
Description of some case studies

Stéphanie Delaune and Lucca Hirschi

LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France

Abstract. Privacy is a general requirement that needs to be studied
in different contexts. In a previous report, we identify some applications
for wich privacy plays an important role, and with significant interest in
terms of societal impact.

In this report, we describe some case studies that we will use as a guide-
line for our research agenda. Our goal is to establish a repository of
protocols that are representative of the selected applications chosen in
Task 2. We decide to concentrate our efforts on electronic voting proto-
cols and RFID protocols. In addition, we consider two real case studies:
the ICAO standard that specifies the protocols involved in the e-passport
application, and the UMTS standard used in 3G mobile phone systems.

1 Some electronic voting protocols

Privacy-type properties play an important role in e-voting protocols. We consider
two protocols that rely on different mechanisms to ensure some privacy-type
properties such as anonymity or receipt-freeness. They all involve some unusual
cryptographic primitives and can not be analyse using APTE [5] or SPEC [11].
Moreover, the equivalence checked by Proverif is too strong. The only existing
tool that is able to handle these examples (or at least a simplified version of
these protocols) is AKISS [4].

The two protocols we consider highly rely on two specific cryptographic
schemes: bit-commitment and blind signature. For modelling these schemes, we
must deal with complex algebraic relations which are out of the scope of existing
tools except AKISS.

Bit-commitment. This scheme allows a voter to commit a message containing
an hidden value to an agent such that (i) the voter can reveal the value later on;
(ii) the agent is ensured that the revealed value is the same as the one contained
in the message.

Blind Signature. With this scheme, an authority S is able to blindly sign a
message created by a voter. S sends a blind signature to the voter who is then
able to use it to sign a message. The agent S can now verify the signature but
the message remains hidden.

1.1 FOO protocol

In this section we give an informal description of a protocol due to Fujioka,
Okamoto and Ohta [7]. The protocol involves voters, an administrator, verifying
that only eligible voters can cast votes, and a collector, collecting and publishing
the votes. The whole protocol is summarized in Figure 1.

Phase 1. In a first phase, the voter gets a signature on a commitment to his
vote from the administrator. To ensure privacy, blind signatures are used, i.e.
the administrator does not learn the commitment of the vote.

– Voter V selects a vote v and computes the commitment x = commit(v, r)
using a random key r;

– V computes the message e = blind(x, b) using a random blinding factor b;
– V digitally signs e and sends her signature sign(e, priv(V)) to the adminis-

trator A together with her identity;
– A verifies that V has the right to vote, has not voted yet and that the

signature is valid; if all these tests hold, A digitally signs e and sends his
signature sign(e, priv(A)) to V ;

Phase 2. The second phase of the protocol is the actual voting phase.

– V now unblinds sign(e, priv(A)) and obtains y = sign(x, priv(A)), i.e. a signed
commitment to V ’s vote.

– V sends y, A’s signature on the commitment to V ’s vote, to the collector C
using an anonymous channel;

– C checks correctness of the signature y and, if the test succeeds, enters
(ℓ, x, y) into a list as an ℓ-th item.

Phase 3. The last phase of the voting protocol starts, once the collector decides
that he received all votes, e.g. after a fixed deadline. In this phase the voters
reveal the random key r which allows C to open the votes and publish them.

– C publishes the list (ℓi, xi, yi) of commitments he obtained;
– V verifies that her commitment is in the list and sends ℓ, r to C via an

anonymous channel;
– C opens the ℓ-th ballot using the random r and publishes the vote v.

Vote privacy. This scheme has been shown to satisfy the notion of privacy.
To ensure privacy, secrecy of the keys are not needed, and actually it is not
necessary to make some assumptions about the correctness of the administrator
or the collector, who may be corrupt. It is however important to ensure that
voters use the same public key for the administrator.

The use of phases is also crucial for privacy to be respected. When we omit
the synchronisation after the registration phase with the administrator, privacy
is violated. Indeed, consider the following scenario with two voters VA and VB .
Voter VA contacts the administrator. As no synchronisation is considered, voter
VA can send his committed vote to the collector before voter VB contacts the
administrator. As voter VB could not have submitted the committed vote, the
attacker can link this commitment to the first voters identity.

