
Formalising privacy-type security properties

using the applied pi calculus

Rémy Chrétien and Stéphanie Delaune

LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France

The results presented in this report are partially based on results that have been
published in [4, 3] – works that have been supported by the VIP project and that have

been added at the end of this report.

Abstract. Privacy is a general requirement that needs to be studied in
di↵erent contexts. We identify some applications for wich privacy plays
an important role, and with significant interest in terms of societal im-
pact. Since each application leads to several definitions of privacy, and
raise some particular modelling issues, we concentrate our e↵orts on the
three following applications: electronic voting protocols, RFID tags, and
routing protocols in mobile ad hoc networks. For each application, we
show how to formalise di↵erent notions of privacy in the applied pi cal-
culus (or extension of it).

1 Introduction

Formal methods have proved their usefulness for precisely analysing the security
of protocols. However, most existing results focus on trace properties, that is,
statements that something bad never occurs on any execution trace of a proto-
col. Secrecy and authentication, are typical examples of trace properties. There
are however several security properties, which cannot be defined (or cannot be
naturally defined) as trace properties and require a notion of equivalence. In-
tuitively, two processes P and Q are equivalent, denoted by P ⇡ Q, if for any
process O (the observer) the processes P | O and Q | O are equally able to emit
on a given channel. This means that the process O cannot observe any di↵erence
between the processes P and Q.

We focus here on the notion of static equivalence and trace equivalence pro-
posed in the context of applied pi calculus [1], which is well-suited for the analysis
of security protocols. First, we present the applied pi calculus in Section 2, and
we formally define the notions of equivalence we are interested in.

Then, we consider privacy related properties involved in electronic voting
protocols, in RFID protocols, or in routing protocols. We show how to formalise
those properties, and each time we use an equivalence as a key notion. Those
applications together with the privacy-type security properties are detailed in
the remaining sections.

2 Applied pi calculus

The applied pi calculus [1] is a derivative of the pi calculus that is specialised
for modelling cryptographic protocols. Participants in a protocol are modelled
as processes, and the communication between them is modelled by means of
message passing.

2.1 Syntax

We consider a set of names, which is split into the set N = {a, b, k, n, . . .} of
names of base types and the set Ch of names of channel type (which are used
to name communication channels). We also consider a set of variables X =
{x, y, . . .}, and a signature F consisting of a finite set of function symbols. We
rely on a sort system for terms. The details of the sort system are unimportant,
as long as it distinguishes base types from the channel type. We suppose that
function symbols only operate on and return terms of base types. Terms are
defined as names, variables, and function symbols applied to other terms. We
denote by T (F ,N [X) the set of terms built on F and N [X . Of course function
symbol application must respect sorts and arities.

Example 1. Let F = {aenc/2, adec/2, pk/1, h i/2, proj1/1, proj2/1} be a
signature containing function symbols for asymmetric encryption, decryption
and pairing, each of arity 2, as well as projection symbols and the function
symbol pk, each of arity 1. The term pk(sk) represents the public counterpart of
the private key sk.

In the applied pi calculus, one has plain processes, denoted P,Q,R and ex-

tended processes, denoted by A,B,C. Plain processes are built up in a similar
way to processes in pi calculus except that messages can contain terms rather
than just names. Extended processes add active substitutions and restriction on
variables. In the grammar described below, M and N are terms, n is a name, x
a variable and u is a metavariable, standing either for a name or a variable.

P,Q,R := 0 plain processes
P | Q
!P
new n.P
if M = N then P else Q
in(u, x).P
out(u,N).P

A,B,C := extended processes
P
A | B
new n.A
new x.A
{M/

x

}

{M/
x

} is the active substitution that replaces the variable x with the term M .
Active substitutions generalise the “let” construct: new x.({M/

x

} | P) corre-
sponds exactly to “let x = M in P”. As usual, names and variables have scopes,
which are delimited by restrictions and by inputs. We write fv(A), bv(A), fn(A)
and bn(A) for the sets of free and bound variables and free and bound names

of A, respectively. We say that an extended process is closed if all its variables

2

are either bound or defined by an active substitution. An evaluation context C[]
is an extended process with a hole instead of an extended process.

Active substitutions are useful because they allow us to map an extended
process A to its frame, denoted �(A), by replacing every plain process in A
with 0. A frame is an extended process built up from 0 and active substitutions
by parallel composition and restriction. The frame �(A) accounts for the set of
terms statically possessed by the intruder (but does not take into account for A’s
dynamic behaviour). The domain of a frame ', denoted by dom('), is the set
of variables for which ' defines a substitution (those variables x for which '
contains a substitution {M/

x

} not under a restriction on x).

Example 2. Consider the signature F of Example 1. Let A be the following
process made up of three components in parallel:

A = new s, sk, x1.(out(c1, x1) | in(c1, y).out(c2, adec(y, sk)) | {aenc(s,pk(sk))/x1}).

The first component publishes the message aenc(s, pk(sk)) stored in x1 by send-
ing it on c1. The second receives a message on c1, uses the secret key sk to decrypt
it, and forwards the result on c2. We have �(A) = new s, sk, x1.{aenc(s,pk(sk))/x1}
and dom(�(A)) = ; (since x1 is under a restriction).

2.2 Semantics

We briefly recall the operational semantics of the applied pi calculus (see [1]
for details). First, we associate an equational theory E to the signature F . The
equational theory is defined by a set of equations of the form M = N where
M,N 2 T (F ,X), and induces an equivalence relation over terms: =E is the
smallest congruence relation on terms, which contains all equations M = N in
E, and that is closed under substitution of terms for variables.

Example 3. Considering the signature F of Example 1 we define the equational
theory Eaenc by the equations adec(aenc(x, pk(y)), y) = x and proj

i

(hx1, x2i) = x
i

for i 2 {1, 2}.

Structural equivalence, noted ⌘, is the smallest equivalence relation on ex-
tended processes that is closed under ↵-conversion on names and variables, by
application of evaluation contexts, and satisfying some further basic structural
rules such as A | 0 ⌘ A, associativity and commutativity of |, binding-operator-
like behaviour of new, and when M =E N the equivalences

new x.{M/
x

} ⌘ 0 {M/
x

} ⌘ {N/
x

} {M/
x

} | A ⌘ {M/
x

} | A{M/
x

}

Example 4. Consider the following process:

P = new s, sk.(out(c1, aenc(s, pk(sk))) | in(c1, y).out(c2, adec(y, sk))).

The process P is structurally equivalent to the process A given in Example 2.
We have also that �(P) = 0 ⌘ �(A).

3

The operational semantics of processes in the applied pi calculus is defined by
rules defining two relations: structural equivalence (described above) and internal

reduction, noted
⌧�!. Internal reduction

⌧�! is the smallest relation on extended
processes closed under structural equivalence and application of evaluation con-
texts such that:

out(a, x).P | in(a, x).Q ⌧�! P | Q if M = M then P else Q
⌧�! P

if M = N then P else Q
⌧�! Qwhere M,N are ground terms and M 6=E N

The operational semantics is extended by a labelled operational semantics
enabling us to reason about processes that interact with their environment.

Labelled operational semantics defines the relation
`! where ` is either an input

or an output. We adopt the following rules in addition to the internal reduction
rules. Below, a is a channel name, u is a metavariable, and x is a variable of base
type.

In in(a, x).P
in(a,M)�����! P{M/

x

}

Out-Atom out(a, u).P
out(a,u)�����! P

Open-Atom
A

out(a,u)�����! A0 u 6= a

new u.A
new u.out(a,u)���������! A0

Scope
A

`�! A0 u does not occur in `

new u.A
`�! new u.A0

bn(`) \ fn(B) = ;

Par
A

`�! A0
bv(`) \ fv(B) = ;

A | B `�! A0 | B

Struct
A ⌘ B B

`�! B0 A0 ⌘ B0

A
`�! A0

Note that the labelled transition is not closed under application of evaluation
contexts. Moreover the output of a term M needs to be made “by reference”
using a restricted variable and an active substitution.

2.3 Equivalences

Let A be the alphabet of actions (in our case this alphabet is infinite) where the
special symbol ⌧ 2 A represents an unobservable action. For every ↵ 2 A the
relation

↵�! has been defined in Section 2.2. We consider the relation
↵7! that is the

restriction of
↵�! on closed extended processes. For every w 2 A⇤ the relation

w7!
on closed extended processes is defined in the usual way. By convention A

✏7! A
where ✏ denotes the empty word. For every s 2 (A r {⌧})⇤, the relation

sZ) on
extended processes is defined by: A

sZ) B if, and only if, there exists w 2 A⇤ such
that A

w7! B and s is obtained from w by erasing all occurrences of ⌧ . Intuitively,
A

sZ) B means that A transforms into B by experiment s.

Intuitively, two processes are equivalent if they cannot be distinguished by
any active attacker represented by any context. Equivalences can be used to for-
malise many interesting privacy related properties. The universal quantification

4

over contexts makes equivalences di�cult to verify. Hence, an alternative charac-
terization, namely trace equivalence, is often used. This characterization, recalled
in Definition 2, relies on a direct comparison of labelled transitions rather than
on contexts. First, we introduce a notion of intruder’s knowledge that has been
extensively studied.

Definition 1 (static equivalence ⇠). Two terms M and N are equal in
the frame �, and we write (M =E N)�, if there exists ñ and a substitution �
such that � ⌘ new ñ.�, ñ \ (fn(M) [fn(N)) = ;, and M� =E N�. Two closed

frames �1 and �2 are statically equivalent, �1 ⇠E �2 (or simply �1 ⇠ �2 when

E is clear from the context), when

– dom(�1) = dom(�2), and
– for all terms M,N we have that (M =E N)�1 if and only if (M =E N)�2.

Example 5. Consider �0 = {aenc(s0,pk(sk))/
x1} and �1 = {aenc(s1,pk(sk))/

x1}. We
have (adec(x1, sk) =Eaenc s0)�0 whereas (adec(x1, sk) 6=Eaenc s0)�1, thus �0 6⇠ �1.
However, we have that new sk.�0 ⇠ new sk.�1. This is a non trivial equivalence.
Intuitively, there is no test that allows one to distinguish the two frames since
neither the decryption key, nor the encryption key are available.

For every closed extended process A, we define its set of traces, each trace
consisting in a sequence of actions together with the sequence of sent messages

trace(A) = {(s,�(B)) | A sZ) B for some closed extended process B}.

Definition 2 (trace equivalence ⇡). Let A and B be two closed extended

processes, A and B are trace equivalent, denoted by A ⇡ B, if if for every

(s,') 2 trace(A) such that bn(s) \ fn(B) = ;, there exists (s0,'0) 2 trace(B)
such that s = s0 and ' ⇠ '0

(and conversely).

Example 6. Consider the theory Eaenc, the processes P0 = out(c, aenc(s0, pk(sk)))
and Q0 = out(c, aenc(s1, pk(sk))). We have new sk.P0 ⇡

`

new sk.Q0 whereas
P0 6⇡

`

Q0. These results are direct consequences of the static (in)equivalence
relations stated in Example 5.

In the remaning of the paper, we illustrate how privacy-type security prop-
erties can be expressed by the means of equivalences.

3 Application 1: electronic voting protocols

We report below on some of our e↵orts in using the equivalences of the applied
pi calculus to model privacy-type properties of electronic elections [5, 6], and
more recently [3] in which the notion of everlasting privacy is studied. Those
properties can be expressed informally as follows:

– Vote-privacy : the fact that a particular voter voted in a particular way is
not revealed to anyone.

5

– Everlasting vote-privacy : the fact that a particular voter voted in a particular
way will be not revealed in 20 years (even if the strength of the cryptographic
primitives that are used is eroded with the passage of time).

– Receipt-freeness : a voter does not gain any information (a receipt) which can
be used to prove to a coercer that she voted in a certain way.

– Coercion-resistance: a voter cannot cooperate with a coercer to prove to him
that she voted in a certain way.

3.1 Vote-privacy

The privacy property aims to guarantee that the link between a given voter V
and his vote v remains hidden. A classical device for modelling anonymity is to
ask whether two processes, one in which V

A

votes and one in which V
B

votes,
are equivalent. However, such an equivalence does not hold here as the voters’
identities are revealed (and they need to be revealed at least to the administrator
to verify eligibility). In a similar way, an equivalence of two processes where only
the vote is changed does not hold, because the votes are published at the end of
the protocol. To ensure privacy we need to hide the link between the voter and
the vote and not the voter or the vote itself.

In order to give a reasonable definition of privacy, we suppose that at least
two voters are honest. We denote the voters V

A

and V
B

and their votes a and b.
We say that a voting protocol respects privacy whenever a process where V

A

votes a and V
B

votes b is equivalent to a process where V
A

votes b and V
B

votes a. Formally, we have defined privacy as follows:

Definition 3 (vote-privacy). [5] A voting protocol respects vote-privacy if

S[V
A

{a/
v

} | V
B

{b/
v

}] ⇡ S[V
A

{b/
v

} | V
B

{a/
v

}]

for all possible votes a and b.

Note that this definition is robust even in situations where the result of the
election is such that the votes of V

A

and V
B

are necessarily revealed e.g. if the
vote is unanimous, or if all other voters reveal how they voted. In some protocols
the vote-privacy property may hold even if authorities are corrupt, while other
protocols may require the authorities to be honest. When proving privacy, we
choose which authorities we want to model as honest, by including them in the
context S.

3.2 Everlasting vote-privacy

Here, it is important to model that an attacker may interact with a protocol
today and store some data which may be exploited in the future when his com-
putational power has increased. The fact that the attacker’s power may change
will be modeled using two di↵erent equational theories:

– E0 models the attacker’s capabilities while interacting with the protocol;

6

– E1 models his capabilities when exploiting the published data in the future.

It is also assumed that the attacker does not store all the data that was sent
on the network. We will consider some channels C to be everlasting : data sent
over such channels will remain in the attacker’s knowledge for future analysis
while other data will be “forgotten” and can only be used during the interaction
with the protocol.

Two processes A and B are said to be forward indistinguishable (denoted
with ⇡fwd) if, informally, an attacker cannot observe the di↵erence between A
and B given the computational power modeled by E1, but for executions that
happened in the past, that is over E0 and observing only the information that
was passed through everlasting channels.

Definition 4 (everlasting vote-privacy). [3] A voting protocol respects ever-
lating vote-privacy w.r.t. a set of channels C and equational theories E0 and E1,

if for all possible votes a and b, we have:

1. vote-privacy w.r.t. E0, and

2. forward indistinguishability w.r.t. C and equational theories E0 and E1 for

the following processes:

S[V
A

{a/
v

} | V
B

{b/
v

}] ⇡fwd S[V
A

{b/
v

} | V
B

{a/
v

}]

Note that everlasting vote-privacy is stricly stronger than vote-privacy. When C
corresponds to all channels, we typically get a requirement which is too strong
for practical purposes.

3.3 Receipt-freeness

Similarly to privacy, receipt-freeness may be formalised as an equivalence. How-
ever, we need to model the fact that V

A

is willing to provide secret information,
i.e. the receipt, to the coercer. We assume that the coercer is in fact the attacker
who, as usual in the Dolev-Yao model, controls the public channels. To model
V
A

’s communication with the coercer, we consider that V
A

executes a voting
process V ch

A

which has been modified: inputs and freshly generated names of
base type (i.e. not channel type) are forwarded to the coercer on the channel ch.
We do not forward restricted channel names, as these are used for modelling
purposes, such as physically secure channels, e.g. the voting booth, or the exis-
tence of a PKI which securely distributes keys (the keys are forwarded but not
the secret channel name on which the keys are received). The process A\out(ch,·)

is as the process A, but hiding the outputs on the channel ch.
Intuitively, a protocol is receipt-free if, for all voters V

A

, the process in which
V
A

votes according to the intruder’s wishes is indistinguishable from the one in
which she votes something else. As in the case of privacy, we express this as an
equivalence between two processes. Suppose the coercer’s desired vote is c. Then
we define receipt-freeness as follows:

7

Definition 5 (Receipt-freeness). [5] A voting protocol is receipt-free if there

exists a closed plain process V 0
such that

– V 0\out(chc,·) ⇡ V
A

{a/
v

},
– S[V

A

{c/
v

}chc | V
B

{a/
v

}] ⇡ S[V 0 | V
B

{c/
v

}],

for all possible votes a and c.

As before, the context S in the second equivalence includes those authorities
that are assumed to be honest. V 0 is a process in which voter V

A

votes a but
communicates with the coercer C in order to feign cooperation with him. Thus,
the second equivalence says that the coercer cannot tell the di↵erence between
a situation in which V

A

genuinely cooperates with him in order to cast the
vote c and one in which she pretends to cooperate but actually casts the vote a,
provided there is some counterbalancing voter that votes the other way around.
The first equivalence of the definition says that if one ignores the outputs V 0

makes on the coercer channel chc, then V 0 looks like a voter process V
A

voting a.

The first equivalence of the definition may be considered too strong. Infor-
mally, one might consider that the equivalence should be required only in a
particular S context rather than requiring it in any context (with access to all
the private channels of the protocol). This would result in a weaker definition,
although one which is more di�cult to work with. In fact, the variant definition
would be only slightly weaker. It is hard to construct a natural example which
distinguishes the two possibilities, and in particular it makes no di↵erence to the
case studies we have performed. Therefore, we prefer to stick to Definition 5.

