
Theory Comput Syst
DOI 10.1007/s00224-014-9581-5

Optimal Probabilistic Generation of XML Documents

Serge Abiteboul ·Yael Amsterdamer ·
Daniel Deutch ·Tova Milo ·Pierre Senellart

© Springer Science+Business Media New York 2014

Abstract We study the problem of, given a corpus of XML documents and its
schema, finding an optimal (generative) probabilistic model, where optimality here
means maximizing the likelihood of the particular corpus to be generated. Focus-
ing first on the structure of documents, we present an efficient algorithm for finding
the best generative probabilistic model, in the absence of constraints. We further
study the problem in the presence of integrity constraints, namely key, inclusion, and
domain constraints. We study in this case two different kinds of generators. First, we
consider a continuation-test generator that performs, while generating documents,
tests of schema satisfiability; these tests prevent from generating a document violat-
ing the constraints but, as we will see, they are computationally expensive. We also
study a restart generator that may generate an invalid document and, when this is
the case, restarts and tries again. Finally, we consider the injection of data values
into the structure, to obtain a full XML document. We study different approaches for
generating these values.

Keywords XML · Schema · Constraints · Generator · Probabilistic model

S. Abiteboul
INRIA Saclay and ENS Cachan, Paris, France

Y. Amsterdamer · D. Deutch (�) · T. Milo
Tel Aviv University, Tel Aviv, Israel
e-mail: danielde@post.tau.ac.il

P. Senellart
Institut Mines–Télécom, Télécom ParisTech, CNRS LTCI, Paris, France

mailto:danielde@post.tau.ac.il

Theory Comput Syst

1 Introduction

We study in this paper the problem of finding a model that best fits a given corpus
of XML documents. We focus on probabilistic, generative models, and our objective
is to find an instance of the model that maximizes the likelihood of observing the
corpus given the model instance. A solution to this learning problem consists of two
components. The first is the discovery of a schema (e.g., in a language such as DTD
or XSD) that the documents conform to. This component has been intensively stud-
ied; see, e.g., [11, 20, 22, 23, 28, 30]. The second component requires, given such
a schema and a corpus, associating probabilities with the different choices in the
schema, to obtain a probabilistic generator that in some sense (to be made precise in
the sequel) maximizes the likelihood of the particular corpus.

Such a probabilistic model has a variety of usages:

Testing. The model can be used to generate (many) samples of the documents for
test purposes. For instance, the documents may describe some workflow sessions
and the samples be used to stress-test a new functionality.

Explaining. The schema may be useful for explaining the corpus to users. The
probabilities provide extra information on the semantics of data. For example, in
DBLP, how many journal vs. conference articles there are, or how many authors a
paper has on average.

Querying. One can get an approximation of query answers by evaluating queries on
this model in the style of query answering on probabilistic databases. For instance,
one can assess the probability that journal articles have more than three authors
from a particular institute.

Schema mining. Given a corpus, there may be many possible schemas that accept
all the documents in the corpus. To choose between those schemas, one can use
measures such as compactness [27] (how small the schema is) or precision (how
much it rules out documents outside of the corpus). It turns out one can also use, as
a quality measure, how well a probabilistic model for this schema fits the corpus.

Auto-completion. The model can be used to generate partial XML documents that
form completion of a document prefix edited manually. These completions may
then be proposed to the user (editor), assisting in the editing process [2].

These usages are motivations for the present work. We next overview some of the
main notions used in this paper, as well as the paper contributions.

We start by describing the notion of schemas used in this work. We use a very
general notion of such schemas, essentially based on automata specifying the labels
of the children of nodes with a certain label. This classical notion suggests the fol-
lowing nondeterministic generator for the documents satisfying a particular schema.
Start with a single node whose label is the root label. The children of a node with
label a are generated using the automaton Aa: starting from the initial state of Aa the
generator nondeterministically chooses an accepting run of the automaton generating
some word a1...an$ in L(Aa) (where $ is a special terminating symbol). Accordingly,
the node will have a sequence of n children labeled a1...an.

To obtain a probabilistic generator, it suffices to associate probabilities with the
transitions in the different automata. These are the probabilities of the transitions to

Theory Comput Syst

be selected in the course of generation. The resulting generator provides skeletons
of the document. To obtain full documents, one also needs to feed in data values
(at the leaves). The entire generation process we describe may also be interpreted as
tree rewriting specified as ActiveXML documents [3]. Our contribution consists in
determining the “best” such generator for a given corpus of documents and a spe-
cific schema. More precisely, we need to determine the probabilities to attach to the
automata transitions that make the corpus most likely given the generator.

We will study the problem with and without semantic constraints on the docu-
ments, focusing first on the generation of document skeletons, and then on generating
data values for the leaves.

Case Without Constraints In the absence of constraints, we introduce a simple and
elegant way of determining these probabilities, as follows. The documents of a par-
ticular corpus are type-checked (i.e., checked to be valid with respect to the schema).
For each automaton, we count the number of times each transition is chosen. We
prove that using the relative frequencies of the transitions yields probabilities that
optimize the generation of the corpus, and moreover guarantee termination of the
generation process.

Case with Constraints Real applications often involve (in addition to schemas)
semantic constraints, which greatly complicate the issue. We study three main kinds
of constraints considered in practice, namely (unary) key, inclusion, and domain con-
straints. The main difficulty is that, during generation, we may reach states where
some of the transitions do not constitute real alternatives: following a particular
transition, there is no chance of generating an instance obeying the constraints.
This motivates our definition of two kinds of generators, restart generators and
continuation-test generators, as follows.

A restart generator ignores the constraints and generates a skeleton, then checks
whether there exists a value assignment for this skeleton so that the resulting docu-
ment satisfies the constraints. If this fails, it restarts. Unfortunately, we show that for
some input instances, there is virtually no chance of generating a skeleton that can
be turned into a document satisfying the constraints, rendering restart-generators a
problematic solution in general although they may be very efficient in some cases.
In contrast, a continuation-test generator is somewhat more complex. At every point
of generation where there is more than one option, such generator invokes a con-
tinuation test to check which of the options are feasible, i.e., for which options
there are continuations of the generation that lead to a document satisfying the con-
straints. Thus we never choose a transition that takes us to a dead end and document
generation always succeeds. The price that we pay for this is performing the contin-
uation test, which we show, following the work of [17] on schema satisfiability, to be
NP-complete.

To compute the optimal continuation-test generator, we have to assume that
choices are binary. (We will explain why.) Again, we type-check the documents of
the corpus. We count the number of times each transition was chosen, but this time
we only count a transition in cases where there was more than one option with con-
tinuation. We prove that this gives optimal probabilities. However, we also analyze

Theory Comput Syst

the termination probability of such generators, and show that termination is not
guaranteed even in very simple cases.

Generating Data Values Finally, we consider the generation of data values to be
injected at the leaves of the generated document skeletons, following given prob-
abilistic distributions. We present a general algorithm for generating values that
conform to the schema constraints.

We then study a particular promising approach for the generation of data values.
This approach is based on the idea of annotating skeleton leaves with old and new
annotations. The former implies that, upon generation of values, the value for the leaf
should be drawn out of the set of existing leaf values, while the latter implies that
this value is a new one. We then provide and analyze two algorithms for the gener-
ation of such old and new annotations for the document skeleton leaves: an offline
algorithm that operates on a document skeleton (generated, e.g., by one of the gener-
ators suggested above), and an online algorithm that is embedded into the document
skeleton generation process. We further provide algorithms for setting probabilities
for both algorithms, which we prove to be optimal. A full comparative analysis of
the algorithms shows that neither of the constructions is “superior”, in the sense that
each type of algorithm achieves better quality w.r.t. different inputs.

Conference Version A preliminary version of this article was published in the pro-
ceedings of ICDT 2012 [1]. New contributions of the current version include,
among others: (1) full details of all proofs, accompanied with illustrative exam-
ples (throughout the article); (2) soundness and completeness of the nd-generator
model (in Section 2); (3) an extensive discussion of the generation of data values (in
Section 6.2), including examples and an explicit algorithm for learning optimal prob-
abilities for offline generators, absent from [1]; and (4) extensions of the techniques
and results to a typed schema model (Section 7).

Outline In Section 2, we provide the definitions and background for the rest of the
paper. Generators are defined in Section 3. In Sections 4 and 5, we study the problem
of finding the best probabilistic generators without and with constraints respec-
tively. We discuss value generation in Section 6. Extension of the results to a typed
schema model is considered in Section 7. Related work is presented in Section 8, and
Section 9 is a conclusion.

2 Preliminaries

In this section, we first introduce basic definitions for XML document and document
corpora. We then consider schemas and constraints.

2.1 XML Documents and Corpus

An XML document is abstractly modeled as an unranked, ordered, and labeled tree.
Given an XML document d = (V, E), we use root(d) for the root node of d . Let

Theory Comput Syst

L = Lleaf ∪Linner be a finite domain of labels, where Lleaf and Linner are two disjoint
sets of labels for leaves and inner nodes (i.e., nodes that are not leaves), respectively.
We denote by lbl : V →L the labeling function of the nodes, mapping leaf (inner)
nodes to leaf (inner) labels. Given a node v ∈ V , lbl↓(v) ∈ L∗$ is the sequence of
labels of the children of v, from left to right, with an additional terminating symbol
$ �∈ L. We assume that (only) the leaves are further assigned values from a countably
infinite domain U by the function val.

Example 1 Consider the following XML document d0, viewed as a tree in the
standard manner.

This document describes the phone book of a department containing one senior
employee as a member (who is also the department head), Martha B.: The root node
v0 is the one labeled with Dept, i.e., root(d0) = v0 and lbl(v0) = Dept. Let v1 be
the node such that lbl(v1) = Emp. Then lbl↓(v1) = Name Tel Tel$. Similarly, if
lbl(v2) = Name, then lbl↓(v2) = $ (i.e., this is a leaf node with no children), but this
node has a value, val(v2) = “Martha B.”.

An XML corpus is then a finite bag of documents. Let D be the universal domain
of all documents over L, U . A corpus is represented by a function D : D → N,
which maps each document d to the number of times d appears in the corpus. We
denote by |D|, the bag size counting duplicates (recall that the bag is finite), and by
supp(D), the set of unique documents in D.

2.2 Schema

We start by recalling the notion of schemas as specifications of valid XML docu-
ments. We consider first schemas with no constraints, and then in Section 2.3 we
extend our definition to the general case where constraints are considered. Also,
to simplify the definitions, our model follows that of Document Type Definitions
(DTDs). However, we stress the model can be extended in a straightforward manner
to a schema defined in the XML Schema language, see Section 7.