2

Collector Voter

v, priv(V), pub(V)

Administrator

priv(A), pub(A)

Phase 1

new r, new b

x← commit(v, r)
e← blind(x, b)
m1 ← sign(e, priv(V))

〈m1, V 〉

sign(e, priv(A))

Phase 2

y ← unblind(sign(e, priv(A))) = sign(x, priv(A))

y

(l, x, y) ∈ D

Phase 3

Publish D

Find (l, x, y) in D
(l, r)

Publish v

Fig. 1: FOO protocol

Receipt-freeness. This scheme is not receipt-free and was in fact not designed
with receipt-freeness in mind. Indeed, if the voter gives away the random numbers
for blinding and commitment, the coercer can verify that the committed vote
corresponds to the coercers wish and by unblinding the first message, the coercer
can trace which vote corresponds to this particular voter. Moreover, the voter
cannot lie about these values as this will immediately be detected by the coercer.

1.2 Okamoto protocol

In this section we study a protocol due to Okamoto [9] which was designed to
be incoercible. However, Okamoto himself shows a flaw [10].

The authorities managing the election are an administrator for registration,
a collector for collecting the tokens and a timeliness member (denoted by T) for

3

publishing the final tally. The main difference with the protocol due to Fujioka et
al. is the use of a trap-door bit commitment scheme in order to retrieve receipt-
freeness. Such a commitment scheme allows the agent who has performed the
commitment to open it in many ways. Hence, trap-door bit commitment does
not bind the voter to the vote v. Now, to be sure that the voter does not change
her mind at the end (during the opening stage) she has to say how she wants
to open her commitment during the voting stage. This is done by sending the
required information to T through an untappable anonymous channel, i.e. a
physical apparatus by which only voter V can send a message to a party, and
the message is perfectly secret to all other parties. The figure 2 describes the
protocol.

Phase 1. The first phase is similar to the one of the protocol due to Fujioka et
al.. The only change is that tdcommit is a trap-door bit commitment scheme.

Phase 2. The second phase of the protocol is the actual voting phase. Now,
the voter has to say how she wants to open her commitment to the timeliness
member T .

– V sends y, A’s signature on the trap-door commitment to V ’s vote, to the
collector C using an anonymous channel;

– C checks correctness of the signature y and, if the test succeeds, enters (x, y)
into a list.

– V sends (v, r, x) to the timeliness member T through an untappable anony-
mous channel.

Phase 3. The last phase of the voting protocol starts, once the collector decides
that he received all votes, e.g. after a fixed deadline.

– C publishes the list (xi, yi) of trap-door commitments he obtained;
– V verifies that her commitment is in the list;
– T publishes the list of the vote vi in random order and also proves that

he knows the permutation π and the ri’s such that xπ(i) = tdcommit(vi, ri)
without revealing π or the ri’s.

Vote privacy. Privacy can be established as in the previous protocol.

Receipt-freeness. This protocol has been shown to be receipt-free. The idea is
that it is now possible for a voter to vote a (the vote of his choice), but when
outputting secrets to the coercer, he lies and gives him fake secrets to pretend
to cast the vote c (the choice of the coercer). The crucial part is that, using
trap-door commitment and thanks to the fact that the key used to open the
commitment is sent through an untappable anonymous channel, the value given
by the voter to the timeliness member T can be different from the one she
provides to the coercer. Hence, the voter who forged the commitment, provides
to the coercer the one allowing the coercer to retrieve the vote c, whereas she
sends to T the one allowing her to cast the vote a.

4

Collector Timeliness

member

Voter

v, priv(V), pub(V)

Administrator

priv(A), pub(A)

Phase 1

new r, new b

x← tdcommit(v, r)
e← blind(x, b)
m1 ← sign(e, priv(V))

〈m1, V 〉

sign(e, priv(A))

Phase 2

y ← unblind(sign(e,priv(A)))

y

(x, y) ∈ D

(v, r, x)

Phase 3

Publish D Publish (vi)π(i)

Publish a proof for π and (ri)

Fig. 2: Okamoto protocol

Coercion-resistance. This scheme is actually not coercion-resistant. If the coercer
provides the coerced voter with the commitment that he has to use but without
revealing the trap-door, the voter cannot cast her own vote a since the voter
cannot produce fake outputs as she did for receipt-freeness.

2 Some RFID protocols

In this section, we describe several RFID protocols following the description
proposed in [12]. All these protocols have in common to rely on the exclusive
or operator. This operator enjoys some properties that have to be taken into
account during the privacy analysis. For this reason, these protocols are out of
scope of the existing verification tools such as AKISS [4], APTE [5] or SPEC [11].
All these protocols are quite similar, thus we only describe two of them, namely

5

KCL’07 and LAK’06, but some other protocols, e.g. OTYT’06, LD’07, YPL’05,
etc could be used to evaluate the verification algorithms developed during the
project.

