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Résumé : In this report we describe the PROUVÉ specification language for cryptographic proto-
cols. A main feature of the language is that it separates the roles of a protocol, which
are defined in a simple imperative programming language, from the scenario which
defines how instances of the roles are created.

We give a formal semantics of the protocol specification language, and define both
an expressive logics for safety conditions of protocols and a more limited assertion
language.

This version of the report (2.0.x) describes version 2.0 of the PROUVÉ language.
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Chapter 1

Introduction

The purpose of the PROUVÉ protocol specification language is to give means to describe both pro-
tocols and the context in which they are used. It should allow to specify a signature of message
constructors together with equational axioms defining the semantics of message constructors.

The sub-language used to define protocols is oriented on existing imperative programming languages.
Other projects, like EVA, choose to use a more abstract, supposedly user-friendly language using the
so-called Alice-Bob notation. This approach raises the need for a compiler from the user language
to some kind of programming language that serves as input language for the verification tools. It is
useful to understand how a correct protocol run is supposed to look like but does not describe in an
unambiguous way the actions of the protocol participants. We felt that this approach hides from the
shortcomings of the Alice-Bob notation, and choose to have the user specify the protocol as seen by
the protocol agents, rather then from the point of view of an outside observer of a correct protocol
execution. As a consequence, this sub-language describes roles which are the programs executed by
(legitimate) protocol participants.

We used constructs from imperative programming languages as building blocks for the sub-language
describing roles. However, our language is deliberately not Turing-complete in that we excluded con-
structs that are either not useful for describing protocols or too complex to handle by our verification
tools. The basic instructions are sending and receiving messages and pattern matching. Instructions
are composed by serial composition and conditional branching. All variables have to be explicitly
declared (either as local variables, or as parameters). Variables can be write-once (that is, logical
variables) or mutable variables.

Roles are composed in so-called Scenarios. The sub-language for scenarios contains constructs for
parallel and sequential composition, and non-deterministic choice of values. It has assignment state-
ments, and allows to instantiate roles that have been previously defined.

The accompanying assertion language allows to express safety properties of execution traces of pro-
tocol scenarios.

The design of the PROUVÉ specification language has been inspired by the languages muCAPSL
[MD02] and CASRUL [JRV00].
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Chapter 2

The Syntax of Specification Files

2.1 Introduction

In this chapter we present the concrete syntax of specification files, as well as the pre-defined operators
and their types. The context-free syntax will be formally defined while restrictions which go beyond
context-free grammars, as for instance prohibition of multiple definition of the same variable in one
scope, will only be informally defined. In this chapter we will only give some informal explanations of
the intended semantics; a formal semantics will be defined in Chapter 3. Some examples of protocol
specifications are given in Chapter 6.

Notation We use a generalized context-free grammar notation for the formal definition of the con-
crete syntax, that is a context-free grammar where we allow on the right-hand-side of rules disjunc-
tions (noted | in infix notation), and unary operators in postfix notation for an arbitrary number of
iterations (∗), an arbitrary non-null number of iterations (+), and for optional parts (?). These nota-
tions are used for the sake of conciseness of the presentation but do not add to the expressiveness of
context-free grammars.

Non-terminals (i.e., symbols defined by grammar rules) and tokens (i.e., symbols which denote an
abstraction of some regular language described by a regular expression) are written between angular
brackets 〈 and 〉. Keywords are underlined .

2.2 Elements of the Grammar

2.2.1 Variable Declarations

Variable declarations are employed by several syntactic constructs. They are used to declare the
variables used in equational axioms (Section 2.3.2), to declare variables in the top-level scope or in
nested scopes of roles and to declare parameters of roles (Section 2.3.3), and to declare variables
in nested scopes used in scenarios (Section 2.3.5). A more general form of variable declarations is
defined in Section 2.3.4.

One declaration ( 〈declaration〉 ) introduces a non-empty list of variable names separated by commas,
together with an optional type and an optional specifier mutable . A declaration list ( 〈decllist〉 ) is a
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possibly empty list of declarations that are each terminated by a semi-colon, while a non-terminated
declaration list ( 〈nt-decllist〉 ) is a non-empty list of declarations that are separated by semi-colons.
This latter form of declaration lists is used to declare parameters of roles.

Context-Free Syntax

〈ne-identlist〉 → ( 〈ident〉 ,)∗ 〈ident〉

〈declaration〉 → 〈ne-identlist〉 | 〈ne-identlist〉 : 〈typeexp〉

| 〈ne-identlist〉 : mutable 〈typeexp〉 ?

〈decllist〉 → ( 〈declaration〉 ;)∗

〈nt-decllist〉 → ( 〈declaration〉 ;)∗ 〈declaration〉

Static Semantics Checks

• All type expressions in a declaration must be arrow-free and variable-free.

• No variable may be declared twice in a declaration list.

Indications on the Semantics

A variable can be declared as logical (this is the default) or as mutable (indicated by the key word
mutable ). Logical variables can be assigned only once while mutable variables can be assigned any

number of times. If no type is given in the declaration then the universal type message is assumed.

2.2.2 Type Expressions

Type expressions ( 〈typeexp〉 ) are composed out of basic types and type variables by arrow, tupling,
and application of named type constructors. Type variables are distinguished from names of basic
types by a leading apostrophe ( ’ ).

A non-empty type expression list ( 〈ne-typeexp-list〉 ) is a non-empty and comma-separated list of type
expressions.

Context-Free Grammar

〈typeexp〉 → 〈ident〉

| ′ 〈ident〉

| ( 〈ne-typeexp-list〉 )

| 〈typeexp〉 −> 〈typeexp〉

| 〈ident〉 ( 〈ne-typeexp-list〉 )

〈ne-typeexp-list〉 → ( 〈typeexp〉 ,)∗ 〈typeexp〉
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2.2.3 Static Semantics Checks

• Only basic types and type constructors listed in Section 2.6.1 are permitted. Type constructors
may only be used according to their arity.

• Only arrow-free type expressions, or type expressions of the form t1→ t2, where t1 and t2 are
arrow-free, are allowed. The rationale of this restriction is that it guarantees any well-typed
expression to have a non-functional type.

• The set of free variables of a type expression is defined as follows:

V (basictype) = /0
V (typevariable) = {typevariable}

V ((t1, . . . , tn)) =
n

⋃

i=1

V (ti)

V (typeconstructor(t1, . . . , tn)) =
n

⋃

i=1

V (ti)

V (t1→ t2) = V (t2)−V (t1)

Every type expression which is not part of another type expression must not have any free
variables. The rationale of this restriction is that it guarantees every well-typed expression to
have a variable-free type.

2.2.4 Expressions

Expressions denote values. They occur in equational axioms (Section 2.3.2) and as part of instruc-
tions used in roles (Section 2.3.3) and scenarios (Section 2.3.5). They are a special case of patterns
(Section 2.2.5) and are a constituent of l-expressions (Section 2.2.6).

An expression ( 〈expr〉 ) is either an integer constant, an identifier (which can either be a constant or
a variable), an identifier applied to a non-empty list of expressions (denoting function application),
two expressions joined by a binary infix operator, a parenthesized expression, a tuple expression, a
list expression, or an association list expression. A tuple expression is a comma-separated list of
expressions (at least two expressions are required) surrounded by [ and ]. A list expression is a possibly
empty and colon-separated list of expressions surrounded by double brackets [[ and ]]. An association
list expression is a possibly empty list of pairs of expressions (denoting key and value, respectively)
surrounded by braces { and }. A non-empty list of expressions ( 〈ne-exprlist〉 ) is a comma-separated
non-empty list of expressions.

Parsing of expressions constructed with infix operators is governed by priorities and associativity rules
listed in Section 2.5.

Note that, due to the fact that tuple expressions have at least two component expressions, an expression
like [[e]] denotes a list with one single element denoted by the expression e (and not a hypothetical
one-tuple containing the one-tuple e).
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Context-Free Syntax

〈expr〉 → 〈integer〉 | 〈ident〉

| 〈ident〉 ( 〈ne-exprlist〉 )

| 〈expression〉 〈infix-operator〉 〈expression〉

| ( 〈expression〉 )

| [ 〈expression〉 , 〈ne-exprlist〉 ]

| [[ ]] | [[ 〈ne-exprlist〉 ]]

| { } | {( 〈expression〉 : 〈expression〉 ,)∗ 〈expression〉 : 〈expression〉 }

〈ne-exprlist〉 → ( 〈expression〉 ,)∗ 〈expression〉

Static Semantics Checks

• The expression must be typable taking into consideration the default signature (Section 2.6),
the signature part of the protocol specification (Section 2.3.1), and the current environment
(variable bindings).

• All variables used in an expression must be defined by the current environment (the restriction
on roles and scenarios guarantees that this can be checked statically - see Section 2.3.3 and
2.3.5).

Indications on the Semantics

Some indications on the semantics of operators are given in Section 2.6.

2.2.5 Patterns

Patterns are used for filtering values. They are used in recv instructions where they serve to specify
the form of a message, in match instructions, and to define the different cases in a case instruction
(see Section 2.3.3).

A pattern ( 〈pattern〉 ) consists of an expression and an optional type expression. A pattern sequence
( 〈patterns〉 ) is a possibly empty sequence of patterns which are terminated by semi-colons.