Let Q be a finite domain of states.

Definition 1 A schema S is a tuple (r,A↓), where r ∈ Linner is the root label, and A↓
is a partial function mapping an inner label a ∈ Linner to a deterministic finite-state

Theory Comput Syst

automaton (DFA) A↓(a) = Aa,1 whose language is L(Aa) ⊆ L∗$. An XML docu-
ment d is said to be accepted by a schema S if lbl(root(d)) = r and for every inner
node v of d , a = lbl(v) ∈ Linner and lbl↓(v) ∈ L(Aa).

We refer to the DFA Aa as the deriving automaton of a, and to the set of all such
automata for the labels of a document d as the deriving automata of d .

Remark 1 Note that, by the definition, every word accepted by the automata must ter-
minate with a $ and contain no other $’s. To simplify further definitions, we assume
that the states of two deriving automata are disjoint subsets of Q.

Example 2 Consider the schema S0 for documents that describe a department of
employees, like in Example 1. In this case, assume that Linner = {Dept, Seniors,
Juniors, Emp}, Lleaf = {Head, Name, Tel}, and r = Dept. ADept (depicted in
Fig. 1) is simply composed of a sequence of states q0 to q4, and L(ADept) =
HeadSeniors Juniors$. ASeniors, AJuniors (depicted in Fig. 2), and AMem (depicted
in Fig. 3), are such that L(ASeniors) = L(AJuniors) = Emp∗ $ and L(AEmp) =
MemID T el∗ $. Note that S0 accepts the document d0 from Example 1.

2.3 Introducing Constraints

We continue by adding global constraints to the model. Following previous work on
constraints in XML schema languages, we consider three major types of constraints
on the values of the leaves.

Definition 2 A schema with constraints is defined by a pair 〈Su, C〉, where Su is a
schema (without constraints) and C is a set of constraints on labels from Lleaf, of the
following three types.

Key constraint. Given a label a ∈ Lleaf, we denote by uniq(a) the constraint that
the value of each a-labeled leaf is unique (among all values of a-labeled leaves in
the document)2.

Inclusion constraint. Given two labels a, b ∈ Lleaf, we denote by a ⊆ b the
constraint that the values of a-labeled leaves are included in those of b-labeled
leaves.

Domain Constraint. Given a label a ∈ Lleaf, we denote by a ⊆ dom(a) the con-
straint that in any document, the values of a-labeled nodes are in dom(a), a subset
of U .

We will assume that inclusion constraints a ⊆ b are only given when dom(a) =
dom(b), or when there are no domain constraints on a, b. When that is not the case,

1It is common to use regular expressions for the allowed sequences of children labels in a schema [26, 29];
the reasons for our choice of automata instead will become apparent when we discuss generators further.
2We are considering here only unary keys, defined on single values and not combinations of such values.

Theory Comput Syst

Fig. 1 The ADept DFA

the combination of domain and inclusion constraints may change the domain of
possible values for some of the labels, e.g., the “actual” domain of a may become
dom(a) ∩ dom(b) and must be re-computed.

3 Generators

In this section, we consider various generators. First we consider nondeterministic
generators, then probabilistic ones, and finally generators under constraints.

3.1 Nondeterministic Generator

Schemas are typically considered as acceptors for verifying XML documents. But it
is also possible to see a schema as a nondeterministic generator (nd-generator). This
is in the same sense that a DFA can be also seen as a word generator. For each node
of label a, we can use the automaton Aa to nondeterministically generate the node
children. Similarly to a schema not performing verification on the leaf values, an nd-
generator generates XML document skeletons, consisting only of the labeled nodes,
and into which leaf values can later be injected (see Section 6). Since this is the
main focus of this paper and unless stated otherwise, from now on, when we speak
of documents and corpora, we mean document skeletons and corpora of document
skeletons.

Order of Generation We assume, for all the generator types considered in the sequel,
that the node generation is done in a fixed particular order, namely Breadth-First
Left-To-Right (BF-LTR). I.e., we first generate the root, then the root’s children from
left to right, then the children of the root’s children, starting from the root’s left-most
child, and so on. This fixed order of generation is used in the comparison of the
different generators types.

Fig. 2 The ASeniors/ AJuniors

DFAs

Theory Comput Syst

Fig. 3 The AEmp/ DFA

Generating a document d can be described as follows:

1. Generate a new root root(d) with a label r and add it to a todo queue Q.
2. While Q is not empty, pop the node v at the head of the queue. Let a be the label

of v and q the initial state of Aa.
3. Nondeterministically choose one transition (q, b) in Aa.
4. If b = $ (i.e., we have finished generating children for v) return to Step 2.
5. Otherwise b ∈ L. Generate v′, a child for v such that lbl(v′) = b. If b ∈ Linner

add v′ to Q. Set q ← q ′ and return to Step 3.

The generation process ends when the todo queue at Step 2 is empty, i.e., the
deriving automata of all the generated inner nodes reached an accepting state. This
means that the inner nodes generated last have only leaves as children (since we are
going in a BF-LTR order). In what follows, we say that a generator conforms to a
schema (also for other types of generators) if they have the same structure (deriving
automata and root label).

Example 3 Reconsider the automatonAEmp depicted in Fig. 3 as a generator. Assume
that we have already generated an Emp-labeled node v, and now we are generating
its children. We start from state q7 and when v has no children. We have only one
option for the next transition, moving to q8. Since the transition is annotated with
Name, we generate the first child node and label it with Name. From q8 we have two
options: a transition to itself, in which case we generate an additional child, labeled
Tel, and a transition to q9, in which case no more children are generated for v.

Remark 2 Given such a nondeterministic generator, one can easily construct an
Active XML [3] document that generates the same documents. Active XML is much
more general and in particular allows specifying generators that will be introduced
later in this paper.

Next, we define the notion of a generation trace, which describes the process of
document generation in terms of the nondeterministic choices taken by the generator.

Definition 3 A generation trace of a node v, whose deriving automaton is A

and where lbl↓(v) = a1...an$, is a sequence 〈q0, a1〉, 〈q1, a2〉, ..., 〈qn, $〉 where
q0, ..., qn ∈ Q and the transition function δ of A is such that δ(qi−1, ai) = qi for all
1 � i � n and δ(qn, $) is an accepting state. A generation trace of a document is
then the concatenation of all the generation traces of all its inner nodes, in the order
they were performed.

Theory Comput Syst

An nd-generator generates exactly the documents accepted by the correspond-
ing schema, i.e. the generator is sound and complete, as indicated by the following
proposition:

Proposition 1 For a schema S, the set D of all documents that an nd-generator
conforming to S generates is exactly the set of all documents S accepts.

Proof Assume that S accepts some document d . For each inner node v in d there
is an automaton Aa = A↓(lbl(v)); Aa performs a sequence of state transitions on
lbl↓(v) and reaches an accepting state (since S accepts d). Take the sequence of pairs
of state and transition label to be the generation trace for v. Concatenating all the
generation traces of the inner nodes according to our BF-LTR order will give a valid
generation trace of S for d . The other direction is also simple – it is easy to see
that if an automaton generates nondeterministically a sequence of child labels, it also
accepts this sequence of labels; hence if a document d is generated by S it is also
accepted by it.

3.2 Probabilistic Generator

For practical purposes, we are not only interested in generating all possible finite
documents that match some XML schema, but rather we want to generate them
according to some probability distribution. For that we introduce the notion of
probabilistic generator, where the nondeterministic choices are associated with
probabilities.

Definition 4 A probabilistic generator (p-generator) S is a pair 〈Su, t − prob〉,
where Su is a schema, and t-prob is a function Q × L → [0; 1] mapping the
transitions of the deriving automata of d to probabilities, such that for every q ∈
Q,

∑
a∈L t-prob(q, a) = 1, and for every transition (q, a) which is not a part of any

automaton, t-prob(q, a) is 0.

The probabilistic generation process is then very similar to the nondeterministic
one, except that from each automaton state q , the generator randomly chooses the
next transition (q, a), according to t-prob, independently of other choices.

Document Probability Let d be a document skeleton. For each inner node v in d , the
probability of lbl↓(v) is the product of probabilities of all transitions in its generation
trace; the probability of d is the product of all such probabilities over all its nodes.
Note that we assume for now independence of the probabilistic events associated
with transitions (and independence in generation of different documents).

Example 4 Let us assign probabilities to the transitions in the schema
described in Example 2. Assume that t-prob(q5,Emp) = 0.3, t-prob(q5, $) =
0.7, t-prob(q8, Tel) = 0.6 and t-prob(q8, $) = 0.4 (all other transitions have
probability 1). We can now compute the probability of generating the document
skeleton d0 in Example 1. The following table shows for each node its generation

Theory Comput Syst

trace and the computation of generation probability. Since all inner nodes in d0 have
unique labels, we use them here as node identifiers.

Node Generation trace Probability

Dept 〈q0,Head〉, 〈q1〉,Seniors, 〈q2, Juniors〉, 〈q3〉, $ 1 · 1 · 1 · 1 = 1

Seniors 〈q5〉,Emp, 〈q5〉, $ 0.3 · 0.7 = 0.21

Juniors 〈q5〉, $ 0.7

Emp 〈q7,Name〉, 〈q8,Tel〉, 〈q8,Tel〉, 〈q8, $〉 1 · 0.6 · 0.6 · 0.4 = 0.144

Total 0.21 · 0.7 · 0.144

≈ 0.021

The last row shows the probability to generate d0 with the p-generator, which is
the product of the probabilities of the inner nodes.

3.3 Generators with Constraints

In presence of constraints, a generator that only makes independent choices may be
unsuitable, as shown next.

Example 5 Let us now consider a schema based on S0 from Example 2, but with the
following additional constraints on the values:

(i) uniqName: the employee names are unique.
(ii) Tel ∈ 123–5{0,..,9}3: the department phone numbers always start with 123–5,

and then some three digits.
(iii) Head ⊆ Name: the name of the department head must be the name of an

employee in the department.

Note that a document generated according to our schema may list a head but no
member employees, in violation of constraint (5). We can try enforcing that there is
at least one employee, by setting t-prob(q5,Emp) to 1 (either in ASeniors or AJuniors).
However, such a generator will never halt. Another possibility would be to modify
the automaton itself to guarantee e.g. at least one junior or senior employee; but the
resulting generator will no longer correspond to the schema and in particular will
not generate d0 from Example 1 (or a similar document, where Martha B. is a junior
employee).

