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ABSTRACT
The Hybrid Automata Stochastic Logic (HASL) has been
recently defined as a flexible way to express classical perfor-
mance measures as well as more complex, path-based ones
(generically called “HASL formulas”). The considered paths
are executions of Generalized Stochastic Petri Nets (GSPN),
which are an extension of the basic Petri net formalism to
define discrete event stochastic processes. The computation
of the HASL formulas for a GSPN model is demanded to the
COSMOS tool, that applies simulation techniques to the for-
mula computation. Stochastic Symmetric Nets (SSN) are a
high level Petri net formalism, of the colored type, in which
tokens can have an identity, and it is well known that colored
Petri nets allow one to describe systems in a more compact
and parametric form than basic (uncolored) Petri nets. In
this paper we propose to extend HASL and COSMOS to
support colors, so that performance formulas for SSN can
be easily defined and evaluated. This requires a new defini-
tion of the logic, to ensure that colors are taken into account
in a correct and useful manner, and a significant extension
of the COSMOS tool.
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1. INTRODUCTION
Simulation of Discrete Event Stochastic Processes (DESP)

is one of the most widespread techniques for evaluation of
several types of quantitative (e.g. performance or reliabil-
ity) measures. Although in a number of cases it can be
combined with analytical or numerical analysis techniques,
stochastic simulation is the preferred technique when the
system is very complex and large, and/or its state space is
very large or potentially infinite, or when some of the system
characteristics (e.g. delay probability distributions, complex
scheduling policies) prevent the application of other mathe-
matical methods.

On the other hand, a class of performance measures that
has drawn significant attention in the last years is that of
path-based formulas: formulas that take into account a sub-
set of the behaviors of the system. Path formulas may prove
useful, for example, to compute the probability of the set of
paths that lead to a safe final state in a reliability model, or
the time to complete a production in a flexible manufactur-
ing system when no machine breaks down during the pro-
duction phase. Examples of path-based languages are the
Extended Stochastic Probes (XSP [10], that define passage
time over a subset of the behaviors of a PEPA model [14]), or
the formalism of Path Automata (PA, operating on Stochas-
tic Activity Networks [16]). Both XSP and PA have been
devised as an extension of classical performance evaluation
measures.

Another set of languages that allows to “deal with paths”
comes from the community of temporal logics (logics that
define path-based qualitative properties, like CTL [12] or
LTL [17]) and of the associated stochastic extension, like
Continuous Stochastic Logic (CSL)[1] and CSLTA [11, 8].
Here the paths considered are timed executions of a Con-
tinuous Time Markov Chain (CTMC). Paths in CSL are
identified through two path operators, the time-bounded
neXt and the time-bounded Until, while, to allow more flex-
ibility, CSLTA identifies paths through a timed automata
that “reads” timed execution traces. As usual in stochastic
model checking the “target measure” is the computation of



the probability of the set of timed paths that satisfies the
path formula or, for CSLTA, the probability of the set of
timed paths that are accepted by the timed automata. To
be precise the logic formula being evaluated is the follow-
ing “is the probability of accepted paths greater or equal
(or less than) a given threshold?”, which obviously requires
the computation of the path probabilities. For the desire
to stay within analytical solution methods CSL and CSLTA
only deal with CTMCs, although the size of the models has
led to the use of statistical model checkers, that compute
path probabilities via discrete event simulation. Examples
of statistical model checking tools for CSL are: YMER [21]
and VESTA [18]. VESTA is a Java-based tool for statisti-
cal analysis of probabilistic systems. It implements statis-
tical methods based on Monte-Carlo simulation and statis-
tical hypothesis testing. YMER is instead a command-line
tool, written in C/C++, for verifying transient properties of
CTMCs and generalizations. It implements statistical CSL
model checking techniques, based on discrete event simula-
tion and acceptance sampling.

A language that subsumes path-based performance mea-
sures as defined in Path Automata or in XSP, as well as the
stochastic logics of CSL and CSLTA is the one defined for
the Hybrid Automata Stochastic Logic (HASL) which has
been recently introduced in [5]. HASL addresses Generalized
Stochastic Petri Nets (GSPN) [15] models with general dis-
tributions (thus going beyond the CTMC limits) and defines
paths through the Linear Hybrid Automata (LHA) that al-
lows a richer definition of paths than CSL and CSLTA. The
COSMOS tool [4] has been developed to evaluate HASL
formulas on GSPNs. COSMOS evaluates the HASL formu-
las using simulation techniques, it is therefore considered a
tool in the family of statistical model checkers.

This paper proposes an extension of HASL to deal with a
colored extension of GSPN known as Stochastic Symmetric
Nets (SSN) [9]. The HASL language has been redefined to
work with the “colored” tokens and transition instances of
SSN, leading to a more parametric and compact language
for large systems with symmetric structure and behavior.
The COSMOS tool has been extended consequently.

The expressiveness of SSNs and of the extension of HASL
to handle colors, allows to build compact models (and com-
pact and parametric formulas) for complex systems compris-
ing several similarly behaving components. Colors in SSNs
allow to both represent (discrete) data structures and to
uniquely identify “customers” or “resources”, a feature that
is particularly useful when defining path properties that re-
fer to a sequence of steps through which a given customer
or resource must undergo (e.g. average processing time of a
part entering a pipeline, conditioned on the occurrence of a
limited number of breakdowns along the path).

The paper is organized as follows: Section 2 introduces
background material on the GSPN formalism and on HASL,
and introduces a number of small LHA to exemplify the
specification of basic performance indices.The COSMOS tool
is also briefly reviewed. Section 3 presents SSN and the ex-
tension of HASL to account for colors. The extension pro-
posed is the discussed and evaluated on three main examples
in Section 4. Planned future works are discussed in the last
section, concluding the paper.

2. BACKGROUND: THE GSPN FORMAL-
ISM AND HASL

In this section we shall present the background material,
in particular the formalism of GSPN and the logic HASL.
We shall also briefly recall the main features of the tool COS-
MOS, that evaluates HASL properties over GSPN models.