3.4 Coercion-resistance

Coercion-resistance is the third and strongest of the three privacy properties.
Again, it says that the link between a voter and her vote cannot be established by
an attacker, this time even if the voter cooperates with the attacker during the
election process. Such cooperation can include giving to the attacker any data
which the voter gets during the voting process, and using data which the attacker
provides in return. When analysing coercion-resistance, we assume that the voter
and the attacker can communicate and exchange data at any time during the
election process. Coercion-resistance is intuitively stronger than receipt-freeness,
since the attacker has more capabilities. The definition is more involved and can
be found in [5].

We have proved the intuitive relationships between these properties:

Proposition 1. [5, 3] Let V be a voting protocol.

1. If V is coercion-resistant (for a given set of honest authorities), then it also

respects receipt-freeness (for the same set);

2. If V is receipt-free (for a given set of honest authorities), then it also respects

privacy (for the same set);

8

3. If V respects everlasting privacy (for a given set of honest authorities), then

it also respects privacy (for the same set).

The definitions of privacy and receipt-freeness described above have also been
reused and adapted to model privacy and receipt-freeness in on-line auction
systems [7, 8].

4 Application 2: RFID protocols

We report below on some e↵orts in using the equivalences of the applied pi
calculus to model privacy-type properties of RFID protocols. We present below,
on a simple example, the definitions that have been proposed by M. Arapinis
et al. in [2]. Those defintions have then been used to analyse the Basic Access
Control protocol used in electronic passports.

The properties we consider here can be expressed informally as follows:

– anonymity : the fact that a user may use a service or a resource without
disclosing the user’s identity.

– unlinkability : the fact that a user may make multiple uses of a service or a
resource without others being able to link these uses together.

For sake of simplicity, we only present a strong version of each property
so that the properties can be expressed without modifying the processes under
study. Otherwise, it will be necessary to annotate protocols in such a way that
in any trace each observable transition will be accompanied with information on
its initiator. We consider the following example:

P : A ! S : {A}rpk(S)

In protocol P , the agent A simply identifies himself to the server S by sending
him his identity encrypted under S’s public key (using a probabilistic encryption
scheme).

4.1 Anonymity

Anonymity is informally defined by the ISO/IEC standard 15408 as the property
ensuring that a user may use a service or a resource without disclosing the

user’s identity. Formally, strong anonymity has been defined to hold [2] when
an outside observer cannot tell the di↵erence between a system in which the
user with a public known identity id0 executes the analysed protocol, from the
system where id0 is not present at all.

Following this formal definition of anonymity, the protocol

P = new r.out(c, aenc(hr, idi, pk(sk
S

)))

is said to satisfy strong anonymity if the following equivalence holds:

9

new sk
S

. ((!new id . !P) | !P{id0/id})
⇡

new sk
S

.(!new id . !P)

In other words, anonymity is satisfied if an observer cannot tell if the user
id0 (known to the attacker) has been executing the protocol P or not.

4.2 Unlinkability

Unlinkability is informally defined by the ISO/IEC standard 15408 as the prop-
erty ensuring that a user may make multiple uses of a service or a resource

without others being able to link these uses together. Formally, strong unlinkabil-
ity has been defined to hold [2] when a system in which the analysed protocol can
be executed by each user multiple times looks the same to an outside observer
that the system in which the analysed protocol can be executed by each user at
most once.

Again, we can formalise this property for the protocol P using an equivalence:

new sk
S

. (!new id . !P) ⇡ new sk
S

.(!new id . P)

In other words, unlinkability is satisfied if an observer cannot tell if the users
can execute multiple or at most once the protocol P .

5 Application 3: routing protocols

We report below on some e↵orts in using the equivalences of the applied pi calcu-
lus to model privacy-type properties of mobile ad-hoc network routing protocols.
The definitions that have been proposed in [4] and used to analyse the ANODR
routing protocol used for anonymous routing. In order to be expressed, we en-
rich our initial model to take into account the topology of the network and the
tra�c necessary to ensure the privacy properties to hold. These properties can
be informally expressed as follows:

– Indistinguishability: the fact that a particular action, typically done by the
source or the destination of a session of the protocol, can always be executed
by another role of the protocol, and hence conceiling one’s role in this session.

– Unlinkability: the inability for an attacker to link togother two messages of
a same session of the protocol.

– Anonimity: the fact that the source or the destination of a route is never
revealed to anyone.

5.1 Enriching the model

To analyse privacy properties of routing protocols for mobile ad-hoc networks,
we focus only on the case of a passive attacker, i.e. an intruder who can listen to

10

some communications and hence learn information about the participants and
the particular session of the protocol they are running. Because wireless commu-
nication has a limited range and the agents in a wireless routing protocol do not
know a priori the topology of the network, we parametrize our definitions by a
topology : an undirected graph whose nodes represent the agents of the protocol
and edges indicate a neighbour relation between two agents. We moreover iden-
tify a subset of nodes, the malicious nodes, where the passive attacker is indeed
able to listen to emitted messages. This set can be the entire network if needed.

The usual semantics of the applied pi-calculus need to be adapted to take into
account the localization of a process and whether a communication between two
nodes can happen. Dealing with both a passive attacker and localized process
enables us to define a communication rule stating that two nodes can exchange
a message if they are neighbours; and the attacker learns the message if the
outputting node is malicious. A more detailed presentation of these semantics
can be found in [4].

Privacy definition also rely on a number of information absent for the usual
labeled transition systems, and thus unknown to the attacker, such as the role
which executed a particular action, its location, the session of the protocols it
belongs, the source and the intended destination of this instance of the protocol.
This added information is introduced as annotations in the transition system to
use them when specifying privacy properties.

As already illustrated in the previous sections, privacy-type properties are
often formalised using a notion of equivalence. Here, we consider the notion of
equivalence between two traces.

Definition 6 (equivalence of two traces). Let tr1 = K1
s1) (E1;P1;S1;�1)

and tr2 = K2
s2) (E2;P2;S2;�2) be two traces. They are equivalent, denoted

tr1 ⇡E tr2, if s1 = s2 and new E1.�1 ⇠E new E2.�2.

Finally, one cannot hope to achieve privacy on a mobile ad-hoc network
without some tra�c to create some confusion for the attacker. This added tra�c
is modelised through the notion of the extension of a trace: given a trace tr, we
say that tr

+ is an extension of tr, denoted tr 4 tr

+, if actions of tr are present
in tr

+ up to some re-indexing, as well as some other actions, from other sessions
of the protocol.

Given an indice i corresponding to an action in tr (1  i  `), we denote by
ind

i

(tr, tr+) the indice of the corresponding action in tr

+, i.e. ind
i

(tr, tr+) = k
i

.

5.2 Indistinguishability

Indistinguishability deals with the ability for a participant of the protocol to
conceil the role he played in some executation. Formally, a routing protocol is
broken into a set of roles, typically one the source, the destination, and two
additional roles for the forwarding nodes during the request and reply phase.
We say a protocol preserves the indistinguishability of a set of roles Roles if for
any execution with enough tra�c of the protocol where some action is executed

11

by a role in Roles there exists an equivalent execution where the said action is
realized by another role, not in Roles.

Definition 7 (indistinguishability). Let K0 be an initial configuration asso-

ciated to a routing protocol and a topology, and Roles be a set of roles. We say

that K0 preserves indistinguishability w.r.t. Roles if for any annotated trace tr

tr = K0
`1����!

A1,R1

K1
`2����!

A2,R2

. . .
`n����!

An,Rn

K
n

and for any i 2 {1, . . . , n} such that R

i

2 Roles and `
i

6= ⌧ (i.e. `
i

is an action

observed by the attacker), there exist two annotated traces tr

+
and tr

0
such that:

tr 4 tr

+
, tr

+ ⇡ tr

0
, and R

0
indi(tr,tr+) 62 Roles where

tr

0 = K 0
0

`

0
1����!

A

0
1,R

0
1

K 0
1

`

0
2����!

A

0
2,R

0
2

K 0
2 . . .

`

0
n0�����!

A

0
n0 ,R

0
n0

K 0
n

0 .

The trace tr

+ enables us to deal with the aforementioned tra�c needed to
aim at preserving indistinguishability, and ind

i

(tr, tr+) enables us to link actions
for the original trace to its extension.

5.3 Unlinkability

Unlinkability relates to the possibility for the attacker to link together two mes-
sages belonging to the same session of the routing protocol. A session is defined
as a (possibly partial) execution of the protocol initiated by a source to an in-
tended destion, through a number of relaying nodes. To provide unlinkability,
a protocol has to ensure that the relaying is done in a way which hide the link
between incoming and outcoming messages. As with indistinguishability, to ex-
press unlinkability, we need to rely on some tra�c and hence use the notion
of extensions of traces. This definition is moreover parametrized by two sets of
roles: the attacker should not be able to link a message emitted by an agent
playing a role in the first set to another message emitted by a role in the second
set.

Definition 8 (unlinkability). Let K0 be an initial configuration associated to

a routing protocol and a topology, and Roles1, Roles2 be two sets of roles. We say

that K0 preserves unlinkability w.r.t. Roles1/Roles2 if for any annotated trace tr

tr = K0
`1������������!

A1,R1,[sid1,S1,D1]
K1

`2������������!
A2,R2,[sid2,S2,D2]

. . .
`n�������������!

An,Rn,[sidn,Sn,Dn]
K

n

and for any i, j 2 {1, . . . , n} such that R

i

2 Roles1, Rj

2 Roles2, sid i

= sid

j

,

and `
i

, `
j

6= ⌧ (i.e. `
i

, `
j

are actions observed by the attacker), there exist two

annotated traces tr

+
and tr

0
such that: tr 4 tr

+
, tr

+ ⇡ tr

0
, and sid

0
indi(tr,tr+) 6=

sid

0
indj(tr,tr+) where

tr

0 = K 0
0

`

0
1������������!

A

0
1,R

0
1,[sid

0
1,S

0
1,D

0
1]

K 0
1

`

0
2������������!

A

0
2,R

0
2,[sid

0
2,S

0
2,D

0
2]

. . .
`

0
n0��������������!

A

0
n0 ,R

0
n0 ,sid

0
n0 ,S

0
n0 ,D

0
n0

K 0
n

0 .

12

Note that unlinkability is a distinct notion from indistinguishability as it is
possible to design protocols satisfying one and note the other for various sets of
role.

5.4 Anonymity

Finally, anonymity deals more traditionally with the fact that the source or the
destination of a session of the routing protocol remains hidden to anyone but the
source and destination of that said session. Once again, enough tra�c is needed
to achieve such a property.

Definition 9 (anonymity). Let K0 be an initial configuration associated to

a routing protocol and a topology. We say that K0 preserves source anonymity

(resp. destination anonymity) if for any annotated trace tr

tr = K0
`1������������!

A1,R1,[sid1,S1,D1]
K1

`2������������!
A2,R2,[sid2,S2,D2]

. . .
`n�������������!

An,Rn,[sidn,Sn,Dn]
K

n

and for any i 2 {1, . . . , n} such that `
i

6= ⌧ (i.e. `
i

is an action observed by

the attacker), there exist two annotated traces tr

+
and tr

0
such that tr 4 tr

+
,

tr

+ ⇡ tr

0
, and S0

indi(tr,tr+) 6= S
i

(resp. D0
indi(tr,tr+) 6= D

i

) where

tr

0 = K 0
0

`

0
1������������!

A

0
1,R

0
1,[sid

0
1,S

0
1,D

0
1]

K 0
1

`

0
2������������!

A

0
2,R

0
2,[sid

0
2,S

0
2,D

0
2]

. . .
`

0
n0���������������!

A

0
n0 ,R

0
n0 ,[sid

0
n0 ,S

0
n0 ,D

0
n0]

K 0
n

0

Anonymity is distinct from the notions of indistinguishability or unlinkabil-
ity, as examples in [4] demonstrate. Nethertheless, for reasonable protocol, one
could prove that source (resp. destination) anonymity is a stronger notion than
indistinguishability for the corresponding roles.

Proposition 2. Let K0 be an initial configuration associated to a routing pro-

tocol and a topology. If K0 preserves source (resp. destination) anonymity, then

it preserves indistinguishability w.r.t. the set of roles acting as a source (resp.

destination).

6 Conclusion and perspectives

In this report, we gave a brief description of the applied pi calculus [1] which
has been used by many researchers to model and analyse security protocols
in a variety of areas. In such a calculus, the properties of the cryptographic
primitives are modelled by means of an equational theory. This leads to a flexible
calculus suitable to formalise a lot of security protocols. This calculus is however
not su�cient for instance to capture some features needed to model routing
protocols, but it can be easily extended to allow one to model new applications.
Actually, this calculus is particularly suitable to model privacy-type properties
that are encountered in many applications. We present some of them in this
report.

13

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In
Proceedings of the 28th ACM Symposium on Principles of Programming Languages
(POPL’01), pages 104–115, London (United Kingdom), 2001. ACM Press.

2. M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing unlinkability and
anonymity using the applied pi calculus. In Proceedings of the 23rd IEEE Computer
Security Foundations Symposium (CSF’10), pages 107–121. IEEE Computer Society
Press, 2010.

3. M. Arapinis, V. Cortier, S. Kremer, and M. D. Ryan. Practical Everlasting Privacy.
In D. Basin and J. Mitchell, editors, Proceedings of the 2nd Conferences on Princi-
ples of Security and Trust (POST’13), Lecture Notes in Computer Science, Rome,
Italy, Mar. 2013. Springer. To appear.

4. R. Chrétien and S. Delaune. Formal analysis of privacy for routing protocols in
mobile ad hoc networks. In D. Basin and J. Mitchell, editors, Proceedings of the 2nd
International Conference on Principles of Security and Trust (POST’13, Lecture
Notes in Computer Science, Roma, Italy, Mar. 2013. Springer. To appear.

5. S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of elec-
tronic voting protocols. Journal of Computer Security, 17(4):435–487, July 2009.

6. S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of elec-
tronic voting protocols: A taster. In D. Chaum, M. Jakobsson, R. L. Rivest, P. Y. A.
Ryan, J. Benaloh, M. Kuty lowski, and B. Adida, editors, Towards Trustworthy Elec-
tions – New Directions in Electronic Voting, volume 6000 of Lecture Notes in Com-
puter Science, pages 289–309. Springer, May 2010.

7. N. Dong, H. Jonker, and J. Pang. Analysis of a receipt-free auction protocol in the
applied pi calculus. In Proceedings of the 7th International Workshop on Formal
Aspects in Security and Trust (FAST’10), volume 6561 of Lecture Notes in Computer
Science, pages 223–238, Pisa, Italy, 2010. Springer.

8. J. Dreier, P. Lafourcade, and Y. Lakhnech. Formal verification of e-auction proto-
cols. In D. Basin and J. Mitchell, editors, Proceedings of the 2nd Conferences on
Principles of Security and Trust (POST’13), Lecture Notes in Computer Science,
Rome, Italy, Mar. 2013. Springer. To appear.

14

Practical everlasting privacy

Myrto Arapinis1, Véronique Cortier2, Steve Kremer2, and Mark Ryan1

1 School of Computer Science, University of Birmingham
2 LORIA, CNRS, France

Abstract. Will my vote remain secret in 20 years? This is a natural question
in the context of electronic voting, where encrypted votes may be published on
a bulletin board for verifiability purposes, but the strength of the encryption is
eroded with the passage of time. The question has been addressed through a prop-
erty referred to as everlasting privacy. Perfect everlasting privacy may be difficult
or even impossible to achieve, in particular in remote electronic elections. In this
paper, we propose a definition of practical everlasting privacy. The key idea is
that in the future, an attacker will be more powerful in terms of computation (he
may be able to break the cryptography) but less powerful in terms of the data he
can operate on (transactions between a vote client and the vote server may not
have been stored).
We formalize our definition of everlasting privacy in the applied-pi calculus. We
provide the means to characterize what an attacker can break in the future in
several cases. In particular, we model this for perfectly hiding and computation-
ally binding primitives (or the converse), such as Pedersen commitments, and
for symmetric and asymmetric encryption primitives. We adapt existing tools, in
order to allow us to automatically prove everlasting privacy. As an illustration,
we show that several variants of Helios (including Helios with Pedersen commit-
ments) and a protocol by Moran and Naor achieve practical everlasting privacy,
using the ProVerif and the AKiSs tools.

1 Introduction

Electronic voting schemes such as Helios [2], JCJ/Civitas [14, 8], and Prêt-à-Voter [7]
aim simultaneously to guarantee vote privacy (that is, the link between the voter and
her vote will not be revealed), and outcome verifiability (that is, voters and observers
can check that the declared outcome is correct). A common way to achieve verifiability
is to publish a “bulletin board” that contains all encrypted votes (indeed, this is the way
it is done in the systems cited above). The strength and key-length of the encryption
should be chosen so that decryption by an attacker is impossible for as long as the votes
are expected to remain private. To prevent coercer reprisal not just to the voter but also
to her descendants, one may want vote privacy for up to 100 years.

