
Laboratoire Spécification & Vérification

École Normale Supérieure de Cachan
61, avenue du Président Wilson
94235 Cachan Cedex France

Trace equivalence of protocols for an
unbounded number of sessions

Rémy Chrétien

December 2012

Research report LSV-12-22

Trace equivalence of protocols for an unbounded
number of sessions

Rémy Chrétien, under the supervision of Véronique Cortier and Stéphanie
Delaune, SECSI/LSV and LORIA

19th August 2012

This report is meant to serve as basis for a later research article and is
for this reason written in English.

The general context

Secure design of communication protocols in order to ensure the authen-
tication of electronic agents or the safety of secret data is known to be
difficult and fairly error-prone. Symbolic frameworks such as the Dolev-Yao
model [17] and later various process algebra [1, 2] have proven themselves
valuable for finding attacks and assessing the security of these protocols.
Several tools have thus been developed to answer the need of automated
verification: ProVerif [8], AVISPA [6] and Scyther [14] rely on various for-
mal methods to prove that a range of security properties holds in protocols.
Most verified properties, such as secrecy or authentication, actually relate
to reachability problems, i.e. deciding whether an attacker is able learn a
particular information, such as a secret cryptographic key.

The research problem

We aim at providing a decidability result for the problem of trace equiv-
alence between protocols with one variable for an unbounded number of
sessions. Being able to decide the equivalence of protocols naturally arises
when dealing with practical applications such as electronic voting [15] or the
electronic passport [4] which require a notion of privacy to be expressed.

The problem of deciding reachability has been thoroughly studied for an
unbounded number of sessions and proven to be undecidable under various
restraints on nonces [19, 12, 18, 3]. Nevertheless some fragments were shown
to be decidable, either by tagging [9, 20] or by restricting the number of
blind-copies [13]. On the other hand, trace equivalence itself is only proven to
be decidable for a bounded number of sessions [11], among other restrictions.

The objective of this report is to provide the first results of decidability
for certain classes of protocols, by lifting the approach followed by Comon-
Lundh and Cortier [13] to trace equivalence.

Our contribution

Because deciding trace equivalence appears to be more complex than de-
ciding the reachability of a term, as shown in Section 3.3, we used the
restrictions provided in Comon-Lundh and Cortier [13] as a starting point
and translated it back to a process algebra inspired from variants of the
applied pi-calculus (see e.g. [16, 7]).

This initial set of constraints lead us to a first result of undecidability
of trace equivalence under scare restrictions: one variable and symmetric
encryption are indeed enough.

Consequently, we restrained our class of protocols a step further by
making the protocols deterministic in some sense and preventing it from
disclosing secret keys. This tighter class of protocols was then shown to be
decidable after reduction to an equivalence between deterministic pushdown
automata [21].

Arguments supporting its validity

Our first class of protocols is proven to be undecidable with regards to trace
equivalence and appears to fit in the intended class described in [13]. This
makes our class of protocol an explicit witness of the increased complexity
of the decision problem for trace equivalence compared to reachability.

Its decidable subclass gives on the other hand an idea of the gap between
a undecidable class and a decidable fragment. In particular it enlightens
potential causes of undecidability: non-determinism of the protocol and
disclosure of keys during an execution. Moreover, this result lays a bridge
between the quite recent concern of protocol equivalence and the older issue
of equivalence of context-free grammars in language theory. This decidable
class in nonetheless not expected to serve practical means yet: even though
the tighter restrictions can seemingly be weakened, the final result relies on
a procedure for which there exists no interesting complexity bound [22] nor
implementation.

Summary and future work

The immediate next trail is to extend the decidable class we exposed to drop
the tightest restrictions and enrich its set of primitives to obtain a fragment
expressive enough to offer a practical use in protocol verification. Looking at
a broader horizon, an implementation of our decision would be interesting.
In parallel, applying the same approach to tagged protocols could lead to
new and more reasonable classes of protocols.