Context-Free Syntax

〈pattern〉 → 〈expression〉 | ( 〈expression〉 : 〈typeexp〉 )

〈patterns〉 → ( 〈pattern〉 ;)∗ 〈pattern〉

Static Semantics Checks

Every pattern in a pattern sequence must have the same set of non-instantiated variables (the restriction
on roles and scenarios guarantees that this can be verified statically).
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Indications on the Semantics

• The variables of a pattern which are not instantiated by the current variable binding are instanti-
ated by a successful pattern matching. The resulting binding (that is, the matching substitution)
may not be uniquely defined for certain equational theories. In this case the matching operation
is non-deterministic.

• All mutable variables occurring in a pattern must be instantiated.

• The key argument of a crypt operation must always be instantiated.

• The construction (exp : type) serves to check the type of an expression (this is useful for check-
ing the type of a value obtained in a recv instruction).

• A pattern sequence is applied sequentially from left to right. The matching substitution resulting
from a pattern sequence is the one returned from the left-most pattern in the sequence that
matches.

2.2.6 L-Expressions

L-expression are only used in scenarios (Section 2.3.5). Contrary to expressions which denote values,
an l-expression denotes a memory location. An l-expression may occur in a scenario on the left-hand
side of an assignment, or as argument of a new instruction.

An l-expression ( 〈l-expression〉 ) is either an identifier, or an identifier applied to a non-empty list of
expressions.

Context-Free Syntax

〈l-expression〉 → 〈ident〉 ( ( 〈ne-exprlist〉 ) )?

Static Semantics Checks

The identifier must have been declared in the global variable section of the protocol specification (see
Section 2.3.4), and must be used with arguments corresponding to its type.

2.3 The Five Main Sections of a Protocol Specification

A specification consists of an optional signature which, when given, extends the default signature (see
Chapter 2.6), an optional list of equational axioms, a list of role specifications, an optional declaration
of global variables, and a scenario. The scope of the global variables extends over the scenario but not
over the role definitions. In fact, access to global variables from inside the roles is only possible via
parameters of roles.

〈specification〉 → 〈signature〉 ? 〈axioms〉 ? 〈role〉 ∗ 〈globals〉 ? 〈scenario〉
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2.3.1 Signature

This part is optional in a protocol specification. Its purpose is to extend the default signature (Sec-
tion 2.6) by user-defined function symbols.

A signature ( 〈signature〉 ) consists of two simple signatures. A simple signature ( 〈simple-signature〉 )
is a list of symbol declarations with their type. A single symbol declaration may define several sym-
bols at once which are given by a comma-separated list.

Context-free Grammar

〈signature〉 → signature 〈simple-signature〉 ( hashfunctions 〈simple-signature〉 )? end

〈simple-signature〉 → ( 〈ne-identlist〉 : 〈typeexp〉 ;)∗

Static Semantics Checks

Pre-defined functions (see Section 2.6.2) must not be re-defined in the signature, and no function
symbol must be defined twice. The rationale of this restriction is that it guarantees any well-typed
expression to have exactly one minimal type1.

Indications on the Semantics

The first simple signature contains the list of decomposable function symbols, while the second sig-
nature contains the list of hash function symbols which are not decomposable.

The complete signature of a protocol specification consists of the union of the default signature and
the user-defined signature.

2.3.2 Axioms

This part is optional in a protocol specification. Its purpose is to give a semantics to the user-defined
symbols (Section 2.3.1) through equational axioms.

An axiom listing ( 〈axioms〉 ) consists of a list of equalities between expressions, preceded by an
optional list of variable declarations.

Context-Free Syntax

〈axioms〉 → axioms ( declare 〈decllist〉 begin )? ( 〈expr〉 = 〈expr〉 ;)∗ end

1This restriction may in the future be replaced by a weaker one if necessary
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Static Semantics Checks

• All variables used in the axioms must be declared (hence, the declaration part may only be
dropped when all axioms are ground).

• All variable declarations must be logical.

• The two sides of an equational axiom must be of the same type.

Indications on the Semantics

The equational axioms define a class of algebras in which the expressions are evaluated. Roughly,
this class consists of all algebras that conservatively extend the algebra corresponding to the default
signature and that are models of the equational axioms. An algebra A is a conservative extension of
the standard algebra if

1. any two terms over the standard signature which are evaluated to different values in the standard
algebra are also evaluated to different terms in A (“no confusion” - no new equalities between
standard terms).

2. For every sort, the carrier set of A is the same as the carrier set of the standard algebra (”no
junk” - no new values).

This class may be empty in case of an inconsistency in the equational axioms which makes the stan-
dard algebra collapse, as for instance for the equational axiom 0 = 1. This class may also contain
more than one algebra, for instance if we declare a new constant symbol of type int without giving
any equation definining its value.

2.3.3 Roles

The purpose of this section is to define the different roles which are executed by the protocol partici-
pants..

A role definition ( 〈role〉 ) consists of the keyword role followed by the name of the role, a non-
terminated declaration list surrounded by parentheses which serves to specify the list of parameters,
and an instruction block. An instruction block ( 〈block〉 ) consists of an optional variable declaration
(which, if present, consists of the keyword declare followed by a declaration list) and an instruction
list surrounded by begin . . . end .

An instruction list ( 〈instlist〉 ) is a possibly empty list of instructions that are terminated by a semi-
colon. An instruction is a raw instruction ( 〈raw-instruction〉 ) which may be preceded by an identifier
which, in this case, is separated from the following raw instruction by a colon.

A raw instruction ( 〈raw-instruction〉 ) is either an instruction block, a send instruction, a receive
instruction, a fail instruction, an assignment instruction, a new instruction, a match instruction, or a
composite instruction. A composite instruction is either a conditional instruction if . . . then . . . else
. . . fi where the else part is optional, a choice instruction which consists of a non-empty sequence of
instructions lists which are separated by the symbol | and surrounded by the keywords choice and
end , or a case instruction. A case instruction consists, besides the keywords, of an expression, a
non-empty list of cases which are separated by semi-colons, and a final instruction list. A case is a
pair consisting of a pattern sequence and an instruction list, joined by the symbol ->.
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Context-Free Syntax

〈role〉 → role 〈ident〉 ( 〈nt-decllist〉 ?) 〈block〉

〈block〉 → ( declare 〈nt-decllist〉 ;)? begin 〈instlist〉 end

〈instruction〉 → 〈raw-instruction〉 | 〈ident〉 : 〈raw-instruction〉

〈raw-instruction〉 → 〈block〉

| send ( 〈expression〉 ) | recv ( 〈patterns〉 )

| fail

| 〈ident〉 := 〈expression〉

| new ( 〈ident〉 )

| match 〈expression〉 with 〈patterns〉 end

| if 〈expression〉 then 〈instlist〉 ( else 〈instlist〉 )? fi

| choice 〈instlist〉 (| 〈instlist〉 )∗ end

| case 〈expression〉 of ( 〈case〉 ;)∗ 〈case〉 else 〈instlist〉 esac

〈case〉 → 〈patterns〉 −> 〈instlist〉

〈instlist〉 → ( 〈instruction〉 ;)∗

Static Semantics Checks

• The name of a role must be distinct from the names of the pre-defined type constants. This is
necessary since in the logics the names of roles are use as types of process variables. All roles
must carry different names.

• The same name of a variable may occur in several variable declarations in a role definition. The
usual scoping roles apply.

• Parameters of roles are call-by-value, except when declared as mutable in which case they are
call-by-reference.

• The identifiers occurring as prefixes of instructions must be unique in each role definition. Their
purpose is to define control points which are referenced in the logics (see Section 4).

• In case of a branching instruction (like case) all branches must instantiate the same variables.

• The argument to new must be of one of the types nonce, int, or message.

Indications on the Semantics

• A recv instruction never fails. It blocks until a value is received that is matched by one of the
patterns.

• The different cases of a case instruction are tried in sequential order. If none of the pattern
sequences matches then the final instruction (given after the keyword else ) fires.
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2.3.4 Declaration of Global Variables

This part is optional in role specifications. Its purpose is to declare the variables which are used in the
scenario. These variables may also take the form of multi-dimensional arrays.

Context-Free Syntax

〈globals〉 → variables 〈skolem-decllist〉 end

〈skolem-declaration〉 → 〈skolem-identlist〉 | 〈skolem-identlist〉 : 〈typeexp〉

| 〈skolem-identlist〉 : mutable 〈typeexp〉 ?

〈skolem-decllist〉 → ( 〈skolem-declaration〉 ;)∗

〈skolem-identlist〉 → ( 〈skolem-ident〉 ,)∗ 〈skolem- ident〉

〈skolem-ident〉 → 〈ident〉 ( 〈ne-identlist〉 )

Static Semantics Checks

• All type expressions in a declaration must be arrow-free and variable-free.

• No variable may be declared twice in a declaration list.

Indications on the Semantics

The explanation given in Section 2.2 on logical and mutable variables apply.