Unfortunately, however, it is not possible to predict in any reliable way how long
present-day encryptions will last. Weaknesses may be found in encryption algorithms,
and computers will certainly continue to get faster. A coercer can plausibly assert that a
voter should follow the coercer’s wishes because the bulletin board will reveal in (say)
10 years whether the voter followed the coercer’s instructions. For this reason, systems
with “everlasting privacy” have been introduced by [18]. These systems do not rely

on encryptions whose strength may be eroded, but on commitments that are perfectly
or information-theoretically hiding. These systems have computational verifiability in-
stead of perfect verifiability, and are considered less usable and computationally more
expensive than systems relying on encryptions. More recently, schemes have been pro-
posed with a weaker form of everlasting privacy (e.g., [10, 12]); they rely on encryptions
for counting votes, but use commitments rather than encryptions for verifiability pur-
poses. Thus, the bulletin board which only publishes the commitments does not weaken
the privacy provided by the underlying scheme. Although the encrypted votes must be
sent to the election administrators, it is assumed that these communications cannot be
intercepted and stored en masse. We call this weaker form of everlasting privacy prac-
tical everlasting privacy.

Symbolic models for security protocol analysis have been used to model both pri-
vacy properties (e.g., [11, 3, 13]) and verifiability properties (e.g.,[16, 17]) of voting
systems, but they are currently not capable of distinguishing perfect versus computa-
tional notions of privacy, or indeed, of verifiability. Our aim in this paper is to extend
the model to allow these distinctions. We focus on practical everlasting privacy, and use
our definitions to verify whether particular schemes satisfy that property.

Our contributions. Our first and main contribution is a general and practical definition
of everlasting privacy. The key idea is that, in the future, an attacker will be more pow-
erful in terms of computation (he may be able to break cryptography) but less powerful
in terms of the data he can operate on (transactions between a vote client and the vote
server may not have been stored). We therefore distinguish between standard communi-
cation channels (on which eavesdropping may be possible, but requires considerable ef-
fort) and everlasting channels, on which the information is intentionally published and
recorded permanently (e.g. web pages that serve as a public bulletin board). Formally,
we model everlasting privacy in the applied-pi calculus [1], a framework well-adapted
to security protocols and already used to define privacy [11] and verifiability [16]. Our
definitions apply not only to voting protocols but also to situations where forward se-
crecy is desirable, such as for instance untraceability in RFID protocols.

Modeling everlasting privacy also requires to precisely model what an attacker can
break in the future. Our second contribution is a characterization, for several primi-
tives, of what can be broken. The first natural primitive is encryption, for which we
provide an equational theory that models the fact that private keys can be retrieved
from public keys, or even from ciphertexts. Some other primitives have been primarily
designed to achieve everlasting privacy. This is the case of perfectly hiding and compu-
tationally binding primitives, such as Pedersen commitments [19]. Intuitively, perfectly
hiding means that the hidden secret cannot be retrieved even by a computationally un-
bounded adversary, while computationally binding means that, binding is ensured only
for a (polynomially) limited attacker. We provide an equational theory that models such
perfectly hiding and computationally binding primitives in general.

As an application, we study everlasting privacy for several variants of Helios [2],
an e-voting protocol used for electing the president of the University of Louvain and
board members of the IACR3. We study in particular its latest variants with Pedersen

3 International Association for Cryptologic Research

commitments [12], designed to achieve everlasting privacy, still providing full verifia-
bility. We also model and prove everlasting privacy of a (simplified) version of Moran
and Naor’s protocol [18]. Interestingly, we were able to adapt algorithms in existing
tools to automate the verification of everlasting privacy and we use adapted versions of
the AKisS [6] and ProVerif [4] tools to analyze everlasting privacy for half a dozen of
protocols.

Outline. In the following section we recall the applied pi calculus and introduce nota-
tions and basic definitions. In Section 3 we define new equivalence relations, namely
forward and everlasting indistinguishability. Then, in Section 4 we instantiate these
equivalences to the case of voting protocols, define everlasting privacy and illustrate
this property on several examples. In Section 5 we present a modeling of perfectly hid-
ing and computationally binding (and vice-versa) primitives in the applied pi calculus.
In particular we model Pedersen commitments, which are for studying two protocols
that provide everlasting privacy. In Section 6 we discuss tool support for automatically
proving everlasting indistinguishability before concluding.

2 The applied pi calculus

The applied pi calculus [1] is a language for modeling distributed systems and their
interactions. It extends the pi calculus with an equational theory, which is particularly
useful for modeling cryptographic protocols. The following subsections describe the
syntax and semantics of the calculus.

2.1 Syntax

Terms. The calculus assumes an infinite set of names N = {a, b, c, . . .}, an infi-
nite set of variables V = {x, y, z, . . .} and a finite signature ⌃, that is, a finite set
of function symbols each with an associated arity. We use meta-variables u, v, w to
range over both names and variables. Terms M,N, T, . . . are built by applying func-
tion symbols to names, variables and other terms. Tuples M1, . . . ,Ml

are occasionally
abbreviated ˜M . We write {M1/

u1, . . . ,Ml/
ul} for substitutions that replace u1, . . . , ul

with M1, . . . ,Ml

. The applied pi calculus relies on a simple type system. Terms can
be of sort Channel for channel names or Base for the payload sent out on these chan-
nels. Function symbols can only be applied to, and return, terms of sort Base. A term is
ground when it does not contain variables.

The signature ⌃ is equipped with an equational theory E, that is a finite set of
equations of the form M = N . We define =

E

as the smallest equivalence relation on
terms, that contains E and is closed under application of function symbols, substitution
of terms for variables and bijective renaming of names.

Example 1. A standard signature for pairing and encryption is:

⌃
enc

= {0, 1, h , i, fst(), snd(), pk(), aenc(, ,), adec(,), senc(, ,), sdec(,)}

The term hm1,m2i represents the concatenation of m1 and m2, with associated projec-
tors fst() and snd(). The term aenc(k, r,m) represents the asymmetric encryption of

P,Q,R ::= processes
0 null process
P | Q parallel composition
!P replication
⌫n.P name restriction
u(x).P message input
uhMi.P message output
if M = N then P else Q conditional

A,B,C ::= extended processes
P plain process
A | B parallel composition
⌫n.A name restriction
⌫x.A variable restriction
{M/

x

} active substitution

where u is either a name or variable of channel sort.

Fig. 1. Applied pi calculus grammar

message m with public key k and randomness r while the associated decryption opera-
tor is adec. Similarly, senc(k, r,m) represents the symmetric encryption of message m
with key k and randomness r. The associated decryption operator is sdec. The proper-
ties of these primitives are modeled by the following standard equational theory E

enc

:

E
enc

=

8
>><

>>:

fst(hx, yi) = x
snd(hx, yi) = y

adec(x, aenc(pk(x), y, z)) = z
sdec(x, senc(x, y, z)) = z

9
>>=

>>;

Processes. The grammar for processes is shown in Figure 1. Plain processes are stan-
dard. Extended processes introduce active substitutions which generalize the classi-
cal let construct: the process ⌫x.({M/

x

} | P) corresponds exactly to the process
let x = M in P . As usual names and variables have scopes which are delimited by
restrictions and by inputs. All substitutions are assumed to be cycle-free.

The sets of free and bound names, respectively variables, in process A are denoted
by fn(A), bn(A), fv(A), bv(A). We also write fn(M), fv(M) for the names, respec-
tively variables, in term M . An extended process A is closed if it has no free variables.
A context C[] is an extended process with a hole. We obtain C[A] as the result of fill-
ing C[]’s hole with A. An evaluation context is a context whose hole is not under a
replication, a conditional, an input, or an output.

Example 2. Throughout the paper we illustrate our definitions with a simplified version
of the Helios voting system [2]. Two techniques can be used for tallying in Helios: either
a homomorphic tally based on El Gamal encryption, or a tally based on mixnets. We
present here the version with mixnets.

1. The voter V computes her ballot by encrypting her vote with the public key pk(skE)

of the election. The corresponding secret key is shared among several election au-
thorities. Then she casts her ballot together with her identity on an authenticated
channel. Upon receiving the ballot, the administrator simply publishes it on a pub-
lic web page (after having checked that V is entitled to vote).

2. Once the voting phase is over, the votes are shuffled and reencrypted through
mixnets. The permuted and rerandomized votes are again published on the pub-
lic web page (together with a zero knowledge proof of correct reencryption and
mixing).

3. Finally, the authorities decrypt the rerandomized votes and the administrator pub-
lishes the decrypted votes (with a zero knowledge proof of correct decryption).

The process representing the voter is parametrized by her vote v, and her identity id .

V (auth, id , v)
def

= ⌫r.authhhid , aenc(pk(skE), r, v)ii
The administrator BB receives votes on private authenticated channels and pub-

lishes the votes. It is parametrized by the authenticated channels of the voters. Then the
ballots are forwarded to the tally T over the private channel c. The tally consists in de-
crypting the vote. The shuffle through mixnets is modeled simply, by non deterministic
parallel composition after all ballots have been received. For simplicity, we consider
here an election system for three voters.

BB(a1, a2, a3)
def

= ⌫c. a1(x). bbhxi. chxi | a2(y). bbhyi. chyi | a3(z). bbhzi. chzi | T
T

def

= c(x0
).c(y0).c(z0).

(bbhadec(skE , snd(x0
))i | bbhadec(skE , snd(y0))i | bbhadec(skE , snd(z0))i)

The process H then represents the whole Helios system with two honest voters and
one dishonest voter (which does therefore not need to be explicitly specified and whose
authenticated channel is public).

H
def

= ⌫skE . ⌫auth1. ⌫auth2.

bbhpk(skE)i. (V (auth1, id1, a) | V (auth2, id2, b) | BB(auth1, auth2, auth3))

The first honest voter casts the vote a while the second honest voter casts the vote b.

2.2 Semantics

The operational semantics of the applied pi calculus is defined by the means of two
relations: structural equivalence and internal reductions. Structural equivalence (⌘) is
the smallest equivalence relation closed under ↵-conversion of both bound names and
variables and application of evaluation contexts such that:

A | 0 ⌘ A ⌫n.0 ⌘ 0

A | (B | C) ⌘ (A | B) | C ⌫u.⌫w.A ⌘ ⌫w.⌫u.A
A | B ⌘ B | A A | ⌫u.B ⌘ ⌫u.(A | B)

!P ⌘ P |!P if u 62 fn(A) [fv(A)

⌫x.{M/
x

} ⌘ 0 {M/
x

} ⌘ {N/
x

}
{M/

x

} | A ⌘ {M/
x

} | A{M/
x

} if M =

E

N

a(x).P
a(M)���! P{M/

x

} A

↵�! A

0
u does not occur in ↵

⌫u.A

↵�! ⌫u.A

0

ahui.P ahui���! P

A

↵�! A

0 bv(↵) \ fv(B) = bn(↵) \ fn(B) = ;
A | B ↵�! A

0 | B

A

ahui���! A

0
u 6= a

⌫u.A

⌫u.ahui�����! A

0

A ⌘ B B

↵�! B

0
A

0 ⌘ B

0

A

↵�! A

0

Fig. 2. Labelled reductions.

Internal reduction (�!) is the smallest relation closed under structural equivalence,
application of evaluation contexts satisfying the following rules:

COMM chxi.P | c(x).Q �! P | Q
THEN if N = N then P else Q �! P
ELSE if L = M then P else Q �! Q

for ground terms L,M where L 6=
E

M

Labelled reduction (↵�!) extends the internal reduction and enables the environment
to interact with the processes as defined in Figure 2. The label ↵ is either an input, or
the output of a channel name or a variable of base type.

We write =) for an arbitrary (possibly zero) number of internal reductions and ↵

=)
for =) ↵�!=). Whenever the equational theory is not clear from the context we annotate
the above relations by the equational theory and write e.g. �!

E

.
A trace of a process is the sequence of actions (i.e. labels) together with the corre-

sponding sent messages. Formally, the set of traces of a process A is defined as follows.
Note that it depends on the underlying equational theory E.

trace
E

(A) = {(↵1 · ↵2 · . . . · ↵n

,'(B)) | A ↵1
=)

E

A1
↵2
=)

E

· · ·A
n�1

↵n
=)

E

B}

Example 3. Consider the process H representing the Helios protocol as defined in Ex-
ample 2. A possible execution for H is:

H
⌫xk. bbhxki
=======) H1

⌫x. bbhxi
=====) ⌫y. bbhyi

=====) auth3(hid3,xi)
=========) ⌫z. bbhzi

=====) ⌫x

0
. bbhx0i

======) ⌫y

0
. bbhy0i

======) ⌫z

0
. bbhz0i

======) H2

where H1 and H2 are defined below (we omit the other intermediate processes). Note
that H2 is simply an active substitution.

H1 = ⌫skE . ⌫auth1. ⌫auth2. ⌫r1.

({pk(skE)/
xk

} | V (auth1, id1, a) | V (auth2, id2, b) | BB(auth1, auth2, auth3))

H2 = ⌫skE . ⌫auth1. ⌫auth2. ⌫r1. ⌫r2.{pk(skE)/
xk

} | {a/
x

0, b/
y

0, a/
z

0} |
{hid1, aenc(pk(skE), r1, a)i/

x

, hid2, aenc(pk(skE), r2, b)i/
y

, hid3, aenc(pk(skE), r1, a)i/
z

}

This execution trace corresponds to the case where the two honest voters cast their vote
as expected, while the dishonest voter replays the first voter’s ballot. As we shall see in
Example 5, this corresponds to the attack on privacy discovered in [9].

2.3 Equivalence Relations for Processes

Privacy is often stated in terms of equivalence [11]. We recall here the definitions of
static and trace equivalence.

Sequences of messages are often stored as frames. Formally, a frame is an extended
process built from 0 and active substitutions {M/

x

}, and closed by parallel composition
and restriction. The domain of a frame � = ⌫ñ. {M1/

x1, . . . ,Mn/
xn} such that x

i

/2 ñ
is dom(�) = {x1, . . . , xn

}. Every extended process A can be mapped to a frame '(A)

by replacing every plain process in A with 0. The frame '(A) represents the static
knowledge output by a process to its environment.

Two frames are indistinguishable to an attacker if it is impossible to build a test that
allows to differentiate between the two.

Definition 1 (Static equivalence). Given an equational theory E two frames � and
are are statically equivalent, denoted � ⇠

E

 , if dom(�) = dom() and there exist
ñ,�, ⌧ such that � ⌘ ⌫ñ.�, ⌘ ⌫ñ.⌧ and for all terms M,N such that ñ \ (fn(M) [
fn(N)) = ;, we have M� =

E

N� if and only if M⌧ =

E

N⌧ . By abuse of notation, we
may write M� instead of M� when � is clear from the context.

Example 4. Let E
enc

be the equational theory defined at Example 1. Let H2 be the
process/frame defined in Example 3. Let � = '(H2) (= H2 actually). Consider the
following frame .

 = ⌫skE . ⌫r1. ⌫r2.{pk(skE)/
xk

} | {a/
x

0, b/
y

0, b/
z

0} |
{hid1, aenc(pk(skE), r1, b)i/

x

, hid2, aenc(pk(skE), r2, a)i/
y

, hid3, aenc(pk(skE), r1, b)i/
z

, }

The two frames � and are not statically equivalent for the equational theory E
enc

.
Indeed, consider for example M = z0 and N = a, we have M� = a = N� but
M = b 6= N . Therefore, � 6⇠

E

enc

 .

The active counterpart of static equivalence is trace equivalence. Intuitively, two
processes A and B are indistinguishable to an attacker if any execution of A can be
matched to an execution of B that is equal for their observable actions and such that the
corresponding sequences of sent messages are statically equivalent.

Definition 2 (Trace equivalence). Given an equational theory E two processes A and
B are trace equivalent, denoted A

tr⇡
E

B, if for any trace (tr
A

,�
A

) 2 trace
E

(A) there
is a corresponding trace (tr

B

,�
B

) 2 trace
E

(B) such that tr
A

= tr
B

and �
A

⇠
E

�
B

(and reciprocally).

Example 5. We consider the Helios system H 0 with two honest voters and one dishon-
est voter where one honest voter casts the vote b while the other one casts the vote a.

H 0 def

= ⌫skE . ⌫auth1. ⌫auth2.

bbhpk(skE)i. (V (auth1, id1, b) | V (auth2, id2, a) | BB(auth1, auth2, auth3))

Let (tr ,�) be the trace corresponding to the execution of H described in Example 3
where � = '(H2) = H2 (as defined in Example 3) and tr = ⌫xk. bbhxki · ⌫x. bbhxi ·
⌫y. bbhyi·auth3(hid3, xi)·⌫z. bbhzi·⌫x0. bbhx0i·⌫y0. bbhy0i·⌫z0. bbhz0i. Then (tr ,�) 2
trace

E

enc

(H) and for any (tr ,�0) 2 trace
E

enc

(H 0
), it is easy to check that we have

� 6⇠
E

enc

�0. (In fact, �0 = from Example 4.) Therefore, H 6 tr⇡
E

enc

H 0

Intuitively, if the dishonest voter’s strategy is to replay the first voter’s vote, then
he would cast a vote of the form hid3, aenc(pk(skE), r1, a)i in the system H while he
would cast a vote of the form hid3, aenc(pk(skE), r1, b)i in the system H 0. Once the
result is published, an attacker would be then able to distinguish H from H 0 since the
tally in H is {a, b, a} while it is {b, a, b} in H 0. This corresponds exactly to the replay
attack against Helios, explained in [9].

