Verification of Indistinguishability Properties

Programme Blanc JCJC (2012-2016)

Stéphanie Delaune

LSV, CNRS & ENS Cachan, Université Paris Saclay, France

Issues

Privacy-type security properties

- **Unlinkability:** a user may make multiple uses of a service or resource without others being able to link these uses together.
- **Anonymity:** a user may use a service or resource without disclosing its identity.
- **Vote privacy:** a voter may vote without revealing his vote to others.

→ specified as a process equivalence, denoted \(P \approx Q \), expressing that \(P \) and \(Q \) are indistinguishable from the attacker’s point of view.

Beyond standard primitives

Modern applications often rely on non-classical cryptographic primitives:

- **Blind signatures** are used to allow e.g. a voter to obtain a signature on his ballot without revealing its content to the signing authority.

\[
\text{check} \left(\text{sign}(m, \text{priv}(k)), \text{pub}(k) \right) = \text{ok}
\]

\[
\text{unblindsign} \left(\text{blind}(m, r), \text{priv}(k) \right) = \text{sign}(m, \text{priv}(k))
\]

- **Exclusive-or (xor)** is used when computation time has to be optimised.

\[
x \oplus 0 = x \quad x \oplus (y \oplus z) = (x \oplus y) \oplus z
\]

→ An attacker may exploit these algebraic properties to mount an attack.

A modular approach

Real life protocols are usually complex and composed of several sub-protocols. Verifying them in isolation is not sufficient!

Example: What about \(A \)'s anonymity?

\[
P_1 : A \rightarrow S : \{ A \}_{\text{pub}(S)}^\text{m} \quad P_2 : A \rightarrow S : \{ N_2 \}_{\text{pub}(S)}^\text{m} \]

\[
S \rightarrow A : N_0
\]

→ identified sufficient conditions under which a modular security analysis is possible.

Results

Decidability results

We provide the first decidability results in the unbounded setting.

1. A characterization of equivalence of protocols (without nonces) in terms of equivalence of pushdown automata (a difficult but decidable problem).

\[
P \approx Q \iff L(A_P) = L(A_Q) \land L(A) = L(B) \iff P_A \approx P_B
\]

2. A decidability result under the following assumptions:

- **Simple process:** each process communicates on a distinct channel.
- **Type compliance:** can be enforced by adding a tag in each cipher.
- **Acyclic dependency graph:** this condition can be easily checked and is satisfied by most of protocols from the literature.

Modularity

We provide some good design principles to make sure that protocols can be analysed in isolation, and used in more complex environment, e.g.

Principle: Adding identifiers (e.g. protocol’s name) in each ciphertext

\[
P_1 : A \rightarrow S : \{ 1, A \}_{\text{pub}(S)}^\text{m} \quad P_2 : A \rightarrow S : \{ 2, N_2 \}_{\text{pub}(S)}^\text{m} \]

\[
S \rightarrow A : N_0
\]

We also provide a tagging mechanism to allow self-composition, and to allow passwords to be safely reused.

→ EASST Best Paper Award at ETAPS 2016.

Automatic tools

Tools dedicated to a bounded number of sessions:

- **Apte** supports non-trivial else branches;
- **Akiss** allows one to consider a wide variety of primitives (e.g. xor).

Tools dedicated to an unbounded number of sessions:

- we extended ProVerif to prove more equivalences;
- **Ukano** is tailored for proving unlinkability on 2-party protocols.

Case studies

E-passport

We consider the BAC, as well as two authentication protocols: PA and AA, as specified by the ICAO standard.

Main results

- several linkability attacks on BAC using Apte;
- the first formal security proof of the fixed version of BAC using Ukano;
- the discovery of several vulnerabilities on PACE (successor of BAC);
- a modular security analysis of BAC/PA/AA.

RFID protocols

We discovered several flaws on various RFID protocols from the literature using Akiss – the only tool able to effectively verify equivalences for protocols that use xor.

→ This work has been completed by Ivan Gazeau (post-doc)

E-voting protocols

We used Akiss to establish vote privacy on the electronic voting protocols by Okamoto and Fujioka et al. which rely on trapdoor commitments and blind signatures.

E-passport

- **Permanent members:** Stéphanie Delaune (LSV, CNRS), David Baelde (LSV, ENS Cachan), and Steve Kremer (LORIA, Inria Nancy Grand Est).