2.1 The GSPN formalism
Generalized Stochastic Petri Nets[15] (GSPN) are a for-

malism to describe discrete event dynamic systems. They
have widely been used in the past to describe and evalu-
ate systems, and we recall them briefly in the following. A
GSPN is a bipartite directed graph with weighted arcs in
which nodes are split into places (circles) and transitions
(bars). Each place may contain zero or more tokens, and
the state of the GSPN is determined by the number of to-
kens in each place. The state change is an effect of the firing
of a transition: the direct arcs connecting places to transi-
tions define the conditions under which the transition may
fire (enabling) while the whole set of arcs to and from a
transition defines the state change induced by the firing of
the transition. Figure 1(a), top, shows a simple example of
a GSPN model of a processor sharing open queue in which
jobs are served at batches of 2, and there are 3 servers at-
tending the queue, were each server may go idle for a while
after having provided service. Transition T1 describes the
arrival process, T2 the service time, T3 the idle time, and t1
and t2 the decision of going idle (t2) or not (t1).

The enabling of a transition t requires that there are at
least np tokens in each input place p of t, where np is the
weight of the arc from p to t. If no weight is indicated, the
weight is 1 by default. The firing of t removes np tokens
from each input place p and adds np′ tokens to each output
place p′. For the GSPN in the figure, T1 is always enabled,
T2 requires two jobs in the queue (place P1) and a server
available (place P3), and its firing removes two tokens from
P1 and one from P3, while adding two tokens into the output
buffer (place P2) and a token into the server decision place
P4. From P4 the server may either choose to go idle (place
P5) or to go directly back to work (place P3).

Box transitions describe a timed event with an associated
delay probability distribution, the exponential distribution
being the default, while thin transitions describe events that
require no time (typically a decision, as in the case of t1 and
t2). A GSPN describes therefore a stochastic process, and if
all transitions are exponential or immediate this process is a
CTMC, and analytical techniques can be applied to compute
performance indices. When either the discrete state space is
potentially infinite (as in our example) or the transitions are
not exponential, simulation becomes the most widespread
analysis technique. Classical performance indices includes
the distribution (or mean value) of tokens in a place and
the throughput of a transition. More elaborate performance
indices, like the distribution of the passage time over a sub-
net, may not be directly computed upon the basic perfor-
mance indicators [2] hence more elaborate ways of defining
performance indices for a GSPN are needed. In this paper
we concentrate on the computation of performance indices
based on timed paths, where a path is a net execution (an
(in)finite sequence of transitions and associated delays), in
other words, a simulation trace of the GSPN. With refer-
ence to the GSPN of Figure 1, we might be interested in
the probability that a customer, that arrives in the queue
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(a) The GSPN Model. (b) The LHA of the property G1.

(c) The LHA of the property G2. (d) The LHA of G3. (e) The LHA of the property G4.

ALL, P1<10, ∅

Figure 1: A simple GSPN model and a set of properties written as LHAs.

P1 while there are already k tokens in there, experiences a
time to reach the output buffer P2 greater than a threshold
value Tmax.

It has been already observed by many authors (for exam-
ple [11, 16]) that automata can be a good way to specify
properties that depend on a subset of the possible execu-
tions, since an automaton defines the language of “accepted
paths” (paths of the GSPN recognized by the automaton),
and that, in particular, timed automata can be used when
the executions to be considered include some timing con-
straints. As explained in the introduction, the performance
indices we consider are the ones that can be specified using
the HASL language.

2.2 Hybrid Automata Stochastic Logic
A specification in HASL is composed of a Linear Hybrid

Automaton (LHA) and one or more formulas for the perfor-
mance indicators. LHA are automata (composed of a set of
locations and a set of edges) enriched with a set of variables.
The state of an LHA is therefore a pair (location, variables’
evaluation). The purpose of an LHA is to recognize (accept
or reject) simulation traces of a GSPN (also called timed
executions in the model checking community) and perform
measures on the accepted paths by properly updating its
variables. Figure 1(b) is an example of LHA with four loca-
tions: with the common graphical notation, l0 is identified
as an initial location (incoming arrow) and l2 as a final one
(double border). LHA variables come in two flavors: stable
variables, which are discrete variables that can be updated
only when an edge is taken, and flow variables, which are
continuous variables that are continuously increased or de-
creased linearly according to a derivative that is specified
in each location of the automaton. Also edges come in two
flavors: synchronized edges that are taken when one of the
GSPN transitions in its “synchronization set” fires in the
simulation trace, and autonomous edges that can be taken
by the LHA as soon as a condition on the LHA variables

and/or the GSPN marking evaluates to true. Every edge
may have an associated condition on the variables and on
the marking (for the edge to be taken) and an update of
the LHA variables (to be executed when the edge is taken).
Autonomous edges are taken as soon as the associated con-
dition is verified, with priority over other arcs.

An example of synchronized edge in the LHA of Figure
1(b) is that from l0 to l1, which synchronizes with the fir-
ing of transition T1 in the trace under the condition that
the GSPN marking reached after firing T1 has 10 tokens in
place P1; this edge does not update any variable. An ex-
ample of autonomous edge is that from l0 to l3; The sharp
sign indicates that the edge is of the autonomous type, and
condition t = T indicates that the edge can be taken as soon
as the LHA flow variable t is equal to the constant value T .
Locations can have an associated condition, that may in-
volve both the stable variables of the LHA and the marking
of the GSPN. An example is shown in the LHA of Figure
1(c): location l1 has an associated condition P1 = 3, mean-
ing that, while recognizing a GSPN trace, the LHA can stay
in location l1, or can reach this location, only if the marking
reached in the trace has 3 tokens in place P1.

Formulas in HASL allow one to define the following per-
formance indicators to be computed on the observed traces:
the probability that a GSPN trace lead the automaton to a
final state, i.e. that the trace is accepted by the automaton
(operator PROB), the cumulative distribution of a trace ex-
pression (operator CDF), the average over all accepted traces
of a trace expression (operator AVG). If ve is a variable ex-
pression (arithmetic expression of the value of LHA variables
and of the number of tokens in the net places), then a trace
expression has the form last(ve), min(ve), max(ve), mean(ve),
integral(ve) which define, for a given trace, respectively the
last value of ve, the min/max value of ve, the time-weighted
average of ve, and the integral of ve.