3 Forward and everlasting indistinguishability

In this section we introduce and illustrate our definitions of forward and everlasting
indistinguishability. In the next section we will show how the here presented definitions
can be used to define practical everlasting privacy in electronic voting.

3.1 Definitions of forward and everlasting indistinguishability

From now on we suppose that⌃ is a signature and that E0 and E1 are equational theories
over ⌃. We want to model that an attacker may interact with a protocol today and
store some data which may be exploited in the future when his computational power
has increased. We model the fact that the attacker’s computational power may change
by using two different equational theories: E0 models the attacker’s capabilities while
interacting with the protocol at the time of the election, while E1 models his capabilities
when exploiting the published data in the future when the strength of cryptography has
been eroded.

We also argue that in many situations it is reasonable to suppose that the attacker
does not store all of the data that was sent over the network. We will therefore con-
sider some channels to be everlasting: data sent over such channels will remain in the
attacker’s knowledge for future analysis while other data will be “forgotten” and can
only be used during the interaction with the protocol. Typically, everlasting channels
are media such as web-pages published on the Internet (that can easily be accessed by
anyone, for a rather long period of time) while public but non-everlasting channels can
be communications over the Internet, which can be recorded only by the active and
costly involvement of an attacker.

In order to reason about data that has been sent on certain channels we introduce
the following notation. Let P be a process, C a set of channels (corresponding to the

everlasting channels), and tr = (↵1 · ↵2 · . . . · ↵n

,') 2 trace
E

(P) a trace of P . We
define the set of variables in the domain of ' corresponding to terms sent on channels
in C as VC(↵1 · ↵2 · . . . · ↵n

) = {x | c 2 C, 1  i  n, ↵
i

= ⌫x. chxi} and denote by
�V(Pn

) the substitution �(P
n

) whose domain is restricted to the set of variables V .
Two processes A and B are said to be forward indistinguishable if, informally, an

attacker cannot observe the difference between A and B being given the computational
power modeled by E1 (where it can break keys for example), but for executions that
happened in the past, that is over E0 (the standard theory) and observing only the infor-
mation that was passed through everlasting channels.

Definition 3 (Forward indistinguishability). Let A and B be two closed extended

processes and C a set of channels. We define A
fwd

v C
E0,E1

B, if for every trace (↵1 ·
↵2 · · ·↵n

,'
A

) 2 trace
E0(A) there exists '

B

s.t. (↵1 ·↵2 · · ·↵n

,'
B

) 2 trace
E0(B)

and �
AV ⇠

E1 �
BV .

where V = VC(↵1 · ↵2 · · ·↵n

). A and B are forward indistinguishable w.r.t. C, E0 and

E1, denoted A
fwd⇡C

E0,E1
B, if A

fwd

vC
E0,E1

B and B
fwd

vC
E0,E1

A.

Note that in the above definition we only check equivalence of messages that were
sent on channels in the set C. We may also require that A and B are indistinguishable in
the standard way (over E0). Standard indistinguishability and forward indistinguisha-
bility yield everlasting indistinguishability.

Definition 4 (Everlasting indistinguishability). Let A and B be two closed extended
processes, C a set of channels. A and B are everlasting indistinguishable w.r.t. C, E0

and E1, denoted A
ev⇡C

E0,E1
if

1. A
tr⇡
E0B, i.e. A and B are trace equivalent w.r.t. E0; and

2. A
fwd⇡C

E0,E1
B, i.e. A and B are forward indistinguishable w.r.t. C, E0 and E1.

3.2 Examples

We illustrate the above definitions on a simple RFID protocol. In the context of RFID
systems, forward secrecy is often a desired property: even if an RFID tag has been tam-
pered with, and its secrets have been retrieved by a malicious entity, its past transactions
should remain private. This can be seen as a form of everlasting security requirement.
Indeed, RFID tags being devices vulnerable to tampering, one would like to make sure
that when an intruder gains access to an honest device, he is not able to trace back the
movements of the tag. Such tampering can be modelled by the following equational
theory E

break

, that gives direct access to keys.

E
break

=

⇢
break

aenc

(aenc(pk(x), y, z)) = x
break

senc

(senc(x, y, z)) = x

�

We also use this equational theory later to model that in 20 or 30 years an adversary
will be able to break nowadays encryption keys.

Consider the following toy RFID protocol

session = ⌫r. chenc(k, r, id)i
tag = ⌫k. ⌫id. !session
system = !tag

where a tag identifies itself to a reader by sending its tag identifier id encrypted with a
long-term symmetric key shared between the tag and the reader.

We can model unlinkability as being the property that an attacker cannot distinguish
the situation where the same tag is used in several sessions from the situation where
different tags are used. Formally unlinkability is modelled as the trace equivalence:

system
tr⇡
E

enc

system0

where
system0

=!⌫k.⌫id. session.

Intuitively, this protocols satisfies unlinkability only as long as the keys are not leaked.
Indeed, since each identification uses a different random in the encrypted message sent
to the reader, each of the sent messages is different and looks like a random message
to the intruder. However, system and system0 are not forward indistinguishable when
considering a theory E1 which allows to break keys, i.e.,

system 6fwd⇡{c}
E

enc

,E

enc

[E

break

system0

where E
enc

is the equational theory introduced in Example 1. Indeed, once the key k of
a tag is obtained by the intruder, he can retrieve the identity behind each blob he has
seen on channel c, and thus distinguish the set of messages obtained by an execution of
system where the same tag executes at least two sessions, from the set of messages ob-
tained by the corresponding execution of system0 where each tag has executed at most
one session. Thus this protocol does not satisfy the stronger requirement of everlasting
indistinguishability either:

system 6 ev⇡{c}
E

enc

,E

enc

[E

break

system0

4 Application to practical everlasting privacy

We model a practical version of everlasting privacy in voting protocols based on ever-
lasting indistinguishability.

4.1 Definition of practical everlasting privacy

We first recall the definition of vote privacy introduced in [15].

Definition 5 (Vote privacy). Let VP(v
1

, v
2

) be an extended process with two free vari-
ables v1, v2. VP(v

1

, v
2

) respects vote privacy for an equational theory E if

VP(a, b)
tr⇡
E

VP(b, a)

Intuitively, the free variables refer to the votes of two honest voters id
1

and id
2

. Then
this equivalence ensures that an attacker cannot distinguish the situations where voter
id1 voted for candidate a and voter id2 voted for candidate b, from the situation where
the voters swapped their votes, i.e., voter id1 voted for candidate b and voter id2 voted
for candidate a.

Example 6. Let Helios(v1, v2) be the process

⌫skE . ⌫auth1. ⌫auth2.

bbhpk(skE)i. (V (auth1, id1, v1) | V (auth2, id2, v2) | BB(auth1, auth2, auth3))

where processes V and BB are defined in Example 2.
In Example 5, when we illustrated trace equivalence we showed that Helios does

not satisfy vote privacy due to a vote replay attack discovered in [9].
A simple fix of the attack consists in weeding duplicates. The corresponding tally is

T 0 def

= c(x0
).c(y0).c(z0).

if snd(x0
) 6= snd(y0) ^ snd(x0

) 6= snd(z0) ^ snd(y0) 6= snd(z0) then
bbhadec(skE , snd(x0

))i | bbhadec(skE , snd(y0))i | bbhadec(skE , snd(z0))i

In other words, the tally is performed only if there are no duplicates amongst the cast
votes. We define the voting protocol Heliosnoreplay as Helios but with the revised version
T 0 of the tally. Using the tools ProVerif and AKISS we have shown that this protocol
satisfies vote privacy.

Heliosnoreplay(a, b)
tr⇡
E

enc

Heliosnoreplay(b, a)

The above definition of vote privacy does however not take into account that most
cryptographic schemes rely on computational assumptions and may be broken in the
future. In order to protect the secrecy of votes against such attacks in the future we
propose a stronger definition based on forward indistinguishability.

Definition 6 (Everlasting vote privacy). Let VP(v
1

, v
2

) be an extended process with
two free variables v1, v2. VP(v1, v2) satisfies everlasting privacy w.r.t. a set of channels
C and equational theories E0 and E1, if

VP(a, b)
ev⇡C

E0,E1
VP(b, a)

We note that everlasting vote privacy is strictly stronger than vote privacy as it re-
quires trace equivalence of VP(a, b) and VP(b, a) (which is exactly vote privacy) and
additionally forward indistinguishability of these processes. Our definition is paramet-
ric with respect to the equational theories and the channels we suppose to be everlasting.
The equational theory E1 allows us to exactly specify what a future attacker may be able
to break. The set of everlasting channels C allows us to specify what data a future at-
tacker has access to. When C corresponds to all channels we typically get a requirement
which is too strong for practical purposes. We argue that it is reasonable to suppose that
in, say 50 years, an attacker does not have access to the transmissions between individ-
ual voters and the system while a bulletin board published on the Internet could easily
have been stored.

4.2 Examples

Helios with identities As discussed In Example 6, Heliosnoreplay does satisfy vote pri-
vacy. However, this protocol does not satisfy everlasting vote privacy with E0 = E

enc

,
E1 = E

enc

[E
break

and C = {bb}. Intuitively, this is due to the fact that a future attacker
can break encryption and link the recovered vote to the identity submitted together with
the cast ballot. Formally, we can show that

Heliosnoreplay(a, b) 6fwd⇡Heliosnoreplay(b, a)

Consider the trace (⌫xk. bbhxki·⌫x. bbhxi·⌫y. bbhyi,'
A

) 2 trace
E

enc

(Heliosnoreplay(a, b))
where

'
A

= ⌫skE, r1, r2.{ pk(skE)/
xk

,
hid1, aenc(pk(skE), r1, a)i/

x

,
hid2, aenc(pk(skE), r2, b)i/

y

}

Traces (⌫xk. bbhxki · ⌫x. bbhxi · ⌫y. bbhyi,'
B

) 2 trace
E

enc

(Heliosnoreplay(b, a)) are
either such that

'
B

⌘ ⌫skE, r1, r2.{ pk(skE)/
xk

,
hid1, aenc(pk(skE), r1, b)i/

x

,
hid2, aenc(pk(skE), r2, a)i/

y

}

or
'
B

⌘ ⌫skE, r1, r2.{ pk(skE)/
xk

,
hid2, aenc(pk(skE), r1, a)i/

x

,
hid1, aenc(pk(skE), r2, b)i/

y

}

In both cases we have that '
A

6⇠
E

enc

[E

break

'
B

. In the first case this is witnessed by
the test M = a and N = break

aenc

(snd(x)) as

M'
A

= a =

E

enc

[E

break

N'
A

but M'
B

= a 6=
E

enc

[E

break

b =
E

enc

[E

break

N'
B

In the second case non equivalence is witnessed by the test M = id1 and N = fst(x).

Helios without identities As we just saw Heliosnoreplay does not satisfy everlasting
privacy. This is due to the fact that encrypted votes are published together with the
identity of the voter on the bulletin board. A simple variant (used e.g. in Louvain for
student elections) consists in publishing the encrypted vote without the identity of the
voter. We define Heliosnoid as Heliosnoreplay but redefining the process BB0 as

BB0
(a1, a2, a3)

def

= ⌫c. a1(x). bbhsnd(x)i. chxi | a2(y). bbhsnd(y)i. chyi |
a3(z). bbhsnd(z)i. chzi | T 0

where T 0 is as defined at Example 6. As we shall see in Section 6, we prove everlasting
privacy of Heliosnoid w.r.t E

enc

,E
break

and everlasting channel bb, using (adaptations of)
ProVerif and AKISS.

5 Modeling commitments

Commitment schemes allow a sender to commit to a value v while keeping this value
hidden until an ‘opening’ phase, where the sender reveals v to the receiver of the com-
mitment commit(v). The receiver should then be able to verify that the revealed value is
indeed the one used to compute commit(v), and in that sense that the sender had indeed
committed to the revealed value. The two main security properties of such schemes
are binding (the sender can’t claim that commit(v) is a commitment to some v0 6= v),
and hiding (the receiver can’t deduce v from commit(v)). These two properties can
hold ‘perfectly’ or merely ‘computationally’. It is known that there are no commitment
schemes which are both perfectly hiding and perfectly binding, so one has to choose be-
tween perfectly hiding and computationally binding (PHCB) and perfectly binding and
computationally hiding (PBCH). In this section, we characterize in our formal model
what it means for a primitive to be PHCB and PBCH. We also give equational theories
to model such primitives, which we then use for the verification of two voting protocols
that rely on such primitives to ensure everlasting vote privacy.

5.1 Modeling hiding and binding cryptographic primitives

PBCH primitives Informally, an n-ary function f is perfectly binding if the inputs are
totally determined by the output. In other words, f is perfectly binding if it admits no
collisions. It is computationally hiding if it is hard to retrieve the inputs from the output.

To model a PBCH primitive f using the applied pi calculus, we introduce two equa-
tional theories Ef

0 and Ef

1 over the signature ⌃ = {f, break1
f

, . . . , breakn
f

}, such that no
equation of the form

f(M1, . . . ,Mn

) =

E

f(N1, . . . , Nn

)

is derivable, where (M1, . . . ,Mn

) 6=
E

(N1, . . . , Nn

) and E 2 {Ef

0,E
f

1}; and that the
equation

breaki
f

(f(v1, . . . , vn)) =
E

f

1
v
i

.

is derivable. As before, Ef

0 models the capabilities of a computationally bounded at-
tacker interacting with the protocol, while Ef

1 models the capabilities of a computation-
ally unbounded attacker in the future.

Example 7. A trivial example of a perfectly binding function is the identity function id.
However, id is not hiding.

Example 8. An example of a PBCH primitive is the ElGamal public key derivation
function. Given multiplicative cyclic group G of order q with generator g, to generate a
private and public key pair Alice does the following:

1. she chooses at random her private key sk 2 {1, . . . , q � 1},
2. she computes and publishes her public key pk

G,g,q

(sk) = gsk.

The secret key sk is totally determined by the public key pk
G,g,q

(sk) = gsk. It is
however as hard to find sk from pk

G,g,q

(sk) as it is to compute discrete logarithms.

Thus, to reason about protocols relying on ElGamal encryption we consider the fol-
lowing equational theories over the signature {aenc

G,g,q

, adec
G,g,q

, pk
G,g,q

, break
pkG,g,q

}
(we omit the subscripts G, g, q for readability):

EElGamal

0 = {adec(xk, aenc(pk(xk), xr, xm)) = xm}

EElGamal

1 =

⇢
adec(xk, aenc(pk(xk), xr, xm)) = xm
break

pk

(pk(xk)) = xk

�

The function pk
G,g,q

is PBCH. Note however that the encryption algorithm aenc
G,g,q

is not PBCH, since it is not perfectly binding. Indeed, given the parameters G, q, and g,
to encrypt the message m with the public key gsk, Alice would

1. pick a random r 2 {0, . . . , q � 1} and comput c1 = gr;
2. compute the secret shared key s = (gsk)r; and
3. computer c2 = m.s

The computed ciphertext is then aenc(pk(sk), r,m) = (c1, c2) = (gr,m.(gsk)r).
Hence, for any public key pk(sk0) = gsk

0
, there exists a message m0

= m.(gsk)r/(gsk
0
)

r

such that aenc(pk(sk), r,m) = aenc(pk(sk0), r,m0
). Thus, ElGamal encryption is not

perfectly binding.

PHCB primitives Informally, an n-ary function f is perfectly hiding if given the output,
it is impossible to retrieve any of the inputs. So even enumerating all the possible inputs
shouldn’t allow one to retrieve the inputs from the output of the function. But this
implies that f should admit collisions for each possible input. On the other hand, f
is computationally binding if it is computationally not feasible to find such collisions.

Example 9. Any constant function f(x1, . . . , xn

) = c is obviously perfectly hiding
but not computationally binding. The � function is also perfectly hiding since for all
z = x� y

– for all x0, we have that y0 = z � x0 is such that x� y = x0 � y0; and
– for all y00, we have that x00

= z � y00 is such that x� y = x00 � y00.

However, it is not computationally binding since it is easy to compute x00 and y0.

Example 10. Pedersen commitments are PHCB. The Pedersen commitment over a cyclic
group G of order q and two generators h, g 2 G such that log

g

h is not known is the
function PG

h,g

(x, y) = hx · gy(mod q). Pedersen commitments are perfectly hiding
since for all z = PG

h,g

(x, y),

– for all x0, we have that y0 = y + (x � x0
) · log

g

h mod q is such that PG

h,g

(x, y) =

PG

h,g

(x0, y0);
– for all y00, we have that x00

= x+ (y � y00) · log
h

g mod q is such that PG

h,g

(x, y) =

PG

h,g

(x00, y00).

but they are computationally binding because finding these x00 and y0 is as hard as
computing discrete logarithms.