1 Introduction

Secure design of communication protocols in order to ensure the authentica-
tion of electronic agents or the safety of secret data is known to be difficult
and fairly error-prone. To alleviate the weight of this task, symbolic frame-
works such as the Dolev-Yao model [17] and later various process algebra [1,
2] have proven themselves valuable for finding attacks and assessing the se-
curity of these protocols. For example, a flaw has been discovered in the
Single-Sign-On protocol used e.g. by Google Apps [5]. It has been shown
that a malicious application could very easily gain access to any other ap-
plication (e.g. Gmail or Google Calendar) of their users. This flaw has been
found when analysing the protocol using formal methods, abstracting mes-
sages by a term algebra and using the AVISPA platform [6]. Several tools
have thus been developed to answer the need of automated verification:
ProVerif [8], AVISPA and Scyther [14] rely on various formal methods to
prove that a range of security properties holds in protocols. Most verified
properties, such as secrecy or authentication, actually relate to reachabil-
ity problems, i.e. deciding whether an attacker is able learn a particular
information, such as a secret cryptographic key.

Nevertheless, practical applications for which privacy is a crucial fea-
ture, such as electronic voting [15] or the electronic passport [4], actually
require different and specific properties to be checked. For this reason, the
need for studying logical concepts able to express privacy-related properties
arose. Those properties can indeed be expressed by the notion of equiva-
lence of protocols, i.e. deciding whether an attacker can distinguish in some
way between two protocols. In particular, trace equivalence focuses on the
(un)ability for an attacker to find seemingly identical execution traces for
two different protocols and provides a well-suited conceptual framework to
address privacy issues.

Related work. Reachability itself has been shown to be undecidable for an
unbounded number of sessions, with [19, 12] or without [18, 3] severe con-
straints on the use of nonces. Conversely, several classes of protocols whose
reachability is decidable were exposed, relying for instance on tagging [9,
20] or restraints on blind-copies of messages [13] to enforce termination of
the different resolution procedures used to solve it. Trace equivalence, on
the other hand, has only be proven to be decidable under the restriction,
notably, of a bounded number of sessions [11].

Our contributions. In this report, we investigate the decidability of the trace
equivalence for two classes of protocols for an unbounded number of sessions.
We use a variant of the applied-pi calculus as our basic modelling formal-
ism [1] which has the advantage of being based on well-understood concepts.

In particular, in Section 4.2, we prove that a class of protocol analogous to
the logical fragment discussed in Comon-Lundh and Cortier [13], although
decidable with regards to reachability, is undecidable for trace equivalence.

A more constrained subclass is then studied in Section 4.3. Its decidabil-
ity relies on the equivalence of deterministic pushdown automata, proven
to be decidable by Sénizergues [21]. This class is nonetheless expressive
enough to include non-trivial protocols (see Example 7 whose witness of
non-equivalence informally requires to compute the least common factor of
two integers).

2 Messages and attacker capabilities

2.1 Messages

For modelling messages, we consider an arbitrary term algebra, which pro-
vides a lot of flexibility in terms of which cryptographic primitives can be
modelled. More precisely, we consider a signature Σ made of a set of func-
tion symbols Σ together with arities of the form ar(f) = k where f ∈ Σ,
and k ∈ N. We consider an infinite set of variables X and an infinite set of
names N which are used for representing keys, nonces, . . .

Terms are defined as names, variables, and function symbols applied to
other terms. For A ⊆ X ∪ N , the set of terms built from A by applying
function symbols in Σ is denoted by T (Σ,A). A term u is said to be a
ground term if it does not contain any variable.

For our cryptographic purposes, it is useful to distinguish a subset Σpub

of Σ, made of public symbols, i.e. the symbols made available to the at-
tacker. A recipe is a term in T (Σpub,X ∪ N), that is, a term containing
no private (non-public) symbols. Moreover, to model algebraic properties
of cryptographic primitives, we define an equational theory by a finite set E
of equations u = v with u, v ∈ T (Σ,X) (note that u, v do not contain
names). We define =E to be the smallest equivalence relation on terms, that
contains E and that is closed under application of function symbols and sub-
stitutions of terms for variables. We restrict ourselves to sets of equations
which can be oriented from left to right as a convergent rewriting system:
given a term u, we denote by u ↓ its normal form.

In particular we are interested in the following class S of signature Σ
defined as

Σ = Σpub]Σprv

Σpub = {senc/2, sdec/2} ∪Hpub ∪Apub

Σprv = Hprv ∪Aprv

with the equational theory E:

E = {sdec(senc(x, y), y) = x}

where Hpub and Hprv (resp. Apub and Aprv) are set of public and private
unary function symbols (resp. public and private constants), whereas senc
and sdec represent symmetric encryption and decryption.