The LHA describes which simulation traces are of interest:
while simulating a GSPN execution trace, each transition



firing of the GSPN has to be matched by a corresponding
synchronized edge, otherwise the trace is discarded. In addi-
tion, autonomous edges provide an“internal”behavior of the
LHA that is independent from the GSPN model execution
(e.g. to represent timeouts or to detect a given condition).
Hence, the GSPN and LHA evolve in parallel until the LHA
reaches either an accepting final state or a state where there
are no autonomous edges enabled and no edges that can
synchronize with the GSPN next transition (in the former
case the trace is accepted, in the latter it is immediately
discarded). Along the trace, the LHS cannot influence the
GSPN behavior; note that one has to specify self-loops la-
beled with all GSPN transitions that do not cause a LHA
location change, but should not cause the trace to be dis-
carded (e.g. the self loop on l1 in Figure 1(c) with synchro-
nization set ALL\{T1} is needed, otherwise the path would
be rejected if a transition different from T1 were fired in the
GSPN).

The HASL measures are computed only from the set of
accepted traces (i.e. execution paths that reach a final state
in the LHA). When the LHA moves to a final location, the
simulation ends, and the HASL measures are updated. Sim-
ulations are run (in parallel on multi-core systems) until
all the estimators reach the specified accuracy. The mea-
sure PROB gives the fraction of simulations accepted by the
LHA.

To better illustrate the use of HASL for the definition of
performance indices, we shall consider a few examples. The
reader may refer to [5] for a formal definition of HASL.

Figure 1(c) is an LHA, whose objective is to compute,
for the time interval [0, T ], the probability that an arriving
customer (token increase in place P1 due to the firing of T1)
“sees” 2 customers already in P1 (property G2). The LHA
has two stable, discrete variables, n and m, to account for
the number of arrivals that see (or do not see) two tokens in
P1, and a flow variable t, that is continuously and linearly
incremented with derivative 1 in both locations: variable t
plays the role of a timer that counts the time elapsed in the
path being recognized by the LHA. There are two non-final
locations, characterized by the conditions P1 6= 3 (location
l0) and P1 = 3 (location l1) on the marking of the GSPN,
and a final one (location l2, identified by a double border)
that is reached when the time elapsed along the considered
path is greater than a threshold value T .

For a path that starts in the initial marking of the GSPN,
the automaton stays in location l0, accepting all transitions.
When the transition that fires is T1 the behavior of the au-
tomaton depends on the marking of the net after the firing
of T1: if the number of tokens is different from 3 it stays in
l0 and increments the variable m, if it is equal to 3 it incre-
ments variable n, since this firing of T1 has taken place when
there were 2 customers in P1. When variable t reaches the
threshold T , the automaton moves to the final location l2.
Note that the automaton is deterministic: given a marking
and a transition there is a single arc of the automaton that
can be taken. This is a specific requirement of HASL, other-
wise the resulting stochastic process would be partially un-
defined (or better, underspecified). The formula computed
is AVG(last(n)/(last(n)+last(m)), which gives precisely the
estimation of the probability that an arriving customer sees
exactly two tokens in the queue.

The LHA of Figure 1(d) allows one to compute the average
waiting time in P1, in the [0, T ] interval (property G3). The

waiting time is computed as the total of the waiting times
experienced by each single token in P1 (accumulated in the
LHA variable w), divided by the total number of customers
that have left the system (accumulated in the discrete vari-
able n). Note that n is incremented by 2 at each firing of
T2, due to the batch service type, while variable w is used
to accumulate the time spent in P1, and it is linearly incre-
mented as time elapses, with a derivative equal to the num-
ber of tokens in P1. The waiting time is then estimated by
AVG(last(w)/(last(n)). Using variable w we can also compute
the mean number of tokens in P1, as AVG(last(w)/(last(t))
(considering that t counts the time elapsed along the ac-
cepted trace, this formula can also be expressed using the
timed weighted average mean, as AVG(mean(w)).

The LHA of Figure 1(b) shows instead an example of com-
putation of the distribution of the time it takes to empty a
queue starting from an arrival that “sees” 9 tokens upon ar-
rival, on the interval [0, T ] (property G1). The LHA uses
two flow variables: t to accumulate the elapsed time along
the path, as in the previous examples, and x to accumulate
the time from when the queue goes to 10 to when it goes
to zero. Note the use of two locations without any outgoing
arc: l2 is final (the corresponding path will be taken into
account in the performance computation), while l3 is not
(and therefore the paths ending up in l3 will not be consid-
ered). Location l0 is used to accept all the traces until there
is a firing of T1 that leads to a queue (P1) of 10 customers,
which takes the automaton to location l1. Note that x is
incremented only when the automaton is in location l1. The
CDF is then estimated using the formula CDF(last(x)).

The last LHA considered, depicted in Figure 1(e), shows
an example of the use of the automaton to recognize paths
with specific conditions upon the transitions that fire along
the path. The performance index considered is the proba-
bility of the executions that, up to time T , encounter three
consecutive services in which the server does not go idle after
having provided service (property G4). A server goes idle
when transition t2 is executed, while it goes immediately
back to service when t1 is executed, therefore the automa-
ton accepts only paths that see 3 firing of t1 without any
firing in t2 in between. The performance indicator is then
PROB() which “counts” the percentage of GSPN executions
that are accepted by the automaton.

2.3 The COSMOS tool
The performance indicators specified in HASL may be

very difficult to compute analytically, and indeed the most
promising performance evaluation technique in this case is
simulation. The COSMOS simulator [4] computes the esti-
mation of the PROB(), CDF(), and AVG() expressions in a
HASL specification for a given GSPN model.

COSMOS is a statistical model checker which takes as in-
put a GSPN model and an HASL formula, and computes
the estimated value of the performance indices specified as
HASL formulas, together with the associated confidence in-
tervals for the required confidence level and accuracy. A
classical batch estimator is used to decide when the simu-
lator has collected enough samples to reach the requested
accuracy for the target HASL formulas. The language of
GSPN accepted by COSMOS is extended to support tran-
sitions with both exponential distributions and general dis-
tribution. The latter are chosen from a predefined set of
statistical distributions with positive support.



