ∈ Agt, we have f(a) ∈ act(a, s).
– L : PROP→ P(S) is a truth assignment (the definition can be adapted when finite

subsets of PROP are involved).

The map δ is also viewed as a deterministic relation with transitions of the form s
(a1,...,ak)
−−−−−→

s′ where δ(s, f) = s′ and for all i ∈ [1, k] = Agt, we have f(i) = ai. We say that M is
finite whenever S and Act are finite sets and L is restricted to a finite subset of PROP.
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For instance, the idle action is considered in [3,4], where motivations for considering
such a distinguished action are given. Given a coalition A ⊆ Agt and a state s, a joint
action by A in s is a map f : A → Act such that, for all agents a ∈ A, we have
f(a) ∈ act(a, s). The set of joint actions by A in s is denoted DA(s). Given a state s,
the set of joint actions by Agt in s is denoted D(s) (instead of DAgt(s)) and the map
δ is defined only for such joint actions. We write f v g whenever g is a conservative
extension of f, i.e. dom(f) ⊆ dom(g) and, f and g agree on dom(f).

Given a joint action f ∈ DA(s), we write out(s, f) to denote {s′ ∈ S | there is g ∈
D(s) such that f v g and s′ = δ(s, g)}. For instance, out(s, f) is a singleton set when
f ∈ D(s) since δ is a map and not a relation. Given a joint action f ∈ DA(s) and a state
s, the cost of any transition fired from s following f (restricted to A by definition) is as
follows: costA(s, f) def

=
∑

a∈A cost(s, a, f(a)). In a sense, the value costA(s, f) does not
depend on the costs related to the agents in (Agt \ A), or equivalently, the cost related
to the agents in (Agt \ A) is reduced to zero.

A computation λ is a finite sequence or an ω-sequence of the form s0
f0
−→ s1

f1
−→ s2 . . .

such that for all i < |λ| − 1, we have si+1 ∈ δ(si, fi). Here, |λ| denotes the length of λ,

each si is a state and each fi belongs to D(si). For instance |s0
f0
−→ s1 · · ·

fn−1
−→ sn| = n + 1

and |s0
f0
−→ s1 · · ·

fn−1
−→ · · · | = ω for any infinite computation. So, in full generality, in a

computation, a transition between two successive states is labelled by a joint action: this
is not strictly needed for the forthcoming developments but it provides a more general
notion that might be used in other contexts (for instance, if the winning condition of
forthcoming strategies depends on the actions of all the agents and not only on those
for the agents in A or on the visited states). A strategy FA for the coalition A is a map

from the set of finite computations to the set of joint actions by A such that FA(s0
f0
−→

s1 · · ·
fn−1
−→ sn) ∈ DA(sn). A computation λ = s0

f0
−→ s1

f1
−→ s2 · · · respects the strategy

FA iff for all i < |λ|, we have, si+1 ∈ out(si,FA(s0
f0
−→ s1 . . .

fi−1
−→ si)). A computation

λ that respects FA is maximal whenever it cannot be extended further while respecting
the strategy. Note that maximal computations respecting FA are infinite. The set of all
maximal computations that respect the strategy FA and that start at the state s is denoted
by out(s,FA). So far, no resource value has been involved in computations. Below,
we shall quantify over maximal computations that respect a strategy and therefore for
defining a strategy we can restrict ourselves to finite computations that respect it so far.

Given a bound b ∈ (N∪ {ω})r, a computation λ = s0
f0
−→ s1

f1
−→ s2 . . . in out(s,FA) is

b-consistent iff for all i < |λ|, we have 0 � (
∑i−1

j=0 costA(s j,FA(s0
f0
−→ s1 . . .

f j−1
−→ s j))+ b).

Whenever b(i) = ω, this can be viewed as a means to disregard what happens on the
ith resource (assuming that n + ω = ω for any n ∈ Z). Indeed, b(i) = ω amounts
to guarantee from the beginning of the computation that there is an infinite supply of
resources on the ith component. Note also that the above condition is slightly different
from the one in [4] but strictly equivalent. We have decided to adopt that notation in
order to show more easily the relationships with VASS decision problems. So, for a

computation λ = s0
f0
−→ s1

f1
−→ s2 . . . and a coalition A, there is an underlying sequence

v0,v1, . . . of resource values so that v0
def
= b and for all i < |λ| − 1, we have vi+1

def
=
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vi + costA(si,FA(s0
f0
−→ s1 . . .

fi−1
−→ si)). The values of the sequence only depend on the

agents in A, which is often called the proponent restriction condition.
The set of all the b-consistent (infinite) computations is denoted by out(s,FA, b). A

b-strategy FA with respect to s is a strategy such that out(s,FA) = out(s,FA, b). This
definition also slightly differs from the one in [4] that is not relative to a given state and
therefore in [4] the equality should hold for all the states.