A declaration like

variables
a(int,principal) : bool

end

can be seen as the declaration of a two-dimensional array of Boolean values, indexed by pairs of
integers and principals. Another way of seeing this kind of variable declaration is saying that we
explicitly declare Skolem functions. For example, a quantification structure of a first-order logic
formula like ∀x1∃y1∀x2∃y2 . . .φ could be expressed in our framework by declaring the two variables
y1 and y2 as global variables (assuming that the domain of discourse is the set of integers):

variables
y1(int) : int;
y2(int,int) : int;

end

Our form of global variable definition allows to define dependencies of variables which cannot be
obtained through Skolemisation of first-order formulas, like for instance

12



variables
y1(int) : int;
y2(int) : int;

end

This corresponds to the so-called Härtig-quantifier which is not expressible in first-order logic [Ebb85].

2.3.5 Scenario

The purpose of the scenario is to define how the role instances are instantiated, and how they interact
through global variables.

A scenario ( 〈scenario〉 ) consists of a scene instruction ( 〈sceneinst〉 ) surrounded by the keywords
scenario and end . A scene instruction is a raw scene instruction, possibly prefixed by an identifier.
A raw scene instruction is one of a role instantiation, a call to new or makekey , an assignment
(where the left-hand side may be any l-expression, contrary to assignment in roles where the left-hand
side must be an identifier), a conditional expression (with an optional else part), an infinite loop
forever the body of which is a scenario list, a parallel instruction, the body of which is a non-empty
list of scenario lists which are separated by the character |, an existential quantification consisting of a
value declaration and a scenario, a universal declaration which has an analogous form as an existential
quantification but may carry in addition a relational constraint, and a block which consists of a local
declaration part and a scenario list.

A scenario list is a possibly empty list of scenarios which are terminated by semi-colons. A simple
value declaration is a pair of a non-empty list of identifiers and a type expression, and a value decla-
ration is a non-empty list of simple value declarations which are separated by commas. A relational
constraint ( 〈relation-constraint〉 ) is a non-empty sequence of intervals which are separated by com-
mas. An interval is either an omega-number or a pair of omega numbers. An omega number is either
a positive integer or the symbol ∗.

〈scenario〉 → scenario 〈sceneinst〉 end

〈sceneinst〉 → 〈raw-sceneinst〉 | 〈ident〉 : 〈raw-sceneinst〉

〈raw-sceneinst〉 → 〈ident〉 ( 〈exprlist〉 )

| 〈l-expression〉 := 〈expression〉

| new ( 〈l-expression〉 )

| makekey ( 〈expression〉 , 〈l-expression〉 )

| if 〈expression〉 then 〈scenelist〉 ( else 〈scenelist〉 )? fi

| forever 〈scenelist〉 end

| parallel ( 〈sceneinst〉 | )∗ 〈sceneinst〉 end

| begin 〈scenelist〉 end

| exists 〈valuedec〉 . 〈sceneinst〉

| forall 〈valuedec〉 ( 〈relation-constraint〉 )?. 〈sceneinst〉

| declare 〈nt-decllist〉 ; begin 〈scenelist〉 end

〈valuedec〉 → 〈ne-identlist〉 : 〈typeexp〉 ( , 〈ne-identlist〉 : 〈typeexp〉 )?

13



〈scenelist〉 → ( 〈sceneinst〉 ;)∗

〈relation-constraint〉 → [ 〈interval〉 ( , 〈interval〉 )∗]

〈interval〉 → 〈omega-number〉 | 〈omega-number〉 .. 〈omega-number〉

〈omega-number〉 → 〈positive-integer〉 | ∗

Scenarios may be prefixed with a label which serves to identify control points in a scenario.

Static Semantics Checks

• The same name of a variable may occur in several variable declarations in a scenario. The usual
scoping roles apply.

• The identifiers occurring as prefixes of instructions must be unique in the scenario. Their pur-
pose is to define control points which are referenced in the logics (see Section 4).

• The argument to new must be of one of the types nonce, int, or message.

• In case of a branching instruction (like case) all branches must instantiate the same variables.

• Roles must be invoked according to their declaration.

Indications on the Semantics

• The first case in the definition of a scenario serves for invoking roles.

• The key word forever indicates an infinite sequential loop.

• The key words exists and forall allow to quantify over values of a type.

• The meaning of the relational constraint is the following: A quantified expression of the form

forall x1 : t1, . . . ,xn : tn constraint . S

should be understood as

∃R : constraint ∀x1 : t1, . . . ,xn : tn.R(x1, . . . ,xn)⇒ S

where we say that a n-ary relation R satisfies a constraint [l1..u1, . . . , ln..un] iff

n
∧

i=1

∀x1 : t1, . . . ,xi−1 : ti−1,xi+1 : ti+1, . . . ,xn : tn.li ≤ #{(x1, . . . ,xn) | R(x1, . . . ,xn)} ≤ ui

We allow to abbreviate an interval n..n as n, and ∗ stands for infinity. Hence, in case of binary
relations (n=2), [1,1] denotes a relation which is a bijective function, [1..∗,1] a function which
is onto, and [0..1,1] a function which is one-to-one. If no constraint is given then the default is
[0..∗, . . . ,0..∗], which is satisfied by any relation.
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2.4 Lexical Tokens

A number is any character between ’0’ and ’9’. A letter is any character between ’a’ and ’z’, either in
lower case or in upper case. An identifier is a non-empty sequence of numbers, letters, and the special
character ’_’ that starts on a letter. An integer is a non-empty sequence of numbers (a negative integer
constant is considered as an expression composed of the prefix operator ’-’ and a non-negative integer
constant).

〈number〉 → 0 | . . . | 9

〈letter〉 → a | . . . | z | A | . . . | Z

〈ident〉 → 〈letter〉 ( 〈letter〉 | 〈number〉 | _ )∗

〈integer〉 → 〈number〉 +

2.5 Infix Operators

All infix operators associate to the left. Following is a table of infix operators in increasing order of
precedence (that is, operators at the top of the table are stronger binding than operators at the bottom
of the table).

.
+, -, ::
=, <, >, =<, >=, !=
&&
|

For instance, the expression

x + y - z && b

is parsed in the same way as

((x + y) - z) && b

2.6 The Default Signature

2.6.1 Pre-Defined Types

Following is the list of pre-defined type constants. message is the universal type comprising all non-
functional types.
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Name Comment

message the type of all (non-functional) values
int the type of integers
bool the type of boolean values
nonce the type of nonces
algo the enumeration type of asymmetric encryption algorithms
symalgo the enumeration type of symmetric encryption algorithms
pubkey the type of public encryption keys for a non-specified asymmetric encryption method
privkey the type of private decryption keys for a non-specified asymmetric encryption method
symkey the type of en/decryption keys for a non-specified symmetric encryption method
principal the type of principals

Furthermore, we have the following type constructors:

Name Arity Comment

list 1 polymorphic lists
table 2 polymorphic association lists

2.6.2 Pre-Defined Constants and Functions

Bool

The domain of the type bool consists of the two values true and false. The following operations yield
boolean values:

Name Type Comment

true, false, bool Constant values
&& (bool, bool)→ bool Conjunction (infix operator)
|| (bool, bool)→ bool Disjunction (infix operator)
not bool→ bool Negation
=, <, >, =<, >=, != (’a, ’a)→ bool Polymorphic comparison operators

Int

Numerical constants, binary operators +, -.

Algo and Symalgo

These are the enumeration types for different encryption and signature algorithms. The following
constants are defined:

Name Type Comment

asym algo A not further specified asymmetric encryption method
rsa algo Rivest-Shamir-Adleman method
sym symalgo A not further specified symmetric encryption method
des symalgo Data Encryption Standard
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Keys

The instruction makekey(a, var), where a is instantiated and either of type algo or of type symalgo,
assigns to var a new key.

If the type of a is symalgo then var must be of type symkey.

If the type of a is algo then var must be of type privkey. That is, in case of asymmetric encryption
the variable var will then hold the private part of the key pair. The public part of the key pair can be
obtained as inv(key). Static analysis will ensure that inv can only be applied when a makekey operation
was executed on the same var. The inv operation is an exception in that its type is overloaded.

Name Type

sign (algo,message,privkey)→ message
crypt (algo,message,pubkey)→ message
symcrypt (symalgo,message,symkey)→ message
inv pubkey→ privkey

privkey→ pubkey

Nonce

There are no constants of this type, or functions that yield these values (a nonce is created by new ).
The only test operation on nonces is equality test (explicit, or implicit in pattern matching).

Lists

[[]] is the empty list

[[a1,a2,a3]] is the list consisting of the three values a1, a2, a3.

x :: y yields the list with head x and rest y.

element(x,y) tests whether x is contained in the list y.

Lists are monomorphic, that is all elements must be of the same type. Note that this type may be the
universal type message. Hence, [[1, true]] is of type list(message).

Tuples

The set of types is closed under tupling. For instance, [a1,a2,a3] is the triple consisting of the three
values a1, a2, a3. Tuples always contain at least two elements, that is there are no zero-tuples or
one-tuples. As a consequence, the expression [[42]] denotes a list of length 1, and not a one-tuple of a
one-tuple.

There are no operations defined on tuples. The only way to access the components of a tuple is to use
pattern-matching.
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Association Lists

Association lists are written in the form

{key1 : value1,key2 : value2, . . . ,keyn : valuen}

If l is an association list then l.x yields the value of l for key x.

18



Chapter 3

Semantics

In this chapter we define the semantics of the cryptographic protocol language of the project PROUVÉ.

