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1 The PROUVE Protocol Specification Language

The PROU\E specification language for cryptographic protocols is described imQKL Its purpose
is to give means to describe both protocols and the context in which thegede It should allow to
specify a signature of message constructors together with equationaisadéining the semantics of
message constructors.

The sub-language used to define protocols is inspired by existing imgepatigramming lan-
guages. This approach is different from the traditional so-called Aigle-notation which is popular
in the field of cryptographic protocols. This Alice-Bob notation intends tondedi protocol by pre-
senting how an execution between honest participants looks like as seerooyside observer. One
important design objective of the PROBManguage is to give means to describe in an unambiguous
way the actions of the protocol participants. This is achieved by describpigtocol as a set of
distributed programs, so-calledles which are executed by (legitimate) protocol participants.

We use constructs from imperative programming languages as buildingslftodke sub-language
describing roles. However, our language is deliberately not Turimgptete in that we exclude con-
structs that are either not useful for describing protocols or too conipleandle by our verification
tools. The basic instructions are sending and receiving messagestterd paatching. Instructions
are composed by serial composition, conditional branching, case distinatid non-deterministic
choice. All variables have to be explicitly declared (either as local vasableas parameters). Vari-
ables can be write-once (that is, logical variables) or mutable variables.

Roles are composed in so-call&cknarios. The sub-language for scenarios contains constructs
for parallel and sequential composition, and non-deterministic choiceloésalt has assignment
statements, and allows to instantiate roles that have been previously defined.

The accompanying assertion language allows to express safety promértigecution traces of
protocol scenarios.

The design of the PROU¥ specification language has been inspired by the languages muCAPSL
[MDO02] and CASRUL [JRVOQ].

2 The ACTAS Verification Tool

ACTAS is an integrated system for manipulating associative and commutathautemata (AC-tree
automata for short). It has various functions such as for Boolearatipes of AC-tree automata,
computing rewrite descendants, and solving emptiness and membershipnwolbheorder to deal
with high-complexity problems in reasonable time, over- and under-apprtirimalgorithms are
provided. This functionality enables automated verification of safety prppeinfinite state mod-
els. This is useful in the domain of, e.g. network security, in particularséaurity problems of
cryptographic protocols using equational properties of cryptogragpbinites.

In runtime of model construction, a tool support for analysis of stateespggansion is provided.
The intermediate status of the computation is displayed in numerical data tabléealiie graphs
are generated. Besides, a graphical user interface of the systeitgsra user-friendly environment
for convenient use.

The ACTAS tool is developed by Hitoshi Ohsaki and Toshinori TakaéihatNational Institute of
Advanced Industrial Science and Technology (AIST), Kansaiditadapan [OTO05]. It is available at
http://staff.aist.go.jp/hitoshi.ohsaki/actas/index.htm .



3 The Stateless Fragment of PROU¥

We now define the so-callesiateless fragment of the PROUKE specification language. In general,
a PROU\E protocol specification consists of five parts which we describe for pieeial case of
stateless protocols in the following. Finally, we define which forrassertions can be treated by the
translator for the stateless fragment.

3.1 Signature

This optional section defines an extension of the default-signature bygared functions. We have
no particular restriction on the kind of signature extension allowed in the statielgment.

3.2 Axioms

This optional section gives a list of equational axioms which define the dawaithe (both default
and user-defined) function symbols.

3.3 Roles

This required section of a protocol specification defines a set of namedaaameterized programs
which are intended for execution by legitimate protocol participants. A rdimitien is given by
its name, a list of parameters (which in our case must all be call-by-valaengters), and a list of
instructions. In the stateless fragment we allow only two kinds of instructions:

e asend instruction of the forsend(s) wheres is a term, possibly containing parameters of the
role. Its semantic is to send the value of this term on the public channel.

e areceive-send block, consisting of
— an optional declaration of local variables to this block, which must in oue edisby

logical (write-once) variables;

— areceive-instruction of the formecv(r), wherer may contain parameters of the role or
variables declared to this block;

— a send-instruction as before, except thatmay now also contain variables local to that
block which have been instantiated by the preceding receive-instruction.

The semantics of this block is that on recpetion of a term matchedaih matching substitu-
tion o the termso is send on the public channel.

Figure 1 gives an example of a role specification belonging to the statedgssdnt.