Substitutions are written σ = {x1 . u1, . . . , xn . un} with dom(σ) =
{x1, . . . , xn}, and img(σ) = {u1, . . . , un}. The size of σ is defined as the
cardinal of its domain: |σ| = |dom(σ)|. The application of a substitution σ
to a term u is written uσ. A most general unifier of two terms u and v is a
substitution denoted by mgu(u, v). We write mgu(u, v) = ⊥ when u and v
are not unifiable.

2.2 Attacker capabilities

To represent the knowledge of an attacker (who may have observed a se-
quence of messages M1, . . . ,M`), we use the concept of frame. A frame
φ = new ñ.σ consists of a finite set ñ ⊆ N of restricted names (those un-
known to the attacker), and a substitution σ of the form {y1.M1, . . . , y`.M`}
where each Mi is a ground term. The variables yi enable an attacker to re-
fer to each Mi. The domain of the frame φ, written dom(φ), is dom(σ) =
{y1, . . . , y`}.

In the frame φ = new ñ.σ, the names ñ are bound in σ and can be
renamed. Moreover names that do not appear in φ can be added or removed
from ñ. In particular, we can always assume that two frames share the same
set of restricted names. Thus, in the definition below, we will assume w.l.o.g.
that the two frames φ1 and φ2 have the same set of restricted names.

Definition 1 (static equivalence). We say that two frames φ1 = new ñ.σ1

and φ2 = new ñ.σ2 are statically equivalent, φ1 ∼E φ2, when dom(φ1) =
dom(φ2), and for all recipes M,N such that fn(M,N) ∩ ñ = ∅, we have
that: Mσ1 =E Nσ1 if, and only if, Mσ2 =E Nσ2.

Intuitively, two frames are equivalent when the attacker cannot see the
difference between the two situations they represent, i.e., his ability to dis-
tinguish whether two recipes M,N produce the same term does not depend
on the frame.

Example 1. Consider the frames

φ1 = new ñ.σ1; φ2 = new ñ.σ2; φ3 = new ñ.σ3; φ4 = new ñ.σ4

where a is a public constant of the signature Σ and



ñ = {k, k′, n} σ1 = {x1 . k, x2 . senc(a, k)}
σ2 = {x1 . k, x2 . a} σ3 = {x1 . k, x2 . n}
σ4 = {x1 . k, x2 . senc(a, k′)}

Then, with our equational theory E:

– φ1 6∼E φ2 as we consider the recipes M = senc(a, x1) and N = x2.
Indeed, fn(M,N) ∩ ñ = ∅, Mσ1 =E Nσ1 but Mσ2 6=E Nσ2.

– φ3 ∼E φ4 as without key k′, the attacker is unable to observe the differ-
ences between the content of x2 and a nonce. Note that proofs of static
equivalence are in general difficult to produce because of the quantifica-
tion on all the possible recipes the attacker can use.

3 Models for protocols

In this section, we introduce the cryptographic process calculus that we
will use for describing protocols. Several well-studied calculi already exist
to analyse security protocols and privacy-type properties (e.g. [2, 1]). Our
calculus is actually inspired from other calculi (e.g. [16, 7]) adapted to allow
syntactic filtering.

3.1 Syntax

The intended behaviour of a protocol can be modelled by a process defined
by the grammar given below (u is a term that may contain variables, n and
c are names).

P,Q := 0 null process
in(c, u).P reception on channel c
out(c, u).P emission on channel c
P | Q parallel composition
!P replication
new n.P fresh name generation

The process “in(c, u).P” expects a message m of the form u on channel
c and then behaves like Pσ where σ is such that m = uσ. The process
“out(c, u).P” emits u on channel c, and then behaves like P . The variables
that occur in u will be instantiated when the evaluation will take place. The
other operators are standard.

Even though our syntax includes fresh name generation, we will not use
it in any of the later classes of protocols and focus on processes without
names, but only constants.

Sometimes, for the sake of clarity, we will omit the null process. We
write fv(P) for the set of free variables that occur in P , i.e. the set of
variables that are not in the scope of an input. We consider ground processes,
i.e. processes P such that fv(P) = ∅. A protocol is a couple (P, φ0) where
P is a ground process and φ0 the initial frame, i.e. a frame gathering the
initial knowledge of the attacker.