So far, we have provided the main definitions about resource-bounded concurrent
game structures and strategies. Let us present now the logic RB±ATL. Given a set of
agents Agt = {a1, . . . , ak} and r ≥ 1, we write RB±ATL(Agt, r) to denote the resource-
bounded logic with k agents and r resources whose models are resource-bounded con-
current game structures with the same parameters. Formulae of RB±ATL(Agt, r) are
defined according to the grammar:

φ ::= p | ¬φ | φ ∧ φ | 〈〈Ab
〉〉 © φ | 〈〈Ab

〉〉 �φ | 〈〈Ab
〉〉 φUφ,

where p ∈ PROP, A ⊆ Agt and b ∈ (N∪{ω})r. The size of a formula is computed from
a DAG representation and the integers are encoded in binary. Note that forthcoming
hardness results do not use the conciseness of the DAG representation (with respect to
the tree representation).

The satisfaction relation |= is defined inductively as follows assuming that M is
an RB±ATL(Agt, r) model (we omit the obvious cases for the Boolean connectives):
M, s |= p def

⇔ s ∈ L(p) and,

M, s |= 〈〈Ab
〉〉 © φ

def
⇔ there is a b-strategy FA w.r.t. s such that for all s0

f0
−→ s1 . . . ∈

out(s,FA), we haveM, s1 |= φ

M, s |= 〈〈Ab
〉〉�φ

def
⇔ there is a b-strategy FA w.r.t. s such that for all λ = s0

f0
−→

s1 . . . ∈ out(s,FA), for all i < |λ|, we haveM, si |= φ

M, s |= 〈〈Ab
〉〉φ1Uφ2

def
⇔ there is a b-strategy FA w.r.t. s such that for all λ = s0

f0
−→

s1 . . . ∈ out(s,FA), there is some i < |λ| such that M, si |= φ2 and for all j ∈
[0, i − 1], we haveM, s j |= φ1.

Since all the maximal computations are infinite, the index i involved for clauses above
related to 〈〈Ab

〉〉� or 〈〈Ab
〉〉U can take any value inN. The presence of the idle action

allows the extension of a strategy as soon as a given condition is satisfied along the
computations. For instance, M, s |= 〈〈Ab

〉〉 © φ is equivalent to the existence of f ∈
DA(s) such that for all g w f, we haveM, s′ |= φwith δ(s, g) = s′ and 0 � b+costA(s, f).
Moreover, a strategy modality 〈〈Ab

〉〉 reduces the impact of the function cost in two
ways. If the ith component of b is equal to ω, then there are no constraints on the ith
resource along the computation. The restriction of cost to opponent agents in (Agt\A)
is also reduced to 0 (so without any impact on consistency).

Obviously, RB±ATL(Agt, r) is a quantitative variant of ATL [5] in which resource
values are computed along the computations.

The model-checking problem for RB±ATL is as follows: given k, r ≥ 1 (in unary),
a formula φ in RB±ATL([1, k], r), a finite RB±ATL([1, k], r) modelM and a state s, is
M, s |= φ? The encoding of k and r in unary is unessential since the size ofM with an
explicit representation of all the transitions is over k + r.
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Proposition 4. [3, Theorem 1] The model-checking problem for RB±ATL is decidable.

We also consider RB±ATL∗, an extension of RB±ATL in which the path formulae
can be any LTL-like formula, in particular a temporal operator may no longer be pre-
ceded by a cooperation modality. This is a new logic although its definition follows a
classical schema for branching-time temporal logics. Given a set of agents Agt = [1, k]
and r ≥ 1, we write RB±ATL∗(Agt, r) to denote the resource-bounded logic with k
agents and r resources whose models are resource-bounded concurrent game struc-
tures with the same parameters. The parameterised version of RB±ATL∗ denoted by
ParRB±ATL∗ admits formulae as RB±ATL∗ except that the values b ∈ (N ∪ {ω})r are
replaced by tuples of variables within VAR = {x1, x2, . . .}. Here is a typical formula in
ParRB±ATL∗:

〈〈{1}(x1,x2)
〉〉>Uq f ∧ 〈〈{2}(x2,x3)

〉〉>Uq′f .