We suggest two kinds of generators dealing with this problem: restart generators
which try to generate a document, check if it is invalid, and if so start the process
over again; and continuation-test generators, that may perform tests for the existence
of continuations leading to valid documents, to avoid generating invalid ones.

Restart Generators We start by defining more formally the notion of a restart gener-
ator (r-generator). An r-generator G is a pair 〈Gp, C〉, where Gp is a p-generator, and

Theory Comput Syst

C is a set of constraints. The operation of G is composed of two main steps which
may be repeated.

1. Generating, probabilistically, a document skeleton d matching the schema of Gp.
This step can be done simply by invoking Gp.

2. Checking, given d and C, whether there exists a valid value assignment to the
leaves of d . If not, d is discarded and we start over.

An important question is whether the test in the second step can be performed
efficiently. We show that this is the case, in Section 5.2.

An r-generator is very simple, but may generate many invalid documents before
generating a valid one. This leads us to consider the next kind of generators.

Continuation-Test Generators We next consider generators that are guaranteed to
generate valid documents (without restarting). For that, we introduce the notion of
continuation testing. We say that a partial generation trace is valid for a schema S if
it is a prefix of a generation trace of a valid document skeleton by an nd-generator
conforming to S.

Definition 5 Given (1) a schema with constraints S, (2) a partial generation trace ξ

valid for S, and (3) a ∈ L ∪ {$}, a possible next choice, the CONT(S, ξ, a) problem
is to decide whether ξ, 〈q, a〉 is valid for S, where q is the current state of the nd-
generator conforming to S after ξ .

A continuation-test generator (ct-generator) is then a probabilistic generator that
(A) conforms to a given schema, (B) generates only documents that are valid
with respect to the schema and constraints, and (C) when reaching a certain (non-
accepting) state checks, using a continuation test that solves CONT, which of the
transitions from this state may lead to a valid document; all the transitions that lead
to a dead end are ignored; then the generator chooses between the remaining tran-
sitions with continuations (there must be at least one), according to their assigned
probabilities (normalized to sum up to one).

Intuitively, the continuation test guides the generator by testing if a possible next
step can lead (eventually) to a valid document; if not, then the generator will not
make this step. In a sense, the continuation test is the only reasonable Boolean test
to perform here: if the test returns true when there is no continuation, an invalid
document will be generated; in contrast, if the test returns false when there is a con-
tinuation, there are some valid documents (that may be in the corpus) that will never
be generated, regardless of the probabilities assigned to transitions.

Note that, in the absence of constraints (when C = ∅), there are no invalid docu-
ment skeletons and both r-generators and ct-generators are the same as p-generators.

3.4 Quality and Optimality Measures

For a given XML schema, there are many possible generator instances (for each
model described above). We define the quality of a generator instance G based on
the likelihood of observing a corpus of example documents, under the assumption
that it was generated by G. This follows the general notion of maximum likelihood

Theory Comput Syst

estimation, commonly used for tuning the parameters of probabilistic models (see
[13]). Formally,

Definition 6 Given a generator G and for every document skeleton d , let Pr(d |G)

be the probability for G to generate d . Let D be a document skeleton corpus. Then
the quality of G with respect to D, denoted quality(G,D), is �d∈supp(D)Pr(d|G)D(d)

(recall that D(d) is the number of occurrences of d in D).

Note that if we multiply quality(G,D) by the multinomial coefficient of D as a
bag,3 the result is exactly the probability for G to generate D.

Optimal Generator Given a schema S, a class G of generators conforming to S, and
a document corpus D, we then say that a generator G ∈ G is optimal for S,G, D if
for each generator G′ ∈ G, qualityG,D � qualityG′, D. When G is understood, we
say that it is optimal for S,D. We call the problem of finding the optimal generator
(for given S and D) OPT-GEN.

4 The Unconstrained Case

In this section, we first show quality bounds for generators, then study optimal gener-
ators for schemas without constraints. The results obtained here are similar to those of
[14] for maximum likelihood estimators of probabilistic context-free grammars, but
the explicit construction will be useful when we introduce constraints in Section 5.

4.1 An Upper Bound for Quality

We start by considering an upper bound of quality for a corpus. We will later discuss
whether this bound can be achieved by the kinds of generators we defined, or by
others.

Given a corpus D, consider a generator that would generate each document d in D

with probability D(d)
|D| , i.e., according to its relative frequency. The quality of this

generator would be qD = ∏
d∈supp(D)

(
D(d)
|D|

)D(d)

. We can show that this is indeed

an upper bound for the possible quality of a generator for D, independently from the
type of generator and the schema it conforms to, as the following theorem holds.

Theorem 1 Let D be a corpus and G a generator. Then quality(G,D) ≤ qD .

Proof The proof is based on the following lemma:

Lemma 1 Let α1 . . . αn be n positive integers. We define the function f : [0; 1]n →
[0; 1] as (p1, . . . , pn) �→ f (p1, . . . , pn) = ∏n

i=1 p
αi
i . Then the maximum of f under

3The multinomial coefficient is the number of distinct permutations of the bag elements (specifically, it is
|D|! if D is a set).

Theory Comput Syst

the constraint
∑n

i=1 pi � 1 is obtained when pi = αi∑n
k=1 αk

for 1 � i � n and only

then.

Proof First note that as a real-valued continuous function with a compact domain,
f has a maximum. Since f (p1, . . . , pn) = 0 if and only if one of the pi’s is 0, this
maximum under

∑n
i=1 pi � 1 is obtained for some (p∗

1 , . . . , p
∗
n) ∈ (0; 1]n. This

point is also (under the same constraint) a maximum of the logf function defined
over (0; 1]n by:

(p1, . . . , pn) �→ (log f)(p1, . . . , pn) =
n∑

i=1

αi logpi.

Observe next that the maximum value of f (p1 . . . pn) under the constraint∑n
i=1 pi � 1 is necessarily obtained when

∑n
i=1 pi = 1 since this function is strictly

increasing with respect to each of its argument. Therefore,
∑n

i=1 p
∗
i = 1.

The classical Gibbs lemma (see, e.g., [24]) states that for such a function log f ,
there exists a constant λ such that for all 1 � i � n,

∂(logf)
∂pi

(p∗
i) = λ. This can

also be shown using elementary analysis and induction on n. This means that for all
i,

αi
p∗
i
= λ, since

∑n
k=1 p

∗
k = 1, λ = ∑n

k=1 αk , and thus p∗
i = αi∑n

k=1 αk
.

By the lemma above, qD is defined exactly as the maximum quality for the
corpus D. �

Note that if we do not restrict ourselves to any particular schema, it is easy to
design a generator that achieves this optimal quality: ignore any schema information,
and simply randomly choose documents from the corpus, according to their relative
frequency. We argue that this is not a good generator. First, if the corpus is very large,
this generator will be much less compact than the ones we study, so not appropriate
for explanation or query evaluation. Furthermore, this generator suffers from over-
fitting: it cannot generate any documents other than those already in the corpus, and
thus it is not appropriate for, e.g., testing. We want to generate documents that are
similar to, yet different from, those in the corpus. This will be achieved by the kinds
of generators we study.

4.2 An Optimal Generator

We next consider the problem of finding the optimal probabilistic generator out of
those conforming to a given schema, in the unconstrained case. We introduce Algo-
rithm 1 that takes a schema and a corpus as inputs and computes a probability for
each transition, i.e., produces a probabilistic generator. The next result states that this
generator is optimal. In its statement and in the remaining of the article, we denote by
|S|, the size of the schema S and by |D|, the total size of the corpus D (i.e., the sum
of the size of all distinct elements in D, plus a binary encoding of their multiplicity).

Theorem 2 Given a schema S and a corpus D of documents accepted by S, Algo-
rithm 1 computes an optimal p-generator for S and D in time O(|S| + |D|); thus,
OPT-GEN (without constraints) can be solved in linear time.

Theory Comput Syst

Proof Algorithm 1 takes a schema as input and computes a probability for each
transition. In lines 2–3 the schema is used for type-checking the corpus documents,
and in the process the number of times each transition (q, a) was chosen is recorded
in freq(q, a) (also considering the frequency of each document in the corpus). Then
in lines 4–6 we assign as probability of each transition (q, a) the relative number
of times it was chosen after reaching q . If some state was not reached during the
verification phase, we give equal probabilities to all transitions from it.

By construction, Algorithm 1 outputs a generator which has the same structure as
S. The normalization in line 6 enforces that the sum of probabilities of transitions
with the same origin is always 1.

Lines 1, 4–5, and 6 require a time linear in S. The loop in lines 2–3 consists in
running the schema on each unique d∈D and therefore require a time linear in the
size of D.

It is still to be shown that the output G of Algorithm 1 has maximum quality
among all generators that conform to S. The quality of G is:

qualityG,D =
∏

d∈supp(D)

Pr(d |G)D(d)

=
∏

d∈supp(D)

∏

q in S

∏

(q,a) in S

(
freq(q, a)

total(q)

)D(d)×#〈q,a〉 in
d’s trace by S

=
∏

q in S

∏

(q,a) in S

(
freq(q, a)

∑
(q,b) in S freq(q, b)

)freq(q,a)

Theory Comput Syst

whereas, similarly, every probabilistic generator G′ conforming to S has quality:

quality(G′, D) =
∏

q in S

∏

(q, a) in S

p(q, a)freq(q,a)

for some assignment p(q, a) verifying, for each state q of S,
∑

(q, a) in S
p(q, a) = 1.

Observe that there is no constraint between transitions of different origins (q, a) and
(q ′, b). We can then look independently for each state q which assignment of p(q, a)
maximizes

∏
(q, a) in S

p(q, a)freq(q,a) under the summing constraint. Lemma 1 shows

that this is exactly the assignment made by G.4

To be of practical use, the generator returned by Algorithm 1 needs a guarantee of
almost always termination, which is not a consequence of Theorem 2. However, we
next show that our construction guarantees termination.

Theorem 3 The generator returned by Algorithm 1 has a termination probability
of 1.

Proof For a schema S = (r,A↓), we define the Context Free Grammar (CFG)
SCFG = (Linner ∪ Q,Lleaf ∪ {$}, R, r), where R contains the following production
rules: for every a ∈ Linner, R contains the rule a → q , where q is the initial state
of Aa; for every transition (q, $) in S, R contains the rule q → $; finally, for every
transition (q, a), a �= $, R contains q → a q ′, such that q ′ is the target state of the
transition. SCFG simulates the operation of S.