To speed up the simulation COSMOS transforms the GSPN
model and the LHA into C++ code, and then builds and
runs the compiled C++ application. Parallel simulation is
supported, using multiple instances of the compiled appli-
cation that run over multiple cores of the same machine, or
multiple machines. In this case, the COSMOS application it-
self coordinates the parallel simulators. Recently COSMOS
has been extended to support rare events handling with im-
portance sampling [7, 6]. COSMOS is integrated into the
CosyVerif [19] platform and uses its file format GrML both
for GSPN and LHA. It also allows to use the graphical editor
Coloane for drawing GSPN and LHA.

3. EXTENSION TO COLORED NETS
In the previous section we have presented HASL as a

rich language to specify path-related performance indices
of GSPN models, but HASL for GSPNs has also some lim-
itations, for example the time needed for a token to com-
plete a task described by a subnet (the so-called “passage
time”) is not easily specifiable. This is actually true also in
more classical performance approaches: when the goal is the
mean passage time computation we can apply Little’s law,
but when the goal is to compute the passage time distri-
bution, things gets more complicated. It has been already
recognized in the literature [2] that the distribution of the
passage time requires the identification of the elements that
circulate in a subnet. This is the main motivation for the
extension of HASL, and of the associated tool COSMOS,
to colored Petri nets presented in this section, since colored
nets are nets in which each single token can have a unique
identity. By extending HASL and COSMOS to work with
colored nets we also gain the possibility of using HASL in
some more realistic settings, where colored nets are typi-
cally used for their ability of representing complex models
in a more compact and modular manner.

3.1 The colored formalism of Stochastic Sym-
metric Nets

The colored formalism considered for the extension of HASL
is that of Stochastic Symmetric Nets (SSN)1. SSN are here
introduced by means of the example in Fig. 2, represent-
ing a distributed database update protocol: a number of
sites host processes that may update a shared distributed
database, this must be done in mutual exclusion, and once
an update has been performed by a process at one site it
must notify the change to all the other sites, and wait until
it receives an acknowledge message from each of them to
then release the mutually exclusive access to the updated
piece of information. The main difference of the SSN for-
malism with respect to GSPNs is the possibility to associate
information to tokens (so that tokens are said to have differ-
ent colors, instead of being all black and indistinguishable).
Each place p ∈ P has an associated color domain (a data
type) denoted cd(p) and each token in a given place has an
associated value from cd(p). Color domains are built from
elementary types called color classes ({C1, C2, C3, . . . , Cn}),
so that cd(p) = Ce1

1 ×C
e2
2 ×. . .×Cen

n , where ej is the number

1SSN were previously known as Stochastic Well-formed
Nets[9]; recently the untimed version of such formalism has
been included in the High Level Petri Nets ISO standard
ISO/IEC 15909, under the new name of Symmetric Nets
(part 1, annex B.2).
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Figure 2: SSN model of a distributed database.

of times Cj appears in cd(p). Color classes are finite, non
empty and disjoint sets, they may be ordered (in this case a
successor function is defined on the class, inducing a circular
order among the elements in the class), and may be parti-
tioned into (static) subclasses. In the database example of
Fig. 2 there are two classes called S (for site) and F (for file),
and the places have either color domain S, or F or S × F .
Also transitions have an associated color domain specified as
a set of typed variables plus a guard, the variable types are
color classes. A valid transition binding is an assignment of
values to its variables, satisfying the predicate expressed by
the guard. A pair (transition,binding) is called transition in-
stance. All transitions in the example net have color domain
{s : S, f : F} and the guards are all set to true (which is the
default and is omitted in the picture). Each arc connecting
a place p and a transition t is labeled with an expression de-
noting a function arcf : cd(t)→ Bag(cd(p)) where Bag(A)
is the set of all possible multisets that may be built on set
A. The valuation of arcf given a legal binding of t gives the
multiset of colored tokens to be withdrawn from (in case of
input arc) or to be added to (in case of output arc) the place
connected to that arc upon firing of such transition instance.
The arc expressions in SSNs are built upon a limited set of
primitive functions whose domains must be color classes. A
typical arc expression takes the form of a linear combination
of function tuples (denoted 〈f1, . . . , fn〉), and each element
of a tuple is either a projection function, denoted by a vari-
able in the transition color domain (e.g. s and f appearing
in the arc expression 〈s, f〉 labeling several arcs in the ex-
ample net), a successor function, denoted x + + were x is
a variable in the transition color domain whose type is an
ordered class; a constant function returning all elements in
a class (or subclass) denoted classname.All ; a complement
function denoted classname.All−x where x is a variable of
type classname in the transition color domain. Transition
guards are boolean expressions whose terms take the form
of basic predicates: x = y, x ∈ subclass, d(x) = d(y) where
x and y are variables of the transition with same type, and
d(x) denotes the static subclass x belongs to. The dynamic
behavior of a SSN model is defined in terms of transition
instances enabling and firing: the initial marking of the net
in Fig. 2 enables |S| · |F | instances of transition Start, with
binding s = si, f = fj ,∀si ∈ S, fj ∈ F (the only condi-
tion for the enabling of such bindings is the presence of a
token with color si in the input place all active). Upon



firing of one enabled instance a token of color 〈si〉 is with-
drawn from place all active and a token of color 〈si, fj〉 in
place wait mutex. The new reached marking enables only
one instance of immediate transition Acquire with binding
s=si, f=fj : it is enabled because there is a token of color
〈si, fj〉 in place wait mutex and a token of color 〈fj〉 in place
mutex which are removed when the transition fires, while
a token of color 〈si, fj〉 is put into place modify. This en-
ables the instance of transition Change with binding 〈si, fj〉,
which upon firing withdraws one token of color 〈si, fj〉 from
place modify and puts a similar token in place wait ack,
and |S| − 1 tokens 〈sk, fj〉, sk ∈ S, sk 6= si in place mes-
sage. A simulation trace of a SSN model consists of a se-
quence mi, ((ti, bi), τi),mi+1, ((ti+1, bi+1), τi+1), . . . of mark-
ing and transition instances (ti, bi) with the corresponding
firing times τi.

3.2 Extending HASL to SSNs
The extension of HASL to support SSN models focuses on

the definition of colored variables, of condition on colored
markings, and on transition instances. Variables should be
extended to be able to store colors as well, and edges should
be able to discriminate between instances of the same tran-
sition with different bindings. The extension should be rich
enough to allow also a reference to ”coarser” quantities, for
example, with reference to the place modify in the Database
SSN, of color domain S × F , we may want to refer to the
total number of tokens, independently of the sites and files
identities, or to the number of tokens with first color com-
ponent equal to a specific site si.