Given a parameterised (state or path) formula φ with variables x1, . . . , xn and a map
v : {x1, . . . , xn} → (N ∪ {ω}), we write v(φ) to denote the formula in RB±ATL∗ ob-
tained from φ by replacing each occurrence of a variable x by v(x). The parameterised
model-checking problem for ParRB±ATL∗ is as follows: given k, r ≥ 1 (in unary), a
state formula φ in ParRB±ATL∗([1, k], r), a finite RB±ATL∗([1, k], r) model M and a
state s, compute the set of maps v such that M, s |=s v(φ). Here, computing means to
be able to characterise the set of maps v withM, s |=s v(φ), by using a symbolic repre-
sentation with nice computational properties. We can show that we only need Boolean
combinations of atomic formulae of the form either x ≥ k where k ∈N or x = ω.

4 The Complexity of RB±ATL

The results in this section are obtained by elaborating on correspondences between
AVASS decision problems, and the existence of strategies in RB±ATL. We show a 2EX-
PTIME-hardness result by a reduction from the state reachability problem for AVASS.
This improves the EXPSPACE-hardness result in [4]. It is also worth noting that in the
proof of Theorem 1, the presence of the idle action requires a bit of work.

Theorem 1. The model-checking problem for RB±ATL is 2EXPTIME-hard.

The upper bound is proved by designing a labelling algorithm as done in [4] but
the main difference with [4] rests on the fact that we explicitly call subroutines that
solve decision problems on AVASS. Let M be a finite resource-bounded concurrent
game structure, A ⊆ Agt be a coalition, FA be a strategy and s be a state. We construct
an AVASS AM,A,s such that the set of computations respecting FA and starting from s
corresponds to a derivation skeleton whose root is labelled by a unary rule with first
state s. Moreover, if FA is b-strategy w.r.t. s, then the derivation skeleton can be turned
into a proof whose root is labelled by (s, b).

Given M = (Agt,S,Act, r, act, cost, δ,L), the AVASS AM,A,s
def
= (Q, r,R1,R2) is

built as follows:

Q def
= {s} ∪ {(s′, f) | s′ ∈ S, f ∈ DA(s′)} ∪ {(g, s′) | s′, s′′ ∈ S, g ∈ D(s′′), δ(s′′, g) = s′}.
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– The set R1 contains the following rules: (1) for all f ∈ DA(s), (s, costA(s, f), (s, f))
and (2) for all (g, s′) ∈ Q, for all f ∈ DA(s′), ((g, s′), costA(s′, f), (s′, f)).

– The set R2 contains the following rules. For all (s′, f) ∈ Q, let {(g1, s1), . . . , (gα, sα)}
= {(g, s′′) ∈ Q | s′′ ∈ δ(s′, g), g ∈ D(s′), f v g}. The set is non-empty thanks to
constraints on the idle action. We add the fork rule ((s′, f), (g1, s1), . . . , (gα, sα)). In
order to define unambiguously that rule, we assume an arbitrary ordering on Q.

It is worth noting that s has a special status in Q simply because any proof whose
root configuration contains s has no predecessor configuration. Any derivation skeleton
from AM,A,s has to alternate the rules in R1 and the rules in R2, by construction. For
every (s′, f) in Q, there is a unique fork rule starting by (s′, f) and the construction
applies also in the degenerate cases, i.e. when A = Agt or when A = ∅ (assuming that
cost(s′, f) = 0 for the unique f ∈ D∅(s′)). The main property ofAM,A,s is stated below.

Lemma 2. There is a b-strategy w.r.t. s inM iff there is a proof inAM,A,s whose root is
labelled by (s, b) and every maximal branch is infinite.

Theorem 2. The model-checking problem for RB±ATL is in 2EXPTIME.

An AVASS of the form AS′
M,A,s is defined as the restriction of AM,A,s in which the

opponent coalition has no way to go out of S′. The algorithm is given below with the
essential property: GMC(M, ψ) = {s | M, s |= ψ}.