The semantics is described in a modular way, in that the semantics for scenarios is based on some
semantics for roles that is given by a transition system on role configurations, but without assuming
any particular properties of the semantics of roles. Also, the semantics of roles is defined while
assuming a model of an intruder and a class of algebras that are the semantics of the equational
axioms without making any particular assumption on them.

Other noticeable choices that have been made are the following.

Scopes There are several choices that can be made to reflect and take care of the scope of variables.
The choice made in our semantic definition is to keep two levels of scoping. We flatten the scopes
introduced at scenarios level but keep the scopes at role level. Variable renaming and α-conversion
are needed to maintain coherence of variable bindings.

Lazy evaluation of the forall and iteration commands The forall operator (written ∀ in our
abstract syntax) can be unfolded at once or in a lazy manner introducing one new scenario in parallel
at a time. The same remark applies to iteration. The lazy interpretation is chosen in our semantics.
Concerning the forall operator, the unfolded scenario is chosen non-deterministically.

Initial values and variable initialization A particularity of the communication in cryptographic
protocols is that the reception of a message may assign values to some variables while the values of
the remaining variables are used for synchronization. In fact, variables that have not yet been assigned
a value are of the first category while the other variables are of the second. So, one has to keep track
in a way or another which variables have already a value assigned to them. There are different ways
how to keep this information also depending upon how one wants to handle initial values.

The choice made in our semantics is that variables not yet affected by a receive or an assignment are
not in the domain of the functions that associate values to variables.
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S ::= R(x1, ...,xn,e1, · · · ,em)

| makekey(algo,x)

| x := e

| new(x)

| S1; ...;Sn

| if e then S1 else S2 fi

| S∗

| S1‖...‖Sn

| ∃x : τ.S
| ∀x : τ,I .S, where I is a relational constraint

| Var x : τ.S

Figure 3.1: Scenarios

3.1 Preliminaries

Given a mapping f : A→ B, a ∈ A and b ∈ B, we denote by f [b/a] the mapping that to any a′ in the
domain of f with a′ 6= a assign the value f (a′); and which assigns b to a.

Given mappings f : A→ B and g : A→ B with disjoint domains, f ⊕ g denotes the mapping that
associates g(a′) to a′ in the domain of g and f (a′) to a′ in the domain of f .

For a given algebra A over the complete signature of the protocol specification we denote by =A and
≈A the equality, respectively unification, in A .

3.2 Scenarios

We consider scenarios in a simplified abstract syntax as defined by the grammar in Fig 3.1. We
assume for the sake of simplification of notation that the parameter list of any role consists of a
sequence of call-by-reference parameters, followed by a sequence of call-by-value parameters. We
may assume that every conditional instruction has an else part (if missing it can be taken to be the
empty instruction list). As explained above, we assume a flattened block structure, and hence do not
have to cope with begin . . . end and with declare . . . begin . . . end .

3.2.1 Configuration

In the following, we will suppose w.l.o.g. that bound variables have distinct names.

The current state of a scenarios is described by a pair (σ,Conf) where σ is a mapping associating
values to variables and Conf is a configuration. Configurations reflect the control part. Details for
configurations are given in Figure 3.2. Each role R has defined configurations CR and an initial config-
uration Ci

R. The value of variable xM is going to be the set of messages sent during execution. Given a
state (σ,Conf), the value of variable xM as well as of all variables but those defined in roles are given
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Conf ::= (Role(p,CR), where p ∈ P is a process identifier

| Conf1 ‖...‖Confn

| Conf;S

| ∀x : τ,I .S

| ∀x : τ,R,U.S, where U is a finite subset of R

| S

| ε

Figure 3.2: Configurations

by σ. Hence, in particular, the values of global variables are defined in the state. Hence the initial
state of a scenarios S is ([xM 7→ E],S), where E is a set of messages initially known by the intruder.

Configuration Transition System

We assume given a transition system for each role R. This is essentially given by a transition relation
−→R between pairs (σ,Conf). Moreover, we assume given an interpretation function which associates
to each expression e and variable assignment σ a value [[e]]σ.

The transition relation associated to scenarios is inductively defined by the following inferences,
where Sα is the α conversion (i.e. renaming) of S using fresh names for variables bound in S.

•

(σ,Ci
R[y1/x1, · · · ,yn/xn,v1/z1, · · · ,vm/zm])−→R (σ′,CR), [[ei]]σ =A vi (i = 1, · · · ,m)

(σ,R(y1, ...,yn))−→ (σ′,Role(p,CR))
[ROLE INIT]

where y1, · · · ,yn,e1, · · · ,em are the actual parameters and x1, · · · ,xn,z1, · · · ,zm the formal ones,
and where p ∈ P is a process identifier (the INTERLEAVING role given below will ensure that
processes have unique process identifiers).

Notice that since we assumed that local and global variables have different names there is no
risk of name clash. Also, notice that we have call-by-name semantics.

•

(σ,CR)−→R (σ′,C′R)

(σ,Role(p,CR))→ (σ′,Role(p,C′R))
[ROLE STEP]

•

(σ,Conf)−→ (σ′,Conf′)
(σ,Conf;S)→ (σ′,Conf′;S)

[SCENARIOS SEQUENTIAL COMPOSITION]

•
(σ,Conf)−→ (σ′,ε)
(σ,Conf;S)→ (σ′,S)

[SCENARIOS SEQUENTIAL COMPOSITION]
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•

(σ,Confi)−→ (σ′,Conf′i)
(σ,Conf1 ‖...‖Confi ‖...‖Confn)−→ (σ′,Conf1 ‖...‖Conf′i ‖...‖Confn)

[INTERLEAVING]

where for all i 6= j no process identifier occurs both in Confi and Conf j.

•
[[e]]σ =A v

(σ,x := e)−→ (σ[v/x],ε)
[ASSIGNMENT]

• The instruction new(x) associates a fresh value to the variable x. To define the semantics of
this instruction, we assume that we are given a function D such that Dx is the value domain
of x and that we are given a function new that when applied to a domain Dx yields a fresh
value new(Dx). Strictly, speaking this is not a function as the value generated depends on the
previously generated values. But the idea is that this function can be seen as an oracle that has
a memory.

(σ,new(x))→ (σ⊕ [x 7→ new(Dx)],ε) [NEW]

• The case of makekey(algo,x) is treated similarly to new(x). That is, we assume that we are
given an oracle newkey(·) such that newkey(algo) generates a fresh key compatible with algo,
i.e., an RSA key in case algo is RSA, a DES key in case it is DES etc.... . Hence, semantics of
makekey(algo,x) is given by

(σ,makekey(algo,x)))→ (σ⊕ [x 7→ newkey(algo)],ε)

•
[[e]]σ =A >

(σ, if e then S1 else S2 fi )−→ (σ,S1)
[IF-THEN]

•
[[e]]σ =A ⊥

(σ, if e then S1 else S2 fi )−→ (σ,S2)
[IF-THEN]

•
−

(σ,S∗)−→ (σ,Sα;S∗)
[ITERATION UNFOLDING]

•
−

(σ,∀x : τ,I .S)−→ (σ,Sα[u/x]‖∀x : τ,R,{u}.S)
[∀ UNFOLDING]

where R is a relation whose arity is the length of x and that satisfies the constraint I and u ∈ R.

•
u /∈U

(σ,∀x : τ,R,U.S)−→ (σ,Sα[u/x]‖∀x : τ,x /∈ (u :: U).S)
[∀ UNFOLDING]

where u ∈ R\U .

•
u : τ

(σ,∃x : τ.S)−→ (σ,S[u/x])

•

(σ,Var x : τ.S)−→ (σ,S)

Equations involving ε: ε;S = S and ε‖Conf = Conf apply.
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3.3 Roles

As roles are sequences of actions, their semantics is simply the execution of these actions from left to
right. Each action has its intuitive semantics. Consider a role R(x1, ...,xn,z1, · · · ,zm), where the xi’s
are reference parameters while the zi’s value parameters. Let also y1...yp be its local variables. For
simplicity and without loss of generality, we assume that the formal parameters and local parameters
are disjoint. The step semantics of role R has the form (σ,CR)→R (σ′,C′R). Henceforth, we simply
write→ instead of→R. The mapping σ assigns values to global variables (including xM); while CR

is a triple (R,σL, I), R is the role name, σL assigns values to the local variables y1, · · · ,yp and value
parameters z1, · · · ,zm and I is the list of instruction still to be executed. The initial configuration of a
role Ci

R is any triple (R, [], I) , where [] is the empty mapping (the everywhere undefined function) and
I is the set of instruction of R.

We consider roles in a simplified abstract syntax defined as follows:

I ::= I1; I2

| send(e)

| recv(r)

| x := e

| if e match p then I1 else I2 fi

| new(x)

| ε
| f ail

In this definition, we have ignored labels of instructions since they are not relevant for the definition of
the semantics. It is easy to see that any role definition according to Section 2.3.3 can be transformed
in this simplified syntax.

The transition relation (σ,(R,σL, I))→ (σ′,(R,σ′L, I′)) is defined by induction over I. As the role
name R is constant it will be omitted in the following.