KCL’07. The reader and the tag id share the secret key k. The reader starts
by sending a nonce r1. The tag generates another nonce r2 and computes the
message t0 = 〈id⊕r2, h(〈r1, k〉)⊕r2〉. When receiving such a message, the reader
will be able to retrieve r2, and by xoring it with the second component of the
message he received, he will obtained the message h(〈r1, k〉).

Reader

k, id

Tag

k, id

nonce r1
r1

nonce r2

〈id ⊕ r2, h(〈r1, k〉)⊕ r2〉

(id ⊕ r2)⊕ (h(〈r1, k〉)⊕ r2)⊕ id
?
= h(〈r1, k〉)

Fig. 3: KCL’07 protocol

The aim of this protocol is not only to authenticate the tag but also to ensure
its untraceability. An attacker should not be able to observe whether he has seen
the same tag twice or two different tags. An attacker may actually trace the tag
by sending a constant rc instead of a nonce r1. He would then be able to compute
h(〈rc, k〉) by xoring id and the two components of the tag’s response. Since rc is
a constant, this message is an unique attribute of the tag.

LAK’06. We now present a different protocol [8] which does not suffer from this
attack. The main idea is to ask the tag to generate a nonce and to use it to
send a different message for each session. As a consequence of this scheme, the
tag and the reader must derive new keys after completing a session. We suppose
that initially, each tag has his own key k and the reader maintains a database
containing those keys. The reader must store for each tag two keys k and k0
corresponding to the two last keys. Indeed, if the tag has completed entirely the

6

last session then he will use the key k and k0 otherwise. The full protocol is
given in Figure 2.

Reader

k, k0

Tag

k

nonce r1
r1

nonce r2

〈r2, h(r1 ⊕ r2 ⊕ k)〉

h(⊕ r1 ⊕ r2)∈
?D

h(h(r1 ⊕ r2 ⊕ k) ⊕ k ⊕ r1)

k0 ← k; k ← h(k) k ← h(k)

Fig. 4: LAK’06 protocol

The protocol starts similarly to KCL’07. Next, the tag sends
〈r2, h(r1 ⊕ r2 ⊕ k)〉. The reader is then able to compute the function g(k′) =
k′ ⊕ r1 ⊕ r2 and so recognize the tag in the database either with the key k or
k0. He can therefore sends back h(h(r1 ⊕ r2 ⊕ k) ⊕ k ⊕ r1) to the tag who is
now assured that he has been correctly authenticated. In that case he derives
his new key k ← h(k) from the previous one. So do the reader. The previous
attack defeats in this protocol since the attacker could only learn the messages
h(rc ⊕ r2 ⊕ k) which are different for each session (r2 is a nonce generated by
the tag).

Remark that if the tag and the reader kept the same keys then a replay
attack would break the authentication of the tag. An attacker could learn r1
and h(r1 ⊕ r2 ⊕ k) from a previous complete session. He would then respond
to a challenge r′1 by sending back 〈r′1 ⊕ r1 ⊕ r2, h(r1 ⊕ r2 ⊕ k)〉. The tag would
then authenticate the attacker. Nevertheless, this protocol suffers from another
attack on the authentication of the reader [12] (man-in-the-middle attack).

7

3 E-passport application

An e-passport is a paper passport with an RFID chip that stores the critical
information printed on the passport. The International Civil Aviation Organi-
zation (ICAO) standard [1] specifies the communication protocols that are used
to access these information. We do not plan to describe all the protocols that
are specified in the standard but only some of them.

The information stored in the chip is organized in data groups (dg1 to dg19).
For example, dg5 contains a JPEG copy of the displayed picture, and dg7 con-
tains the displayed signature. The verification key vk(skP) of the passport, to-
gether with its certificate sign(vk(skP), skDS) issued by the Document Signer
authority are stored in dg15. The corresponding signing key skP is stored in a
tamper resistant memory, and cannot be read or copied. For authentication pur-
poses, a hash of all the dgs together with a signature on this hash value issued by
the Document Signer authority are stored in a separate file, the Security Object
Document:

sod
def
= 〈sign(h(dg1, . . . , dg19), skDS), h(dg1, . . . , dg19)〉.