Algorithm 1 An algorithm for RB±ATL model checking.
1: procedure GMC(M, φ)
2: case φ of
3: p: return {s ∈ S | p ∈ L(s)}
4: ¬ψ: return S \ GMC(M, ψ)
5: ψ1 ∧ ψ2: return GMC(M, ψ1) ∩ GMC(M, ψ2)
6: 〈〈Ab

〉〉©ψ: return {s | ∃ f ∈ DA(s), 0 � b+costA(s, f), for all f v g ∈ D(s), δ(s, g) ∈
GMC(M, ψ)}

7: 〈〈Ab
〉〉�ψ: S1 := GMC(M, ψ)

8: if s ∈ S1 then return {s | AS1
M,A,s, (s, b) is non-terminating} end if

9: if s < S1 then return ∅ end if
10: 〈〈Ab

〉〉ψ1Uψ2: return {s | AS1∪S2
M,A,s , (s, b),S′2 is a positive instance of state reachability}

with S1 = GMC(M, ψ1), S2 = GMC(M, ψ2), S′2 = {(g, s
′) ∈ Q | s′ ∈ S2} ∪ {s′ ∈ Q | s′ =

s, s ∈ S2}

11: end case
12: end procedure

Corollary 1. For any fixed r ≥ 1, the model-checking problem for RB±ATL restricted
to at most r resources is in EXPTIME. For r ≥ 4, the problem is EXPTIME-hard.

We invoke [26, Theorem 3.4] and [13, Theorem 3.1] since for a bound r, the state
reachability and the non-termination problems can be solved in EXPTIME. EXPTIME-
hardness (r ≥ 4) is due to [13, Proposition 4.2] and to the proof of Theorem 1.
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5 More Path Formulae While Preserving Decidability

In this section, we study the model-checking problem for resource-bounded logics
where the path formulae can be any LTL-like formula. In doing so, we also illustrate the
versatility of our formalisation, by showing how it can be used to establish complexity
results for the model-checking problem for the logics RBTL∗ and RB±ATL∗.

5.1 The Logic RBTL∗ and its Complexity

The models of the logic RBTL∗ are structures of the form (Q, r,R,L) where (Q, r,R) is
a VASS and L is a truth assignment built on elements of Q understood as propositional
variables, so that L(q) = {q} (see e.g [10, Section 3]). In order to fit the usual terminol-
ogy, below, an infinite proof in (Q, r,R) is called a path or run and it can be represented
by λ = (q0,v0) −→ (q1,v1) . . .. We write λ[i,+∞) to denote the run starting from (qi,vi)
taken from λ as a suffix and λ(i) to denote the configuration (qi,vi).

The state formulae φ and the path formulae Φ of RBTL∗ are defined by mutual
recursion with the grammar (relatively to Q and r)

φ ::= q | ¬φ | (φ ∧ φ) | 〈b〉 Φ
Φ ::= φ | ¬Φ | (Φ ∧Φ) | © Φ | (ΦUΦ) | �Φ

where q ∈ Q and b ∈ (N∪{ω})r. Syntactically, every state formula is also a path formula
according to this grammar, and this reflects the fact that a path uniquely identifies a
control state in which a formula is interpreted: its starting control state. We present the
semantics for RBTL∗ by distinguishing the state formulae from the path formulae. The
two satisfaction relations |=s and |=p are defined as follows (clauses for the Boolean
connectives are omitted).

M, q |=s q′ iff q′ = q
M, q |=s 〈b〉Φ iff there is an infinite run λ starting at (q, b) such thatM, λ |=p Φ
M, λ |=p φ iffM, q0 |=s φ for state formulae φ with λ(0) = (q0,v0)
M, λ |=p ©Φ iffM, λ[1,+∞) |=p Φ
M, λ |=p ΦUΨ iff there is i ≥ 0 such thatM, λ[i,+∞) |=p Ψ and

for every j ∈ [0, i − 1], we haveM, λ[ j,+∞) |=p Φ
M, λ |=p �Φ iff for all i ≥ 0,M, λ[i,+∞) |=p Φ.