To reach this goal each variable x of the LHA is indexed
by a color domain, denoted as cd(x). A flow variable x has

a valuation x̄ in R|cd(x)|. This implies that x is actually a
(multidimensional) array of variables. Stable variables are
further partitioned into discrete variables, whose valuation x̄
is in N|cd(x)| (and again this in general results in an array of
variables), and color variables that represent just a color in
a specified color class. Plain real and integer variables as in
classical HASL are obtained by taking as colored domain the
neutral one, which leads to scalar real (or integer) variables.

Transition names over edges should now be enriched to
refer to transition instances, or to more coarser information
about transition firings, although we should not forget that
transition firing that synchronize with the automaton are
the ones of the colored traces, that is to say, colored transi-
tion instances. To illustrate this aspect let us consider the
three LHAs of Figure 3, in particular the self loops on l0
that synchronize with the Release transition and increments
variable x. In the leftmost LHA the transition is referred to
simply as Release, and x is an integer variable, therefore x
counts the number of occurrences of the transition indepen-
dently from the binding. In the central LHA the transition
is referred to as Release〈s, f〉[s, f = 〈s1, f1〉], which syn-
chronizes only with the firing of Release for an instantiation
of the SSN variables s and f equal to the colors s1 and
f1 respectively, therefore variable x only counts the firings
for that specific binding in the S × F domain of Release.
Finally, the rightmost LHA considers colored transition in-
stances, and counts the number of firings ”per color”, since
now variable x is declared over the color domain S×F , and
the increment is for x[s, f ].

Expressions to be used in boolean conditions associated
to locations may now refer to LHA colored variables and to

t' : 1
l n0

u' : card(mutex)

l n1

ALL\{Release},
True, ∅

{Release},
True, {x++}

#
, t=

T
, ∅

Setup: t=0, x : int.
HASL: AVG(Mean(u)),

AVG
�

Last(x)
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�

t' : 1
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ALL\{Release〈s,f 〉
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True, ∅
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#
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t' : 1
l n0
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ALL\{Release〈s,f 〉},
True, ∅

{Release〈s,f 〉},
True, 

{x[s,f ]++}

#
, t=

T
, ∅

Figure 3: Three LHAs to compute the average num-
ber of tokens in place mutex and the throughput of
Release at different granularity levels.

SSN markings, therefore they are typed with the color of
the variable or of the SSN place. An expression typed with
the neutral color is a scalar expression, while expressions in
a color domain are vector expressions. Different types are
incompatible, and cannot be mixed together. The language
of marking-dependent colored expressions is then defined as:

exp ::= α | p | x | exp{+,−, ∗}exp | (exp) |
exp[color ] | card(exp)

where α ∈ R is a scalar constant, p ∈ P is a place, x is a
variable. Algebraic operators follow the usual scalar/vector
semantics. The product between a scalar and a colored ex-
pression is allowed, and is interpreted as a scalar product
with the same type of the colored operand. The color term
is a colored token or a color variable. The selection operator
exp[color ] gives the number of tokens of the specified color,
as a scalar expression. The function card() gives the scalar
cardinality of an expression (the total number of tokens, in-
dependently of their colors). When the color domain of a
place or of a variable is the neutral domain, the selection op-
erator [color ] may be omitted, since variables in the neutral
domain are scalar variables.

Boolean conditions are defined over the marking-dependent
colored expressions, according to the following grammar:

lg ::= true | ¬lg | lg ∧ lg | exp ./ exp

where ./ is a comparison operator. Comparisons on colored
expressions are interpreted with the usual semantics of vec-
tors comparison.

Color variables (stable variables that store a color) allows
instead to store a color from a transition binding that syn-
chronizes with an edge. Since color variables can be used to
replace a color constant in an expression or in a transition
specification, this allows to ”match” transitions firing along
a trace. To better illustrate this concept, let us consider the
LHA of Figure 4, which has two color variables xs and xf
of domain S and F respectively. The edge from l1 to l2 up-
dates the color variables with the valuation of the variables
s and f of the SSN as instantiated in the transition instance
which synchronizes with the edge. Considering that loca-
tion l1 is entered when the time elapsed is equal to T , then



xs and xf store the identity of the first firing of transition
Start after time T , the same identity is then used to select
the ”matched” firing of the Release transition.

ALL\{Start,
Release〈s,f 〉[xs=s, xf=f ]},

True, ∅

t' : 1
l n0 l n1

ALL\{Start},
True, ∅

l n3

Setup: t=0, colorvars xs : S and xf : F.
HASL expression: PROB().

ALL, True, ∅

#, t=T,
{t ← 0}

l n2
{Start〈s,f 〉}, 

True,
{xs←〈s〉, xf←〈f 〉}

{Release〈s,f 〉
[xs=s, xf=f ]},

True, ∅t' : 1

Figure 4: An LHA to compute the probability that
the first update starting after a period [0,T] ends
before any other update can start.

To conclude the description of the colored extension of
LHA we explain the properties specified by the four LHAs
of Figure 3 and 4. The formulas for the leftmost LHA in
Figure 3 compute, for the [0, T ] period, the throughput of
transition Release, independently of the specific transition
binding, as AVG(last(x)/last(t)), and the mean number of
tokens in place mutex, independently of the color, with the
formula AVG(mean(u)). Note that u is a flow variable of neu-
tral color, that accumulates the cardinality of place mutex
independently from the color of the tokens. The formulas
for the central LHA compute two similar quantities, but, as
explained before, the throughput is now accumulated for a
single specific color, s1, f1, and the average number of to-
kens in place mutex only considers tokens of color f1. The
rightmost LHA computes instead, for each formula, a vector
of performance indices. Indeed the throughput is computed
for each pair of s, f colors (combination of sites and files)
and the number of tokens is computed “per file”.

The formula PROB() in the LHA of Figure 4 computes the
probability that the first update that starts after a period
[0, T ] it will be able to terminate its update with a release
of the mutex, before any other update starts. As explained
before a color variable is used to match the firing of the
considered Start transition with the corresponding firing of
Release. Note the use of the flow variable t to compute
the passage time distribution from the first Start after time
T , until its Release, for those paths in which the matching
Release happens before any other Start, this computation
is correct because, thanks to colors, we are able to match
exactly a Start instance with the corresponding instance of
Release.