To reason about protocols relying on Pedersen commitments using the applied pi
calculus, we introduce the function symbols forge1

Ped

, and forge2
Ped

and the two follow-
ing equational theories

EPed

0 = ;

EPed

1 =

8
>>>>>>><

>>>>>>>:

Ped(forge1
Ped

(v, y0), y0) = v

Ped(x0, forge2
Ped

(v, x0
)) = v

forge1
Ped

(Ped(x, y), y) = x

forge2
Ped

(Ped(x, y), x) = y

forge1
Ped

(v, forge2
Ped

(v, x)) = x

forge2
Ped

(v, forge1
Ped

(v, y)) = y

9
>>>>>>>=

>>>>>>>;

For the first equation, suppose v = Ped(x, y), and we have some y0; then forge1
Ped

allows us to compute a value x0
= forge1

Ped

(v, y0) such that v = Ped(x0, y0). The
second equation is similar. The third and fourth equation allow us to recover one of the
arguments, given that the other argument is known. In other words the third equation
expresses that when forging x0

= forge1
Ped

(v, y) and v = Ped(x, y) then we must
have that x0

= x, and similarly for the fourth equation. The fifth and sixth equations
are also seen to be mathematically valid, given that forge1

Ped

(v, y) and forge2
Ped

(v, x)
respectively model the terms log

g

(v/hy

) and log

h

(v/gx).

5.2 Applications: electronic voting protocols and everlasting privacy

Pedersen commitments have been used in several voting protocols for achieving ever-
lasting privacy. In particular we study the protocol by Moran and Naor [18] and a recent
version of Helios [12] based on Pedersen commitments.

Moran-Naor protocol Moran and Naor [18] designed a protocol to be used with vot-
ing machines in a polling station. The protocol aims to achieve both verifiability and
everlasting privacy. From a high level point of view the protocol works as follows.

1. The voter enters his vote into the voting machine inside the voting booth. The
machine then computes a Pedersen commitment to this vote and provides a zero
knowledge proof to the voter that the computed value commits to the voter’s choice.
The commitment is then published on a bulletin board so that the voter can verify
the presence of his ballot.

2. After all ballots have been cast, the votes are published (in random order) on the
bulletin board together with a zero knowledge proof asserting that the published
votes correspond to the votes of the published commitments.

As we are only interested in privacy and not verifiability we ignore the zero knowledge
proofs in our modeling and simply represent the protocol by the process

MoranNaor(v1, v2)
def

= ⌫priv1. ⌫priv2.

V (priv1, v1) | V (priv2, v2) | ⌫c.(DRE(priv1, priv2, priv3) | T)

where
V (priv , v)

def

= privhvi
DRE(p1, p2, p3)

def

= p1(x1).⌫r1.bbhPed(x1, r1)i.chx1i |
p2(x2).⌫r2.bbhPed(x2, r2)i.chx2i |
p3(x3).⌫r3.bbhPed(x3, r3)i.chx3i

T = c(y1).bbhy1i | c(y2).bbhy2i | c(y3).bbhy3i

As the voter enters his vote in a private ballot booth, we have modelled this communi-
cation on a private channel. We have been able to show that MoranNaor verifies ever-
lasting privacy with respect to the channel bb and the equational theories introduced for
Pedersen commitments.

Helios with Pedersen commitments In [12], the authors propose a version of the
Helios voting system that provides everlasting vote privacy w.r.t. the bulletin board.
They rely for this on Pedersen commitments. In this section, we present this new version
of the Helios system.

1. The voter V chooses her candidate v and commits to it by generating a random
number r and computing the Pedersen commitment Ped(r, v). She then separately
encrypts the decommitment values r and v using the public key pk(skE) of the elec-
tion; and casts her commitment together with the encrypted decommitment values
and her identity on a private authenticated channel. Upon reception of the ballot,
the Bulletin Board (BB) publishes on a public web page the commitment Ped(r, v)
(after having checked that V is entitled to vote).

2. Once the voting phase is over, the ballots (i.e. the commitments together with the
encrypted decommitment values) are shuffled and rerandomized through mixnets.
The random permutation of the rerandomized ballots is published on the public
webpage (together with a zero knowledge proof of correct reencryption and mix-
ing).

3. Finally, the authorities decrypt the rerandomized and shuffled decommitment val-
ues and the BB publishes them.

The voter can be modelled by the following process:

V (id , auth, v)
def

= ⌫s.⌫rv.⌫rs.

authhhid , hPed(s, v), haenc(pk(skE), rv, v), aenc(pk(skE), rs, s)iiii

She sends to the BB on the private authenticated channel authCh, her commitment
Ped(s, v) to vote v, together with her identity and the encrypted decommitment values
aenc(pk(skE), rv, v), aenc(pk(skE), rs, s).

The ballot box publishes her commitment for verifiability purposes. After having
received all votes, the BB publishes the votes in a random order through the process T .

BB(a1, a2, a3)
def

= a1(x). bbhhfst(x), fst(snd(x))ii. chxi |
a2(y). bbhhfst(x), fst(snd(x))ii. chxi |
a3(z). chzi | T

T
def

= c(x). c(y). c(z).if fst(snd(snd(x))) 6= fst(snd(snd(z)))
^ fst(snd(snd(y))) 6= fst(snd(snd(z)))
^ fst(snd(snd(x))) 6= fst(snd(snd(y))) then

bbhadec(skE , fst(snd(snd(x))))i |
bbhadec(skE , fst(snd(snd(y))))i |
bbhadec(skE , fst(snd(snd(z)))i

Finally we can define the voting protocol HeliosPed as

HeliosPed(v1, v2)
def

= ⌫skE . ⌫auth1. ⌫auth2.

bbhpk(skE)i. (V (auth1, id1, v1) | V (auth2, id2, v2) | BB(auth1, auth2, auth3))

which verifies everlasting privacy with respect to the channel bb and the previously
introduced equational theories.

6 Tool support for everlasting indistinguishability

In order to verify everlasting indistinguishability on the examples presented in the pre-
vious section we have adapted two tools for automated verification of equivalence prop-
erties, AKISS [6] and ProVerif [5]. The two tools have shown themselves to be comple-
mentary and the results obtained using the tools are summarized in Figure 3.

AKISS. AKISS is a recent tool that has been designed to automatically prove trace
equivalence by translating processes into Horn clauses and using a dedicated resolution
algorithm. More precisely it can both under- and over-approximate trace equivalence in
the case of a bounded number of sessions, i.e. for processes without replication. The
tool has currently two limitations: it does not support private channels, or else branches
in conditionals. However, it is able to deal with a wide range of equational theories,
including the theory for Pedersen commitments introduced in the previous section.

We have adapted the tool in order to check forward indistinguishability and adapted
the syntax to declare everlasting channels and an everlasting equational theory. More
precisely we implemented an algorithm to check an under-approximation of forward
indistinguishability, yielding a proof of forward indistinguishability whenever the tool
responds positively. While false attacks are possible, we did not encounter any in our
case studies.

Absence of support for private channels and else branches required us to adapt some
of the examples. In particular we rewrote the processes by directly inlining private com-
munications, which in the examples maintained the same set of traces, hence preserving
everlasting indistinguishability. The weeding operation in Heliosnoreplay, Heliosnoid and
Heliosped requires the use of an else branch. We encoded a different weeding proce-
dure using cryptographic proofs of knowledge. While the vote replay attack on the
simple Helios protocol is found in less than 10 seconds, the verification of other exam-
ples ranged from a few minutes to several hours. While attempting to verify Heliosped

the tool ran out of memory and we were only able to verify a version of Heliosped

with two honest voters and no dishonest voter. As the tool is still in a prototype status

we are confident that future optimizations will allow the tool to scale up to this kind
of protocols. The tool and example files are available at https://github.com/
ciobaca/akiss.

ProVerif. The ProVerif tool [4] is an automatic cryptographic protocol verifier. It is
based on the representation of protocols by Horn clauses and relies on several approx-
imations. ProVerif can handle several types of properties and in particular equivalence
based properties [5] like the privacy-type ones which we are interested in this work.
Moreover, ProVerif can handle many different cryptographic primitives, including Ped-
ersen commitments as our case studies show.

The ProVerif tool works by translating biprocesses into Horn clauses built over
the two predicates attacker2 and message2. For equivalence checking, biprocess is
used to represent the pair of processes for which ProVerif is called to check equiv-
alence. The fact attacker2(M,M 0

) means that the attacker can learn the value M
(resp. M 0) from the first (resp. second) process encoded by the biprocess. The fact
message2(M,N,M 0, N 0

) means that the message N (resp. N 0) has appeared on the
channel M (resp. M 0) while executing the first (resp. second) process encoded by the
biprocess.

As for the AKISS tool, our extension of ProVerif consists in the addition of con-
structs for declaring everlasting channels and a future equational theory (different from
the present one). We introduce the extra binary predicate attacker2 ev for the gener-
ation of Horn clauses from biprocesses of our extended ProVerif language. The fact
attacker2 ev(M,M 0

) means that in the future, the attacker will either remember or be
able to compute from messages he remembers, the value M (resp. M 0). The declaration
of an everlasting channel c generates the following inheritance Horn clause:

message2 : c[], xm, c[], ym ! attacker2 ev : xm, ym

This clause transports messages sent on the everlasting channel to the “future”. The
declaration of future equations generates the same equations as present ones but using
our new attacker2 ev predicate. For example, the everlasting equation

break(aenc(pk(xk), xr, xm)) = xk

will generate the two following clauses

attacker2 ev : x, aenc(pk(xk), xr, xm) ! attacker2 ev : break(x), xk
attacker2 ev : aenc(pk(xk), xr, xm), x ! attacker2 ev : xk, break(x)

These clauses model the “future” ability of the attacker to recover the decryption key of
ciphertexts he remembers.

Using our extension of the ProVerif tool, we managed to find the attack on Heliosnoreplay

presented in section 4.2, but also to prove that Heliosnoid, Heliospedersen and that Moran�
Naor satisfy everlasting vote privacy. However, because of the abstractions made by
ProVerif, we had to adapt our models of Heliosnoid and Heliospedersen in order for ProVerif
to succeed in proving that satisfy everlasting privacy. Indeed, these two protocols do
not satisfy uniformity under reductions, and ProVerif reported false attacks on these

two protocols. To overcome this limitation of ProVerif, we fixed the order in which the
three voters cast their votes.

The tool and example files are available at http://markryan.eu/research/
EverlastingPrivacy/.

AKISS ProVerif
Helios attack on privacy attack on privacy

Heliosnoreplay
proof of privacy

attack on everlasting privacy
proof of privacy

attack on everlasting privacy

Heliosnoid proof of everlasting privacy proof of everlasting privacy
(voters casting their votes in fixed order)

Heliosped
proof of everlasting privacy

(2 honest voters only)
proof of everlasting privacy

(voters casting their votes in fixed order)
Moran-Naor proof of everlasting privacy proof of everlasting privacy

Fig. 3. Automated verification using AKISS and ProVerif.

7 Conclusion

The key idea of “practical” everlasting privacy is that in the future, an attacker will be
more powerful in terms of computation (he may be able to break the cryptography) but
less powerful in terms of the data he can operate on (transactions between a vote client
and the vote server may not have been stored). We realized this idea in the “symbolic”
model by allowing different equational theories in different phases, and restricting the
information flow from the earlier phase to the later one. We modified ProVerif and
AKISS to verify our examples automatically.

We foresee to apply our results to more evolved case studies, e.g. taking into ac-
count the zero knowledge proofs that we omitted here for simplicity. Our case studies
also show the limitations of the tools for checking equivalence properties which moti-
vates further work to increase their efficiency and scope. Finally, the ability to model
different equational theories with restricted information passing between them opens up
possibilities for modeling breakable cryptography and other kinds of forward security.
In particular it would be interesting to apply the notion of everlasting security to other
flavors of anonymity and untraceability.

Acknowledgements. The research leading to these results has received funding from
the European Research Council under the European Unions Seventh Framework Pro-
gramme (FP7/2007-2013) / ERC grant agreement no 258865, project ProSecure, the
ANR projects ProSe (decision ANR 2010-VERS-004) and JCJC VIP (decision ANR-
11-JS02-006). We also acknowledge funding from EPSRC projects EP/G02684X/1
“Trustworthy Voting Systems” and EP/H005501/1 “Analysing Security and Privacy
Properties”.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In 28th
Symposium on Principles of Programming Languages (POPL’01). ACM Press, 2001.

2. B. Adida. Helios: web-based open-audit voting. In 17th conference on Security symposium
(SS’08). USENIX Association, 2008.

3. M. Backes, C. Hritcu, and M. Maffei. Automated verification of remote electronic voting
protocols in the applied pi-calculus. In 21st IEEE Computer Security Foundations Sympo-
sium (CSF’08). IEEE, 2008.

4. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In 14th
Computer Security Foundations Workshop (CSFW’01). IEEE Comp. Soc. Press, 2001.

5. B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equivalences for
security protocols. Journal of Logic and Algebraic Programming, 75(1), 2008.

6. R. Chadha, Ş. Ciobâcă, and S. Kremer. Automated verification of equivalence properties of
cryptographic protocols. In 21th European Symposium on Programming (ESOP’12), volume
7211 of LNCS. Springer, 2012.

7. D. Chaum, P. Ryan, and S. Schneider. A practical, voter-verifiable election scheme. In 10th
European Symposium On Research In Computer Security (ESORICS’05), volume 3679 of
LNCS. Springer, 2005.

8. M. Clarkson, S. Chong, and A. Myers. Civitas: Toward a secure voting system. In 29th IEEE
Symposium on Security and Privacy (S&P’08), 2008.

9. V. Cortier and B. Smyth. Attacking and fixing helios: An analysis of ballot secrecy. In 24th
IEEE Computer Security Foundations Symposium (CSF’11), June 2011.

10. E. Cuvelier, T. Peters, and O. Pereira. Election verifiabilty or ballot privacy: Do
we need to choose? SecVote, Dagstuhl, 2012. secvote.uni.lu/slides/

opereira-verif-or-priv.pdf.
11. Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type properties of

electronic voting protocols. Journal of Computer Security, 17(4):435–487, July 2009.
12. D. Demirel, J. Van De Graaf, and R. Araújo. Improving helios with everlasting privacy

towards the public. In International conference on Electronic Voting Technology/Workshop
on Trustworthy Elections (EVT/WOTE’12). USENIX Association, 2012.

13. J. Dreier, P. Lafourcade, and Y. Lakhnech. Defining privacy for weighted votes, single and
multi-voter coercion. In 17th European Symposium on Research in Computer Security (ES-
ORICS 2012), volume 7459 of LNCS. Springer, 2012.

14. A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant electronic elections. In ACM
workshop on Privacy in the electronic society (WPES’05). ACM, 2005.

15. S. Kremer and M. D. Ryan. Analysis of an electronic voting protocol in the applied pi-
calculus. In 14th European Symposium on Programming (ESOP’05), volume 3444 of LNCS.
Springer, 2005.

16. S. Kremer, M. D. Ryan, and B. Smyth. Election verifiability in electronic voting protocols. In
15th European Symposium on Research in Computer Security (ESORICS’10), volume 6345
of LNCS. Springer, 2010.

17. R. Küsters, T. Truderung, and A. Vogt. Accountability: definition and relationship to verifi-
ability. In ACM Conference on Computer and Communications Security (CCS 2010), 2010.

18. T. Moran and M. Naor. Receipt-free universally-verifiable voting with everlasting privacy.
In Advances in Cryptology - CRYPTO 2006, volume 4117 of LNCS. Springer, 2006.

19. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
Advances in Cryptology - CRYPTO ’91, volume 576 of LNCS. Springer, 1991.

Formal analysis of privacy for routing protocols

in mobile ad hoc networks

?

Rémy Chrétien and Stéphanie Delaune

LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France

Abstract. Routing protocols aim at establishing a route between dis-
tant nodes in ad hoc networks. Secured versions of routing protocols have
been proposed to provide more guarantees on the resulting routes, and
some of them have been designed to protect the privacy of the users.
In this paper, we propose a framework for analysing privacy-type prop-
erties for routing protocols. We use a variant of the applied-pi calculus as
our basic modelling formalism. More precisely, using the notion of equiv-
alence between traces, we formalise three security properties related to
privacy, namely indistinguishability, unlinkability, and anonymity. We
study the relationship between these definitions and we illustrate them
using two versions of the ANODR routing protocol.

1 Introduction

Mobile ad hoc networks consist of mobile wireless devices which autonomously
organise their communication infrastructure. They are being used in a large ar-
ray of settings, from military applications to emergency rescue; and are also
believed to have future uses in e.g. vehicular networking. In such a network,
each node provides the function of a router and relays packets on paths to other
nodes. Finding these paths is a crucial functionality of any ad hoc network. Spe-
cific protocols, called routing protocols, are designed to ensure this functionality
known as route discovery.

Since an adversary can easily paralyse the operation of a whole network by
attacking the routing protocol, substantial e↵orts have been made to provide
e�cient and secure routing protocols [21, 14, 18]. For instance, in order to pre-
vent a malicious node to insert and delete nodes inside a path, cryptographic
mechanisms such as encryption, signature, and MAC are used. However, there
is a privacy problem related to the way routes are discovered by those routing
protocols. Indeed, most routing protocols (e.g. [14, 18]) flood the entire network
with a route request message containing the names of the source and the desti-
nation of the intended communication. Thus, an eavesdropper can easily observe
who wants to communicate with whom even if he is not on the route between the
communicating nodes. Since then, in order to limit privacy issues, several anony-
mous routing protocols have been developed, e.g. ANODR [15], AnonDSR [20] to
resist against passive adversaries showing no suspicious behaviours.