3.4 Global Variables

In this optional section we may declare some logical (write-once) variablasyoof the types nt ,
nonce, or nessage. Definition of skolemized variables as defined in [KLTO05] is not allowed in the
stateless fragment.
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role Alice (myname: principal; mynonce: nonce)
begin
send ([ keybase , exp (keybase ,mynonce)]);
declare
X,y: symkey;
begin
recv ([x,y]);
send (symcrypt(sym, exp(x,mynonce), secret))
end;
end

Figure 1: The rolélice in the IKA1 protocol.

scenario
begin
new(nonce_a);
new(nonce_b);
new(nonce_c);
parallel
Alice (alice , nonce_a)
| Bob(bob, nonce_b)
| Charley(charley, nonce_.c)
end
end
end

Figure 2: The scenario of the IKA1 protocol.

3.5 Scenarios

This required section defines how roles are instantiated. In the statelgassint, this section consists
of an (possibly empty) sequenceraw instructions (anew(x) instruction assigns a fresh value to the
variablex), followed by a parallel execution of several role invocations. A roledation consists of
the name of a role and a list of formal parameters, a formal parameter bieimg possibly containing
variables.

Figure 1 gives an example of a scenario belonging to the stateless fragment.

3.6 Assertions

An assertion consists of four parts:

1. The name of the protocol specification it uses.
2. The list of function symbols which can be used by an intruder to corstavcterms.

3. Aninitial formula which expresses an initial condition on the protocol executiongracbe
considered. In case of the stateless fragment, this is a just a finite listwfidjterms which
describe the initial knowledge of an intruder.

3



4.

A safety formula which is intended to be true everywhere on all protocol executemesr

which satisfy the initial formula. In case of the stateless fragment, this formuiatiee form
i ssecret (t) wheret is a ground term, meaning that the intruder is not able to deduce the term
t.

4 Translation of the Stateless Fragment to ACTAS

In this section we describe how the ACTAS input file is constructed fromengPROU\E specifica-
tion in the stateless fragment.

4.1

Comment

The comment section contains the name of the translated assertion file and argwhtha used
translation options.

4.2

Signature

The signature section contains :

4.3

The declaration of all the variables used locally in the rules (but not theabl@iables, since
these are treated as constants), and of the additional variables usedend¢nated term rewrite
system.

All constants, both from the default signature and user-defined ones

A list of function symbols for whichAC-axioms have been given, except when the translation

was done using thenoac optios. With the noac option, all axioms including AC axioms are
translated into term rewrite rules.

The Term Rewrite System

The term rewrite system consists of several parts:

rules corresponding to send instructions: If a ialeith formal parameters contains a send
instructionsend(s) then we generate the term rewrite rule

SR(X)—s
rules corresponding to receive-send blocks: If a ®leith formal parameters contains a
blockrecv(r);send(s) then we generate the term rewrite rule
RS_R(X,r) —s
rules for the Dolev-Yao computation rules, like for instance:
decrypt(x,y, crypt(x,inverse(y),z)) — z

rules corresponding to the equational axioms: For every equationahaxie- e, we generate
the two rules

€ — & & — e
As an exception, AC axioms are not translated like this, except when thenepbac is used
for the translation.



4.4 The Automaton Describing the Intruder Capabilities

The automaton describing the intruder capabilities consists of several lpattie following descrip-
tion, we will use generalized transition rules of the farm> q wheret is a ground term (probably
containing state symbols) amds a state symbol. This can obviously be translated into a system of
flat transition rules by using some fresh auxiliary states.

For every type occurring as type of some (sub-)term of the protocol, the initial intrudemkn
edge, or the secret term we have a state symb@¢lTODO: explain handling of polymorphic types!!)

e Initial intruder knowledge: For every tertrin the initial intruder knowledge we have a transi-
tion
U= Grype(t)

e Functions known to the intruder: For every function symbol

f :typey,...,type, — type

available to the intruder (these are the function symbols from the defaulitaignand those
function symbols from the user-defined signature that have beeneéglablic in the assertion
file) we have a transition:

f (Gtypess - - - » Gtypen) — Chiype

e The type lattice: If the typeype; is smaller than the typiype, then we have a transition

Otype: — Otype,

Note that, due to the existence of polymorphic type constructors in PHOre are infinitely
many types in PROUE. However only a finite number of types can be relevant for a given
protocol specification and assertion.

e Triggering send actions: If a roR, which is invoked with actual parametescontains a send
instructionsend(s) then we generate the term rewrite rule

S,R(é) — Gtype(s)

e Triggering receive-send blocks: If a rdRe which is invoked with actual parametexscontains
a blockr ecv(r);send(s) then we generate the term rewrite rule

RS_R(a, Gtype(r)) — Chype(s)

The accepting state nessage-
In case we use a translation with a bounded depth of message exchasiggption depth n
for n message exchanges) w obtain a more complicated translation:

o Every statey as explained below exists m+ 1 copieSOgep,; - - - , Ostepn -
e The initial intruder knowledge is recognized in step 0.

e The transitions for the function symbols known to the intruder and for theltpee exists for
each step.
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e The transitions for triggering actions have on the left-hand side stategafeste on the right-

sides states of stap- 1, for everyi € 0...n— 1.

e We have new transitions to move up in time: For every typadi € 0...n— 1 we have a

transition

tsep i—~0gep i+1

The accepting state of this automatomigssagesc, o-

4.5 The Automaton Describing the Secret Knowledge

The automaton for the secret knowledge

t — Osecret

wheregscrg IS the accepting state.