We can also define how to translate the XML documents in an input corpus D

for S to parse trees of SCFG. This is done simply by replacing every a-labeled inner
node, whose generation trace by S is 〈q0, a1〉, ..., 〈qn−1, an〉, 〈qn, $〉, with a sub-tree
containing a as a root, q0 as its single child and then for 0 ≤ i < n, the children of qi
are the subtree corresponding to ai+1 and qi+1; finally, qn has $ as its single child. Let
us use D′ to denote the bag of trees achieved in this manner from the documents in D.

Now assume that G is the output of Algorithm 1 for S,D. Let us assign prob-
abilities to the rules in R, according to those assigned to the transitions of S by
the algorithm. Note that by the construction of SCFG, the only non-terminals that
may have more than one possible production rule, are those representing non-
accepting states in Q. We will assign each such rule q → a q ′ or q → $ the
probability t-prob(q, a) or t-prob(q, $), respectively, and the probability 1 to every
other rule.

According to the definition of Algorithm 1 and the construction of D′, those
probabilities reflect exactly, for every rule of the form q→a q ′ or q→$, its relative
frequency in D′ among all production rules of q (for the rest of the production rules,
this is trivial). Thus, according to [14], the probabilities we assigned to SCFG are

4When→ tal(q) = 0, the value of this term is 1 for any assignment of p(q, a), and in particular for the
uniform probabilities assigned by Algorithm 1.

Theory Comput Syst

the maximum-likelihood estimator for D′ and SCFG, and therefore the termination
probability of SCFG is 1.

Let t be any parse tree produced by SCFG. Note that the way we mapped docu-
ments to parse trees is reversible, thus there exists a document d corresponding to
t . The probability for G to generate d is the same as the probability for SCFG to pro-
duce t , since choices with the same probabilities are taken in both processes. Thus,
the probability that G generates a finite document, i.e., that the generation process
terminates, is also 1.

5 The Case with Constraints

We now allow constraints, as defined in Section 3.3. We consider the computa-
tion of optimal continuation-test generators (ct-generators) and restart generators
(r-generatorss). We start with ct-generators.

5.1 Continuation-Test Generators

We first study the complexity of continuation tests. To do that, we need to adapt some
known result:

Proposition 2 (adapted from [17, 19]) The satisfiability of an XML schema with
unary key, inclusion, and domain constraints is NP-complete w.r.t. the size of the
schema.

Proof A similar claim is proved in [17], which follows, in turn, from the proof in
[19]. Both models in [17, 19] are more expressive than ours (which means that NP
membership carries over), but the hardness results are given even for a very simple
model, a deterministic restriction of DTDs (which is less expressive than ours). One
last required adaptation follows from the fact that their results are for key and inclu-
sion constraints but not for domain constraints. To account for domain constraints,
we start by reviewing the proof used in [17]. The proof there is by encoding the
schema with constraints as a Presburger formula, and showing that the formula is sat-
isfiable if and only if the schema with constraints is satisfiable. To extend the proof
to also account for domain constraints in our settings, we first observe that a domain
constraint on a restricts the set of valid document skeletons only if the domain is
finite and there is a key constraint on a; in this case the domain constraint is express-
ible as an inequality specifying that the number of occurrences of a is smaller than
the domain size. So, we add the relevant inequalities to the Presburger formula, and
the proof technique of [17] can still be used.

We may now show the following proposition, where we test for the existence of a
continuation for a partial document using a schema satisfiability test.

Proposition 3 Let S = 〈Su, C〉 be a schema with constraints, ξ a partial generation
trace valid for Su, and (q, a) a possible next transition. Solving CONT(S, ξ, a) is
NP-complete w.r.t. |S|. Moreover, we can give a decision algorithm of complexity

Theory Comput Syst

O
(
poly(|ξ |)poly(|S|)) (i.e., polynomial in the size of the input partial document, if the

schema is fixed).

Proof Given S = 〈Su, C〉, we construct a new schema S ′ = 〈S′u, C′〉, as follows.
After ξ ′ = ξ, 〈q ′, a〉, a generator conforming to Su will be in the process of generating
children for some node v in dξ ′ (the partial document obtained after ξ ′), at some
state q (assuming transition (q ′, a) → q). Let us denote by P the set of nodes in
dξ ′ for which children were not generated (i.e., all the leaves of dξ ′ , and among the
inner nodes – in the cases of a BF-LTR order – the right siblings of v, the children
of v, and the children of v’s left siblings). Denote by #ai the number of ai-labeled
nodes in P .

First, we define the schema S′u: let r′, curr be new labels. We also define for each
ai ∈ Linner (resp., ∈ Lleaf) a new inner (resp., leaf) label a′i , with the same value
domain and an equivalent deriving automaton. This set of new labels will be used to
represent nodes that already existed in dξ ′ . We set the root label of S′u to be r′, and Ar′
to be such that L(Ar′) = curr a′0

∗
...a′n

∗, where a0, ..., an are all the labels of leaves in
P . The deriving automaton of curr is the same as that of lbl(v), but its initial state is q .

Second, we want to add slightly different constraints to C′: for every a′i , we
require that the number of a′i -labeled nodes is exactly #ai (note that this constraint
may apply also to inner nodes); if uniq(ai) ∈ C, we add uniq(ai ∪ a′i) to C′; if
ai ⊆ aj is in C, we add (ai ∪ a′i) ⊆ (aj ∪ a′j) to C′; and if ai ⊆ dom(ai) is in C, we
add ai ∪ a′i ⊆ dom(ai) to C′. Again, these constraints are not allowed in our model,
but the more expressive model of [17] allows encoding them.

Now we need to show that S ′ is satisfiable iff CONT(S, ξ, a) = T . The construc-
tion of curr, a′0, ..., a

′
n as the root children and the constraints on the number of

a′i-labeled nodes ensure that every document that satisfies S ′ has the same contin-
uations to the root children as the possible continuations of ξ, 〈q ′, a〉; the changed
constraints capture the fact that ai and a′i are treated as nodes of the same kind with
respect to the constraints. Thus every document valid for S ′ can be translated to a
continuation for (S, ξ, a), and vice versa.

For the complexity,

– Constructing S ′ takes time polynomial in |S|, |ξ |.
– The size of S′u is linear in the size of Su, and C′ is of size O(|C| + |S| log(|ξ |)),

because it has one equivalent for every rule in C, plus the constraints on the
amounts of a′i-labeled leaves (in which numbers are encoded in binary).

– Constructing the Presburger formula, using the results of [17], takes time
polynomial in |S ′|.

– The size of the formula is O (poly (|S| log (|ξ |))), with O(|S|) variables, and
solving it is NP-complete in this size, thus also NP-complete w.r.t. the size of
the schema.

– As explained in [17], if there exists a solution to the formula, there exists a
solution where the value assigned to each variable is bounded, in our case, by
p1(|S||ξ |)p2(|S|). p1, p2 are polynomials determined by the sizes of matrices
in the formula and the values in the matrices. Thus, a brute-force algorithm
for checking whether the formula is satisfiable, that checks all the possible

Theory Comput Syst

assignments to the formula variables up to the bound, has the complexity
O

(
poly(|S||ξ |)poly(|S|)).

– The overall complexity of the brute-force solution is thus O
(
poly(|ξ |)poly(|S|)).

This means that in particular, if the size of the schema is fixed, the brute force
algorithm is polynomial in the size of the partial document.

Finding an Optimal Binary ct-Generator We assume that the schema has a partic-
ular property, namely that it is binary. A schema is binary if for each state of each
automaton in the schema, there are at most two possible transitions. We will discuss
the case of non-binary schemas afterwards.

Recall that FPNP is the class of problems solvable by polynomial-time compu-
tation algorithms that are allowed calls to an NP oracle. We show (the complexity
is with respect to the schema size, the algorithm is polynomial with respect to the
corpus size):

Theorem 4 Given a binary schema with constraints S and a corpus, finding an
optimal ct-generator is in FPNP.

Proof Algorithm 2 computes the optimal ct-generator in time polynomial in the size
of S, while making calls to an oracle cont that performs continuation tests. Generally,
Algorithm 2 is very similar to Algorithm 1, except that the frequency of taking a
transition is only recorded in situations where there exists another optional transition,
which according to the oracle does not lead to a dead end. The time complexity of the
algorithm follows from the complexity of Algorithm 1, and the calls to cont in line 3.

It is still to be shown that the output G of Algorithm 1 has maximum qual-
ity among all the ct-generators that conform to S. This proof is similar to that
of Proposition 1, but this time when we maximize the term quality G′, D=∏

(q,a) in S p(q, a)
freq(q,a), freq(q, a) refers to the number of times the transition

(q, a) was taken when there was a second choice with continuation. In other cases
every ct-generator must have chosen the only possibility with prob. 1.

Generation Time Without constraints, it was trivially the case that a document was
generated in time linear in its size and the size of the schema. However, for ct-
generators the generation time depends on the complexity of the continuation test.
This means that the generation time will be exponential in the size of the schema
(unless there exists a continuation test algorithm with lower complexity, which is
unlikely assuming P�=NP).

Termination Probability Unfortunately, it turns out that the constrained setting of ct-
generators affects the termination guarantee that we had in the unconstrained case
(Theorem 3). We can show that, even in simple cases with non-recursive schemas,
termination of the optimal generator is not almost certain.

Theorem 5 For every ε > 0 there exists a binary, non-recursive schema with con-
straints S and an input corpus D such that the optimal ct-generator G for S,D, has
termination probability � ε.

Theory Comput Syst

Proof Consider the following schema with constraints S. We have Linner = {r}, Ar is
the automaton depicted in Fig. 4, and C = {b ⊆ a, uniq(b)}. The constraints imply,
in particular, that there must be at least as many a-labeled leaves in any valid doc-
ument as b-labeled leaves. Let d be a document such that lbl↓(d) = acb$, and d ′
such that lbl↓(root(d))′ = acacb$. Let D be a corpus that contains N − 1 copies of
d and one of d ′. Consider a ct-generator G optimal for S,D. By the optimality of
Algorithm 2, t-prob(q2, a) in G (when both choices from q2 have a contin-
uation) must be ω = 1

N
. Similarly, t-prob(q1, c) = N+1

2N+1 , and, in gen-
eral, since every transition is encountered during the type-check of the cor-
pus, the probability of every transition in an optimal generator is never chosen
arbitrarily.