? This work has been partially supported by the project JCJC VIP ANR-11-JS02-006.

Because security protocols are in general notoriously di�cult to design and
analyse, formal verification techniques are particularly important. For example,
a flaw has been discovered in the Single-Sign-On protocol used e.g. by Google
Apps [4]. It has been shown that a malicious application could very easily gain
access to any other application (e.g. Gmail or Google Calendar) of their users.
This flaw has been found when analyzing the protocol using formal methods,
abstracting messages by a term algebra and using the AVISPA platform [5].

Whereas secrecy and authentication are well-understood notions, anonymity
itself is ill-defined: behind the general concept lie distinct considerations which
share the general idea of not disclosing any crucial information to an attacker
on the network. Thus, formalizing privacy-type properties is not an easy task
and has been the subject of several papers in the context of electronic voting
(e.g. [12, 7]), RFID systems (e.g. [3, 9]), or anonymizing protocols (e.g. [16, 13]).
Whereas some of them rely on a probabilitistic notion of anonymity (e.g. [19]),
we focus on deterministic ones, for which formal analysis appears more natural.
All these definitions share a common feature: they are based on a notion of
equivalence that allows one to express the fact that two situations are similar,
i.e. indistinguishable from the point of view of the attacker.

Our contributions. In this paper, we propose a formal framework for analyzing
privacy-type properties in the context of routing protocols. We use a variant of
the applied-pi calculus as our basic modeling formalism [1], which has the advan-
tage of being based on well-understood concepts and to allow us to model various
cryptographic primitives by the means of an equational theory (see Sections 2
and 3). However, in order to model route discovery protocols, we have to adapt
it to take into account several features of those protocols, e.g. the topology of
the network, broadcast communication, internal states of the nodes, etc

Then, we investigate the di↵erent properties a routing protocol could achieve
to be considered indeed anonymous in presence of a passive attacker. We propose
three di↵erent families of such properties: indistinguishability, which deals with
the possibility to distinguish some external action undertaken by an agent from
another (see Section 4); unlinkability, which is related to the ability for the
attacker to link certain actions together (see Section 5); and finally anonymity
which concerns the disclosure of information such as the identity of the sender,
or the identity of the receiver (see Section 6). We formalise those properties
using a notion of equivalence between traces. Some di�culties arise due to the
application under study. In particular, to achieve those security properties, we
have to ensure that the network is active enough, and thus we have to provide a
formal definition of this notion. We study the relationship between these privacy-
type properties and we illustrate our definitions on two versions of the ANODR
routing protocol [15].

Related work. Notions of privacy have been studied for RFID protocols [3] such
as the key establishment protocol used in the electronic passport application.
Similarly, formal definitions and proofs of anonymity for anonymizing protocols,
like the onion routing, were proposed in [16, 13]. Nevertheless these formalisms do

2

not allow one to freely specify network topologies, a crucial feature for mobile ad-
hoc routing. Moreover, as an extension of the applied pi-calculus, our formalism
is not bound to a fixed set of primitives but make our definition usable for a
large class of routing protocols. A more detailed version of this paper is available
in [10].

2 Messages and attacker capabilities

As often in protocol analysis, cryptographic primitives are assumed to work per-
fectly. However, we do not consider an active attacker who controls the entire
network as generally done when analyzing more classical protocols. We will con-
sider an eavesdropper who listens to some nodes of the network or even all of
them. Basically, he can see messages that are sent from locations he is spying
on, and can only encrypt, decrypt, sign messages or perform other cryptographic
operations if he has the relevant keys.

2.1 Messages

For modeling messages, we consider an arbitrary term algebra, which provides a
lot of flexibility in terms of which cryptographic primitives can be modelled. In
such a setting, messages are represented by terms where cryptographic primitives
such as encryption, signature, and hash function, are represented by function
symbols. More precisely, we consider a signature (S,⌃) made of a set of sorts S
and a set of function symbols ⌃ together with arities of the form ar(f) = s1 ⇥
. . . ⇥ sk ! s where f 2 ⌃, and s, s1, . . . , sk 2 S. We consider an infinite set
of variables X and an infinite set of names N which are used for representing
keys, nonces, etc We assume that names and variables are given with sorts.
Terms are defined as names, variables, and function symbols applied to other
terms. Of course function symbol application must respect sorts and arities. For
A ✓ X [N , the set of terms built from A by applying function symbols in ⌃ is
denoted by T (⌃,A).

We write vars(u) (resp. names(u)) for the set of variables (resp. names) that
occur in a term u. A term u is said to be a ground term if vars(u) = ;. Regarding
the sort system, we consider a special sort agent that only contains names and
variables. These names represent the names of the agents, also called the nodes
of the network. We assume a special sort msg that subsumes all the other sorts,
i.e. any term is of sort msg.

For our cryptographic purposes, it is useful to distinguish a subset ⌃pub

of ⌃, made of public symbols, i.e. the symbols made available to the attacker.
A recipe is a term in T (⌃pub,X [N), that is, a term containing no private
(non-public) symbols. Moreover, to model algebraic properties of cryptographic
primitives, we define an equational theory by a finite set E of equations u = v

with u, v 2 T (⌃,X) (note that u, v do not contain names). We define =E to be
the smallest equivalence relation on terms, that contains E and that is closed
under application of function symbols and substitutions of terms for variables.

3

Example 1. A typical signature for representing secured routing protocols is the
signature (S,⌃) defined by

– S = {agent,msg}, and
– ⌃ = {hi, proj1, proj2, senc, sdec, aenc, adec, pub, prv, req, rep, src, dest, key}

with the following arities:

senc, sdec, aenc, adec, h i : msg ⇥msg ! msg pub, prv : agent ! msg
req, rep, src, dest, key : ! msg proj1, proj2 : msg ! msg

The constants req and rep are used to identify the request phase and the
reply phase, src, dest, and key are some other public constants. The function
symbols sdec, senc (resp. adec and aenc) of arity 2 represent symmetric (resp.
asymmetric) decryption and encryption. Pairing is modelled using a symbol of
arity 2, denoted h i, and projection functions are denoted proj1 and proj2. We
denote by pub(A) (resp. prv(A)) the public key (resp. the private key) associated
to the agent A. Moreover, we assume that prv 62 ⌃pub. Then, we consider the
equational theory E, defined by the following equations (i 2 1, 2):

sdec(senc(x, y), y) = x adec(aenc(x, pub(y)), prv(y)) = x proji(hx1, x2i) = xi

For sake of clarity, we write ht1, t2, t3i for the term ht1, ht2, t3ii.

Substitutions are written � = {x1 . u1, . . . , xn . un} where its domain is
written dom(�) = {x1, . . . , xn}, and its image is written img(�) = {u1, . . . , un}.
We only consider well-sorted substitutions, that is substitutions for which xi

and ui have the same sort. The application of a substitution � to a term u is
written u�. A most general unifier of two terms u and v is a substitution denoted
by mgu(u, v). We write mgu(u, v) = ? when u and v are not unifiable.

2.2 Attacker capabilities

To represent the knowledge of an attacker (who may have observed a sequence of
messages t1, . . . , t`), we use the concept of frame. A frame � = new ñ.� consists
of a finite set ñ ✓ N of restricted names (those unknown to the attacker), and a
substitution � of the form {y1.t1, . . . , y`.t`} where each ti is a ground term. The
variables yi enable an attacker to refer to each ti. The domain of the frame �,
written dom(�), is dom(�) = {y1, . . . , y`}.

In the frame � = new ñ.�, the names ñ are bound in � and can be renamed.
Moreover names that do not appear in � can be added or removed from ñ.
In particular, we can always assume that two frames share the same set of
restricted names. Thus, in the definition below, we will assume w.l.o.g. that the
two frames �1 and �2 have the same set of restricted names.

Definition 1 (static equivalence). We say that two frames �1 = new ñ.�1

and �2 = new ñ.�2 are statically equivalent, �1 ⇠E �2, when dom(�1) =
dom(�2), and for all recipes M,N such that names(M,N) \ ñ = ;, we have
that: M�1 =E N�1 if, and only if, M�2 =E N�2.

4

Intuitively, two frames are equivalent when the attacker cannot see the dif-
ference between the two situations they represent, i.e., his ability to distinguish
whether two recipes M,N produce the same term does not depend on the frame.

Example 2. Let �req = new n.{y1 . senc(hreq, ni, k)} and �rep = new n.{y1 .

senc(hrep, ni, k)} be two frames. Considering the equational theory E introduced
in Example 1, we have that �req 6⇠E �rep since the recipes M = proj1(sdec(y1, k))
and N = req allow one to distinguish the two frames. However, we have that
new k.�req ⇠E new k.�rep. Indeed, without knowing the key k, the attacker is un-
able to observe the di↵erences between the two messages. This is a non-trivial
equivalence that can be established using an automatic tool (e.g. ProVerif [8]).

3 Models for protocols

In this section, we introduce the cryptographic process calculus that we will
use for describing protocols. Several well-studied calculi already exist to analyse
security protocols and privacy-type properties (e.g. [2, 1]). However, modelling
ad-hoc routing protocols requires several additional features. Our calculus is
actually inspired from some other calculi (e.g. [17, 6, 11]) which allow mobile
wireless networks and their security properties to be formally described and
analysed. We adapt those formalisms in order to be able to express privacy-type
properties such as those studied in this paper.

3.1 Syntax

The intended behavior of each node of the network can be modelled by a process
defined by the grammar given below (u is a term that may contain variables,
n is a name, and � is a formula). Our calculus is parametrized by a set L of
formulas whose purpose is to represent various tests performed by the agents
(e.g. equality tests, neighbourhood tests). We left this set unspecified since it is
not relevant for this work. For illustration purposes, we only assume that the
set L contains at least equality and disequality tests.

P,Q := 0 null process
in(u).P reception
out(u).P emission
if � then P else Q conditional � 2 L
store(u).P storage
read u[�] then P else Q reading
P | Q parallel composition
!P replication
new n.P fresh name generation

The process “in(u).P” expects a message m of the form u and then behaves
like P� where � is such that m = u�. The process “out(u).P” emits u, and
then behaves like P . The variables that occur in u will be instantiated when the

5

evaluation will take place. The process store(u).P stores u in its storage list and
then behaves like P . The process read u[�] then P else Q looks for a message of
the form u that satisfies � in its storage list and then, if such an element m is
found, it behaves like P� where � is such that m = u�. Otherwise, it behaves
like Q. The other operators are standard.

Sometimes, for the sake of clarity, we will omit the null process. We also omit
the else part when Q = 0. We write fvars(P) for the set of free variables that
occur in P , i.e. the set of variables that are not in the scope of an input or a
read. We consider ground processes, i.e. processes P such that fvars(P) = ;, and
parametrized processes, denoted P (z1, . . . , zn) where z1, . . . , zn are variables of
sort agent, and such that fvars(P) ✓ {z1, . . . , zn}. A routing protocol is a set of
parametrized processes.

3.2 Example: ANODR

ANODR is an anonymous on-demand routing protocol that has been designed to
prevent tra�c analysis in ad hoc networks [15]. We consider a simplified version
of this protocol, denoted Psimp

ANODR. For sake of readability, we give below an Alice
and Bob version of this two-phase protocol where we omit some h· · · , ·i and we
use {·}· instead of senc and aenc.

S ! V1 : hreq, id , {D, chall}pub(D), {S, src}kS i
V1 ! V2 : hreq, id , {D, chall}pub(D), {V1, {S, src}kS}k1i
V2 ! D : hreq, id , {D, chall}pub(D), {V2, {V1, {S, src}kS}k1}k2i

D ! V2 : hrep, ND, chall , {V2, {V1, {S, src}kS}k1}k2i
V2 ! V1 : hrep, N2, chall , {V1, {S, src}kS}k1i
V1 ! S : hrep, N1, chall , {S, src}kS i

Request phase. The source initiates route discovery by locally broadcasting a
request. The constant req is used to identify the request phase whereas id is an
identifier of the request. The third component of the request is a cryptographic
trapdoor that can only be opened by the destination; and the last one is a
cryptographic onion that is used for route establishment. At this stage, the
onion built by the source contains only one layer.

Then, intermediate nodes relay the request over the network, except if they
have already seen it. However, contrary to what happen in many routing pro-
tocols, the names of the intermediate nodes are not accumulated in the route
request packet. This is important to prevent tra�c analysis.

Reply phase. When the destination D receives the request, it opens the trapdoor
and builds a route reply.

During the reply phase, the message travels along the route back to S. The
intermediary node decrypt the onion using its own key which has been generated
during the request phase. If its own identity does not match the first field of
the decrypted result, it then discards the packet. Otherwise, the node is on the
anonymous route. It generates a random number (namely ND, N1, or N2), stores

6

the correspondence between the nonce it receives and the one it has generated.
It peels o↵ one layer of the onion, replaces the nonce with its own nonce, and
then locally broadcasts the reply packet.

Formally, this protocol is composed of four parametrized processes that can
be modelled using the signature given in Example 1. Let id be a name, zS , zV , zD
be variables of sort agent, and xN , x

id

, xtr and x

onion

be variables of sort msg.

The process executed by the agent zS initiating the search of a route towards a
node zD is:

Psrc(zS , zD) = new id .new chall .new kS .out(u1).in(u2).store(hzD, xN i)

where

⇢
u1 = hreq, id , aenc(hzD, challi, pub(zD)), senc(hzS , srci, kS)i
u2 = hrep, xN , chall , senc(hzS , srci, kS)i

The source zS builds a request message and sends it. Then, the source is
waiting for a reply containing the same cryptographic onion as the one used in
the request, a proof of global trapdoor opening (here modelled as a nonce chall),
and a locally unique random route pseudonym N . Lastly, the source will store
that destination D can be reached using the route pseudonym N as the next
hop.

The process executed by an intermediary node zV during the request phase
is described below. For sake of simplicity, we did not model the fact that a
duplicated request message is directly discarded.

P

req
int (zV) = in(w1).if ¬�req then (new kV .store(hkey, kV i).out(w2))

where

⇢
w1 = hreq, x

id

, xtr, xonion

i �req = proj1(adec(xtr, prv(zV))) = zV

w2 = hreq, x
id

, xtr, senc(hzV , xonion

i, kV)i
The process executed by the destination node zD is the following:

Pdest(zD) = in(v1). if �dest then (new N.out(v2))

where

⇢
v1 = hreq, x

id

, xtr, xonion

i �dest = proj1(adec(xtr, prv(zD))) = zD

v2 = hrep, N, proj2(adec(xtr, prv(zD))), x
onion

i
The process executed by an intermediary node zV during the reply phase is as
follows:

P

rep
int (zV) = in(w0

1).read hkey, yi [�rep] then (new N

0
.store(hxN , N

0i).out(w0
2))

where

⇢
w

0
1 = hrep, xN , xpr, xonion

i �rep = proj1(sdec(xonion

, y)) = zV

w

0
2 = hrep, N 0

, xpr, proj2(sdec(xonion

, y))i
Once, a route between S and D has been established using this protocol,

a data packet can then be sent from S to D using the route pseudonyms that
nodes have stored in their storage list.

7

3.3 Configuration and topology

Each process is located at a node of the network, and we consider an eavesdropper
who observes messages sent from particular nodes. More precisely, we assume
that the topology of the network is represented by a pair T = (G,M) where:

– G = (V,E) is an undirected finite graph with V ✓ {A 2 N | A of sort agent},
where an edge in the graph models the fact that two agents are neighbors.

– M is a set of nodes, the malicious nodes, from which the attacker is able to
listen to their outputs.

We consider several malicious nodes, and our setting allows us to deal with
the case of a global eavesdropper (i.e. M = V). A trivial topology is a topology
T = (G,M) with M = ;.
A configuration of the network is a quadruplet (E ;P;S;�) where:
– E is a finite set of names that represents the names restricted in P, S and �;
– P is a multiset of expressions of the form bP cA that represents the process P

executed by the agent A 2 V . We write bP cA [P instead of {bP cA} [P.
– S is a set of expressions of the form bucA with A 2 V and u a ground term.

bucA represents the term u stored by the agent A 2 V .
– � = {y1 . u1, . . . , yn . un} where u1, . . . , un are ground terms (the messages

observed by the attacker), and y1, . . . , yn are variables.

3.4 Execution model

Each node broadcasts its messages to all its neighbors. The communication sys-
tem is formally defined by the rules of Figure 1. They are parametrized by the
underlying topology T . The Comm rule allows nodes to communicate provided
they are (directly) connected in the underlying graph, without the attacker ac-
tively interfering. We do not assume that messages are necessarily delivered to
the intended recipients. They may be lost. The exchange message is learnt by
the attacker as soon as the node that emits it is under its scrutiny.

The other rules are quite standard.