•
(σ,(σL, I1))→ (σ′,(σ′L, I′1))

(σ,(σL, I1; I2))→ (σ′,(σ′L, I′1; I2))
[Sequential composition]

•
[[e]](σ⊕σL) = v, σ′ = (σ⊕σL)[σ(xM)∪{v}/xM]

(σ,(σL,send(e)))→ (σ′,(σL,ε))
[Sending a message]

• When receiving a message, variables that are neither in the domain of σ nor in the domain
of σL get a value assigned to them. This value is given by any mappings σ′ and σ′L whose
domains are disjoint from the domains of σ and σL and such that the message [[pi]]σ′′ with
σ′′ = σ⊕σL⊕σ′⊕σ′L is deducible from σ(xM), i.e., σ(xM) ` m.

σ(xM) ` [[pi]]σ′′, ∀ j < i · p j 6≈A v

(σ,(σL,recv(p0, · · · , pn)))→ (σ,(σL⊕σ′L,ε))
[Reception of message]

where σ′′ = σ⊕σL⊕σ′⊕σ′L and the domains of σ′ and σ′L contain only variables that occur in
pi.
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• Depending whether the variable x is a parameter or a local variable, σ or σL is modified by
affectation x := e.

[[e]](σ⊕σL) = v, σ′L = σL[v/x], σ′ = σ[v/x]
(σ,(σL,x := e))→ (σ′,(σ′L,ε))

[Assignment]

• The match instruction is treated in the exact same way as in recv.

[[e]](σ⊕σL) = v [[p]]σ′′ = v′, v′ =A v, σ′′ = σ⊕σL⊕σ′⊕σ′L
(σ,(σL, if e match p then I1 else I2 fi ))→ (σ⊕σ′,(σL⊕σ′L, I1))

[Successful match]

where the domains of σ′ and σ′L contain only variables that occur in e.

The premise of Rule [Successful match] is not satisfiable
(σ,(σL, if e match p then I1 else I2 fi ))→ (σ,(σL, I2))

[Unsuccessful match]

•
(σ,(σL,new(x)))→ (σ⊕ [x 7→ new(Dx)],(σL⊕ [x 7→ new(Dx)],ε))

•

(σ,(σL,makekey(algo,x)))→ (σ⊕ [x 7→ newkey(algo)],(σL⊕ [x 7→ newkey(algo)],ε))

Equations involving ε still apply.

3.4 Semantic Domains

In this section we define the class of algebras in which the expressions are evaluated, and in which
pattern matching is done. This section uses notions from the field of Algebraic Specifications, see for
instance [EM85].

Let S be the set of all closed and arrow-free type expressions, and Σ the complete signature of the
protocol specification. We assume in this section that all types in the signature Σ are closed, that is
that a declaration of a polymorphic function like for instance =:(′a,′ a)→ bool is replaced by the
family of closed type declarations {=:(τ,τ)→ bool | τ ∈ T}.

A multi-sorted algebra A over the set of sorts S and signature Σ is called admissible if the following
conditions hold:

• The carrier set of sort int is Aint = Z.

• The carrier set of sort bool is Abool = {true,false} .

• The carrier sets of the sorts nonce, algo, symalgo, pubkey, privkey, symkey, and principal
are of infinite cardinality.

• For every type τ ∈ T there exists an injective function ιτ:Aτ→ Amessage.

• For every type τ ∈ T , the carrier set of type list(τ) is the set of finite sequences of the carrier
set of type τ :

Alist(τ) = (Aτ)∗
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• For every τ,σ ∈ T , the carrier set of type table (τ,σ) is the set of finite sequences of pairs of
values from the carrier set of τ and the carrier set of σ :

Atable(τ,σ) = (Aτ×Aσ)∗

• For every τ1,τ2, . . . ,τn ∈ T the carrier set of type (τ1,τ2, . . . ,τn) is the set of tuples of elements
of the carrier sets of types τ1,τ2, . . . ,τn.

A (τ1,τ2,...,τn) = Aτ1×Aτ2× . . .×Aτn

• The operations on integers (+, ∗, numerical constants, and the comparison operators of type
(int,int)→ bool ) and the operations on Boolean values (true, false, &&, ||, not, and the
comparison operators of type (bool,bool)→ bool) are interpreted in A as usual.

• For all x ∈ Aprivkey∪Apubkey we have that invA(invA(x)) = x.

• For any type τ, the operator = of type (τ,τ)→ bool is interpreted as equality on Aτ, the operator
< of type (τ,τ)→ bool is a strict total order on Aτ, and the following equivalences hold:

x > y ⇔ y < x

x =< y ⇔ x = y∨ x < y

x >= y ⇔ y =< x

x! = y ⇔ ¬x = y

Given a set Ax of equational axioms for a given signature Σ, the semantics of Ax is the set of all
admissible Σ algebras that are models of the equational axioms Ax.
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Chapter 4

A Logic for Traces

In this section we present a logic which can express assertions about traces. We assume given a
specification of the form

Spec = 〈signature,axioms,roles,variables,scenario〉

The signature Σ contains all the constants and function symbols available in the specification, that is
those explicitly mentioned in the signature section of the specification, and the default symbols as
described in Chapter 2.6.

4.1 Syntax

We use the following syntactic categories:

• P, P1, P2, . . . denote variables for processes. These variables are intended to denote unique
process identifiers.

• R, R1, R2, . . . denote roles defined by the specification.

• c denotes a control point defined by the specification, either in a role or in the scenario. Every
role and the scenario are assumed to define control points start and end .

• x denotes a top-level variable of a role (that is either a parameter, or a variable defined at the
beginning of the role), or a global variable of the scenario (that is, a variable defined in the
variables section of the specification).

• f denotes a function symbol of the signature Σ.

• a denotes a constant of the signature Σ

• X denotes a variable of the logic.

• T denotes a type.
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The set of terms is given as

t ::= a | f (t1, . . . , tn) | x[t1, . . . , tn] | P.x | X

A variable x without prefix denotes a global variable of the scenario, while a prefixed variable P.x
denotes the variable x of the process P. Variables of processes are available in the logics only when
they are top-level variables, that is parameters of a role or variables declared in the declaration part of
the block (but not variables which are defined in local scopii). Variables with a local scope are a mere
convenience for the programmer; they are not visible in the logics.

Now, the set of formulas is defined as

φ ::= t1 = t2
| t1 ≤ t2
| P1 = P2

| secret (t)

| P@c | scenario @c

| φ1∧φ2 | ¬φ
| �φ
| ∀P/R : φ
| ∀X ∈ T : φ

Process variables are always typed by a role, that is the type of a process variable indicates of which
role the process is an instance.

We employ the usual abbreviations from first-order logic:

t1 6= t2 := ¬t1 = t2
φ1∨φ2 := ¬(¬φ1∧¬φ2)

φ1→ φ2 := (¬φ1)∨φ2

φ1↔ φ2 := (φ1→ φ2)∧ (φ2→ φ1)

∃P/R : φ := ¬∀P/R : ¬φ
∃X ∈ T : φ := ¬∀X ∈ T : ¬φ
∃ !P/R : φ := ∃P/R : φ∧∀P,Q/R : (φ∧φ[Q/P]→ P = Q)

where φ[Q/P] denotes the variant of φ obtained by replacing all free occurrence of P by Q, probably
renaming bound variables in order to avoid capture. The formula ∃ !P/R : φ means “there is a unique
P of role R such that φ”.

4.2 Semantics

We assume an infinite domain P of process identifiers (for instance the set of natural numbers).

We recall from Section 3.3 that a process configuration is a triple (R,σ, I) where
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• R is a name of a role defined by the specification

• σ is an assignment of the top-level variables of role r (that is, the parameters of the role, and the
variables declared at the beginning of the role)

• I is the list of instructions that are still to be executed by the process.

We denote by PC the set of process configurations. Given a process configuration pconf we write
pconfname for its name, pconfenv for its variable binding, and pconflabel for the label of the next
instruction to be executed (or end if the list of instructions I is empty).

We recall from Section 3.2 that a global state is a pair (σ,Conf) where

• σ is a partial mapping from global variables to values

• Conf is a scenario configuration of the form defined in Figure 3.2.

Every configuration which can be reached from the initial configuration of a protocol specification
has, modulo associativity and commutativity of the operator ||, the form

Confs1 || . . . ||Confsm ||(p1,Role(CR1))|| . . . ||(pn,Role(CRn))

where the Confsi 6= ε are expressions of the abstract syntax of scenarios and where pi 6= p j for i 6= j.
Given a global state gstate with a configuration in the form as written above, we write gconflabels for
the set of labels of Confs1 , . . . ,Confsm , gconfenv (gconflabels = {end} in case m = 0) for its variable
binding, and gconfprocesses for its so-called process table which is defined as the mapping associating
CRi to pi.

A trace is a non-empty and finite sequence of global configurations. The set of traces Tr is hence

Tr = GC+

First we define [[t]]A ,γ,α,π, which is the evaluation of term t in algebra A , global configuration γ,
assignment α of the logical variables, and assignment π of the process variables:

[[a]]A ,γ,α,π := aA

[[ f (t1, . . . , tn)]]A ,γ,α,π := f A([[t1]]A ,γ,α,π, . . . , [[tn]]A ,γ,α,π)

[[x[t1, . . . , tn]]]A ,γ,α,π := γenv(x[[[t1]]A ,γ,α,π, . . . , [[tn]]A ,γ,α,π])

[[P.x]]A ,γ,α,π := (γprocesses(π(P)))env(x)

[[X ]]A ,γ,α,π := α(X)

The value of [[t]]A ,γ,α,π is undefined in case t contains a sub-expression P.x, where P is a process
variable, such that P is not in the domain of π.