Note that during any generation process of the ct-generator, every continuation
test from q2 always succeeds. For instance, after generating n a-labeled leaves and
mb-labeled leaves, it is naturally possible to generate another a, but also another b,
because there exists a continuation with max(n,m) + 1 a-labeled leaves. Denote by
pn the probability of generating a document with exactly n c-labeled leaves. We can
give an upper bound for this probability by computing the probability of generating

Fig. 4 The Ar DFA

Theory Comput Syst

n a’s and b’s, in some order, such that at least half of them are a’s (to satisfy the
constraints).

pn ≤
� n2 �∑

k=0

(
n

k

)

(1 − ω)kωn−k ≤
� n2 �∑

k=0

(
n

k

)

ωn−k

≤ 2nω� n2 � ≤ 2 × (4ω)�
n
2 �

Observe that p1 is the probability of generating exactly one c, i.e., that of generating
a document with root label either acb$ or aca$; while generating these documents,
the continuation tests always succeeds, so that

p1 = N + 1

2N + 1
×

(
1

N
× N

2N + 1
+ N − 1

N
× N

2N + 1

)

= N(N + 1)

(2N + 1)2
.

Now we want to compute an upper bound for p, the termination probability of G,
which is the sum of probabilities for generating a finite document, that has a finite
number of c-labeled leaves:

p =
∞∑

n=0

pn = N

2N + 1
+ N(N + 1)

(2N + 1)2
+

∞∑

n=2

pn

≤ N

2N + 1
+ N(N + 1)

(2N + 1)2
+

∞∑

n=2

2 × (4ω)�
n
2 �

≤ N

2N + 1
+ N(N + 1)

(2N + 1)2 + 2 ×
∞∑

n=1

2(4ω)n

≤ N

2N + 1
+ N(N + 1)

(2N + 1)2 + 4 × 4ω

1 − 4ω
.

These three terms are, respectively, arbitrarily close to 1
2 ,

1
4 , and 0 when N is large

enough. Therefore, for any small η (say, η = 1
8), we can choose N large enough so

that p ≤ 3
4 + η. Note that by separating p0 and p1 from the sum, we correct a minor

mistake in the proof of the same theorem in [1].
Finally, to create a schema for which the termination probability is ≤ ε, we can

chain multiple occurrences of S one after the other, as required.

Note, however, that since the probability of generating the corpus is greater than
zero, the termination probability of the optimal generator is always strictly greater
than zero.

There are numerous ways of dealing with the problem of non-termination. One
practical such way, following a natural assumption in document sampling [7], is to
restrict the size of the generated document. This upper bound on the document size
must be at least that of the largest document in the input corpus (to ensure that the
probability of generating the corpus is non-zero), and can be estimated based on the
corpus. Such a size limit can be encoded as a constraint, by making certain changes
to the schema (obtaining a new schema whose size is linear in the size of original
schema and size limit encoded in binary). Thus, it directly follows that we obtain the

Theory Comput Syst

optimal probabilities for a size-limited ct-generator. A different direction for guaran-
teeing almost always termination is by restricting the expressiveness of the schema.
We leave as an interesting open problem the characterization of what constraints on
the schema will guarantee termination, and the question of translating schemas to
safe ones which are sure to terminate.

We conclude the discussion on ct-generators by a remark on non-binary choices.

Non-binary Choices We have assumed so far in this section that the schema is binary.
We study here two approaches for handling the non-binary case: (1) turning the
choices into binary choices, and (2) keeping probabilities for all combinations of
valid choices. We present these by example.

Consider the following constrained schema. The deriving automaton A3 of the
root label r ∈ Linner is shown in Fig. 5 with a, b ∈ Lleaf. (A3 accepts (a | b)∗$.)
Observe it has a ternary choice. We also assume that b has a key constraint and
domain cardinality 1.

Consider option (1) above. We show two ways of turning the ternary choice into a
binary one (there is a third possibility but it is not considered here).

First, one decides whether a is produced or not and then (if an a is not produced)
whether b is produced or whether we are done with the children of r. We use a prob-
ability assignment t-prob: we choose to produce a with probability t-prob(q0, a) and
to produce b (given that we have not produced a) with probability t-prob(q0, b). As
before, we use continuation tests to avoid reaching dead ends during generation, and
in the probability learning, as in Algorithm 2. Alternatively, one can choose whether
we are done with r first, and, if we are not done, whether we produce a or b. This
yields t-prob′. Take the singleton corpus < r >< a/ >< b/ >< /r >. The transition
probabilities are:

⎧
⎪⎨

⎪⎩

t − prob(q0, a) = 1

3
t − prob′(q0, $) = 1

3

t − prob(q0, b) = 1 t − prob′(q0, a) = 1

2

Then the probability of generating the corpus is 1
3 × 2

3 × 1 × 2
3 = 4

27 using the first
alternative, and 2

3 × 1
2 × 2

3 × 1
2 × 1

3 = 1
27 using the second one: the quality of the

generator depends of the way the choice has been made binary.
Now consider (2). We keep the ternary choices but assign a probability to each

possible subset of the transitions of size more than 1. For the example, this yields:

a, b, $ are all available only a, $ are available

t − prob(q0, a) = 1

2
t − prob′(q0, a) = 0

t − prob(q0, b) = 1

2
t − prob(q0, $) = 0 t − prob′(q0, $) = 1

which gives a probability of generating the corpus of 1
2 × 1

2 ×1 = 1
4 . In both cases, we

can obtain an optimal generator for this particular class of generators. For (1), this

Theory Comput Syst

Fig. 5 A3, a DFA with 3
choices

suffers from the inelegance of the arbitrary ordering of the transitions that is chosen
and affects the outcome. For (2), this may result in a large number of parameters.

5.2 Restart Generators

We next consider r-generators. First, we show that given a generated document skele-
ton, we can check its validity efficiently (and if invalid, restart). Then, however, we
show that the number of restarts may be unboundedly large; and this can hold par-
ticulary for r-generatorss that are optimal (i.e., best fit to the corpus). We start by
defining the problem of checking validity for document skeletons.

Definition 7 Given as input (1) a schema with constraints S = Su, C, (2) a skeleton
d valid for Su, the VALID(S, d) problem is to decide whether d is valid w.r.t. S.

Proposition 4 VALID(S, d) can be decided in PTIME.

Proof We consider again the schema satisfiability test from [17], which is checked
via the satisfiability of a formula φ ∧ ψ . The variables x1, ..., xn in the formula rep-
resent the numbers of occurrences of nodes labeled with a1, ..., an. In this case, if we
want to test the validity of a skeleton d = (V, E), we take the assignment for eachxi
to be #di =| {v ∈ V | lbl(v) = ai}. Since d is valid for Su, this assignment satisfies
φ, which is the part of the formula expressing the validity of the document for the
schema Su.

It is left to find a satisfying assignment for ψ , that expresses validity with respect
to the constraints in C. For that we must also assign values to the variables y1, ..., yn,
which represent the number of unique values for each label. If we find such values we
can be sure that there exists a valid assignment for the leaf values, for the generated
document skeleton. Let us construct a directed graph G = (V, E), such that there
is a node v(yi) for every variable, node v(0) and v(#di) for 1 ≤ i ≤ n, and add the
edges (v(0), v(yi)), (v(yi), v(#di)) for each i. In G a directed edge (a, b) expresses
that a ≤ b. ψ connects, using ∧, sub-formulas of the 4 following types:

(1) yi ≤ xi(2) yi = 0 ↔ xi = 0(3) yi = xi(4) yi ≤ yj

Theory Comput Syst

In addition, for each domain constraint ai ∈ dom(ai) we add yi ≤ |dom(ai)| (recall
that we only need to verify validity w.r.t. constraints of finite domains).

For each sub-formula, We will replace each xi with its assigned value, and update
G in the process, as follows. Sub-formulas of the first kind can be ignored, as they
are already expressed in G; for sub-formulas of the second kind, if indeed xi = 0, we
will add the edge (v(yi), v(0)); otherwise we will add (v(1), v(yi)), creating a new
node v(1) if necessary; for yi = xi we will add (v(#di), v(yi)); for yi ≤ yj we will
add (v(yi), v(yj)); and finally for yi ≤ k we will add (v(yi), v(k)), creating v(k) if
necessary. Then we will take G∗ = (V, E∗), the transitive closure of G.

We claim that ψ is satisfiable iff in G∗ there exists no edge (v(k), v(k′)) s.t. k′ < k.
For the one direction, assume that there exists no such (v(k), v(k′)), and let us

assign to each yi the minimal k s.t. (v(yi), v(k)) ∈ E∗ (i.e., the lowest upper bound
for yi). By construction there must exist such a k. It is straightforward to verify
that every sub-formula of ψ is satisfied. E.g., consider sub-formula of the form
yi = xi . By construction, (v(yi), v(#di)) and (v(#di), v(yi)) are in E,E∗. Assume
by contradiction that yi is assigned k < #di ; then (v(yi), v(k)) ∈ E∗ and thus also
(v(#di), v(k)), which yields a contradiction. Assigning yi a value k > #di contradicts
the choice of minimal upper bounds as values.

Now, assume that there exists such (v(k), v(k′)). By the definition of transitive
closure there is a path from v(k) to v(k′) in E, representing a sequence of inequalities
k ≤ z1, z1 ≤ z2, ..., zt ≤ k′, which cannot all be satisfied together. Thus ψ is not
satisfiable.

Finally, generating G and G∗, and checking for an edge (v(k), v(k′)) s.t. k′ < k

can all be performed in time polynomial w.r.t the size of the schema and document
skeleton.

Quality of an r-Generator vs. restart overhead We next examine how many times
we will restart (i.e., what is the expected number of generated invalid documents). In
particular, we show that there is a tradeoff between the optimality of an r-generators,
and its restart overhead.

Example 6 Consider a simple schema Stradeoff, which consists of a root label r, whose
automaton Atradeoff is depicted in Fig. 6. The regular language of this automaton is a∗.
Let Lleaf = {a} and let the set of constraints C = {uniq(a), a ∈ {0} } (a can have only
one value, 0).5 Consider a document corpus which consists only of the document d ,
whose root has a single child a with value 0.

The only parameter that can be chosen in an r-generator is the probability α to
choose the transition from q0 to itself. In a single invocation, the probability of gen-
erating d is α · (1 − α), the probability of generating a document with only a root is
1 − α, and the probability of generating an invalid document (and restarting) is α2.