Example 2. Consider the following basic example of communication be-
tween an electronic passport (agent A) and a server (agent S). Here is
the protocol described in semi-informal Alice & Bob notation:

A→ S : {idA}kAS (a)
S → A : {x}kAS → h(x), {x}kauth

(b)

The passport, A, identifies itself to the server S by sending its identifier
idA encrypted by a symmetric secret key kAS , shared between S and A.
The terminal answers to any request whose key is indeed kAS by issuing a
receipt to the passport and producing a certificate consisting in the identity
encrypted with kauth. The representation of this protocol in our syntax would
be:

PA = in(cAA, start).out(cAA, senc(idA, kAS)) (1)
| ! in(cSA, senc(x, kAS)).out(cSA, h(x)) (2)
| ! in(cS , senc(x, kAS)).out(cS , senc(x, kauth)) (3)

where start, idA and h are public constants and function symbol in the signa-
ture. Branch (1) directly mimics the communication (a), except a starting
input with a public constant start is asked to actually initiate a protocol
session. As our syntax does not allow pairing, the communication (b) is
then replicated with the two parallel branches (2) and (3). Then (PA, ∅) is
a protocol.

3.2 Configuration and execution model

A configuration of the protocol is a triplet (E ;P;σ) where:

– E is a finite set of names that represents the names restricted in P and σ;
– P is a multiset of processes We write P ∪ P instead of {P} ∪ P.
– σ = {x1 . u1, . . . , xn . un} where u1, . . . , un are ground terms (the mes-

sages observed by the attacker), and x1, . . . , xn are variables.

The initial configuration of a protocol (P, φ0) is the configuration (E0; {P};σ0)
if φ0 = new E0.σ0.

The communication system is formally defined by the rules of Figure 1.
The In rule allows the attacker to make a process progress by feeding it a
term he built with publicly available terms and symbols. The Out rule let
the attacker gain knowledge as soon as a message is sent by a process by
adding it to the substitution of its current configuration. The other rules
are quite standard.

Let A be the alphabet of actions where the special symbol τ ∈ A rep-

resents an unobservable action. For every ` ∈ A, the relation
`−→ has been

In (E ; in(c, u).P ∪ P;σ)
in(c,R)−−−−→ (E ;Pθ ∪ P;σ)

where

{
R is a recipe
θ = mgu(u,Rσ ↓) 6= ⊥

Out (E ; out(c, u).P ∪ P;σ)
out(c,x|σ|+1)−−−−−−−−→ (E ;P ∪ P;σ ∪ {x|σ|+1 . u})

Par (E ;P1 | P2 ∪ P;σ)
τ−→ (E ;P1 ∪ P2 ∪ P;σ)

Repl (E ; !P ∪ P;σ)
τ−→ (E ;P∪!P ∪ P;σ)

New (E ; new n.P ∪ P;σ)
τ−→ (E ∪ {n′};P{n′

/n} ∪ P;σ)
where n′ is a fresh name

Fig. 1. Transition system.

defined in Figure 1. For every w ∈ A∗ the relation
w−→ on configurations is

defined in the usual way. By convention K
ε−→ K where ε denotes the empty

word. For every s ∈ (Ar{τ})∗, the relation
s
=⇒ on configurations is defined

by: K
s
=⇒ K ′ if, and only if, there exists w ∈ A∗ such that K

w−→ K ′ and s is
obtained from w by erasing all occurrences of τ . Intuitively, K

s
=⇒ K ′ means

that K transforms into K ′ by experiment s.

Example 3. Consider the following execution of the protocol (PA, ∅) de-
scribed in Example 2:

tr = K0
τ−→ τ−→ τ−→ in(cAA,start)−−−−−−−→ (∅;P1; ∅) out(cAA,x1)−−−−−−→ (∅;P2;σ2)

τ−→ in(cSA,x1)−−−−−→ (∅;P3;σ2)
out(cSA,x2)−−−−−−→ (∅;P4;σ4)

τ−→ in(cS ,x1)−−−−−→ (∅;P5;σ4)
out(cS ,x3)−−−−−−→ (∅;P6;σ)

where:




K0 = (∅; {PA}; ∅), the initial configuration of (PA, ∅)
σ2 = {x1 . senc(idA, kAS)}
σ4 = {x1 . senc(idA, kAS), x2 . h(idA)}
σ = {x1 . senc(idA, kAS), x2 . h(idA), x3 . senc(idA, kauth)}

Three uses of rule Par are first needed to separate PA into three distinct
processes. The branch (1) in PA first evolves by receiving the message
start on channel cAA (rule In). It then outputs a new term by rule Out,
senc(idA, kAS), stored in the substitution σ2. Note that, as PA does not
contain any new instruction, there are no restricted names and the frame is
just the associated substitution. The rule Repl enables us to make a new
instance of (2) without the bang (!). It can now receive an input by In: x1,
which, in the current frame, corresponds to senc(idA, kAS) and consequently
outputs h(idA) on channel cSA, stored as x2, thanks to the Out rule. The
same applies to branch (3) which after an application of Repl receives x1

on channel cS and emits senc(idA, kauth), stored in the frame σ as x3.

3.3 Reachability

Most common notions of security, such as secrecy or authentication rely on
the ability for an attacker to learn a particular information. Formally these
properties can be modelled with the notion of reachability, i.e. whether a
term in our grammar can be reached through some execution of a protocol.

For every configuration K, we define its set of traces, each trace consist-
ing in a sequence of actions together with the sequence of sent messages:

trace(K) = {(s, new E .σ) |K s
=⇒ (E ;P;σ) for some configuration (E ;P;σ)}.

Definition 2 (reachability). A term u is said to be reachable in a pro-
tocol (P, φ0) if there exists (s, new E .σ) ∈ trace(K0) and i ∈ {1, . . . , |σ|}
such that xiσ = u; where K0 is the initial configuration of the protocol
(P |!in(c, x).out(c, x), φ0) and c is channel not used in P .

Informally, a term is reachable if the attacker is able to build it from the
knowledge gained from some execution of the protocol.

3.4 Trace equivalence

Privacy-type security properties such as those studied in this paper are often
formalised using behavioural equivalence (see e.g. [15, 4, 10]). In this paper,
we consider the notion of trace equivalence.

Two processes are trace equivalent if, whatever they behave, the resulting
sequences of messages observed by the attacker are in static equivalence.

Definition 3 (trace equivalence). Let KA and KB be two configurations,
KA v KB if for every (tr, φ) ∈ trace(KA), there exists (tr′, φ′) ∈ trace(KB)
such that tr = tr′ and φ ∼ φ′. Two configurations KA and KB are trace
equivalent, denoted by KA ≈ KB, if KA v KB and KB v KA.

Note that only observable actions are taken into account in the definition
of equivalence between two traces. A protocol (P, φ0) is trace included in an-
other protocol (Q,ψ0), denoted by (P, φ0) vt (Q,ψ0), if the initial configura-
tion of (P, φ0) is included in the initial configuration of (Q,ψ0). Two proto-
cols (P, φ0) and (Q,ψ0) are trace equivalent, denoted by (P, φ0) ≈t (Q,ψ0),
if their initial configurations are trace equivalent.

Example 4. Consider the protocol (PA, ∅) of Example 2, and a variant (PB, ∅)
where every occurrence of idA is replaced by another public constant, idB,
and kAS by kBS . This new protocol serves the same purpose as the previous
one, only executed by an agent with distinct identity. Ideally, for the sake
of privacy, one could hope than using our passport does not disclose the

identity of its bearer. Formally, one would expect that (PA, ∅) ≈t (PB, ∅).
Unfortunately, let us show that (PA, ∅) 6≈t (PB, ∅). Let tr be the execution of
(PA, ∅) described in Example 3. We need to show there exists no execution
tr′ of (PB, ∅) which shares the same visible labels and such that the final
frames of tr and tr′ are statically equivalent.

Because of the existence of only one branch using each channel, there is
only one execution tr′ matching the labels on the transitions of tr:

tr′ = K0
τ−→ τ−→ τ−→ in(cAA,start)−−−−−−−→ out(cAA,x1)−−−−−−→ τ−→ in(cSA,x1)−−−−−→

out(cSA,x2)−−−−−−→ τ−→ in(cS ,x1)−−−−−→ out(cS ,x3)−−−−−−→ (∅;PB;λ)

where:
{
K0 = (∅; {PB}; ∅), the initial configuration of (PB, ∅)
λ = {x1 . senc(idB, kBS), x2 . h(idB), x3 . senc(idB, kauth)}

But, considering the recipes M = h(idA) and N = x2, it is immediate that
σ 6∼E λ. Hence (PA, ∅) 6≈t (PB, ∅).