5 Examples

5.1 Diffie-Helman

The Diffie-Helman key distribution protocol [DH76] is expressed in PRAELAS follows:
# Diffie-Hel man key exchange

signature
kap: (symkey,int) — symkey;
mult: (int,int) — int;
g: symkey;
secret: message;
alice_expo, bob_expo: int;

end
axioms
declare
X, Y, z . int;
begin
kap(kap(g,x).,y) = kap(g,mult(x,y));
mult (x, mult(y,z)) = mult(mult(x,y),z);
mult(x,y) =mult(y,x);
end

role Alice(my_expo: int)

begin
send (kap (g, my_expo));
declare
bob_message: symkey;
begin

recv (bob_message);
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43

en
end

send (symcrypt (sym, kap (bob_message , my_expo), secret));
d;

role Bob(my_expo: int)
begin
declare

alice_message: symkey;

begin

recv (alice_message);
send (kap (g, my_expo));

end;
end
scenario
parallel
Alice (alice_expo) | Bob(bob_expo)
end
end
The pertaining assertion file is:
uses

"di ffie-hel man. prv"

public
kap

initial

x M=1[ g1l

al ways

i ssecret(secret)

The

ACTAS input generated by our translator is:

[ Coment |

Transl ation of assertion diffie-helman.pra
Transl ation options:

[ Si gnature]

const: O, true, false, sym asym rsa, des, g, secret, alice_expo, bob_expo

var:

al ice_message, bob_message, ny_expo, X, Yy, Z

7



AC. nult
[R-rule: TRS1]
# Actions of Alice
S Alice(nmy_expo) -> kap(g, my_expo)
RS_Ali ce(nmy_expo, bob_nessage) -> syncrypt (sym kap(bob_nessage, my_expo), secret)

# Actions of Bob
RS _Bob(my_expo, al i ce_message) -> kap(g, my_expo)

# Dol ev-Yao sinplification roles
inverse(inverse(x)) -> x

decrypt (x,y, crypt(x,inverse(y),z)) -> z
decrypt (x,inverse(y),crypt(x,y,z)) ->z
synmdecrypt (X, y, symcrypt(x,y,z)) -> z

# Rewriting rules corresponding to the equational axioms
kap(kap(g,x).,y) -> kap(g, mult(x,y))
kap(g, mul't(x,y)) -> kap(kap(g,x),y)

[T-rul e(g_nessage): TAi ntruder]

# initial intruder know edge
g -> q_synkey

# function synmbols known to the intruder

i nverse(qg_pubkey) -> q_privkey

i nverse(q_privkey) -> q_pubkey

i nverse(g_synkey) -> q_synkey

decrypt (q_al go, q_privkey, g_nessage) -> (_message
crypt(qg_al go, g_pubkey, g_nessage) -> g_nessage
syndecrypt (g_symal go, q_synkey, q_nmessage) -> g_nessage
syncrypt (g_symal go, q_synkey, q_nessage) -> (_nessage
s(q_int) -> g_int

O->q.int

true -> q_boo

false -> g_boo

sym-> g_synal go

des -> g_symal go

asym-> q¢_al go

rsa -> g_al go

kap(qg_synkey,g_int) -> q_synkey

# the type lattice
g_int -> g_nessage
g_symal go -> g_message
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g_synkey -> g_nessage

# triggering actions

alice_expo -> g_aux_1

S Alice(qg_aux_1) -> g_synkey

alice_expo -> g_aux_2
RS_Alice(q_aux_2,g_synkey) -> g_nessage
bob_expo -> gq_aux_3

RS_Bob(q_aux_3, g_synkey) -> g_synkey

[T-rul e(g_secret): TAsecret]

secret -> g_secret

Running the ACTAS system on this file reveals that the tegnr et is recognized by the automa-
ton obtained by the ?-fold iteration of calculating rewrite descendants,areliinds the well-known
flaw of this protocol. Here is a term which is bothe accepted by the automatbreamitten by the
rewrite system intgecret :