Now, maximizing the quality of the generator means maximizing the probability
for generating d . The probability of generating d is the probability of generating it in

5We could also construct more complicated examples, where the value domains are infinite.

Theory Comput Syst

Fig. 6 The DFA Atradeoff

the first invocation, in the second one, etc., that is (assuming α < 1, if α = 1 then
the probability is 0):

∑+∞
k=0 α(1 − α)(α2)k = α(1 − α) 1

1−α2 = α
1+α

This function is monotonically increasing for α ∈ [0; 1). Let us choose α to be
1 − ε, for some arbitrarily small ε > 0. The expected number of restarts for this

generator can be computed to be 1−(1−α2)

1−α2 = (1−ε)2

1−(1−ε)2 , which shows that the expected
number of restarts tends towards +∞ as ε → 0 (i.e., as the generator gets closer to
optimal).

Remark 3 A conclusion from the example is that maximizing the corpus likelihood
may not be the best quality measure for r-generators, and finding better measures for
such generators will be considered in future research.

6 Data Values

So far, we have only considered generating document skeletons. To complete the
picture, we finally discuss the generation of leaf values, to be injected into such
skeletons. While the ideas provided here shed light on value generation, we believe
that this is not the final word on the subject, and this direction deserves to be further
investigated. We start by considering the generation of values given some probabilis-
tic distribution. Then, we consider additional information that may help us improve
the quality of the value generator.

6.1 Generating Values from Distributions

We assume that for each leaf label a ∈ Lleaf we are given some probabilistic distri-
bution valDista on values, e.g., uniform distribution on a finite domain, Zipfian, etc.
We also assume that the distribution is discrete. Distributions could be, e.g., learned
in practice from the corpus [13]; such a learning process is out of the scope of the
present paper.

In the absence of constraints, value generation is rather simple: given a document
skeleton, for each a-labeled leaf, randomly choose a value according to valDista.
The difficulty comes from constraints, that we now consider.

Construction For the domain constraints, we can simply assume that the distribution
gives non-zero (zero) probability to every value in (out of) the domain. (Otherwise,

Theory Comput Syst

as mentioned in Section 2.3, the “actual” domain of each a must be computed and
this domain must also be considered in the continuation test.)

Then what remains is to verify that the value assignment satisfies the key and
inclusion constraints. To that end, we propose the following algorithm. For every
ai , let yi be a variable representing the number of unique values for ai-labeled
leaves.

1. Create a graph representing the inclusion constraints on leaf labels; split it to
strong connectivity components (SCCs) and find a topological order σ on those
SCCs.

2. Construct the transitive closure graph G∗ representing the constraints sub-
formulas as in the proof of Proposition 4.

3. Start with a label ai from the “smallest” (i.e., only included and not including)
SCC according to σ .

4. Randomly choose an ai-labeled leaf and randomly choose a value for it accord-
ing to valDistai . Then assign this value to some (randomly chosen) aj -labeled
leaf, for every aj that (transitively) includes ai , if an aj -labeled leaf with this
value does not exist yet.

5. Update the lower and upper bounds of yj , for every aj for which a value was
generated in the previous step.

6. Treat the new lower and upper bounds as new sub-formulas and update G∗
accordingly; use G∗ to perform the PTIME validity test from the proof of
Proposition 4, on the skeleton with partial value assignment.

7. If the partial assignment is not valid, “rollback” all the added occurrences of the
value, and return to step 4.

8. Repeat for all the ai-labeled leaves, then do the same for every other member of
ai’s SCC, then move on the next SCC in σ and so on, until all leaves have values.

One can show that the algorithm is correct in the sense that it generates a valid
document with respect to the constraints, and that termination of the algorithm is
guaranteed.

6.2 Old vs. New Values

We note that additional information about the correlation between values can be
helpful for the generation. In particular, we consider information on the likelihood
of values in specific leaves to repeat old values that were already generated. This
information could for instance be learned during the corpus type-check. We suggest
here to encode this information, during the generation of the document skeleton, as
additional annotations old or new for each leaf. This information indicates whether
the value for this leaf should be drawn out of the values already chosen or whether a
new value should be picked. Then the value generation phase follows the technique
of Section 6.1, while also respecting these annotations when choosing a value.

Example 7 The new kind of skeletons with old and new annotations will be referred
to as annotated document skeletons, exemplified next. We next give an example of an
annotated document skeleton, based on the schema S0 from Example 5. We use the

Theory Comput Syst

XML attribute ann = “old/new” to denote the annotation in this example. Consider
the following (full) XML document.

The annotated skeleton of the document above is:

Theory Comput Syst

Recall that there is a key constraint on employee names, and thus all the names
have new values (and annotations accordingly). Some of the phone lines, however,
are shared by two employees or more, and accordingly some of the Tel leaves are
annotated with old.

We denote by Dann the bag of annotated skeletons of all documents in Dfull.
We next present and compare two alternative ways of generating annotated skele-

tons: an offline generator, that adds annotations to skeletons after they have been
generated; and an online generator, that generates the skeleton along with annota-
tions. To simplify definitions, we assume in the sequel that both generators are based
on an optimal binary ct-generator (we will explain how). In both models, we asso-
ciate each transition (q, a) in the schema (a ∈ Lleaf), to a probabilistic word generator
A(q,a), that produces either an old or a new annotation. We denote the probability of
A(q,a) to generate new by t-probnew(q, a). We next outline the two generators, show
we can find optimal probabilities for each, and that, interestingly, each generator
gives better quality for different inputs.

Offline Generator This kind of generator gets as input a document skeleton (which
we assumed is generated by an optimal ct-generator), and annotates its leaves as
follows. The generator traverses the leaves of the input skeleton (in a BF-LTR order),
and for each leaf performs a validity test for the two possible annotations.6 Assume
this leaf was generated by the transition (q, a) of the ct-generator. If both options
are valid, the offline generator uses A(q,a) to generate an annotation for the leaf;
otherwise it annotates the leaf with the only valid option.

Algorithm 3 details the learning of probabilities for an offline generator. Note that
it makes calls to IsValid, which tests for the validity of the partially annotated
document represented by the document skeleton and the partial annotation list. We
prove in the sequel that the algorithm learns optimal probabilities.

Online Generator In this kind of generator, we “embed” each word generator A(q,a)

into its corresponding transition (q, a) in the ct-generator. This means that, during
generation, after choosing some transition (q, a) (where a ∈ Lleaf) we also invoke
A(q,a) for generating an annotation to this leaf. Continuation tests are performed
both before choosing (q, a) and before choosing the annotation in A(q,a). The key
point here is that the annotations of the partial document can be encoded as con-
straints, and then the continuation test detailed in the proof of Proposition 3 may
be used.

The quality of offline and online generators w.r.t. a corpus Dann can be defined, in
the same spirit as the optimality of skeleton generators, as the multiplication of the
probabilities to generate the annotated skeletons in Dann.

We next define the quality of an offline generator, then show the optimality of our
construction.

6Note that the choice of the number of new and old values determines the number of unique values for
each label, thus the validity test may be done in the same way as the algorithm in the previous section.

Theory Comput Syst

Definition 8 Given an offline generator G and for every annotated document skele-
ton d , let Pr(d |G, dskel) be the probability for G to generate the correct annotations
of d given its skeleton dskel as an input. Let Dann be an annotated document skeleton
corpus. The quality of G with respect to Dann, is then

quality(G,Dann) =
∏

d∈supp(Dann)

P r(d|G, dskel)
Dann(d)

Theorem 6 For a given schema with constraints S and an annotated skeletons cor-
pus Dann, we can compute the optimal offline generator in PTIME in | S | and
| Dann |, and the optimal online generator in FPNP w.r.t. | S | and PTIME w.r.t.
| Dann |.

Proof Let us start with finding an optimal offline algorithm. Let G′ be an offline
generator for some schema with constraints S. The quality of G′ w.r.t. Dann can be
computed as a function of the probabilities assigned to each transition annotation:
in cases where the two options are possible (according to the validity test), for each
new-annotated leaf we multiply by the probability of annotating with new p, and for
each old-annotated leaf we multiply by 1 minus that probability, to get

quality(G,D) = ∏

d∈supp(Dann)

Pr(d |G, dskel)
Dann(d)

= ∏

(q,a)
in S, a ∈ �lLleaf

(
p(q, a)freqnew(q,a) ·(1 − p(q, a))freqold(q,a)

)

Theory Comput Syst

Since each variable p(q, a) is independent and following Lemma 1, this maximizes
when for every (q, a), p(q, a) = t-probnew(q, a). These are exactly the probabilities
assigned by Algorithm 3.

To verify that Algorithm 3 is in PTIME, note that the initialization, traversal and
finalization steps are linear in the size of the corpus and the schema, and that validity
test is in PTIME.

Now, for the optimal online algorithm. First, let us sketch how to encode the anno-
tations of the partial document, in order to use the same continuation test for it. For
each leaf label a, let y be a variable denoting the number of unique values for a-
labeled leaves, x a variable denoting the number of a-labeled leaves, and #old, #new be
the numbers of old-annotated and new-annotated a-labeled leaves respectively. Then
#new is a lower bound for y, and x − #old is an upper bound. These bounds can be
encoded as constraints in the model of [17], which we use for performing the contin-
uation test. This is without increasing the complexity beyond the usual complexity of
the continuation test, presented in Proposition 3.

Second, let us sketch the probability learning phase for this type of generator.
The annotated documents in the corpus are traversed; as in a ct-generator, for every
transition (q, a) taken during the traversal, we check (using the continuation test
adjusted for annotated partial documents) whether there exists another valid choice;
as in a ct-generator, we only take this choice into account for probability learn-
ing if there was indeed another valid option. Then, if a ∈ Lleaf, we use A(q,a) as
an acceptor for the annotation of the leaf. We check, using the continuation test,
whether the other annotation was also possible for this leaf. If so, we take this choice
into account in the computation of t-probnew(q, a) (which is, as usual, the relative
frequency).

Using the same technique as in the optimality proof for offline generator above,
we can show that this algorithm optimizes all the parameters of the online generator,
thus yielding an optimal online generator. The complexity is the same complexity as
in the learning phase of a ct-generator, i.e., FPNP in the size of the schema, since the
dominant complexity factor is again the continuation test. Traversal on the corpus
and the continuation tests are only polynomial w.r.t. the corpus size.

Comparing Offline and Online Generators We have presented two possible models
for the generation of data values, and have shown algorithms for obtaining optimal
generators. This raises the question of which generator is “superior”. The following
proposition states that the offline and online generators are incomparable in terms of
their quality.

