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1 The PROUVÉ Protocol Specification Language

The PROUV́E specification language for cryptographic protocols is described in [KLT05]. Its purpose
is to give means to describe both protocols and the context in which they are used. It should allow to
specify a signature of message constructors together with equational axioms defining the semantics of
message constructors.

The sub-language used to define protocols is inspired by existing imperative programming lan-
guages. This approach is different from the traditional so-called Alice-Bob notation which is popular
in the field of cryptographic protocols. This Alice-Bob notation intends to define a protocol by pre-
senting how an execution between honest participants looks like as seen byan outside observer. One
important design objective of the PROUVÉ language is to give means to describe in an unambiguous
way the actions of the protocol participants. This is achieved by describinga protocol as a set of
distributed programs, so-calledroles which are executed by (legitimate) protocol participants.

We use constructs from imperative programming languages as building blocks for the sub-language
describing roles. However, our language is deliberately not Turing-complete in that we exclude con-
structs that are either not useful for describing protocols or too complexto handle by our verification
tools. The basic instructions are sending and receiving messages and pattern matching. Instructions
are composed by serial composition, conditional branching, case distinction, and non-deterministic
choice. All variables have to be explicitly declared (either as local variables, or as parameters). Vari-
ables can be write-once (that is, logical variables) or mutable variables.

Roles are composed in so-calledScenarios. The sub-language for scenarios contains constructs
for parallel and sequential composition, and non-deterministic choice of values. It has assignment
statements, and allows to instantiate roles that have been previously defined.

The accompanying assertion language allows to express safety properties of execution traces of
protocol scenarios.

The design of the PROUV́E specification language has been inspired by the languages muCAPSL
[MD02] and CASRUL [JRV00].

2 The ACTAS Verification Tool

ACTAS is an integrated system for manipulating associative and commutative tree automata (AC-tree
automata for short). It has various functions such as for Boolean operations of AC-tree automata,
computing rewrite descendants, and solving emptiness and membership problems. In order to deal
with high-complexity problems in reasonable time, over- and under-approximation algorithms are
provided. This functionality enables automated verification of safety property in infinite state mod-
els. This is useful in the domain of, e.g. network security, in particular, forsecurity problems of
cryptographic protocols using equational properties of cryptographicpromites.

In runtime of model construction, a tool support for analysis of state space expansion is provided.
The intermediate status of the computation is displayed in numerical data table, andthe line graphs
are generated. Besides, a graphical user interface of the system provides a user-friendly environment
for convenient use.

The ACTAS tool is developed by Hitoshi Ohsaki and Toshinori Takai atthe National Institute of
Advanced Industrial Science and Technology (AIST), Kansai branch, Japan [OT05]. It is available at
http://staff.aist.go.jp/hitoshi.ohsaki/actas/index.html.
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3 The Stateless Fragment of PROUV́E

We now define the so-calledstateless fragment of the PROUV́E specification language. In general,
a PROUV́E protocol specification consists of five parts which we describe for the special case of
stateless protocols in the following. Finally, we define which form ofassertions can be treated by the
translator for the stateless fragment.

3.1 Signature

This optional section defines an extension of the default-signature by user-defined functions. We have
no particular restriction on the kind of signature extension allowed in the stateless fragment.

3.2 Axioms

This optional section gives a list of equational axioms which define the semantics of the (both default
and user-defined) function symbols.

3.3 Roles

This required section of a protocol specification defines a set of named and parameterized programs
which are intended for execution by legitimate protocol participants. A role definition is given by
its name, a list of parameters (which in our case must all be call-by-value parameters), and a list of
instructions. In the stateless fragment we allow only two kinds of instructions:

• a send instruction of the formsend(s) wheres is a term, possibly containing parameters of the
role. Its semantic is to send the value of this term on the public channel.

• a receive-send block, consisting of

– an optional declaration of local variables to this block, which must in our case all by
logical (write-once) variables;

– a receive-instruction of the formrecv(r), wherer may contain parameters of the role or
variables declared to this block;

– a send-instructions as before, except thats may now also contain variables local to that
block which have been instantiated by the preceding receive-instruction.

The semantics of this block is that on recpetion of a term matched byr with matching substitu-
tion σ the termsσ is send on the public channel.

Figure 1 gives an example of a role specification belonging to the stateless fragment.