In other words,

• constants a and function symbols f are interpreted in the algebra A ,
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• in order to evaluate x(t1, . . . , tn), that is the value of a global variable, we first evaluate the index
terms ti, and then look up the value of x at this location according to the environment component
of γ,

• in order to evaluate P.x we obtain the process configuration denoted by P, and look up the value
of x in the environment component of this process configuration.

• X is a logical variable which obtains its value from α

For a trace τ we denote τ♦ its last element. We define, for any Σ-algebra A , for any trace τ, any
valuation α of the variables (of the logic), and any partial mapping of process variables to P, what it
means that a formula φ holds, in signs A ,τ,α,π |= φ.

A ,τ,α |= t1 = t2 ⇔ [[t1]]A ,τ♦,α,π = [[t2]]A ,τ♦,α,π

A ,τ,α |= t1 ≤ t2 ⇔ exists a context C with [[C[t1]]]A ,τ♦,α,π = [[t2]]A ,τ♦,α,π

A ,τ,α,π |= P1 = P2 ⇔ π(P1) = π(P2)

A ,τ,α,π |= secret (t) ⇔ τ♦env(xM) 6` [[t]]A ,τ♦,α,π

A ,τ,α,π |= P@c ⇔ (τ♦processes(π(P)))label = c

A ,τ,α,π |= scenario @c ⇔ c ∈ τ♦label
A ,τ,α,π |= φ1∧φ2 ⇔ A ,τ,α,π |= φ1 and A ,τ,α,π |= φ2

A ,τ,α,π |= ¬φ ⇔ A ,τ,α,π 6|= φ
A ,τ,α,π |= �φ ⇔ for all nonempty prefixes τ′ of τ: A ,τ′,α,π |= φ

A ,τ,α,π |= ∀P/R : φ ⇔ for all p ∈ domain(π) with (τ♦processes(p))name = R: A ,τ,α, [p/P]π |= φ

A ,τ,α,π |= ∀X ∈ T : φ ⇔ for all d ∈ AT : A ,τ, [d/X ]α,π |= φ

The truth of A ,τ,α |= φ is undefined in case evaluation of A ,τ,α |= φ leads to some [[t]]A ,γ,α,π that is
undefined.

In other words,

• t1 = t2 denotes equality of the values denoted by the two terms

• t1 ≤ t2 denotes that t1 is a semantic subterm of t2 (semantic since context and term are evaluated
in the algebra A)

• P1 = P2 denotes identity of process identifiers

• secret (t) denotes that the intruder cannot deduce t from the current value of xM

• the operator @ denotes that a process (or the scenario) currently is at a certain control point

• ∧ and ¬ have the usual meaning

• � means “always in the past”

• ∀P/R : is a universal quantification over all currently existing processes of type R

• ∀X ∈ T : is a universal quantification over all values of type T
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We say that a closed formula φ is valid in the specification Spec as defined above if

A ,τ, /0, /0 |= φ

for all algebras A permitted by the semantics, and all traces τ, where /0 denotes the empty assignment.
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Chapter 5

Security Assertions

5.1 A Language for Security Assertions

In this section we define a language of security assertions. A security assertion consists of

• a subset of the signature Σ; this subset indicates which function symbols are available to the
intruder when constructing messages

• a formula from a restricted fragment of the logic defined in Section 4.

We call a formulas quantifier-free if it contains none of ∀, ∃, ∃!, or �.

Formally, an assertion is a triple
(Γ,φinit,φalways)

Where Γ⊆ Σ, and φinit,φalways are formulas as defined in Section 4 and are of the following form:

1. φinit is the universal closure of quantifier-free formula,

2. φalways is the universal closure of a formula of the form β→ γ, where β is quantifier-free, and γ
is a positive boolean combination of formulas of Σ1-formulas. A Σ1-formula is a quantifier-free
formula prefixed by a possibly empty sequence of quantifiers ∃P/R : and ∃ !P/R :.

The specification of Γ in an assertion amounts to
∧

f∈Γ
` f ∧

∧

f∈Σ−Γ
6` f

while the formula pertaining to the assertion is

(� ( scenario @ start → φinit))→ φalways

Due to the syntactic restriction on assertions, nameley the fact that the modality � must not occur in
the scope of a quantifier, truth is well-defined for all assertions.
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5.2 Examples

5.2.1 Listing Initial Intruder Knowledge

We can express that “φ holds provided the intruder knows initially exactly the messages m1, . . . ,mn

(and everything he can deduce from this) by

�

(

scenario @ start → xM = [m1, . . . ,mn]
)

→ φ

Note that xM = [m1, . . . ,mn] is not equivalent to ∀x∈ message : ( secret (x)↔ (x 6= m1∨ . . .∨x 6= mn))
The reason is that the set of messages which is not secret is always closed under some set of deductions
rules.

5.2.2 Negative Assertions about Initial Intruder Knowledge

We can express that “whenever the intruder does initially not know m1 then he does not know m2 after
execution of the scenario” by

�

(

scenario @ start → secret (m1)
)

∧ scenario @ end → secret (m2)

5.2.3 Conditional Secrecy

Consider the specification of the Needham-Schroeder public-key protocol in Section ??. Note that
in this version we have explicitly stated how a session is initiated: Alice will start a session with a
principal x when she receives a request of the form init_connection_with(x).

The initial intruder knowledge can be expressed by the following formula ψ:

�

(

scenario @ start →

xM = [alice,bob,intruder,inv(pubkey_of(intruder)),init_connection_with]
)

Hence, the intruder knows his own secret key, and since he knows the function symbol init_connection_with
he can request instances of Alice to start a session with any principal he knows the name of.

Our security assertion is a conditional secrecy property: nonces generated by instances of role Bob
remain secret, except when the instance of Bob was executing a protocol session with the intruder.
This can be expressed as follows:

ψ→∀P/Bob : P.alice_name 6= intruder→ secret(P.my_nonce)

5.2.4 Authentication

We show that the different versions of authentication described in [Low97] can be expressed in our
logics. We assume a setting where we have the two following role definitions:
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• A role initiator, with a parameter myname: principal indicating the name of the principal
executing an instance of this role, and a variable partner: principal indicating the name
of the principal with whom an instance of this role attempts to communicate.

This role has a label end for the control point at the end of the protocol (indicating termination
of the role).

• A role responder, with a parameter myname: principal indicating the name of the principal
executing an instance of this role, and a variable partner: principal indicating the name
of the principal with whom an instance of the role believes to communicate.

Let L be the set of all control points of role responder that are after the last externally visible
action of this role (typically, this means after the last send instruction). Being at some control
point in L corresponds to “having run the protocol”, as discussed in [Low97].

Aliveness

We say that a protocol guarantees to an initiator A aliveness of another agent B if, when-
ever A (acting as an initiator) completes a run of the protocol, apparently with responder
B, then B has been previously running this protocol. [Low97]

Note that this does not state that B has acted as a responder.

This is expressed as follows:

∀A,B/principal :
(

(∃P/initiator : .(P.myname = A∧P.partner = B∧P@end))

→ (∃Q/responder : (Q.myname = B∧
∨

c∈L

Q@c))

∨(∃Q/initiator : (Q.myname = B∧
∨

c∈L

Q@c
)

Weak Agreement

We say that a protocol guarantees to an initiator A weak agreement with another agent
B if, whenever A (acting as initiator) completes a run of the protocol, apparently with
responder B, then B has recently been running the protocol, apparently with A. [Low97]

Note that this does not state that B has acted as a responder.

This is just a variant of the aliveness property, obtained by adding a condition on the variable Q.partner.
However, we cannot express the recentness.

∀A,B/principal :
(

(∃P/initiator : (P.myname = A∧P.partner = B∧P@end))

→ (∃Q/responder : (Q.myname = B∧Q.partner = A

∧
∨

c∈L

Q@c))

∨(∃Q/initiator : (Q.myname = B∧Q.partner = A

∧
∨

c∈L

Q@c))
)
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Non-Injective Agreement

We say that a protocol guarantees to an initiator A non-injective agreement with a re-
sponder B on a set of data items ds if, whenever A (acting as an initiator) completes a
run of the protocol, apparently with responder B, then B has previously been running the
protocol, apparently with A, and B was acting as responder in his run, and the two agents
agreed on the data values corresponding to all variables in ds. [Low97]

This is expressed as follows:

∀A,B/principal : ∀P/initiator : (P.myname = A∧P.partner = B∧P@end

→∃Q/responder : (Q.myname = B∧Q.partner = A

∧
∨

c∈L

Q@c∧
∧

x∈ds

P.x = Q.x))

Agreement

We say that a protocol guarantees to an initiator A agreement with a responder B on a set
of data items ds if, whenever A (acting as an initiator) completes a run of the protocol,
apparently with responder B, then B has previously been running the protocol, apparently
with A, and B was acting as responder in his run, and the two agents agreed on the data
values corresponding to all variables in ds, and each run of A corresponds to a unique run
of B. [Low97]

This extends the condition of Non-injective agreement by demanding that the correspondence between
runs is an injective function.