We write ! instead of !T when the underlying network topology T is clear
from the context. Let A be the alphabet of actions where the special symbol

⌧ 2 A represents an unobservable action. For every ` 2 A, the relation
`�! has

been defined in Figure 1. For every w 2 A⇤ the relation
w�! on configurations

is defined in the usual way. By convention K

✏�! K where ✏ denotes the empty
word. For every s 2 (A r {⌧})⇤, the relation

s
=) on configurations is defined

by: K
s
=) K

0 if, and only if, there exists w 2 A⇤ such that K

w�! K

0 and s

is obtained from w by erasing all occurrences of ⌧ . Intuitively, K
s
=) K

0 means
that K transforms into K

0 by experiment s.

An initial configuration associated to a topology T = (G,M) and a routing
protocol Prouting is a configuration K0 = (E0;P0;S0;�0) such that:

P0 =
[

P2Prouting

A,B1,...,Bk2V

b!P (A,B1, . . . , Bk)cA.

8

Comm (E ; bout(t).P cA [{bin(uj).PjcAj |mgu(t, uj) 6= ? ^ (A,Aj) 2 E} [P;S;�)
`�!T (E ; {bPj�jcAj} [bP cA [P;S;�0)

where

8
<

:

�j=mgu(t, uj)
�0 = � [{y . t} where y is a fresh variable and ` = (out(y), A) if A 2 M;
�0 = � and ` = ⌧ otherwise

Store (E ; bstore(t).P cA [P;S;�) ⌧�!T (E ; bP cA [P; btcA [S;�)

Read-Then (E ; bread u[�] then P else QcA [P; btcA [S;�)
⌧�!T (E ; bP�cA [P; btcA [S;�)

when � = mgu(t, u) exists and �� is evaluated to true

Read-Else (E ; bread u[�] then P else QcA [P;S;�)
⌧�!T (E ; bQcA [P;S;�)

if for all t such that btcA 2 S, mgu(t, u) = ? or �mgu(t, u) is evaluated to false

If-Then (E ; bif � then P else QcA [P;S;�) ⌧�!T (E ; bP cA [P;S;�)
if � is evaluated to true

If-Else (E ; bif � then P else QcA [P;S;�) ⌧�!T (E ; bQcA [P;S;�)
if � is evaluated to false

Par (E ; bP1 | P2cA [P;S;�) ⌧�!T (E ; bP1cA [bP2cA [P;S;�)

Repl (E ; b!P cA [P;S;�) ⌧�!T (E ; bP cA [b!P cA [P;S;�)

New (E ; bnew n.P cA [P;S;�) ⌧�!T (E [{n0}; bP{n
0
/n}cA [P;S;�)

where n0 is a fresh name

Fig. 1. Transition system.

Such a configuration represents the fact that each node can play any role of
the protocol an unbounded number of times. Moreover, the agent who executes
the process is located at the right place. A typical initial configuration will consist
of E0 = S0 = �0 = ;, but depending on the protocol under study, we may want
to populate the storage lists of some nodes.

Example 3. Let T0 = (G0,M0) be a topology where G0 is described below, and
consider a global eavesdropper, i.e. M0 = {A,B,C,D}.

A B C D

We consider the execution of the protocol Psimp
ANODR where B acts as a source

to obtain a route to D. Receiving this request, and not being the destination,
its neighbour C acts as a request forwarding node. We have that:

tr = K0
⌧�! ⌧�! ⌧�! out(y1),B������! (E1;P1;S1;�1)

⌧�! ⌧�! ⌧�! out(y2),C������! (E2;P2;S2;�2)

9

where:

8
>>>>>>><

>>>>>>>:

K0 = (;;P0; ;; ;) initial configuration associated to T0 and Psimp
ANODR.

E1 = {id , chall , kB} E2 = {id , chall , kB , kC}
S1 = ; S2 = {bhkey, kCicC}
�1 = {y1 . u} �2 = {y1 . u, y2 . v}
u = hreq, id , aenc(hD, challi, pub(D)), senc(hB, srci, kB)i
v = hreq, id , aenc(hD, challi, pub(D)), senc(hC, senc(hB, srci, kB)i, kC)i

The process bPsrc(B,D)cB that occurs in K0 will first follow the rule New

three times to generate the nonces id , chall and kB leading to a new set of
restricted names E1. The rule Comm is then applied between nodes B and C.
As B 2 M0, the message is included in �1 to represent the knowledge gained by
the attacker. As the node C is not the destination, bP req

int (C)cC can evolve (rule
If-Then). It generates a key (rule New) added in E2, and stores it in S2 (rule
Store) and finally it uses Comm to broadcast the resulting message, which is
also added to current substitution �2. Actually, in case we are only interested
by the visible actions, this trace tr could also be written as follows:

tr = K0
out(y1),B
=======) (E1;P1;S1;�1)

out(y2),C
=======) (E2;P2;S2;�2).

3.5 Extension and equivalence of traces

We cannot expect that privacy-type properties hold in any situation. We have
to ensure that the tra�c is su�cient. For this we need to introduce the notion
of extension of a trace. Roughly, we say that a trace tr+ is an extension of a
trace tr if tr+ contains at least all the actions that are exhibited in tr. In order
to track of the actions, we consider annotated traces. This need comes from the
fact that our calculus (and many others cryptographic calculi) does not provide
us with information that allow us to retrieve who performed a given action.

We will denote K

⌧��!
A,R

K

0 (resp. K
out(y),A�����!

A,R
K

0) instead of K
⌧�! K

0 (resp.

K

out(y),A�����! K

0) to explicit the annotations. We have that A 2 V and R is a
constant. Intuitively A is the node that performs the action (resp. the output)
whereas R is a constant that represents the role who is responsible of this action
(resp. output). Thus, to formalise this notion of annotated trace, we associate a
constant to each parametrized process part of the routing protocol under study.
Theses annotations are nonetheless invisible to the attacker: she has only access
to the labels of the transitions defined in our semantics. Annotations are meant
to be used to specify privacy properties.

Example 4. Going back to our running example, Psimp
ANODR is made up of 4 roles

and we associate a constant to each of them, namely Src, Req, Dest, and Rep.
The annotated version of the trace tr described in Example 3 is:

K0
⌧���!

B,Src

⌧���!
B,Src

⌧���!
B,Src

out(y1),B������!
B,Src

K1
⌧���!

C,Req

⌧���!
C,Req

⌧���!
C,Req

out(y2),C������!
C,Req

K2

with K1 = (E1;P1;S1;�1) and K2 = (E2;P2;S2;�2).

10

Given two configurations K = (E ;P;S;�) and K

+ = (E+;P+;S+;�+), we
write K ✓ K

+ if E ✓ E+, P ✓ P+, S ✓ S+, and �

+
|dom(�) = �.

Definition 2 (extension of a trace). Let tr+ be an annotated trace:

tr+ = K0
`1����!

A1,R1

K

+
1

`2����!
A2,R2

. . .

`n����!
An,Rn

K

+
n .

We say that tr+ is an extension of tr, denoted tr 4 tr+, if

tr = K0
`k1�����!

Ak1 ,Rk1

Kk1

`k2�����!
Ak2 ,Rk2

. . .

`k`�����!
Ak`

,Rk`

Kk`

where 0 < k1 < k2 < . . . < k`  n, and Kki ✓ K

+
ki

for each i 2 {1, . . . , `}.
Given an indice i corresponding to an action in tr (1  i  `), we denote by

indi(tr, tr+) the indice of the corresponding action in tr+, i.e. indi(tr, tr+) = ki.

Example 5. An extension of the trace tr described in Example 3 could be to
let A initiate a new session before B tries to discover a route to D. Such an
execution is formalised by the trace tr+ written below:

K0
⌧���!

A,Src

⌧���!
A,Src

⌧���!
A,Src

out(y0),A������!
A,Src

K

+
0

⌧���!
B,Src

⌧���!
B,Src

⌧���!
B,Src

out(y1),B������!
B,Src

K

+
1

⌧���!
C,Req

⌧���!
C,Req

⌧���!
C,Req

out(y2),C������!
C,Req

K

+
2 .

where the configurations are not detailed, but (Ei;Pi;Si;�i) ✓ K

+
i (i 2 {1, 2}).

Privacy-type security properties are often formalised using a notion equivalence
(see e.g. [12, 3, 9]). Here, we consider the notion of equivalence between two traces.

Definition 3 (equivalence of two traces). Let tr1 = K1
s1==) (E1;P1;S1;�1)

and tr2 = K2
s2==) (E2;P2;S2;�2) be two traces. They are equivalent, denoted

tr1 ⇡E tr2, if s1 = s2 and new E1.�1 ⇠E new E2.�2.

Note that only observable actions are taken into account in the definition of
equivalence between two traces. Roughly, two traces are equivalent if they process
the same sequence of visible outputs. The two sequences may di↵er (we do not
require the equality between �1 and �2) but they should be indistinguishable
from the point of view of the attacker.

Example 6. In the execution tr+ provided in Example 5 one could hope to hide
the fact that the node B is initiating a route discovery and let the attacker think
A is the actual source. Let tr0 be the execution below where A initiates a route
discovery towards D, while nodes B and C act as forwarders.

K0
⌧���!

A,Src

⌧���!
A,Src

⌧���!
A,Src

out(y0),A������!
A,Src

K

0
0

⌧����!
B,Req

⌧����!
B,Req

⌧����!
B,Req

out(y1),B������!
B,Req

K

0
1

⌧���!
C,Req

⌧���!
C,Req

⌧���!
C,Req

out(y2),C������!
C,Req

K

0
2.

where the configurations are not detailed.
Unfortunately the attacker is able to tell the di↵erence between tr+ and tr0.

Indeed, we have tr+ 6⇡E tr0 since the test proj2(proj1(y0))
?
= proj2(proj1(y1)) can

be used to distinguish the two traces. The equality test will hold in tr0 and not
in tr+. Note that, as the annotations are invisible to the attacker, she cannot
know a priori that B is playing a forwarder in tr0.

11

4 Indistinguishability

Intuitively, indistinguishability deals with the ability for the attacker to distin-
guish a specific action from another. For a routing protocol such actions take
the form of the various roles of the protocol. In particular we could hope, in an
execution of the protocol, to make actions of the initiator or recipient indistin-
guishable from actions of forwarding nodes. Our definition of indistinguishability,
and later of other privacy properties, depends on the network topology we are
considering. Incidentally, when designing anonymous protocols, these properties
should hold for large enough classes of topologies.

4.1 Formalizing indistinguishability

Let Roles be a set of roles for which indistinguishability has to be preserved.
A very naive definition would be to ensure that for any annotated trace tr is-
sued from K0 (the initial configuration associated to the protocol under study)
where at some position i the role R 2 Roles is played and observed by the at-
tacker, there exists an equivalent annotated trace tr0 where the role played at
position i is not in the set Roles. However, without appropriate tra�c on the
network, this definition is far too strong. Indeed, as soon as the source role is the
only role able to spontaneously start a session, we will have no hope to achieve
indistinguishability.

Definition 4 (indistinguishability). Let K0 be an initial configuration asso-
ciated to a routing protocol and a topology, and Roles be a set of roles. We say
that K0 preserves indistinguishability w.r.t. Roles if for any annotated trace tr

tr = K0
`1����!

A1,R1

K1
`2����!

A2,R2

. . .

`n����!
An,Rn

Kn = (E ;P;S;�)

and for any i 2 {1, . . . , n} such that Ri 2 Roles and `i 6= ⌧ (i.e. `i is an action
observed by the attacker), there exist two annotated traces tr+ and tr0 such that:
tr 4 tr+, tr+ ⇡ tr0, and R0

indi(tr,tr+) 62 Roles where

tr0 = K

0
0

`01����!
A0

1,R
0
1

K

0
1

`02����!
A0

2,R
0
2

K

0
2 . . .

`0n0�����!
A0

n0 ,R
0
n0

K

0
n0 .

The trace tr+ enables us to deal with the aforementioned tra�c needed to aim
at preserving indistinguishability. Indeed rather than imposing the equivalence
of tr with another trace, indistinguishability will be achieved if there exist two
other traces tr+ and tr0 which look the same to the attacker, and in which the
action of interest is played by a di↵erent role.

4.2 Analysis of ANODR

Now, we apply our formalisation of indistinguishability to the ANODR protocol.

12

Proposition 1. Let T be a topology with a malicious node that has only mali-
cious neighbours, and K0 be an initial configuration associated to Psimp

ANODR and T .
We have that K0 does not preserve indistinguishability w.r.t. Src (resp. Dest).

Indeed, given a node A which is, together with its neighbors, under the
scrutiny of the attacker, consider a situation, i.e. a trace tr, where the node A

starts a new session by acting as a source. Of course, if this action is the only
activity of the network, there is no hope to confuse the attacker. The idea is to see
whether the attacker can be confused when the tra�c is su�cient. In particular,
we may want to consider a situation, i.e. a trace tr+, where a request also arrives
at node A at the same time, so that the node A has also the possibility to act
as a forwarder. However, since a request conveys a unique identifier id , it will
be easy for the attacker to observe whether A is acting as a source (the request
will contain a fresh identifier) or as a forwarder (the request will contain an
identifier that has been previously observed by the attacker). Actually, the same
reasoning allows us to conclude that indistinguishability is not preserved w.r.t.
the role Dest: a reply conveys a globally unique nonce (namely chall).

The updated version of ANODR proposed in [15] and informally described
below (see the appendice for a formal description) fixes the issue regarding in-
distinguishability w.r.t. Roles = {Dest}. In this version, KT is a symmetric en-
cryption key shared between the source A and the destination D; KA, KB and
KC are symmetric keys known only to their owners A, B, C, whereas KseedB ,
KseedC , KseedD are fresh keys shared between consecutive nodes on the reply
route. The key KD is generated by A and will be known by every node on the
route by the end of a session. The routes are stored as a correspondence between
route pseudonyms (the Ni) by each intermediate node. The proof of opening
takes the form of the key KD which is embedded in an onion which is di↵erent
from the onions used during the request phase. For sake of clarity, we use {·}·
instead of senc and aenc, and we omit some h·, ·i.

A ! B : hreq, id , pub(A), {dest,KD}KT , {dest}KD , {src}KAi
B ! C : hreq, id , pub(B), {dest,KD}KT , {dest}KD , {NB , {src}KA}KB i
C ! D : hreq, id , pub(C), {dest,KD}KT , {dest}KD , {NC , {NB , {src}KA}KB}KC i

D ! C : hrep, {KseedD}pub(C), {KD, {NC , {NB , {src}KA}KB}KC}KseedD i
C ! B : hrep, {KseedC}pub(B), {KD, {NB , {src}KA}KB}KseedC i
B ! A : hrep, {KseedB}pub(A), {KD, {src}KA}KseedB i

Considering a topology T such that any malicious node has at least two
distinct neighbours other than itself, and an initial configuration K0 associated
to the updated version of ANODR and T , we have that K0 preserves indistin-
guishability w.r.t. Roles = {Dest}, according to Definition 4.

Intuitively, for each trace tr in which the node A (under the scrutiny of the
attacker) acts as a destination, we will consider a trace tr+ which extends tr and
such that the node A has at least two reply to treat (one as a destination and

13

one as a forwarder). Since the proof of opening and the onion are modified at
each hop of the route, the attacker will not be able to observe whether two reply
packets come from the same session or not. Thus, he can not be sure that the
action of interest has been done by the role Dest.

5 Unlinkability

We focus here on a di↵erent kind of anonymity: the (un)ability for the attacker
to determine whether two messages belong to the same session. Note that an
attacker able to determine whether two reply messages belong to the same session
will gain valuable information about the route being established.

5.1 Augmented process

To define unlinkability, we need a notion of session. Note that, in our setting,
a session may involve an arbitrary number of actions since we do not know in
advance the length of the path from the source to the destination. In order to
define this notion formally, we need to be able to track an execution of the
process through the entire network, goal which is achieved through a notion
of augmented processes. Thus, given a routing protocol Prouting, we define its
augmentation P̃routing and modify the operational semantics accordingly to trace
an execution of one session of the protocol. We also add some information about
the source and the destination. This information will be useful later on to define
our notion of anonymity (see Section 6).

For sake of simplicity, we consider a routing protocol that is made up of
parametrized processes of two di↵erent kinds. Even if these syntactic restrictions
seem to be very specific, our definition actually captures most of the routing
protocols and are quite natural.

Initiator: a parametrized process with two parameters P (zS , zD) such that
its first communication action is an output possibly followed by several in-
puts. In such a case, its augmentation P̃ (zS , zD) is obtained from P (zS , zD)
by adding the prefix new sid . to it, by replacing the action out(u) with
out(hu, hsid , zS , zDii, and replacing each action in(u) with in(hu, hx1, x2, x3ii)
where x1, x2, x3 are fresh variables.

Responder: a parametrized process with one parameter P (zV) such that its
first communication action is an input possibly followed by several outputs.
In such a case, its augmentation P̃ (zV) is obtained from P (zV) by replacing
the action in(u) with in(hu, hx1, x2, x3ii) where x1, x2, x3 are fresh variables,
and each action out(u) with out(hu, hx1, x2, x3ii).

Now, to prevent the additional information that is conveyed by the messages
to occur in the frame, we need to adapt our operational semantics. Basically,
when we perform a communication, we only add the first projection of the out-
putted term in the frame. The second projection of the outputted term is added
under the arrow as an annotation.