Color support in COSMOS.
Colors changes the way COSMOS manages markings and

tokens. Colored places and bindings are supported by gen-
erating the proper C++ code that declares, for each domain
d, its container data structure that represent a multiset.
These multisets may have a co-domain as double (for flow
variables) or int (for stable variables). The SSN support is
heavily influenced by the design of the CosyVerif platform
[19]. CosyVerif is a software environment made of several
software tools, including the graphical interface Coloane for
drawing SSN models and LHA automata, and COSMOS for
the statistical model checking. This platform already have
support for stochastic nets (which was the input format for
COSMOS) and symmetric nets. COSMOS now takes as in-

put an extension of the file format for the symmetric nets
formalism of CosyVerif.

4. EXAMPLES
In this sections three examples are presented: they are

taken from the literature and are used to illustrate the pos-
sibilities offered by the colored extension of COSMOS.

The hospital model.
In Fig. 5 we show our second SSN example modeling a

hospital Emergency Department (ED) [3]. According to the
description provided by [20], the ED patients are divided
in three categories: patients requiring resuscitation (high
priority), patients with major illnesses or injuries (medium
priority) and patients with minor illnesses or injuries (low
priority). This is modeled in the SSN model partitioning
the color class P , representing the patients, in three static
subclasses PH , PM and PL; so that each static subclass iden-
tifies a different level of urgency of treatment (and hence of
priority) of the corresponding patients.

All the healthy patients are in the place Healthy, while the
sick patients heading towards the hospital are in place Ill.
An healthy patient that falls sick is represented by the firing
of (an instance of) transition FallIll, while the evaluation of
sick patient reaching the hospital is modeled by the guards
associated with transitions HighPrio, MediumPrio and Low-
Prio. All the high priority patients are immediately move
into the resuscitation room (place ResuscRoom) to be stabi-
lized: the stabilization process can start (transition BtoSta-
bilize) iff there is at least one trauma team available (place
TraumaTeam marked). When a patient is stabilized (transi-
tion EtoStabilize) then he/she is moved into the monitored
room (place MonitoredRoom).

All the patients with medium priority, since they do not
need for being stabilized, are immediately admitted (transi-
tion MediumPrio) into the monitored room where they are
constantly monitored until the results of the blood and X-
ray exams become available (transitions EBloodExam and
EX-Ray); then the patient is treated or operated by a doc-
tor according to the outcomes of his/her tests (transitions
ToDoctorM and ToSurgery). A medical examination re-
quires at least one doctor available (place Doctors marked),
while a surgical operation at least one doctor and one oper-
ating room (place OperatingRoom marked) available.

Patients with low priority are moved in the waiting room
(place WaitingRoom) and they are examined by a doctor
only when no more higher priority patients need to be treated
or operated (inhibitor arc from ReadyT to ToDoctorL).

Finally, transitions DischargeL, DischargeM and Discharg-
eRec model the discharge of a patient from the ED.

LHA for computing passage time.
Now we describe how LHA extended with color can be

used to compute passage time of selected paths.
The passage time distribution is an example of perfor-

mance measure which is not straightforward to define on a
PN model since it expresses the probability of the time re-
quired for a (specific) token to pass through a given subnet.
However, it is a more informative measure than the aver-
age response time measures when we study the service level
agreements or the safety-related requirements of a system.

Exploiting the expressiveness of LHA it is possible to de-
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Figure 5: SSN model of patients flow in a hospital Emergency Department.

fine passage-time measures with quite complex constraints
which may involve state conditions, transition firings, and
performance characteristics of the model; it is also possi-
ble to decide in a very flexible way when the time count
should be started and stopped on each path, including the
possibility to interrupt the count in between the first start
and final stop. This is much more powerful than classical
state based specifications of passage time measures (which
in their simplest form require to define the sets of entry, exit
and forbidden states).

Hereafter, we describe two examples of passage-time mea-
sures:

H1: the CDF of the passage-time from arrival to discharge
of a high priority patient given that at most n medium
priority patients were in the hospital during his/her
stay in the hospital;

H2: the CDF of the passage-time from arrival to discharge
of a high priority patient given that the average number
of medium priority patients has been less then n during
his/her stay in the hospital.

The corresponding Colored LHAs are shown in Figs 6 and 7.
In these two automata, the initial location l0 is used only to
skip an initial transient phase, so that a random trajectory
of duration initT is simulated before starting the measure
computation. After this initial phase the automata remains
in l1 until the first occurrence of the transition HighPrio,
whose firing moves the automaton into the location l2. On
the edge connecting l1 to l2 the notation px ← 〈x〉 is used
to “tag” a specific high priority patient assigning its specific
color to the color variable x. Then, in the first automaton a
path from l2 is accepted by reaching final location l3 as soon
as the tagged patient is discharged from the hospital (i.e.
transition DischargeH firing for the some colored assigned to
px). Moreover, the condition C1 associated with l2 assures
that in all the accepted paths the number of medium priority
patients in the hospital cannot be greater than n until the
tagged patient is not discharged. Finally, the continuous
flow variable pt is used to compute the time spent by the
tagged patient inside the hospital.

l0

ṫ : 1

ALL, True,∅

�, t = initT,
{t ← 0}

ALL \ {HighPrio}, True,∅

{HighPrio�x�},
True, {px ← �x�}

l3
{Discharge∗�x�},

[�x� = px]

ALL \ {Discharge∗�x�
[�x� = px]}

Skipping the initial transient, 
until initT seconds have passed.

l2

ṗt : 1

Setup: t = 0, pt = 0, px = ��

Condition C1: card
�
P.All \ {Healthy , Ill}

�
≤ n

C1

HASL expression: CDF(pt)

l1

Discharge∗ is the set {DischargeM ,DischargeRec}.

Figure 6: Colored LHA for the H1 property.

Instead, in the second automaton a path from l2 is ac-
cepted as soon as the tagged patient is discharged from the
hospital provided that the average number of medium prior-
ity patients in the hospital has not been greater than n (i.e.
edge notation navg

pt
≤ n) during the patient stay.