This is expressed as follows:

∀A,B/principal : ∀P/initiator : (P.myname = A∧P.partner = B∧P@end

→∃ !Q/responder : (Q.myname = B∧Q.partner = A

∧
∨

c∈L

Q@c∧
∧

x∈ds

P.x = Q.x))

34



Chapter 6

Examples

6.1 The IKA-1 Protocol

1 signature
a , b , c : p r i n c i p a l ;
g : symkey ; # the base for the generation of the shared key
m: message ; # the secret message
exp : ( symkey , nonce ) → symkey ;

6 end

role A (myname: p r i n c i p a l )
declare
mynonce : nonce ;

11 begin
new( mynonce ) ;
send ( [ g , exp ( g , mynonce ) ] ) ;
declare
x , y : symkey ;

16 begin
recv ( [ x , y ] ) ;
send ( symcrypt (sym , exp ( x , mynonce ) ,m) ) ;

end ;
end

21

role B (myname: p r i n c i p a l )
declare
mynonce : nonce ;
begin

26 new( mynonce ) ;
declare x , y : symkey ;
begin

recv ( [ x , y ] ) ;
send ( [ exp ( x , mynonce ) , y , exp ( y , mynonce ) ] ) ;
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31 end ;
end

role C (myname: p r i n c i p a l )
declare

36 mynonce : nonce ;
begin

new( mynonce ) ;
declare x , y , z : symkey ;
begin

41 recv ( [ x , y , z ] ) ;
send ( [ exp ( x , mynonce ) , exp ( y , mynonce ) ] ) ;

end ;
end

46 scenario
p a r a l l e l A( a ) | B( b ) | C( c ) end

end

6.2 The Needham-Schroeder Public Key Protocol

# The Needham-Schroeder Protocole with Lowe patch
2

# From the Spore repository :
#
# A,B,S : Principal
# Na,Nb : Nonce

7 # KPa,KPb,KPs,KSa,KSb,KSs : Key
# KPa,KSa : is a key pair
# KPb,KSb : is a key pair
# KPs,KSs : is a key pair
#

12 # 1. A → S : A,B
# 2. S → A : {KPb, B}KSs
# 3. A → B : {Na, A}KPb
# 4. B → S : B,A
# 5. S → B : {KPa, A}KSs

17 # 6. B → A : {Na, Nb, B}KPa
# 7. A → B : {Nb}KPb

signature
a l i ce , bob , i n t r u d e r : p r i n c i p a l ;

22 i n i t _ c o n n e c t i o n _ w i t h : p r i n c i p a l → message ;
pubkey_of : p r i n c i p a l → pubkey ;

end
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# we assume that Alice initiates a session on receiving a request
27 # of the form init_connection_with(name)

role A l i ce (my_name : p r i n c i p a l ; my_key : p r i vkey ;
server_s ignkey : pubkey )

declare
my_nonce , bob_nonce : nonce ;

32 bob_pubkey : pubkey ;
bob_name : p r i n c i p a l ;
begin

recv ( i n i t _ c o n n e c t i o n _ w i t h ( bob_name ) ) ;
send ( [ my_name, bob_name ] ) ;

37 recv ( s ign (asym , inv ( server_s ignkey ) , [ bob_pubkey , bob_name ] ) ) ;
new( my_nonce ) ;
send ( c r yp t (asym , bob_pubkey , [ my_nonce ,my_name ] ) ) ;
recv ( c r yp t (asym , inv ( my_key ) , [ my_nonce , bob_nonce , bob_name ] ) ) ;
send ( c r yp t (asym , bob_pubkey , bob_nonce ) ) ;

42 end

role Bob (my_name : p r i n c i p a l ; my_key : p r i vkey ;
server_s ignkey : pubkey )

declare
47 my_nonce , al ice_nonce : nonce ;

alice_name : p r i n c i p a l ;
a l ice_pubkey : pubkey ;
begin

recv ( c r yp t (asym , inv ( my_key ) , [ al ice_nonce , alice_name ] ) ) ;
52 send ( [ my_name, alice_name ] ) ;

recv ( s ign (asym , inv ( server_s ignkey ) , [ al ice_pubkey , alice_name ] ) ) ;
new( my_nonce ) ;
send ( c r yp t (asym , al ice_pubkey , [ al ice_nonce , my_nonce ,my_name ] ) ) ;
recv ( c r yp t (asym , inv ( my_key ) , my_nonce ) ) ;

57 end

role Server ( my_signkey : p r i vkey )
declare
requester , query : p r i n c i p a l ;

62 begin
recv ( [ requester , query ] ) ;
send ( s ign (asym , my_signkey , [ pubkey_of ( query ) , query ] ) ) ;

end

67 role S e n d _ i n i t i a l _ r e q u e s t (name : p r i n c i p a l )
begin

send ( i n i t _ c o n n e c t i o n _ w i t h (name ) ) ;
end

72 variables
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al ice_key , bob_key , server_key : p r i vkey ;
end

scenario
77 begin

makekey ( asym , server_key ) ;
S e n d _ i n i t i a l _ r e q u e s t ( bob ) ;
p a r a l l e l

A l i ce ( a l i ce , a l ice_key , i nv ( server_key ) )
82 | Bob ( bob , bob_key , i nv ( server_key ) )

| forever Server ( server_key ) end
end

end
end

6.3 The TMN Protocol

# key distribution protocol by Tatebayashi, Matsuzaki, and Newman
2 # see for instancs CACM Nov 1994, page 58

signature
xor : ( message , message ) → message ;
n u l l : message ;

7 mult : ( message , message ) → message ;
one : message ;
inverse : message → message ;

end

12 axioms
declare
bx , by , bz , x , y , z ;
key : pubkey ;
begin

17 # the xor theory
xor ( bx , by ) = xor ( by , bx ) ;
xor ( bx , xor ( by , bz ) ) = xor ( xor ( bx , by ) , bz ) ;
xor ( bx , n u l l ) = bx ;
xor ( bx , bx ) = n u l l ;

22

# multiplication
mult ( x , y ) = mult ( y , x ) ;
mul t ( x , mul t ( y , z ) ) = mult ( mul t ( x , y ) , z ) ;
mul t ( x , one ) = x ;

27 mult ( x , inverse ( x ) ) = one ;

# rsa
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c r yp t ( rsa , key , mul t ( x , c r yp t ( rsa , key , y ) ) ) = c r yp t ( rsa , key , mul t ( x , y ) ) ;
end

32

role a l i c e (my_name, bob_name : p r i n c i p a l ; server_key : pubkey )
declare
my_nonce : nonce ;
shared_nonce : message ;

37 server_message : message ;
begin

new( my_nonce ) ;
send ( [ c r yp t (asym , server_key , my_nonce ) ,my_name, bob_name ] ) ;
recv ( server_message ) ;

42 shared_nonce ← xor ( server_message , my_nonce ) ;
end

role bob (my_name : p r i n c i p a l ; server_key : pubkey )
declare

47 shared_nonce : nonce ;
alice_name : p r i n c i p a l ;
begin

recv ( alice_name ) ;
new( shared_nonce ) ;

52 send ( c r yp t (asym , server_key , shared_nonce ) ) ;
end

role server ( seen_keys : mutable l i s t ( nonce ) ; my_secretkey : p r i vkey )
declare

57 i n i t i a t o r _ n o n c e , partner_nonce : nonce ;
i n i t i a to r_name , partner_name : p r i n c i p a l ;
begin

recv ( [ c r yp t (asym , inv ( my_secretkey ) , i n i t i a t o r _ n o n c e ) ,
i n i t i a to r_name , partner_name ] ) ;

62 i f element ( i n i t i a t o r _ n o n c e , seen_keys )
then

f a i l ;
else

seen_keys ← i n i t i a t o r _ n o n c e : : seen_keys ;
67 send ( [ i n i t i a to r_name , partner_name ] ) ;

recv ( c r yp t ( rsa , i nv ( my_secretkey ) , partner_nonce ) ) ;
send ( xor ( i n i t i a t o r _ n o n c e , partner_nonce ) ) ;

f i ;
end

72

variables
Al ice , Bob : p r i n c i p a l ;
serverkey : p r i vkey ;
seen_keys : mutable l i s t ( nonce ) ;
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77 end

scenario
begin

makekey ( rsa , serverkey ) ;
82 seen_keys ← [ [ ] ] ;

p a r a l l e l
a l i c e ( A l ice , Bob , inv ( serverkey ) )
| bob (Bob , inv ( serverkey ) )
| forever server ( seen_keys , serverkey ) ; end

87 end ;
end

end

6.4 The Electronic Purse Protocol with Symmetric Keys

1 # Electronic Purse version with symmetric keys

signature
# the function F produces a key, which is to be shared between a purse
# and a module, from the master key of the module and the name of the purse

6 F : ( message , message ) → message ;

# the function FS takes a symmetric sign key k and list messages l, and
# returns l signed with k.
FS: ( message , l i s t ( message ) ) → message ;