The ICAO standard specifies several protocols through which these information
can be accessed. First, the Basic Access Control (BAC) protocol establishes a
key seed xkseed from which two sessions keys xksenc and xksmac are derived.
The purpose of xksenc and xksmac is to prevent skimming and eavesdropping on
the subsequent communication with the e-passport. The BAC protocol is given
in Figure 3. Once the BAC protocol has been successfully executed, the reader
gains access to the information stored in the RFID tag through the Passive
Authentication and the Active Authentication protocols that can be executed
in any order.

The Basic Access Control (BAC) protocol is a session key establishment
protocol. Through BAC , the reader and the passport agree on a key seed xkseed

that is then used to generate an encryption session key (xksenc ← ekg(xkseed))
as well as a mac session key (xksmac ← mkg(xkseed)). These two session keys are
used to secure and provide integrity of subsequent communications. In particular,
they are used to encrypt and mac the messages exchanged during the execution
of the PA and the AA protocols. The security of the BAC protocol relies on two
master keys, ke and km, which are optically retrieved from the passport by the
reader before executing the BAC protocol.

It should be noted that some implementations of the BAC protocol breaches
unlinkability. For example, in the french implementation, the passport tag replies
different error messages depending on whether the nonce in xenc is not nT or
yenc is not a correct mac w.r.t. mac key km [6]. An attacker who does not know
the private keys ke and km could then trace a passport in the following way: (i)
he first eavesdrop a first session between an authentic reader and a tag T and
store m = 〈xenc, yenc〉; (ii) in a different session, he sends the message m and
wait for the tag’s response; (iii.a) if he receives a nonce error then he knows that

8

Passport Tag

ke, km

Reader

ke, km
get C

new nT

nT

new nR, new kR
xenc← senc(〈nR, nT , kR〉, ke)
xmac← mac(xenc, km)

〈xenc, xmac〉

new kT
yenc← senc(〈nT , nR, kT 〉, ke)
ymac← mac(yenc, km)
xkseed← kT ⊕ kR
xksenc ← ekg(xkseed)
xksmac ← mkg(xkseed)

〈yenc, ymac〉

xkseed← kT ⊕ kR
xksenc ← ekg(xkseed)
xksmac ← mkg(xkseed)

Fig. 5: Basic Access Control protocol

the tag succeeded to mac xenc with his own key ke and so this tag is T ; (iii.b)
if he receives a MAC error then he knows that the tag is not T . To avoid the
information leakage of these error messages, a correct implementation should
reply in case of failure a message indistinguishable from 〈yenc, ymac〉 for the
attacker (e.g. 〈n1, n2〉 where n1, n2 are fresh nonces).

The Passive Authentication (PA) protocol is an authentication mechanism
that proves that the content of the RFID chip is authentic (see Figure 6).
Through PA the reader retrieves the information stored in the dgs and the sod .
It then verifies that the hash value stored in the sod corresponds to the one
signed by the Document Signer authority. It further checks that this hash value
is consistent with the received dgs.

The Active Authentication (AA) protocol is an authentication mechanism
that prevents cloning of the passport chip (see Figure 7). It relies on the fact

9

Passport Tag

xksenc, xksmac, skP

Reader

xksenc, xksmac, vk(skP)

xenc← senc(read, xksenc)
xmac← mac(xenc, xksmac)

〈xenc, xmac〉

yenc← senc(〈dg1, . . . , dg19, sod〉, xksenc)
ymac← mac(yenc, xksmac)

〈yenc, ymac〉

Fig. 6: Passive Authentication protocols

that the secret key skP of the passport cannot be read or copied. The reader
sends a random challenge to the passport, that has to return a signature on this
challenge using its private signature key skP . The reader can then verify using the
verification key vk(skP) that the signature was built using the expected passport
key.

If one wants to prove that e-passport ensures a security property he has to
check the whole protocol made of these several smaller sub-protocols. Since the
existing tools scale badly, it would be easier to check each sub-protocol separately
and prove that it is sufficient to ensure the desired property for the e-passport.
This could be achieved by a generic result of composition. This case study will
be useful to develop and validate some composition results.

4 3G mobile phones

One of the services offered to 3G telecommunication users is the possibility to
send SMSs. The SMSs exchanged between phones (or Mobile Stations - MS)
should remain confidential from third parties, and are thus sent encrypted using
the sSMS protocol. Each sent SMS is encrypted with a different ciphering session
key CK shared between the network (or Service Network - SN) and the emitting
MS, and established through the execution of the AKA protocol. We briefly
describe these two protocols below.