Proposition 5 There exist schemas with constraints S, S ′ and annotated skeleton
corpora Dann, D

′
ann, such that the quality of the optimal offline generator w.r.t.

S,Dann (resp. S ′, D′
ann) is lower (resp. higher) than the quality of the optimal online

generator w.r.t. the same input.

Proof We next provide two examples, in the first the optimal online algorithm per-
forms better than the optimal offline algorithm, and in the second the optimal offline
algorithm performs better.

Theory Comput Syst

Consider the schema S, where as usual Linner = {r}, r is the root label, and Ar =
Aon−off is depicted in Fig. 7. The set of constraints C will be {a ⊆ b} Our input
corpus D will consist this time of the document

In the next table we describe the probabilities obtained from applying both the
online and the offline learning methods on Dann, the corpus of annotated skeletons
for D. Each cell contains the probabilities for some transition (q, a) in the form
t-prob(q, a)

(
t-probnew(q, a)

)
. In the offline column, t-prob(q, a) refers to the proba-

bility in an optimal ct-generator. p? denotes a probability that was set arbitrarily due
to the lack of statistics from the corpus.

Online Offline

(q0, a) 1

(
1

2
?

)

1

(
1

2
?

)

(q1, a)
2

3
(1)

2

3
(1)

(q1, b)
1

3

(
1

2
?

)
1

3

(
1

2
?

)

(q2, b) 0

(
1

2
?

)
2

3
(1)

(q2, $) 1
1

3

The quality in the online case is 1 ·
(

2
3 · 1

)2 · 1
3 · 1 = 4

27 . In order to make a

fair comparison, we compare this online quality to the quality of the optimal offline
algorithm times the quality of a ct-generator optimal for D. This gives 1 (as there are

no choices for the offline generator) multiplied by 1 · 2
3

2 · 1
3 · 2

3
2 · 1

3 =
(

4
27

)2
, which

is lower.

Fig. 7 The Aon-off DFA

Theory Comput Syst

For the second counter-example, let S ′ be the same as S, except for the set of
constraints, which will be {b ⊆ a, uniq(b)}. The input corpus D′ will be

The probabilities learned for the optimal online and offline algorithms in this case
are:

Online Offline

(q0, a) 1

(
1

2
?

)

1

(
1

2
?

)

(q1, a)
3

4

(
1

3

)
3

4
(0)

(q1, b)
1

4

(
1

2
?

)
1

4

(
1

2
?

)

(q2, b) 1

(
1

2
?

)
1

2

(
1

2
?

)

(q2, $) 0
1

2

Then the quality of the online algorithm is 1·
(

3
4 · 2

3

)2 · 3
4 · 1

3 · 1
4 ·1·1·1 = 1

64 = 16
1024

and the quality of the offline algorithm, multiplied by that of the optimal ct-generator

is 1 ·
(

3
4

)3 · 1
3 ·

(
1
2

)2 = 27
1024 , which is higher.

7 Extension to a Typed Model

Our schema model used so far in the paper was based on DTDs, i.e., the derivation
of document nodes and values was based only on the node labels. However, typed
models, where each node is assigned an underlying type during the verification pro-
cess, are very useful in practice (e.g., W3C XML Schema, aka XSD, or Relax NG).
These models allow decoupling the label of a node from its function or meaning in
the document, and thus extend the domain of possible document languages.

We next extend our previous model with types. As determinism is an essential
property of our previous model, our typed model is also deterministic. This means

Theory Comput Syst

that as before, every document will only have a single possible generation trace for a
given schema. But moreover, the assignment of types to nodes during the verification
process is also deterministic. In this our model differs from other models in litera-
ture such as Specialized DTDs [31], where the uniqueness of type assignment is not
required.

Model We formalize the definition of a typed schema below. L,Q are used as before,
and we further assume a finite domain T of node types.

Definition 9 (Typed schema) A typed schema S is a tuple (r, tr,A↓), where r is the
root label as in a schema, tr is the root type, and A↓ is a partial function mapping a
type t ∈ T , instead of a simple DFA, to a Mealy Machine At s.t., as in a schema-
deriving automaton, its states are taken from Q and its transitions inputs are labels
from L, but in addition, each transition is annotated with an output from T . For every
document node v, type(v) returns the type associated with v by S, i.e., the output of
the transition that was triggered by the label of v.

A document d is accepted by S if the label of root(d) is r, and given that we
associate root(d) with the type tr, for every inner node v, once it is associated a type
t ∈ T , the machine At accepts lbl↓(v).

We assume the same restrictions on the automata structures as we before. Note
that the verification process is indeed deterministic, as each node triggers exactly one
(deterministic) transition and thus may be associated with exactly one type. Also note
that this model allows for different labels to be associated with the same type, and
for different types to be associated with the same label (in different locations). The
output on $-annotated transitions is insignificant, since it is not associated with any
node, and thus we can fix some arbitrary output for such transitions, say, tr.

Now, if we look at a typed schema as a non-deterministic generator, then each
non-deterministic transition choice is equivalent to choosing both the label and a
compatible type of the next child (or to stop generating children, as before). Again,
each generated document d has only one possible generation trace (using the same
definition), since by the type of the root and the labels of its children we can deter-
mine the type of each child; then the same for their children, and so on. This model
extends in a straightforward manner also to a typed nd-generator, typed p-generators,
typed ct-generator, etc.

Example 8 The ADeptType (depicted in Fig. 8) is similar to ADept, but has an output
on each edge (marked by gray font). This allows, for instance, using the same type
EmpGroupType for the nodes with different labels Seniors and Juniors.

Fig. 8 The ADeptType Mealy Machine

Theory Comput Syst

Results We next show that, although the typed schema model is strictly more
expressive, all our results for the DTD-based model still hold.

Proposition 6 Typed schema is strictly more expressive than un-typed (normal)
schema.

Proof To prove that typed schema is more expressible, we can define for any
un-typed schema S an equivalent typed schema S ′ (accepting exactly the same doc-
uments). We can define S ′ such that the type on every transition is the same as the
label, and the automatons and the root label are the same as in S.

For strictly more expressibility, the following example shows a typed schema S

such that no un-typed schema is equivalent to S. Let S = (r, tr,A↓). L = Linner =
{r}. The language of the root type is L(Atr) = {r$}. The type on the transition
labeled r in this automaton is t2, and L(At2) = {$}. This means that S accepts
exactly one document, < r >< r >< /r >< /r >. Using an un-typed schema, if a
node labeled r can have a child node labeled r, the schema has to be recursive, and thus
accept an unbounded number of documents. Hence, no un-typed schema is equivalent
to S.

The main technique we use for transferring the results to the typed model, is by
translating the typed schema to a particular un-typed schema, referred to as “dual”.
The node labels of the dual schema are labels or pairs of labels and types from the
original schema.

Definition 10 (Dual un-typed schema) Given a typed schema S = (r, tr,A↓) we
define dual(S) as the schema (〈r, tr〉, dual(A↓)), where dual(A↓) is defined as fol-
lows. If A↓ maps a type t to an automaton At , for every label a ∈ Linner, dual(A)↓
maps 〈a, t〉 to a DFA dual(At). The start states of At and dual(At) are the same. If
a ∈ Linner, for every transition δ(q, a) = q ′ in At with output t ′, there is a transition
δ(q, 〈a, t ′〉) = q ′ in dual(At). Otherwise, for a ∈ Lleaf, every transition δ(q, a) = q ′
in At is also in dual(At) (without the output). Every transition δ(q, $) = q ′ in At is
also in dual(At).

For every document skeleton d accepted by S there is exactly one dual document
skeleton dual(d) accepted by dual(S). dual(d) is identical to d , except that the labels
of inner nodes also include their types. The fact that dual(d) is unique follows from
the type determinism of S.

The following lemma holds.

Lemma 2 dual(S) can be constructed in time linear in | S |, and hence the size of
the result is also linear in | S |.

Proof Computing the dual transition for each original transition can be done in
O(1). It is left only to associate the dual inner labels with the relevant automaton.
In general, the size of (Linner × T) ∪ Lleaf from which the dual labels are taken
is quadratic in S. However, we only need to consider label-type combinations that

Theory Comput Syst

actually appear in the transition function of S, which can be done in time linear
in S. These combinations can be associated with the relevant automaton in time
O(1).

Using the lemma above, we can now prove the main result of this section.

Proposition 7 The equivalents of Theorems 1, 2, 3, 4 and 5, and Propositions 1, 2,
3 and 4 for typed schemas hold.

Proof Let us now give a proof for each of the equivalents of the theorems and
propositions mentioned above.

Proposition 1 can be proved as in the original proof (generation trace definition is
not affected by the use of types).

Theorem 1 holds for every generator that has a fixed probability for generating
each document skeleton. Thus, it holds also for typed p-generatorss.

The proof of Theorem 2 is based on the relative transition usage during the corpus
verification process. Whether these transitions have outputs or not, does not affect
the correctness of the proof.

To prove Theorem 3 for the typed case, we can construct, for the optimal typed
p-generator G a dual un-typed p-generators dual(G) (conforming to dual(S)), where
each dual transition in is dual(G) assigned the same probability as the original tran-
sition in G. Note that dual(G) is the same as the output of Algorithm 1 on dual(S)
and the corpus of dual documents. Thus, by Theorem 3, dual(G) has termination
probability 1. Since for every final dual document generated by dual(G) there is a
final document generated by G with the same probability, it follows that G also has
termination probability 1.

To prove Propositions 2 and 3 we can construct the dual schema in linear time.
Here, the fact that the dual documents have the same leaves as the original ones
allows us to have the same constraints in the dual schema as in the original one. Thus,
the dual schema is satisfiable iff the original schema is. Deciding on the dual schema
satisfiability, according to Proposition 2, is NP-complete. Similarly, if we take the
dual generation trace (that includes types), there is a continuation for the dual schema,
dual trace and dual transition iff there is a continuation for the original schema, trace
and transition.

The proof for Theorem 4 for the typed case only requires replacing the oracle used
in the proof by one that works for typed schemas. Its complexity follows from the
previous two propositions.

Theorem 5 works also for the typed case, if we take a schema where the types and
labels are the same.

Finally, Proposition 4 can be proved by first computing the dual schema and dual
document skeleton, in time linear in the original schema and document sizes. Then
the dual document skeleton is valid w.r.t. the dual schema iff the original document
is valid w.r.t. the original schema.