11

end

# the role of a purse during one transaction
role purse (

16 ep_acqkey , ep_isskey ; # the two keys
myname: p r i n c i p a l ; # the name of the purse
balance : mutable i n t # the balance of the purse
)

declare
21 ep_challenge , sam_challenge : nonce ;

sam_name : message ;
amount : i n t ;
s2 , s3 , s6 : message ;
begin

26 new( ep_chal lenge ) ;
send ( [ myname, ep_chal lenge ] ) ;
recv ( [ sam_name, sam_challenge , s2 ] ) ;
i f s2 6= FS( ep_acqkey , [ [ myname, ep_chal lenge ] ] ) then f a i l ; f i ;
recv ( amount ) ;
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31 balance ← balance − amount ;
s6 ← FS( ep_isskey , [ [ sam_name, sam_challenge , ep_challenge , amount ] ] ) ;
s3 ← FS( ep_acqkey , [ [ sam_name, sam_challenge , ep_challenge , s6 , amount ] ] ) ;
send ( [ s3 , s6 , amount ] ) ;

end
36

# the role of an application module during one transaction
role secure_appl icat ion_module (

acqkey ; # the key
41 myname: p r i n c i p a l ; # the name of the module

balance : mutable i n t ; # the balance of the module
t r ace : mutable l i s t ( message ) # audit

)
declare

46 ep_acqkey : message ;
id_ep , ep_chal lenge : message ;
s2 , s3 , s6 : message ;
sam_challenge : nonce ;
amount : i n t ;

51 begin
recv ( [ id_ep , ep_chal lenge ] ) ;
ep_acqkey ← F( acqkey , id_ep ) ;
s2 ← FS( ep_acqkey , [ [ id_ep , ep_chal lenge ] ] ) ;
send ( [ myname, sam_challenge , s2 ] ) ;

56 recv ( [ s3 , s6 , amount ] ) ;
i f
s3 = FS( ep_acqkey , [ [ myname, sam_challenge , ep_challenge , s6 , amount ] ] )
then

balance ← balance + amount ;
61 t r ace ← s6 : : t race ;

else
f a i l ;

f i ;
end

66

# the keyboard where the user types the sum
role keyboard ( )

declare amount : i n t ;
begin

71 new( amount ) ;
send ( amount ) ;

end

variables
76 ep_isskey ( p r i n c i p a l ) : i n t ; # issuer key of a purse

# alternative : one master issuer key ?
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acqkey : i n t ; # master key
ep_balance ( p r i n c i p a l ) : mutable i n t ; # balance of a purse
sam_balance ( p r i n c i p a l ) : mutable i n t ; # balance of a module

81 t r ace ( p r i n c i p a l ) : mutable l i s t ( message ) ; # audit trail of a module

end

scenario
86 begin

# compute the master key
new( acqkey ) ;

91 # compute the issuer keys per purse
f o r a l l purse : p r i n c i p a l . new( ep_isskey ( purse ) ) ;

# initialize the traces
f o r a l l module : p r i n c i p a l . t race ( module ) ← [ [ ] ] ;

96

# infinitely start parallel sessions between purses and sams, such that
# at every moment a purse or an agent is engaged in at most one
# transaction
forever

101 f o r a l l purse , module : p r i n c i p a l [ 1 ,1 ] .
p a r a l l e l

purse (F ( acqkey , purse ) ,
ep_isskey ( purse ) , purse , ep_balance ( purse ) )

| secure_appl icat ion_module ( acqkey , module ,
106 sam_balance ( module ) , t race )

| keyboard ( )
end ;

end ; # forever
end

111 end # scenario

6.5 The Electronic Purse Protocol with Asymmetric Keys

# Electronic Purse version with asymmetric keys

signature
4 # the function F produces a key, which is to be shared between a purse

# and a module, from the master key of the module and the name of the purse
F : ( message , message ) → message ;

# the function FS takes a symmetric sign key k and list messages l, and
9 # returns l signed with k.
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FS: ( message , l i s t ( message ) ) → message ;

# the hash function
h : l i s t ( message ) → message ;

14

b : i n t ; # the generator of the group

# standard arithmetic functions
exp : ( i n t , i n t ) → i n t ;

19 mult : ( i n t , i n t ) → i n t ;
minus : i n t → i n t ;

# the signing key of the key creation authorit
cer tkey : p r i vkey ;

24

end

axioms
declare

29 x , y , z : i n t ;
begin

x + y = y + x ;
x + ( y + z ) = ( x + y ) + z ;
minus ( x ) + x = 0;

34 x + 0 = x ;
exp ( exp ( x , y ) , z ) = exp ( x , mul t ( y , z ) ) ;
mul t ( exp ( x , y ) , exp ( x , z ) ) = exp ( x , y+z ) ;

end

39 # the role of a purse during one transaction
role purse (

ep_acqkey , ep_isskey ; # the two keys
myname: p r i n c i p a l ; # the name of the purse
balance : mutable i n t ; # the balance of the purse

44 c e r t i f i c a t : message ; # the certificate of the purse
s : i n t # the secret s
)

declare
ep_challenge , sam_challenge : nonce ;

49 sam_name : message ;
amount , coupon : i n t ;
s2 , t , s6 : message ;
p : i n t ; # the public key of the purse
x : i n t ;

54 c : i n t ;
begin

p ← exp ( b , minus ( s ) ) ;
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new( ep_chal lenge ) ;
send ( [ myname, ep_challenge , p , c e r t i f i c a t ] ) ;

59 recv ( [ sam_name, sam_challenge , s2 ] ) ;
i f s2 6= FS( ep_acqkey , [ [ myname, ep_chal lenge ] ] ) then f a i l ; f i ;
recv ( amount ) ;
s6 ← FS( ep_isskey , [ [ sam_name, sam_challenge , ep_challenge , amount ] ] ) ;
new( x ) ;

64 coupon ← exp ( b , x ) ;
t ← h ( [ [ coupon , sam_name, sam_challenge , ep_challenge , s6 , amount ] ] ) ;
send ( t ) ;
recv ( c ) ;
balance ← balance − amount ;

69 send ( [ x + mult ( s , c ) , s6 , amount ] ) ;
end

# the role of an application module during one transaction
74 role secure_appl icat ion_module (

acqkey ; # the key
myname: p r i n c i p a l ; # the name of the module
balance : mutable i n t ; # the balance of the module
signcheckkey : pubkey ; # the key to check a signature

79 t r ace : mutable l i s t ( message ) # audit
)

declare
ep_acqkey : message ;
id_ep , ep_chal lenge : message ;

84 s2 , t , u , s6 : message ;
s3 : i n t ;
sam_challenge : nonce ;
amount : i n t ; # the amount to charge
p : i n t ; # public key of the purse

89 c : i n t ;
begin

recv ( [ id_ep , ep_challenge , p ,
s ign ( rsa , i nv ( signcheckkey ) , [ id_ep , p ] ) ] ) ;

ep_acqkey ← F( acqkey , id_ep ) ;
94 s2 ← FS( ep_acqkey , [ [ id_ep , ep_chal lenge ] ] ) ;

send ( [ myname, sam_challenge , s2 ] ) ;
recv ( t ) ;
new( c ) ;
recv ( [ s3 , s6 , amount ] ) ;

99 u ← mult ( exp ( p , c ) , exp ( b , s3 ) ) ;
i f
t = h ( [ [ u ,myname, sam_challenge , ep_challenge , s6 , amount ] ] )
then

balance ← balance + amount ;
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104 t r ace ← [ s6 , sam_challenge , ep_challenge , amount ] : : t race ;
else

f a i l ;
f i ;

end
109

# the keyboard where the user types the sum
role keyboard ( )

declare amount : i n t ;
begin

114 new( amount ) ;
send ( amount ) ;

end

variables
119 ep_isskey ( p r i n c i p a l ) : i n t ; # iss key of a purse

secre t ( p r i n c i p a l ) : i n t ; # secret key used by the purse
acqkey : i n t ; # master key
ep_balance ( p r i n c i p a l ) : mutable i n t ; # balance of a purse
sam_balance ( p r i n c i p a l ) : mutable i n t ; # balance of a module

124 t r ace ( p r i n c i p a l ) : mutable l i s t ( message ) ; # audit trail of a module

end

scenario
129 begin

# compute the master key
new( acqkey ) ;

134 # compute the purse keys
f o r a l l purse : p r i n c i p a l . begin

new( ep_isskey ( purse ) ) ;
new( sec re t ( purse ) ) ;

end ;
139

# initialize the traces
f o r a l l module : p r i n c i p a l . t race ( module ) ← [ [ ] ] ;

# infinitely start parallel sessions between purses and sams, such that
144 # at every moment a purse or an agent is engaged in at most one

# transaction
forever

f o r a l l purse , module : p r i n c i p a l [ 1 ,1 ] .
p a r a l l e l

149 purse (F ( acqkey , purse ) ,
ep_isskey ( purse ) , purse , ep_balance ( purse ) ,
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s ign (asym , cer tkey , [ purse , exp ( b , minus ( sec re t ( purse ) ) ) ] ) ,
sec re t ( purse ) )
| secure_appl icat ion_module ( acqkey , module ,

154 sam_balance ( module ) ,
i nv ( cer tkey ) ,
t race ( module ) )
| keyboard ( )

end ;
159 end ; # forever

end # begin
end # scenario
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