14

Example 7. Back to Example 3, the counterpart of the trace tr, where only
visible actions have been exhibited, is succinctly depicted below:

K̃0
out(y1),B

==========)
B,Src,sid,B,D

K̃1
out(y2),C

==========)
C,Req,sid,B,D

K̃2

where the configurations K̃0, K̃1 and K̃2 are the counterpart of K1, K2, and K3.
The annotations under the arrows witness the fact that the two messages come
from the same session sid which was initiated by B to obtain a route towards D.

Note that only observable action will benefit from this annotation. For sake

of simplicity, we write K

`��������!
A,R,[sid,S,D]

K

0 even in presence of an unobservable

action ` (i.e. when ` = ⌧) and we add the brackets to emphasize the fact that
[sid , S,D] is optional. Actually, the annotation is undefined in this case.

5.2 Formalising unlinkability

Intuitively, unlinkability means that an attacker cannot tell whether two visible
actions of a trace tr belong to the same session. As it was the case for indistin-
guishability, one cannot expect to achieve this goal without any su�cient tra�c
on the network. Moreover, due to the globally unique identifier that occur for
e�ciency purposes in many routing protocols (e.g. the nonce id in ANODR),
there is no hope to achieve unlinkability for request messages. However, this is
not a big issue since these messages are flooded in the network and thus tracking
them is useless. We may want to study unlinkability for particular sets of roles,
and our definition allows one to do that.

Definition 5 (unlinkability). Let K0 be an initial configuration associated to
a routing protocol and a topology, and Roles1, Roles2 be two sets of roles. We say
that K0 preserves unlinkability w.r.t. Roles1/Roles2 if for any annotated trace tr

tr = K0
`1������������!

A1,R1,[sid1,S1,D1]
K1

`2������������!
A2,R2,[sid2,S2,D2]

. . .

`n�������������!
An,Rn,[sidn,Sn,Dn]

Kn

and for any i, j 2 {1, . . . , n} such that Ri 2 Roles1, Rj 2 Roles2, sid i = sid j,
and `i, `j 6= ⌧ (i.e. `i, `j are actions observed by the attacker), there exist two
annotated traces tr+ and tr0 such that: tr 4 tr+, tr+ ⇡ tr0, and sid 0

indi(tr,tr+) 6=
sid 0

indj(tr,tr+) where

tr0 = K

0
0

`01������������!
A0

1,R
0
1,[sid

0
1,S

0
1,D

0
1]

K

0
1

`02������������!
A0

2,R
0
2,[sid

0
2,S

0
2,D

0
2]

. . .

`0n0��������������!
A0

n0 ,R
0
n0 ,sid

0
n0 ,S

0
n0 ,D

0
n0

K

0
n0 .

Unlinkability versus indistinguishability. Note that unlinkability is a distinct no-
tion from the indistinguishability notion exposed in Section 4. Protocols un-
linkable w.r.t. any reasonable topology can be designed so as not to be in-
distinguishable for any role. An example of such a protocol would be P =
{P1(zS , zD), P2(zV)} defined as follows:

15

P1(zS , zD) = out(src).in(x) P2(zV) = in(x).out(dest)

where src and dest are two constants. The unlinkability is a consequence of
emitting the same messages for every session, whereas the indistinguishability
fails as the constant src (resp. dest) identifies the role P1 (resp. P2).

Reciprocally one can design protocols preserving indistinguishability for cer-
tain roles but not unlinkability for any two subsets of roles. The protocol P 0

made up of the three roles described below fails clearly at preserving the unlink-
ability w.r.t. any non-trivial topology for any sets of roles Roles1 and Roles2 as
it mimicks the session identifiers introduced formerly.

P

0
1(zS , zD) = new n.out(n).in(x) P

0
2(zV) = in(x).out(x)

P

0
3(zV) = in(x).store(x).out(x)

On the other hand, the indistinguishability w.r.t. any topology for either P

0
2

or P 0
3 is trivially preserved as the roles are essentially the same.

5.3 Analysis of ANODR

As discussed at the beginning of Section 5.2, ANODR, as many other routing
protocols, does not preserve unlinkability (as soon as the underlying topology is
non-trivial topology) for sets Roles1 = Roles2 = {Src,Req} due to the forwarding
of the same id by every intermediate node during the request phase. Actually,
the simplified version of ANODR presented in Section 3.2 does not preserve
unlinkability for sets Roles1 = Roles2 = {Dest,Rep} due to the forwarding of the
nonce chall by every intermediate node during the reply phase. This version does
not preserve unlinkability for sets {Src,Req}/{Dest,Rep} either. Indeed, during
the request phase, the nodes will emit a message containing an onion, and during
the reply phase, they are waiting for a message that contains exactly the same
onion. This allows the attacker to link a request message with a reply message
and to identify them as coming from the same session.

The updated version of ANODR (see Section 4.2) actually fixes the two last
issues. Again, we need for this to consider topologies T for which any malicious
node has at least two distinct neighbours other than itself. In such a situation,
following the same ideas as the one used to establish indistinguishability, we can
show that an initial configuation K0 preserves unlinkability w.r.t. {Dest,Rep}/
{Dest,Rep}, and {Src,Req}/{Dest,Rep} (according to Definition 5).

6 Anonymity

Anonymity is concerned with hiding who performed a given action. Here, we are
not concerned by hiding the identity of the sender (or the receiver) of a given
message, but we would like to hide the identity of the source (or the destination)
of the request/reply message. When the identity of the source is hidden, we
speak about source anonymity. Similarly, when the identity of the destination is

16

hidden, we speak about destination anonymity. Again, we consider both types
of anonymity with respect to an external eavesdropper that is localised to some
nodes (possibly every one of them) of the network.

As in Section 5, to define the anonymity, we need to link messages occurring
at various places in the network to their respective source and destination, thus
we consider the augmented version of the protocol as in Section 5.1

6.1 Formalising anonymity

Intuitively, source (resp. destination) anonymity can be achieved if the attacker
is unable to tell the source (resp. the destination) of an observed message. This
idea can actually be interpreted as the existence of anonymity sets of cardinal
greater or equal than two. As for the previous privacy-type notions, one cannot
expect to hide the source (resp. destination) of an action in a trace tr without
any su�cient tra�c as it would be easy for an attacker to observe the first node
to output a request (resp. a reply) and deduce the source (resp. destination)
of this execution. For this reason, anonymity will be achieved if there exist two
other traces tr+ and tr0 of the system which look the same to the attacker, and in
which the corresponding transitions have di↵erent sources (resp. destinations).

Definition 6 (anonymity). Let K0 be an initial configuration associated to
a routing protocol and a topology. We say that K0 preserves source anonymity
(resp. destination anonymity) if for any annotated trace tr

tr = K0
`1������������!

A1,R1,[sid1,S1,D1]
K1

`2������������!
A2,R2,[sid2,S2,D2]

. . .

`n�������������!
An,Rn,[sidn,Sn,Dn]

Kn

and for any i 2 {1, . . . , n} such that `i 6= ⌧ (i.e. `i is an action observed by
the attacker), there exist two annotated traces tr+ and tr0 such that tr 4 tr+,
tr+ ⇡ tr0, and S

0
indi(tr,tr+) 6= Si (resp. D

0
indi(tr,tr+) 6= Di) where

tr0 = K

0
0

`01������������!
A0

1,R
0
1,[sid

0
1,S

0
1,D

0
1]

K

0
1

`02������������!
A0

2,R
0
2,[sid

0
2,S

0
2,D

0
2]

. . .

`0n0���������������!
A0

n0 ,R
0
n0 ,[sid

0
n0 ,S

0
n0 ,D

0
n0]

K

0
n0

6.2 Anonymity versus indistinguishability/unlinkability.

The notions of source and destination anonymity are distinct from indistin-
guishability for a set of roles and unlinkability of two sets of roles. The proto-
col P = {P1(zS , zD), P2(zV)} where P1(zS , zD) = out(zS).in(x), and P2(zV) =
in(x).out(x) preserves both the indistinguishability of P1 (a node can play P2 as
a response to a session it initiated previously as P1) and the unlinkability of any
two subsets of {P1, P2} (as every session with the same node as a source will
generate the exact same messages) but not source anonymity as the identity of
the source is obvious for any attacker along the route. A symmetrical protocol
can be built by replacing zS with zD in P1 to disclose the destination of a session
without breaking the indistinguishability.

Conversely, the protocol P = {P1(zS , zD), P2(zV)} defined as

17

P1(zS , zD) = new n.out(hsrc, ni).in(x) P2(zV) = in(hx, yi).out(hdest, yi)
preserves destination anonymity as any node can play P2 in response to a request,
whatever the original destination was. Indeed, given such a topology T , a trace
tr of the protocol, and a visible action `i = (out(y), A) associated to a a source
Si = S and a destination Di = A, we can let tr+ be equal to tr and define tr0

to be the trace mimicking tr but with S as the source and destination of the
request associated to `i. The equivalence of tr and tr0 comes from the content
of their frames which is limited to the names of the request sources, identical in
both cases. On the other hand, P does not preserve indistinguishability of P1

or P2, nor unlinkability of any two subsets of {P1, P2} as session identifiers and
constants to distinguish roles are embedded in the protocol.

However, intuitively, there is a relation between source anonymity (resp. des-
tination anonymity) and indistinguishability of the role source (resp. destina-
tion). Indeed, source anonymity seems to imply that the action of interest can
be mimicked by someone di↵erent from source, and thus who should not play the
role source. Thus, restricting ourselves to “reasonable” routing protocols, we are
indeed able to establish this relation. For this, we define source and destination
roles as roles which are only used by nodes acting as sources or destinations.

Definition 7 (acting as a source (resp. destination)). Let K0 be an initial
configuration associated to a routing protocol and a topology. We say that Roles
is the set of roles acting as a source (resp. acting as a destination) if for any
annotated trace tr with `1, . . . , `n 6= ⌧

tr = K0
`1============)

A1,R1,sid1,S1,D1

K1
`2============)

A2,R2,sid2,S2,D2

. . .

`n=============)
An,Rn,sidn,Sn,Dn

Kn

and for any i 2 {1, . . . , n}, Ri 2 Roles if and only if Ai = Si (resp. if and only
if Ai = Di).

In case of ANODR (both versions), the set of roles acting as a source is {Src}.
This is the only role able to spontaneously start a session and it is unable to
reply to a request. The set of roles acting as a destination is limited to {Dest}.
The proof of opening prevents any node other than the destination to play it
and, conversely, a destination node can only play the role Dest as a response
to such a request. Note that, for some badly designed routing protocols, it may
happen that the set of roles acting as a source (resp. destination) is empty. In
such a case, the proposition below is trivially true.

Proposition 2. Let K0 be an initial configuration associated to a routing pro-
tocol and a topology. If K0 preserves source (resp. destination) anonymity, then
it preserves indistinguishability w.r.t. the set of roles acting as a source (resp.
destination).

6.3 Analysis of ANODR

In this section, we apply our formalisation of anonymity to the ANODR routing
protocol. As a consequence of Propositions 1 and 2, we have the following result.

18

Corollary 1. Let T be a topology with a malicious node that has only malicious
neighbours, and K0 be an initial configuration associated to Psimp

ANODR and T . We
have that K0 preserves neither source nor destination anonymity.

For the updated version of ANODR, similarly, we can show that it does not
preserve source anonymity. However, this protocol seems to have been designed
to achieve destination anonymity. Indeed, considering topologies for which any
malicious node has at least one neighbour other than itself, we can show that
any trace tr can be extended to tr+ so that the node of interest has at least two
reply to treat (one as the destination of the request, and the other one as the
forwarder). This is actually su�cient to confuse the attacker who observes the
network, and to establish anonymity of the destination according to Definition 6.

7 Conclusion

We have defined a framework for modeling routing protocols in ad hoc networks
in a variant of the applied pi-calculus. Within this framework we can stipulate
which agents are subject to the attention of a global eavesdropper. We were
able to propose several definitions for privacy-type properties that encompass
the specificity of a given network topology. We illustrate these definitions on
the anonymous routing protocol ANODR, considered in two versions, and thus
provide a partial formal security analysis of its anonymity.

As future work, it would be interesting to have a more general model of proto-
cols to represent high-level operations in routing protocols (e.g. reversing a list).
However, since our definitions are expressed in terms of traces, this should not
impact so much the privacy definitions proposed in this paper. Another direc-
tion is the enrichment of our attacker model, so as to model fully compromised
nodes which disclose their long-term keys or fresh nonces generated during the
execution of the protocols, and active attackers able to forge messages and in-
teract with honest agents. Finally, from the point of view of the verification,
a reduction result on network topologies as presented in [11] would make the
perspective of automated proofs of anonymity easier.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In Proc. 28th Symposium on Principles of Programming Languages (POPL’01),
pages 104–115. ACM Press, 2001.

2. M. Abadi and A. Gordon. A calculus for cryptographic protocols: The spi calculus.
In Proc. 4th Conference on Computer and Communications Security (CCS’97),
pages 36–47. ACM Press, 1997.

3. M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing unlinkability and
anonymity using the applied pi calculus. In Proc. 23rd Computer Security Foun-
dations Symposium (CSF’10), pages 107–121. IEEE Computer Society Press, 2010.

19

4. A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and M. L. Tobarra. Formal
analysis of SAML 2.0 web browser single sign-on: breaking the SAML-based single
sign-on for google apps. In Proc. of the 6th ACM Workshop on Formal Methods
in Security Engineering (FMSE 2008), pages 1–10. ACM, 2008.

5. A. Armando et al. The AVISPA Tool for the automated validation of internet
security protocols and applications. In Proc. 17th International Conference on
Computer Aided Verification, CAV’2005, volume 3576 of LNCS. Springer, 2005.

6. M. Arnaud, V. Cortier, and S. Delaune. Modeling and verifying ad hoc routing pro-
tocols. In Proc. 23rd IEEE Computer Security Foundations Symposium (CSF’10),
pages 59–74. IEEE Computer Society Press, July 2010.

7. M. Backes, C. Hritcu, and M. Ma↵ei. Automated verification of remote electronic
voting protocols in the applied pi-calculus. IEEE Comp. Soc. Press, 2008.

8. B. Blanchet. An e�cient cryptographic protocol verifier based on prolog rules. In
Proc. 14th Computer Security Foundations Workshop (CSFW’01). IEEE Comp.
Soc. Press, 2001.

9. M. Bruso, K. Chatzikokolakis, and J. den Hartog. Formal verification of pri-
vacy for RFID systems. In Proc. 23rd Computer Security Foundations Symposium
(CSF’10). IEEE Computer Society Press, 2010.

10. R. Chrétien and S. Delaune. Formal analysis of privacy for routing protocols in
mobile ad hoc networks. Research Report LSV-12-21, Laboratoire Spécification et
Vérification, ENS Cachan, France, Dec. 2012. 24 pages.

11. V. Cortier, J. Degrieck, and S. Delaune. Analysing routing protocols: four nodes
topologies are su�cient. In Proc. of the 1st International Conference on Principles
of Security and Trust (POST’12), LNCS, pages 30–50. Springer, Mar. 2012.

12. S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of
electronic voting protocols. Journal of Computer Security, (4):435–487, July 2008.

13. F. D. Garcia, I. Hasuo, W. Pieters, and P. van Rossum. Provable anonymity.
In Proc. ACM workshop on Formal methods in security engineering (FMSE’05),
pages 63–72. ACM, 2005.

14. Y.-C. Hu, A. Perrig, and D. Johnson. Ariadne: A Secure On-Demand Routing
Protocol for Ad Hoc Networks. Wireless Networks, 11:21–38, 2005.

15. J. Kong and X. Hong. ANODR: anonymous on demand routing with untraceable
routes for mobile ad-hoc networks. In Proc. 4th ACM Interational Symposium on
Mobile Ad Hoc Networking and Computing, (MobiHoc’03). ACM, 2003.

16. S. Mauw, J. Verschuren, and E. P. de Vink. A formalization of anonymity and
onion routing. In Proc. 9th European Symposium on Research Computer Security
(ESORICS’04), volume 3193 of LNCS, pages 109–124. Springer, 2004.

17. S. Nanz and C. Hankin. A Framework for Security Analysis of Mobile Wireless
Networks. Theoretical Computer Science, 367(1):203–227, 2006.

18. P. Papadimitratos and Z. Haas. Secure routing for mobile ad hoc networks. In
Proc. SCS Communication Networks and Distributed Systems Modelling Simula-
tion Conference (CNDS), 2002.

19. A. Serjantov and G. Danezis. Towards an information theoretic metric for
anonymity. In Privacy Enhancing Technologies, pages 41–53, 2002.

20. R. Song, L. Korba, and G. Lee. AnonDSR: E�cient anonymous dynamic source
routing for mobile ad-hoc networks. In Proc. ACM Workshop on Security of Ad
Hoc and Sensor Networks (SASN’05). ACM, 2005.

21. M. G. Zapata and N. Asokan. Securing ad hoc routing protocols. In Proc. 1st
ACM workshop on Wireless SEcurity (WiSE’02), pages 1–10. ACM, 2002.

20