3.4 Global Variables

In this optional section we may declare some logical (write-once) variables of any of the typesint,
nonce, or message. Definition of skolemized variables as defined in [KLT05] is not allowed in the
stateless fragment.
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1 role A l i ce (myname: p r i n c i p a l ; mynonce : nonce )
begin

send ( [ keybase , exp ( keybase , mynonce ) ] ) ;
declare

x , y : symkey ;
6 begin

recv ( [ x , y ] ) ;
send ( symcrypt (sym , exp ( x , mynonce ) , sec re t ) ) ;

end ;
end

Figure 1: The roleAlice in the IKA1 protocol.

scenario
begin

new( nonce a ) ;
new( nonce b ) ;

5 new( nonce c ) ;
p a r a l l e l

A l i ce ( a l i ce , nonce a )
| Bob ( bob , nonce b )
| Charley ( char ley , nonce c )

10 end
end

end

Figure 2: The scenario of the IKA1 protocol.

3.5 Scenarios

This required section defines how roles are instantiated. In the stateless fragment, this section consists
of an (possibly empty) sequence ofnew instructions (anew(x) instruction assigns a fresh value to the
variablex), followed by a parallel execution of several role invocations. A role invocation consists of
the name of a role and a list of formal parameters, a formal parameter being aterm possibly containing
variables.

Figure 1 gives an example of a scenario belonging to the stateless fragment.

3.6 Assertions

An assertion consists of four parts:

1. The name of the protocol specification it uses.

2. The list of function symbols which can be used by an intruder to construct new terms.

3. An initial formula which expresses an initial condition on the protocol execution traces to be
considered. In case of the stateless fragment, this is a just a finite list of ground terms which
describe the initial knowledge of an intruder.
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4. A safety formula which is intended to be true everywhere on all protocol execution traces
which satisfy the initial formula. In case of the stateless fragment, this formula isof the form
issecret(t) wheret is a ground term, meaning that the intruder is not able to deduce the term
t.

4 Translation of the Stateless Fragment to ACTAS

In this section we describe how the ACTAS input file is constructed from a given PROUV́E specifica-
tion in the stateless fragment.

4.1 Comment

The comment section contains the name of the translated assertion file and a summary of the used
translation options.

4.2 Signature

The signature section contains :

• The declaration of all the variables used locally in the rules (but not the global variables, since
these are treated as constants), and of the additional variables used in thegenerated term rewrite
system.

• All constants, both from the default signature and user-defined ones

• A list of function symbols for whichAC-axioms have been given, except when the translation
was done using the-noac optios. With the-noac option, all axioms including AC axioms are
translated into term rewrite rules.

4.3 The Term Rewrite System

The term rewrite system consists of several parts:

• rules corresponding to send instructions: If a roleR with formal parameters ¯x contains a send
instructionsend(s) then we generate the term rewrite rule

S R(x̄) → s

• rules corresponding to receive-send blocks: If a roleR with formal parameters ¯x contains a
blockrecv(r);send(s) then we generate the term rewrite rule

RS R(x̄,r) → s

• rules for the Dolev-Yao computation rules, like for instance:

decrypt(x,y,crypt(x, inverse(y),z)) → z

• rules corresponding to the equational axioms: For every equational axiom e1 = e2 we generate
the two rules

e1 → e2 e2 → e1

As an exception, AC axioms are not translated like this, except when the option -noac is used
for the translation.
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4.4 The Automaton Describing the Intruder Capabilities

The automaton describing the intruder capabilities consists of several parts. In the following descrip-
tion, we will use generalized transition rules of the formt → q wheret is a ground term (probably
containing state symbols) andq is a state symbol. This can obviously be translated into a system of
flat transition rules by using some fresh auxiliary states.

For every typet occurring as type of some (sub-)term of the protocol, the initial intruder knowl-
edge, or the secret term we have a state symbolqt . (TODO: explain handling of polymorphic types!!)

• Initial intruder knowledge: For every termt in the initial intruder knowledge we have a transi-
tion

t → qtype(t)

• Functions known to the intruder: For every function symbol

f : type1, . . . , typen → type

available to the intruder (these are the function symbols from the default signature and those
function symbols from the user-defined signature that have been declared public in the assertion
file) we have a transition:

f (qtype1, . . . ,qtypen) → qtype

• The type lattice: If the typetype1 is smaller than the typetype2 then we have a transition

qtype1 → qtype2

Note that, due to the existence of polymorphic type constructors in PROUVÉ, there are infinitely
many types in PROUV́E. However only a finite number of types can be relevant for a given
protocol specification and assertion.

• Triggering send actions: If a roleR, which is invoked with actual parameters ¯a, contains a send
instructionsend(s) then we generate the term rewrite rule

S R(ā) → qtype(s)

• Triggering receive-send blocks: If a roleR, which is invoked with actual parameters ¯a, contains
a blockrecv(r);send(s) then we generate the term rewrite rule

RS R(ā,qtype(r)) → qtype(s)

The accepting state isqmessage.
In case we use a translation with a bounded depth of message exchanges (using option-depth n

for n message exchanges) w obtain a more complicated translation:

• Every stateq as explained below exists inn+1 copiesqstep0, . . . ,qstepn .