In Fig.8 the CDF of passage time (with related confidence
intervals) is plot for the properties H1 and H2 considering
20 patients (i.e. 4 high priority patients, 8 medium priority
patients and 8 low priority patients). Note that the state
space of this model becomes quite large increasing the num-
ber of patients (for instance, with 2 high priority patients,
3 medium priority patients and 6 low priority patients it
has more than 1.5 billion states), so that the simulation ap-
proach becomes virtually the only applicable method. The
time required to compute the data for Fig.8 with 20 patients
is about 1.5 seconds on a laptop computer. The tool sim-
ulates approximatively 100,000 trajectories to ensure confi-
dence intervals smaller than 0.001.

The Client-Server model.
The SSN model in Fig. 9(left) represents a client-server

architecture where several similar clients whose identities
are modeled by color class C, can require remote services
to a server. When a client decides to send a request (tran-
sition SendReq), its message is queued in the server buffer
to be pre-processed (place pre proc); then it is served iff at



enterQ: C Arrive
<x,p>

queue: C×P
<x,p>

ExecTask wait_join: C
<x><x,p>

4
free_posP0

next_free: P

<p>

<p++>
P0

head: P

<p>
<p++>

<x> <x>

C = {c1, . . . , c6} is client.
P = {p1, . . . , p4} is position.

All
client: C

SendReq

<x>
pre_proc: C

<x>

ForkTasks

<x>

4
idle_servers

ready_output: C

SendOutput
<x><x>

<x>
JoinTasks

<x>

<x>

<x><x>

<x>

<x>

queue2: C ExecTask2
<x>

wait_join2: C
<x>

queue1: C ExecTask1
<x>

wait_join1: C
<x>

queue3: C ExecTask3
<x>

wait_join3: C
<x>

Queue with FCFS policy:

Figure 9: Client-server model.
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�
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l1

Discharge∗ is the set {DischargeM ,DischargeRec}.

Figure 7: Colored LHA for the H2 property.

Figure 8: Passage time for the Hospital properties
H1 and H2. For each point the related confidence
interval is reported.

least one server is available (marking of place idle servers
greater than 0). Hence, three threads are generated (transi-
tion ForkTask) and executed in parallel (places queuei and
transitions ExecTaski). The computation result is sent back
to the client (transiton SendOutput), only after all three
threads end (transition JoinTasks).

The threads in places queuei are served using a Processor
Sharing (PS) queueing policy (realized through a marking-
dependent rate); while if we want to model a First-Come-
First-Served (FCFS) queueing policy we have to replace the
place queuei and its corresponding transitions ExecTaski
with the submodel in Fig. 9 (right). In this submodel the
place queue, with color domain C × P , represents a circular
array where the ordered color class P is used to encode the
array indices. Places head and next free encode the pointers
to the first element in queue and to the first empty element,
respectively.

The immediate transition Arrive assigns to a new thread

in place enterQ the first empty position in the queue (i.e.
marking of place next free) if the queue limit is not reached
(i.e. place free pos is marked); and it updates the color of
token in next Free to the successor of p (i.e. denoted with
the arc function p+ +). Instead, the firing of the transition
ExecTask removes from place queue the token 〈x, p〉 with
p equal to the color of the (unique) token in place head,
then the color of the token in this place is updated to the
successor of p.

LHA specification some performance indices.
The properties considered for this example are:

C1: throughput of SendRequest in transient and steady state;

C2: mean number of tokens in places client and pre proc in
transient and steady state;

C3: the CDF of the passage-time for the first client request
processed by the server (from transition ForkTask to
transition JoinTask) after the initial transient.

Observe that C1 and C2 are quite“standard”measures spec-
ified by means of reward function.

The Colored LHAs for these measures are shown in Figs 10, 11
and 12.

In details, the two automata for property C1 in Fig. 10 are
different as regards to the dashed part used to skip an ini-
tial transient during the property computation. Then, the
stable variable n is updated when transition SendRequest
fires (independently by its colored binding). The computed

formula is AVG Last(n)
Last(t)

where t is used to measure the time.

For instance, considering 6 clients and 4 servers the through-
put of the transition SendRequest assuming initT= 100 is
0.88629± 0.00019 when the threads in queuei are scheduled
according to a PS policy, and 0.77278 ± 0.00017 when the
threads in queue1 are served using FCFS and the threads in
queue2 and queue3 are served using PS.

In Fig. 11 the two automata show how to define the prop-
erty C2 in transient and steady state. The flow variable p
is used to store the number of tokens in places client and

pre proc. Hence, the computed formula is AVG Last(p)
Last(t)

. For

instance, the average number of tokens in these places with
initT equal to 100 time units, 6 clients and 4 servers is
0.89240 ± 0.00049 when the threads in queuei are served
using PS, and 0.78369± 0.0003 when the threads in queue1
are served using FCFS and the threads in queue2 and queue3
are served using PS.

Finally, the last automaton in Fig.12 is an example of
CDF of the passage-time in which a color variable (i.e. c)
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Figure 10: C1: throughput of SendRequest.
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Figure 11: C2: the mean number of tokens in P .

is used to tagged a generic client request (i.e. c ← 〈x〉),
and shows another pattern for letting the initial transient
to elapse. Indeed, the automaton moves from l0 to l1 only
when the initial transient is elapsed (t ≥ initT ) and the
transition ForkTask fires. The color associated with this

{JoinTasks�x�[�x� = c]},
True,∅

l2

l0

ṫ : 1

ALL, t < initT ,∅

{ForkTasks�x�},
t ≥ initT,

{t←0, c←�x�}

ALL \ {JoinTasks�x�[�x� = c]},
True,∅

ALL \ {ForkTasks},
t ≥ initT ,∅

l1

ṫ : 1

Setup: t = 0, c = ��. c is a color variable.

HASL expression: CDF(t)

Figure 12: C3: passage time of the first observed
client.

firing is stored in c, so that the corresponding client request
is tagged. Then, the automaton reaches the final location l2
iff the transition JointTask fires for the same tagged client
request (JointTask [〈x 〉 = c]).

In Fig. 13 the CDF of passage time computed by this au-
tomaton is shown considering: 1) PS queueing policy associ-
ated with places queuei; 2)FCFS queueing policy associated
with place queue1 and PS to the others two places queue2
and queue3.