The model-checking problem for RBTL∗ is as follows: given a model M, q and
a state formula φ, is it M, q |=s φ? The logic RBTL is the fragment of RBTL∗ in
which any subformula whose outermost connective is in {U,©,�}, is preceded by
some 〈b〉. The problem for RBTL is already EXPSPACE-hard since the state reachability
problem for VASS can be reduced easily to it. The EXPSPACE lower bound for the
model-checking problem for RBTL can be matched with the upper bound for RBTL∗.

Theorem 3. The model-checking problems for RBTL and RBTL∗ are EXPSPACE-complete.

We can obtain a improved complexity result if the number of resources is considered
fixed.
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Corollary 2. For any fixed r ≥ 1, the model-checking problem for RBTL∗ restricted to
at most r resources is in PSPACE.

The PSPACE upper bound is then a consequence of [21, Theorem 4.1]. Again, if r
is fixed but greater than two, then the model-checking problem for RBTL∗ restricted
to at most r resources is PSPACE-hard since the state reachability problem for VASS
of dimension two is PSPACE-complete [8]. When r = 1, the model-checking problem
for RBTL∗ restricted to at most one resource is NP-hard since the state reachability for
VASS of dimension one is NP-complete [20].

5.2 Decidability of RB±ATL∗

In order to illustrate the reduction from the model-checking problem for RB±ATL∗

into the parity game problem, we briefly present a notion of synchronisation. LetM =
(Agt,S,Act, r, act, cost, δ,L) be a resource-bounded concurrent game structure. Given
p1, . . . , pn, we write Σn to denote P({p1, . . . , pn}) and Ln(s′) def

= {pi | i ∈ [1,n], s′ ∈
L(pi)} for all s′ ∈ S. So, Ln(s′) ∈ Σn.

Let AM,A,s = (Q, r,R1,R2) be the AVASS defined from M, A and s, and let A =
(Q′, q′0, δ

′ : Q′ × Σn → Q′, col : Q′ → [0, p]) be a deterministic parity automa-
ton over Σn. The principle of the synchronised product AM,A,s ⊗ A defined below
is the following. Any (infinite) branch of a proof of AM,A,s contains control states
of the form s, (s′, f) or (g, s′) where s is a distinguished state of M, s′ is any state,
f ∈ DA(s′) and g is a joint action in D(s′′) with δ(s′′, g) = s′. By construction, (s′, f)
is preceded by a state of the form either (g, s′) or s′ (if s′ = s). So an infinite branch
of the form (s0,u0) ((s0, f0),u1) ((g1, s1),u1) ((s1, f1),u2) ((g2, s2),u2) · · · leads to the
ω-word Ln(s0) Ln(s1) Ln(s2) · · · that admits a unique run in A (thanks to determin-
ism). Above, we slightly abuse notation since we identify a branch with its label. Given
an infinite branch s0

u0
−→ (s0, f0) −→ (g1

k1
, s1

k1
)

u1
−→ (s1

k1
, f1) −→ (g2

k2
, s2

k2
)

u2
−→ (s2

k2
, f2) −→

(g3
k3
, s3

k3
) · · · in a proof of AM,A,s, its Ln-projection is simply defined as the ω-word

Ln(s0) Ln(s1
k1

) Ln(s2
k2

) Ln(s3
k3

) · · · in Σωn .
The control states ofAM,A,s⊗A are pairs in Q×Q′ and the second components are

therefore control states in Q′ as they appear for the unique run on Ln(s0) Ln(s1) Ln(s2) · · · .
Let us define the AVASSAM,A,s ⊗A

def
= (Q′′, r,R′1,R

′

2) such that Q′′ def
= Q×Q′ and:

– For each s u
−→ (s, f) ∈ R1, R′1 contains the unary rule (s, q′0) u

−→ ((s, f), q′0).
– For each (g, s′) u

−→ (s′, f) ∈ R1, and for each q ∈ Q′, R′1 contains the rule ((g, s′), q) u
−→

((s′, f), q). So, firing a unary rule from AM,A,s does not change the second compo-
nent.

– For each ((s′, f), (g1, s1), . . . , (gα, sα)) ∈ R2 and for each q ∈ Q′, we add in R′2
(((s′, f), q), ((g1, s1), δ(q,Ln(s′))), . . . , ((gα, sα), δ(q,Ln(s′)))). Firing a fork rule from
AM,A,s changes the second component in a unique way depending on q and Ln(s′).
Again, there is a unique fork rule starting by the control state ((s′, f), q).