• The initial intruder knowledge is recognized in step 0.

• The transitions for the function symbols known to the intruder and for the typelattice exists for
each step.
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• The transitions for triggering actions have on the left-hand side states of step i and on the right-
sides states of stepi+1, for everyi ∈ 0. . .n−1.

• We have new transitions to move up in time: For every typet and i ∈ 0. . .n− 1 we have a
transition

qtstep i→qtstep i+1

The accepting state of this automaton isqmessagestep 0.

4.5 The Automaton Describing the Secret Knowledge

The automaton for the secret knowledget is

t → qsecret

whereqsecret is the accepting state.

5 Examples

5.1 Diffie-Helman

The Diffie-Helman key distribution protocol [DH76] is expressed in PROUVÉ as follows:

# Diffie-Helman key exchange

3 signature
kap : ( symkey , i n t ) → symkey ;
mul t : ( i n t , i n t ) → i n t ;
g : symkey ;
secre t : message ;

8 a l ice expo , bob expo : i n t ;
end

axioms
declare

13 x , y , z : i n t ;
begin

kap ( kap ( g , x ) , y ) = kap ( g , mul t ( x , y ) ) ;
mul t ( x , mul t ( y , z ) ) = mult ( mul t ( x , y ) , z ) ;
mul t ( x , y ) =mult ( y , x ) ;

18 end

role A l i ce ( my expo : i n t )
begin

send ( kap ( g , my expo ) ) ;
23 declare

bob message : symkey ;
begin

recv ( bob message ) ;
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send ( symcrypt (sym , kap ( bob message , my expo ) , sec re t ) ) ;
28 end ;

end

role Bob ( my expo : i n t )
begin

33 declare
al ice message : symkey ;

begin
recv ( al ice message ) ;
send ( kap ( g , my expo ) ) ;

38 end ;
end

scenario
p a r a l l e l

43 A l i ce ( a l i ce expo ) | Bob( bob expo )
end

end

The pertaining assertion file is:

uses
"diffie-helman.prv"

public
kap

initial
x_M = [[ g ]]

always
issecret(secret)

The ACTAS input generated by our translator is:

[Comment]

Translation of assertion diffie-helman.pra
Translation options:

[Signature]

const: O, true, false, sym, asym, rsa, des, g, secret, alice_expo, bob_expo
var: alice_message, bob_message, my_expo, x, y, z
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AC: mult

[R-rule: TRS1]

# Actions of Alice
S_Alice(my_expo) -> kap(g,my_expo)
RS_Alice(my_expo,bob_message) -> symcrypt(sym,kap(bob_message,my_expo),secret)

# Actions of Bob
RS_Bob(my_expo,alice_message) -> kap(g,my_expo)

# Dolev-Yao simplification roles
inverse(inverse(x)) -> x
decrypt(x,y,crypt(x,inverse(y),z)) -> z
decrypt(x,inverse(y),crypt(x,y,z)) -> z
symdecrypt(x,y,symcrypt(x,y,z)) -> z

# Rewriting rules corresponding to the equational axioms
kap(kap(g,x),y) -> kap(g,mult(x,y))
kap(g,mult(x,y)) -> kap(kap(g,x),y)

[T-rule(q_message): TAintruder]

# initial intruder knowledge
g -> q_symkey

# function symbols known to the intruder
inverse(q_pubkey) -> q_privkey
inverse(q_privkey) -> q_pubkey
inverse(q_symkey) -> q_symkey
decrypt(q_algo,q_privkey,q_message) -> q_message
crypt(q_algo,q_pubkey,q_message) -> q_message
symdecrypt(q_symalgo,q_symkey,q_message) -> q_message
symcrypt(q_symalgo,q_symkey,q_message) -> q_message
s(q_int) -> q_int
O -> q_int
true -> q_bool
false -> q_bool
sym -> q_symalgo
des -> q_symalgo
asym -> q_algo
rsa -> q_algo
kap(q_symkey,q_int) -> q_symkey

# the type lattice
q_int -> q_message
q_symalgo -> q_message
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q_symkey -> q_message

# triggering actions
alice_expo -> q_aux_1
S_Alice(q_aux_1) -> q_symkey
alice_expo -> q_aux_2
RS_Alice(q_aux_2,q_symkey) -> q_message
bob_expo -> q_aux_3
RS_Bob(q_aux_3,q_symkey) -> q_symkey

[T-rule(q_secret): TAsecret]

secret -> q_secret

Running the ACTAS system on this file reveals that the termsecret is recognized by the automa-
ton obtained by the ?-fold iteration of calculating rewrite descendants, and hence finds the well-known
flaw of this protocol. Here is a term which is bothe accepted by the automaton and rewritten by the
rewrite system intosecret:

Subterm State Rewrites to moduloAC(mult)
symdecrypt( q message secret
sym, q symalgo
kap( q symkey kap(g,mult(alice expo,s(0)))
S Alice( q symkey kap(g,alice expo)
alice expo), q aux 1
s( q int
0)), q int

RS Alice( q message symcrypt(sym,kap(g,mult(alice expo,s(0))),secret)
alice expo, q aux 2
kap( q symkey
g, q symkey
s( q int
0)))) q int

5.2 Ping-Pong Protocols

The following example is the third protocol example presented in [DEK82]. There are several attacks
against this protocol.

The protocol is as follows:

# ping-pong protocol 1: [Dolev,Even,Karp ’82]
2 # X → Y X, {M}Pk(Y)
# Y → X Y, {M}Pk(X)

signature
a l i ce , bob , char ley : p r i n c i p a l ;

7 pubkey of : p r i n c i p a l → pubkey ;
secre t : message ;
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end

role A l i ce (my name , partner name : p r i n c i p a l )
12 begin

send ( [ my name , c r yp t (asym ,
pubkey of ( partner name ) , [ my name ,

c r yp t (asym , pubkey of ( partner name ) , sec re t ) ] ) ] ) ;
end

17

role Bob (my name : p r i n c i p a l )
begin

declare
m: message ;

22 partner name : p r i n c i p a l ;
begin

recv ( [ partner name , c r yp t (asym , pubkey of (my name ) , [ partner name ,
c r yp t (asym , pubkey of (my name ) ,m) ] ) ] ) ;

send ( [ my name , c r yp t (asym , pubkey of ( partner name ) ,m) ] ) ;
27 end ;

end

scenario
begin

32 p a r a l l e l
A l i ce ( a l i ce , bob )

| Bob ( bob )
end ;

end
37 end

The pertaining assertion file is:

uses
"pingpong3.prv"

public
pubkey_of

initial
x_M = [[ alice, bob, charley ]]

always
issecret(secret)

The ACTAS input generated by the translator is:

[Comment]

10



Translation of assertion pingpong3.pra
Translation options:

[Signature]

const: O, true, false, sym, asym, rsa, des, alice, bob, charley, secret
var: m, my_name, partner_name, x, x0, x1, y, z

[R-rule: TRS1]

# Actions of Alice
S_Alice(my_name,partner_name) -> tuple_principal_message(my_name,crypt(asym,pubkey_of(partner_nam

# Actions of Bob
RS_Bob(my_name,tuple_principal_message(partner_name,crypt(asym,pubkey_of(my_name),tuple_principal_message(partner_name,crypt(as

# Dolev-Yao simplification roles
inverse(inverse(x)) -> x
decrypt(x,y,crypt(x,inverse(y),z)) -> z
decrypt(x,inverse(y),crypt(x,y,z)) -> z
symdecrypt(x,y,symcrypt(x,y,z)) -> z
pr_0(tuple_principal_message(x0,x1)) -> x0
pr_1(tuple_principal_message(x0,x1)) -> x1

[T-rule(q_message): TAintruder]

# initial intruder knowledge
alice -> q_principal
bob -> q_principal
charley -> q_principal

# function symbols known to the intruder
inverse(q_pubkey) -> q_privkey
inverse(q_privkey) -> q_pubkey
inverse(q_symkey) -> q_symkey
decrypt(q_algo,q_privkey,q_message) -> q_message
crypt(q_algo,q_pubkey,q_message) -> q_message
symdecrypt(q_symalgo,q_symkey,q_message) -> q_message
symcrypt(q_symalgo,q_symkey,q_message) -> q_message
s(q_int) -> q_int
O -> q_int
true -> q_bool
false -> q_bool
sym -> q_symalgo
des -> q_symalgo
asym -> q_algo
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rsa -> q_algo
tuple_principal_message(q_principal,q_message) -> q_tuple_principal_message
pr_0(q_tuple_principal_message) -> q_principal
pr_1(q_tuple_principal_message) -> q_message
pubkey_of(q_principal) -> q_pubkey

# the type lattice
q_algo -> q_message
q_principal -> q_message
q_pubkey -> q_message
q_tuple_principal_message -> q_message

# triggering actions
alice -> q_aux_1
bob -> q_aux_2
S_Alice(q_aux_1,q_aux_2) -> q_tuple_principal_message
bob -> q_aux_3
RS_Bob(q_aux_3,q_tuple_principal_message) -> q_tuple_principal_message

[T-rule(q_secret): TAsecret]

secret -> q_secret
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