The results of Section 6 also transfer to the typed case. The proofs can be used in
a straightforward manner, following Proposition 7.

Theory Comput Syst

8 Related Work

Various models for probabilistic XML documents exist in the literature (e.g. [5,
16]); see [6] for a review of such models and a comparison of their expressiveness.
The model considered here is not of a probabilistic document but rather of a
probabilistic schema; in particular our model allows to define infinitely many doc-
uments, in contrast to the finitely many documents (worlds) in the models above.
Probabilistic schemas were also considered in [9] that suggested the use of recur-
sive Markov chains [18] for modeling and querying probabilistic XML. The model
of [9] can be seen as a straightforward extension of p-generatorss where global states
and labels are uncoupled. There are also various models for generation of XML
documents (e.g., for testing): in [15] the author suggests a language for specifying
(manually) desired constraints on generated documents and then shows how to obtain
a (non-probabilistic) generator conforming to these constraints (when possible); in
[8] the suggested language allows to (again manually) define a probabilistic distribu-
tion on local parts of the documents; and the recent [7] suggests a way for uniform
sampling of documents conforming to a schema. To our knowledge, no prior work
deals with learning a maximum likelihood estimator of a given example XML corpus,
in contrast to the present work.

As noted in Remark 2, the different models presented in this paper, including
probabilistic, and constrained generators, can also be captured by Active XML [4]
and tree rewriting. For instance, in AXML a random function can be used to
introduce probabilistic choices in the tree rewriting; however, much more com-
plicated functions, including ones performing queries on the tree structure, may
also be used. To enforce a BF-LTR order of rewriting, guard functions may be
used; the guards may also be used enforce other, more complicated orders. This
suggests a variety of interesting research questions that can be studied in future
work.

The starting point of this work assumes that we are given a schema; there are many
works on schema inference from a corpus of documents (e.g. [10, 12, 21, 23, 28, 30],
and the work on key approximation in [22]). These works complement our work in
two senses: first, we can use the inferred schemas as inputs; second, our results can be
used to measure the quality of inferred schemas, based on the quality of the optimal
generator conforming to them. There are other measurements for schema quality (see
suggestions in recent work of [7, 27]), and combining them with our measurement is
an interesting research direction.

Our work also has strong connections with the works of [17, 19]. They consider
satisfiability tests for XML schemas with constraints, and prove that these tests are
NP-complete; we used an adaptation of this result to show NP-completeness of the
continuation tests. Note that in contrast to our work, the works of [17, 19] focus on
satisfiability, and thus the models used there are not probabilistic.

On the technical level, our work is also related to other (non-XML) probabilistic
models. In particular, Probabilistic Context-Free Grammars (PCFGs) [14, 25] are a
common model for the probabilistic generation of strings, used heavily in natural
language processing, bioinformatics, and more. We have noted that our algorithm
for the non-constrained case is inspired by [14]; we are not aware of an equivalent

Theory Comput Syst

result in the presence of constraints on strings. Applying our results to this area is an
intriguing future research task.

9 Conclusions

We have studied the problem of finding an optimal probabilistic model for a given
schema and corpus of XML documents. We have shown how to view the model as a
probabilistic generator. We have provided elegant solutions for two cases: with and
without constraints. For the former, we have studied two kinds of generators, ct-
generators and r-generatorss, provided algorithms for finding optimal generators, and
analyzed the advantages and disadvantages of both kinds. Finally, we have considered
the generation of data values, to be fed into the generated XML structure.

We believe that there are still many open problems to be investigated in future
research. For example, recall that a ct-generator always generates valid documents
(but generation is costly), while an r-generators avoids the cost of continuation test
but may restart often. This suggests combining both approaches to obtain better per-
forming generators, that generate faster many valid documents. More possibilities for
future research lie in, on the one hand, extending our model to consider more expres-
sive constraints (such as in [15, 17]), as well as parallelism and different orders of
generation, etc. On the other hand, it would be valuable to find more restricted cases
that allow efficient document generation. Some of these directions may be studied
by further extending our model to full Active XML. For generation of data values
we intend to explore and compare other possible methods, using various kinds of
information about the values distribution.

Last but not least, it would be interesting to experiment with the generators that
were formally introduced here. For instance, use our model to compute the quality of
schemas resulting from different inference techniques, and compare them; or test our
model as a means of explaining and testing on online XML corpora (such as, e.g., the
XML version of the DBLP bibliography).

Acknowledgments We would like to thank Yann Ollivier for insightful comments, and Siqi Liu for
feedback on the proof of Theorem 5. This work has been supported in part by the Advanced European
Research Council grants Webdam, agreement 226513 (http://webdam.inria.fr/), and MoDaS, agreement
291071 (http://www.math.tau.ac.il/∼milo/projects/modas/), by the Israel Ministry of Science, and by the
US–Israel Binational Science Foundation.

References

1. Abiteboul, S., Amsterdamer, Y., Deutch, D., Milo, T., Senellart, P.: Finding optimal probabilistic
generators for XML collections: ICDT (2012)

2. Abiteboul, S., Amsterdamer, Y., Milo, T., Senellart, P.: Auto-completion learning for XML. In:
SIGMOD Conference, Demonstration, pp. 669–672 (2012)

3. Abiteboul, S., Benjelloun, O., Milo, T.: The active XML project: an overview. VLDB J. 17(5) (2008)
4. Abiteboul, S., Bourhis, P., Galland, A., Marinoiu, B.: The AXML artifact model. In: TIME (2009)
5. Abiteboul, S., Chan, T.-H.H., Kharlamov, E., Nutt, W., Senellart, P.: Aggregate queries for discrete

and continuous probabilistic XML. In: ICDT (2010)

http://webdam.inria.fr/
http://www.math.tau.ac.il/~milo/projects/modas/

Theory Comput Syst

6. Abiteboul, S., Kimelfeld, B., Sagiv, Y., Senellart, P.: On the expressiveness of probabilistic XML
models. VLDB J. 18(5), 1041–1064 (2009)

7. Antonopoulos, T., Geerts, F., Martens, W., Neven, F.: Generating, sampling and counting subclasses
of regular tree languages. In: ICDT (2011)

8. Barbosa, D., Mendelzon, A.O., Keenleyside, J., ToXgene, K.A.Lyons.: An extensible template-based
data generator for XML. In: WebDB (2002)

9. Benedikt, M., Kharlamov, E., Olteanu, D., Senellart, P.: Probabilistic XML via Markov chains.
PVLDB 3(1) (2010)

10. Bex, G.J., Gelade, W., Neven, F., Vansummeren, S.: Learning deterministic regular expressions for
the inference of schemas from XML data. In: WWW (2008)

11. Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of concise DTDs from XML data. In: VLDB
(2006)

12. Bex, G.J., Neven, F., Vansummeren, S.: Inferring XML schema definitions from XML data. In: VLDB
(2007)

13. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
14. Chi, Z., Geman, S.: Estimation of probabilistic context-free grammars. Comput. Linguist. 24(2), 298–

305 (1998)
15. Cohen, S.: Generating XML structure using examples and constraints. PVLDB 1(1), 490–501 (2008)
16. Cohen, S., Kimelfeld, B., Sagiv, Y.: Incorporating constraints in probabilistic XML. In: PODS (2008)
17. David, C., Libkin, L., Tan, T.: Efficient reasoning about data trees via integer linear programming. In:

ICDT (2011)
18. Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and monotone systems

of nonlinear equations. JACM 56(1) (2009)
19. Fan, W., Libkin, L.: On XML integrity constraints in the presence of DTDs. JACM 49(3), 368–406

(2002)
20. Garofalakis, M., Gionis, A., Rastogi, R., Seshadri, S., Shim, K.: XTRACT: a system for extracting

document type descriptors from XML documents. In: SIGMOD (2000)
21. Gelade, W., Idziaszek, T., Martens, W., Neven, F.: Simplifying XML Schema: Single-type approxi-

mations of regular tree languages. In: PODS (2010)
22. Grahne, G., Zhu, J.: Discovering approximate keys in XML data. In: CIKM (2002)
23. Kosala, R., Blockeel, H., Bruynooghe, M., Van den Bussche, J.: Information extraction from struc-

tured documents using k-testable tree automaton inference. Data Knowl. Eng. 58(2), 129–158
(2006)

24. Lange, K.: Optimization. Springer-Verlag (2004)
25. Lary, K., Young, S.J.: The estimation of stochastic context-free grammars using the inside-outside

algorithm. Comput. Speech Lang. 4, 35–56 (1990)
26. Martens, W., Neven, F., Schwentick, T., Bex, G.J.: Expressiveness and complexity of XML Schema.

ACM Trans. Database Syst. 31(3), 770–813 (2006)
27. Martens, W., Niehren, J.: On the minimization of XML schemas and tree automata for unranked trees.

J. Comput. Syst. Sci. 73(4), 550–583 (2007)
28. Milo, T., Suciu, D.: Type inference for queries on semistructured data. In: PODS (1999)
29. Murata, M., Lee, D., Mani, M., Kawaguchi, K.: Taxonomy of XML schema languages using formal

language theory. ACM Trans. Internet Technol. 5(4), 660–704 (2005)
30. Nestorov, S., Abiteboul, S., Motwani, R.: Extracting schema from semistructured data. In: SIGMOD

(1998)
31. Papakonstantinou, Y., Vianu, V.: DTD inference for views of XML data. In: PODS (2000)

	Optimal Probabilistic Generation of XML Documents
	Abstract
	Introduction
	Case Without Constraints
	Case with Constraints
	Generating Data Values
	Conference Version
	Outline

	Preliminaries
	XML Documents and Corpus
	Schema
	Introducing Constraints

	Generators
	Nondeterministic Generator
	Order of Generation

	Probabilistic Generator
	Document Probability

	Generators with Constraints
	Restart Generators
	Continuation-Test Generators

	Quality and Optimality Measures
	Optimal Generator

	The Unconstrained Case
	An Upper Bound for Quality
	An Optimal Generator

	The Case with Constraints
	Continuation-Test Generators
	Finding an Optimal Binary ct-Generator
	Generation Time
	Termination Probability
	Non-binary Choices

	Restart Generators
	Quality of an r-Generator vs. restart overhead

	Data Values
	Generating Values from Distributions
	Construction

	Old vs. New Values
	Offline Generator
	Online Generator
	Comparing Offline and Online Generators

	Extension to a Typed Model
	Related Work
	Conclusions
	Acknowledgments
	References