Let us define the colouring col′ : Q′′ → [0, p] such that for all (q, q′) ∈ Q′′, we have
col′((q, q′)) def

= col(q′). The synchronised product satisfies the essential property for
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the automata-based approach (as for temporal logics). This is the most natural way to
inherit colours fromA toAM,A,s ⊗A.

Lemma 3. Let (s, b) ∈ Q × (N ∪ {ω})r. The statements below are equivalent:

(I) AM,A,s has a proof the root of which is equal to (s, b), all the maximal branches
are infinite and the Ln-projection of each infinite branch belongs to the language
accepted byA (i.e. to L(A)).

(II) AM,A,s ⊗A has a proof the root of which is equal to ((s, q′0), b), all the maximal
branches are infinite and the maximal colour that appears infinitely often is even.

Theorem 4. The model-checking problem for RB±ATL∗ is decidable.

Lemma 3 is essential to establish Theorem 4 since its proof uses the product between
an alternating VASS and a deterministic parity automaton recognizing ω-words. This is
reminiscent of the proof of [5, Theorem 5.6] about the 2EXPTIME upper bound for the
ATL∗ model-checking problem. Rabin tree automata of the proof of [5, Theorem 5.6]
are replaced by deterministic parity automata for encoding the LTL formulae and by
alternating VASS (with counters) as outcome of the synchronisation.

Theorem 5. The parameterised model-checking problem for ParRB±ATL∗ is decid-
able.

The proof of Theorem 5 is based on a global model-checking algorithm that is
essentially based on Lemma 3 and on [1, Theorem 4]. Synthesising resource values has
been also considered in [25].

6 Concluding Remarks

We have related model-checking problems for resource-bounded logics and decision
problems for AVASS. Though such relationships should not come as a complete sur-
prise, we obtained new complexity and decidability results. We prove that the model-
checking problem for RB±ATL introduced in [3,4] is 2EXPTIME-complete. No com-
plexity upper bound was known so far. We have introduced the logic RB±ATL∗ that
extends RB±ATL, and we have shown that the model-checking problem is decidable.
The same hold for the parameterised version ParRB±ATL∗, i.e. it is decidable to com-
pute the set of resource bounds for which the given parameterised formula is satisfied.
We have also shown that the model-checking problem for RBTL∗ introduced in [10] is
EXPSPACE-complete. No complexity upper bound for RBTL was known so far as well
as the decidability status for RBTL∗.We believe that the simple framework we have
proposed could be used to obtain further results for new resource-bounded logics.

Acknowledgements We would like to thank the anonymous reviewers for their numer-
ous suggestions that helped us improve the quality of the paper.

12



References

1. Abdulla, P., Mayr, R., Sangnier, A., Sproston, J.: Solving Parity Games on Integer Vectors.
In: CONCUR’13. LNCS, vol. 8052, pp. 106–120. Springer (2013)

2. Alechina, N., Bulling, N., Logan, B., Nguyen, H.: On the boundary of (un)decidability: De-
cidable model-checking for a fragment of resource agent logic. In: IJCAI’15. pp. 1494–1501.
AAAI Press (2015)

3. Alechina, N., Logan, B., Nguyen, H., Raimondi, F.: Decidable model-checking for a resource
logic with production of resources. In: ECAI’14. pp. 9–14 (2014)

4. Alechina, N., Logan, B., Nguyen, H., Raimondi, F.: Technical report: Model-checking
for resource-bounded ATL with production and consumption of resources. CoRR
abs/1504.06766 (2015)

5. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. JACM 49(5), 672–
713 (2002)

6. Bérard, B., Haddad, S., Sassolas, M., Sznajder, N.: Concurrent games on VASS with inhibi-
tion. In: CONCUR’12. LNCS, vol. 7454, pp. 39–52. Springer (2012)

7. Blockelet, M., Schmitz, S.: Model-checking coverability graphs of vector addition systems.
In: MFCS’11. LNCS, vol. 6907, pp. 108–119. Springer (2011)

8. Blondin, M., Finkel, A., Göller, S., Haase, C., McKenzie, P.: Reachability in two-dimensional
vector addition systems with states is PSPACE-complete. In: LICS’15. pp. 32–43. ACM
Press (2015)
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