Figure 13: Passage time CDF of the first client re-
quest processed by the server after the initial tran-
sient for different task scheduling policies.

The Database model.
In this section the model in Fig. 2, already introduced in

Section 3.1, is analyzed by means of COSMOS.
Two measures of interest are defined and computed:

D1: CDF of the time required for a change request to com-
plete, under the condition that the time to acquire the
mutex on the file to be changed does not exceed a given
threshold and the time to send all the messages from
the active site who modified the file and the passive
sites is below a given threshold;

D2: the probability that a request for change, arriving when
there are no other submitted requests, is the first to
complete (i.e. no other request arriving later will over-
come it)

The automata for D1 and D2 are shown in Figs. 14 and 16,
respectively.

The automaton in Fig. 14 includes the usual pattern for
letting the initial transient to elapse (from l0 to l1), after
which the first occurrence of Start makes the automaton
move to location l2 while storing the binding in the two



{Acquire〈s,f 〉
[s=xs,f=xf]},

tUpd<threshold, ∅

{Start〈s,f 〉}, 
True,

{xs←s, xf←f,
tUpd← 0}

ALL\{Release〈s,f 〉[xs=s, xf=f ]},
True, ∅

t' : 1
l n0 l n1

ALL\{Start〈s,f 〉},
True, ∅

l n6

ALL, True, ∅

#, t=T,
{t ← 0}

l n5
{Release〈s,f 〉
[xs=s, xf=f ]},

True, ∅t' : 1

l n2
tUpd' : 1

ALL\{Acquire〈s,f 〉[s=xs,f=xf]},
tUpd<threshold, ∅

{Change〈s,f 〉
[s=xs,f=xf]},

True, {tSend ← 0}

ALL\{Change〈s,f 〉
[s=xs,f=xf]},True, ∅

ALL\{SendMsg〈s,f 〉[f=xf]},
tSend<MaxSendT, ∅

l n4
tUpd' : 1
tSend' : 1

l n3
tUpd' : 1

{SendMsg〈s,f 〉[f=xf]},
tSend<MaxSendT ∧

card(Message(*,f))>0, ∅

{SendMsg〈s,f 〉[f=xf]},
tSend<MaxSendT ∧

card(Message(*,f))=0, ∅

Setup: t, tUpd, tSend are real.
         xs and xf are colorvars.
HASL expression: CDF(tUpd ).

Figure 14: D1: passage time of a distributed update
conditioned on a time thresholds on mutex acquisi-
tion and on update messages transmission.

Figure 15: D1: CDF of the passage time of a dis-
tributed update conditioned on two time thresholds
on intermediate steps.

color variables xs and xf . When entering l2 the timer tUpd
is started and the control on the time elapsed until the fir-
ing of transition Acquire for the same binding is checked:
if it exceeds the threshold the trace is discarded (condi-
tion tUpd < threshold on all outgoing arcs). The firing
of Acquire within the threshold brings the LHA to loca-
tion l3 where it remains until transition Change fires for
the binding 〈xs, xf〉: this event starts the new timer tSend
and causes the LHA to move into location l4. The purpose
of location l4 is to check that all messages from site xs to
the other sites arrive to their destination within MaxSendT
time units (condition tSend < MaxSendT on all outgoing
arcs). The LHA moves on to location l5 when an instance of
transition SendMsg fires with variable f bound to xf which
moves the last update message for file xf out of place Mes-
sage (condition card(Message(∗, f)) = 0) on the arc from l4
to l5. From l5 the trace is accepted when transition Release
fires with binding 〈xs, xf〉: timer tUpd grows with rate 1
in all locations from l2 to l5 so that when the final loca-
tion is reached it contains the time required to complete the
update.

In Fig.15 the CDF computed for this property is reported.
The automaton in Fig. 16 has two initial locations to ac-

count for the possibility of different initial markings. Propo-
sition Φ identifies a state where there are no ongoing updates
(which is the case for the initial marking of the database ex-
ample in Fig. 2). Hence the initial marking is matched with
the appropriate initial location, l0 or l1; if it matches l0 then
the automaton remains in such state until a state is reached
which satisfies Φ (that causes the automaton to move on
to l1), then at the first firing of transition Start the path
recognition starts, recording the binding of s in the color
variable c and moving on to location l2. In l2 the first oc-
currence of Release makes the automaton to either accept
the path (if the binding of variable s is equal to c, moving
to the final location l3) or discard it (if s is bound to a value
different from that stored in c). The measure is defined sim-
ply using the expression PROB(). This gives us the result of
0.5681588± 9.02441 · 10−4, computed with COSMOS using
a confidence level of 99% on a total of 1.991.043 paths.

ALL \ {Start},
True,∅ALL, True,∅

ALL, True,∅

Φ¬Φ

{Start�s, f�},
True,

{c←�s�}l0

ALL \ {Release},
True, ∅

{Release�s, f�[�s� = c]},
True, ∅

Setup: t = 0, OK = 0, c = ��.
Condition Φ is: all active = All.

HASL expression: PROB()

l3

l2l1

Figure 16: D2: LHA for the probability of proper
serialization in mutex acquisition.

5. CONCLUSIONS AND FUTURE WORK.
This paper presents an extension of the automata based

language HASL, to express complex performance proper-
ties of SSN models in the COSMOS tool. The use of an
High Level (Stochastic) Petri Net formalism allows to de-
scribe realistic systems, on the other hand the possibility to
use LHA extended with color-indexed variables and proposi-
tions involving colored markings provides a rich and power-
ful language for property specification, increasing the prac-
tical applicability of the COSMOS simulator. This has been
demonstrated on three examples (taken from the literature).

The current implementation of the COSMOS extension
to SSNs and HASL does not embed a number of optimiza-
tions that could be implemented taking advantage of the
specific symmetric properties of the SSN models. The type
of arc functions that characterize the formalism naturally
leads to several possibilities for the optimization of the fu-
ture event list updating and handling. The approach pro-
posed in [13] and implemented in the GreatSPN software
tool can be adapted and improved in COSMOS: this includes
methods to efficiently determine which transition instances
are newly enabled or disabled, based on a preliminary anal-
ysis of the net structure; the techniques must be adapted to
take into account the COSMOS architecture, which is based
on the generation of model specific code to be compiled with
the simulator engine core.
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