Subterm State Rewrites to modul®C(mult)
symdecrypt( | g-message | secret

sym, g-symalgo

kap( g-symkey | kap(g,mult(alice_expo,s(0)))

S Alice( g-symkey | kap(g,alice_expo)
alice expo), | g.aux_1
s( g-int
0)), g.int
RS_Alice( g-message | symerypt(sym, kap(g, mult(alice_expo,s(0))), secret)
alice.expo, | g.aux_2

kap( g-symkey
9, g-symkey
S( g-int
0)))) g-int

5.2 Ping-Pong Protocols

The following example is the third protocol example presented in [DEK82¢rd lare several attacks
against this protocol.
The protocol is as follows:

# pi ng-pong protocol 1: [Dol ev, Even, Karp ' 82]

#X—=Y X {MPK(Y)
#Y XY, {MPK(X

signature
alice , bob, charley: principal;
pubkey_of: principal — pubkey;
secret: message;
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17

22

27

32

37

end

role Alice (my_.name, partner_name: principal)
begin
send ([ my_name, crypt (asym,
pubkey_of (partner_name) ,[my_name,
crypt(asym, pubkey_of (partner_.name), secret)])]);
end

role Bob(my.name: principal)
begin
declare
m: message;
partner_name: principal;
begin
recv ([ partner_name , crypt (asym, pubkey_of (my_name) ,[ partner_name ,
crypt(asym, pubkey_of (my_name) m)])]);
send ([my_name, crypt (asym, pubkey_of (partner_name) ,m)]);
end;
end

scenario
begin
parallel
Alice (alice ,bob)
| Bob(bob)
end;
end
end

The pertaining assertion file is:

uses
" pi ngpong3. prv"

public
pubkey_of
initial
X_M=[[ alice, bob, charley ]]

al ways
i ssecret(secret)

The ACTAS input generated by the translator is:

[ Comment |

10



Transl ation of assertion pingpong3.pra
Transl ation options:

[ Si gnat ur e]

const: O true, false, sym asym rsa, des, alice, bob, charley, secret
var: m ny_nane, partner_name, X, x0, x1, y, z

[R-rule: TRS1]

# Actions of Alice
S Alice(nmy_name, partner_name) -> tuple_principal _message(my_name, crypt (asym pubkey_of (partt

# Actions of Bob
RS_Bob(my_nane, tupl e_pri nci pal _message( partner _name, crypt (asym pubkey_of (nmy_nane), tupl e_pri

# Dol ev-Yao sinplification roles

i nverse(inverse(x)) -> x
decrypt (x,y, crypt(x,inverse(y),z)) -
decrypt (x,inverse(y),crypt(x,y,z)) -
symdecrypt (x,y, symcrypt(x,y,z)) -> z
pr_O(tuple_principal _message(x0,x1)) -> x0
pr_1(tupl e_principal _message(x0,x1)) -> x1

[T-rul e(g_nessage): TAi ntruder]

# initial intruder know edge
alice -> qg_principa

bob -> g_principa

charley -> q_principa

# function symbol s known to the intruder

i nverse(qg_pubkey) -> q_privkey

i nverse(qg_privkey) -> q_pubkey

i nverse(g_synmkey) -> q_synkey

decrypt (q_al go, q_privkey, g_nmessage) -> (_message
crypt (qg_al go, g_pubkey, g_nessage) -> g_nessage
syndecrypt (g_synal go, q_synkey, q_nessage) -> q_nessage
syncrypt (g_symal go, q_synkey, q_message) -> qg_nessage
s(g_int) ->q_int

O->q.int

true -> q_boo

false -> g_boo

sym-> qg_synal go

des -> g_symal go

asym-> qg_al go

11



rsa -> g_al go

tupl e_princi pal _message(qg_principal, g_nmessage) -> q_tuple_principal _nessage
pr_O(q_tuple_principal _nmessage) -> q_principal

pr_1(qg_tupl e_principal _nessage) -> g_nessage

pubkey of (g_principal) -> q_pubkey

# the type lattice

g_al go -> g_nessage

g_principal -> g_nessage

g_pubkey -> g_nessage
g_tuple_principal _nessage -> g_nessage

# triggering actions

alice -> g aux_1

bob -> g_aux_2

S Alice(qg_aux_1,q_aux_2) -> g_tuple_principal _nessage

bob -> gq_aux_3

RS_Bob(q_aux_3, g_tuple_principal _message) -> q_tuple_principal _nessage

[T-rul e(qg_secret): TAsecret]

secret -> g_secret
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