The AKA protocol. It achieves mutual authentication between a Mobile Station
(MS) and the network, and allows them to establish shared session keys to be
used to secure subsequent communications. The AKA protocol relies on a secret
long-term key, KIMSI , shared by the MS with identity IMSI and the network.

10

Passport Tag

xksenc, xksmac, skP

Reader

xksenc, xksmac, vk(skP)

new rnd
xenc← senc(〈init, rnd〉, xksenc))
xmac← mac(xenc, xksmac)

〈xenc, xmac〉

new nce
sigma ← sign(〈nce, rnd〉, skP)
yenc← senc(sigma, xksenc)
ymac← mac(yenc, xksmac)

〈yenc, ymac〉

Fig. 7: Active Authentication protocol

This secret long-term key, KIMSI , is assigned to the subscriber by the mobile
operator and stored in the USIM.

The AKA protocol (see Figure 8) consists in the exchange of two messages:
the authentication request and the authentication response. Before sending an
authentication request to the MS, the network computes a fresh random chal-
lenge RAND , and the authentication token AUTN . The functions f1−f5, used to
compute the authentication parameters, are one-way keyed cryptographic func-
tions, and ⊕ denotes the exclusive-or operator. AUTN contains a MAC of the
concatenation of the random number with a sequence number SQNN generated
by the network using an individual counter for each subscriber. A new sequence
number is generated either by increment of the counter or through time based
algorithms as defined in [2]. The sequence number SQNN allows the mobile sta-
tion to verify the freshness of the authentication request to defend against replay
attacks.

The mobile station extracts SQNN from AUTN and checks that: (i) MAC is
a correct mac message w.r.t. KIMSI and replies Macfail if it is not the case; (ii)
the authentication request is fresh (i.e. SQNMS < SQNN) and replies Syncfail
otherwise. If the authentication request is correct (i.e. ϕtest holds) then the
mobile station computes the ciphering key CK and stores them in the assignment
variable xCK . It also computes the authentication response RES and sends
it to the network. The network authenticates the mobile station by verifying
whether the received response is equal to the expected one. If so, the network
also computes the keys CK and stores it in xCK ′.

11

Mobile Station - MS

KIMSI , IMSI,
SQNMS

Service Network - SN

KIMSI , IMSI,
SQNN

new RAND
AK ← f5(RAND,KIMSI)
MAC ← f1(〈SQNN , RAND〉,KIMSI)
AUTN ← 〈SQNN ⊕ AK,MAC〉

Auth Req, RAND, AUTN

if ϕtest

then RES ← f2(RAND,KIMSI)
xCK ← f3(RAND,KIMSI)

else RES ←Mac fail or Sync fail

Auth Resp, RES

if RES = f2(RAND,KIMSI)
then xCK ← f3(RAND,KIMSI)

Fig. 8: The AKA protocol

TheAKA protocol as deployed in real 3G telecommunication systems presents
a linkability attack [3] due to the particular error messages it sends. This attack
is very similar to the linkability attack on french e-passport described in sec-
tion 3. We describe also the fixed version of the AKA protocol proposed in [3]
which relies on a public key infrastructure. In particular, in case of failure, i.e.
ϕtest is not satisfied, the answer RES sent by the MS to the SN is encrypted
using the public key of the SN, i.e. pk(skSN). The fixed AKA protocol is given
in Figure 9.

The sSMS protocol. Once the AKA protocol succeeded and established the two
session keys xCK and xIK (derived from xCK), the sSMS protocol (see Fig-
ure 10) allows a MS to send an SMS to another MS through the Network.

The confidentiality of the sent SMS relies on the session key CK established
through the execution of the AKA protocol between the MS and the network.
The key CK is used to encrypt the two messages exchanged during the execution
of the sSMS procedure.

The is always the MS that initiates the sSMS procedure. It does so by en-
crypting (using a randomized encryption scheme) the content of the SMS it wants
to submit, together with the number of the destination MS, with the session key
CK previously established. The message also contains a constant Submit. The
Network acknowledges the receipt of this message with a reply containing the
time of reception of the submitted SMS encrypted with CK .

Formal methods have been used to prove that unlinkability holds in the fixed
version of the AKA protocol [3]. But the exclusive-or operator has been modeled
by randomized symmetric encryption since the chosen tool (ProVerif) cannot

12

Mobile Station - MS

KIMSI , IMSI,
SQNMS , pk(skSN)

Service Network - SN

KIMSI , IMSI,
SQNN , skSN

new RAND
AK ← f5(RAND,KIMSI)
MAC ← f1(〈SQNN , RAND〉,KIMSI)
AUTN ← 〈SQNN ⊕ AK,MAC〉

Auth Req, RAND, AUTN

if ϕtest

then RES ← f2(RAND,KIMSI)
xCK ← f3(RAND,KIMSI)

else rand

RES ← {Fail}pk(skSN)

Auth Resp, RES

if RES = f2(RAND,KIMSI)
then xCK ← f3(RAND,KIMSI)

Fig. 9: The AKA protocol (variant proposed in [3])

deal with its algebraic properties. Moreover, a compositional result could here
be helpful. It would suffice to verify the AKA and the sSMS protocols separately
in order to make sure that the desired property holds for the whole protocol.

5 Conclusion

This report describes several case studies that we will use as a guideline for our
research agenda in the VIP project. Each case study presents its own challenges.
In particular, RFID protocols often rely on the exclusive or operator that is
out of the scope of the existing verification tools. The two real case studies are
interesting since they are made of several subprotocols. This will allow us to guide

Mobile Station - MS

xCK, xIK

Service Network - SN

xCK, xIK

new SMS, new N

senc(〈Submit,To, SMS,N〉, xCK)

new N ′

senc(〈Ack, N ′〉, xCK)

Fig. 10: The sSMS protocol

13

our research about composition. Moreover, they require a careful modelling of
the error messages to provide a useful privacy analysis.

References

1. PKI for machine readable travel documents offering ICC read-only access. Tech-
nical report, International Civil Aviation Organization, 2004.

2. 3GPP. Technical specification group services and system aspects; 3G security; se-
curity architecture (release 9). Technical Report TS 33.102 V9.3.0, 3rd Generation
Partnership Project, 2010.

3. M. Arapinis, L. I. Mancini, E. Ritter, M. Ryan, N. Golde, K. Redon, and R. Bor-
gaonkar. New privacy issues in mobile telephony: fix and verification. In ACM
Conference on Computer and Communications Security, pages 205–216, 2012.

4. R. Chadha, Ş. Ciobâcă, and S. Kremer. Automated verification of equivalence
properties of cryptographic protocols. In H. Seidl, editor, Programming Languages
and Systems —Proceedings of the 21th European Symposium on Programming
(ESOP’12), volume 7211 of Lecture Notes in Computer Science, pages 108–127,
Tallinn, Estonia, Mar. 2012. Springer.

5. V. Cheval, H. Comon-Lundh, and S. Delaune. Automating security analysis: sym-
bolic equivalence of constraint systems. In J. Giesl and R. Haehnle, editors, Pro-
ceedings of the 5th International Joint Conference on Automated Reasoning (IJ-
CAR’10), volume 6173 of Lecture Notes in Artificial Intelligence, pages 412–426,
Edinburgh, Scotland, UK, July 2010. Springer-Verlag.

6. T. Chothia and V. Smirnov. A traceability attack against e-passports. In Financial
Cryptography and Data Security, pages 20–34. Springer, 2010.

7. A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for large
scale elections. In J. Seberry and Y. Zheng, editors, Advances in Cryptology —
AUSCRYPT ’92, volume 718 of lncs, pages 244–251. Springer Verlag, 1992.

8. S. Lee, T. Asano, and K. Kim. Rfid mutual authentication scheme based on
synchronized secret information. In Symposium on cryptography and information
security, 2006.

9. T. Okamoto. An electronic voting scheme. In N. Terashima and E. Altman, editors,
Advanced IT Tools, IFIP The International Federation for Information Processing,
pages 21–30. Springer US, 1996.

10. T. Okamoto. Receipt-free electronic voting schemes for large scale elections. In
Proc. 5th Int. Security Protocols Workshop, volume 1361 of lncs. Springer, 1997.

11. A. Tiu and J. Dawson. Automating open bisimulation checking for the spi calculus.
In Computer Security Foundations Symposium (CSF), 2010 23rd IEEE, pages 307–
321. IEEE, 2010.

12. T. van Deursen and S. Radomirovic. Attacks on rfid protocols. IACR Cryptology
ePrint Archive, 2008:310, 2008.

14