Generally, the problem of deciding whether two protocols are trace-
equivalent is harder than deciding the reachability of a term.

Theorem 1. If the trace equivalence of two protocols is decidable, then the
reachability problem is decidable.

Proof. Suppose the trace equivalence of two protocols is decidable and let
u be a term whose reachability in a protocol (P, φ0) has to be decided.
Let then P1 = P |in(c, u).out(c, tag1) and P2 = P |in(c, u).out(c, tag2) two
processes; where c is a channel not used in P and tag1, tag2 are two public
constants. Then u is reachable in (P, φ0) if, and only if, (P1, φ0) 6≈t (P2, φ0).
Hence if trace equivalence is decidable, so is reachability. ut

4 Decidability of trace equivalence

We now intend to define two classes of protocols for which we present re-
sults regarding the decidability of the trace equivalence of two protocols. As
noted earlier, if the trace equivalence is quite a recent concept introduced
with privacy-type properties, the reachability problem has been thoroughly
studied. In particular, reachability has been shown to be decidable for a frag-
ment C of first-order logic with clauses containing at most one variable [13],
plus the needed clauses to express the attacker abilities. As Theorem 1
makes the trace equivalence problem harder than reachability, it is natural
to interest ourselves in restrictions of the said fragment C.

4.1 Classes of protocols

We propose first a class C1 of protocols somewhat included in the fragment
C. Similarly, processes in C1 have at most one variable and thus able only
to copy one part of inputted message blindly.

For the sake of concision, ε! denotes either the presence or absence of a
bang in front of a process.

Definition 4. C1 is the class of protocols (P, σ0)

P =
n

|
i=1
ε!in(ci, ui).out(ci, u

′
i)

such that: ∀i ∈ {1, . . . , n}, ui, u′i ∈ T ′(Σ, {x}) where T ′(Σ, {x}) is the set
of terms such that the right argument of senc or sdec is always a constant
of Σ, i.e. encryption with atomic and non-variable keys.

Upon translation into Horn clauses [8], protocols of C1 would fall into C
if it were for the absence of bangs in front of some parallel branches, making
the translation only approximate.

We also propose another, more constrained subclass of protocols, C2,
adding restrictions on the use of keys, in particular on the possibility for a
protocol to disclose them and on the use of channels. Those restrictions will
enable us to state the results of Section 4.3.

Definition 5. C2 is the class of protocols (P, σ0) of C1 such that:

– any constant used as a key in P must either be in σ0 or not be reachable.
– ∀i, j ∈ {1, . . . , n}, ci = cj ⇒ i = j

In particular note that two distinct parallel branches in a process in C2

cannot share the same channel.

4.2 Undecidability of C1

Theorem 2 (undecidability of trace equivalence in C1). Trace equiv-
alence in C1 is undecidable.

To prove the undecidability of C1 with regards to trace equivalence,
we show it is possible to encode the Post Correspondence Problem into
an equivalence of two protocols of this class. Given a word, one protocol
will be meant to unstack the first set of tiles while the other will try as
much as possible to unstack the second set of tiles. While an empty word
is not “simultaneously” reached by the two processes, they appear to be
equivalent. On the other hand, if a solution to the Post Correspondence

Problem does exit, it will lead the second process to react in a distinct way,
breaking the trace equivalence property.

Let PCP be an instance of the Post Correspondence Problem over the
alphabet A, with sets of non-empty tiles U = {ui}1≤i≤n and V = {vi}1≤i≤n.
We can then define:

∀i ∈ {1, . . . , n},





u∗i = i · α1 · . . . · i · α|ui| where ui = α1 · . . . · α|ui|
Vi = {j1 · α1 · . . . · j|vi| · α|vi||vi = α1 · . . . · α|vi|

∧1 ≤ k ≤ |vi| ⇒ 1 ≤ jk ≤ n}
Wi = (A ∪ {1, . . . , n})2|vi| r Vi

W ′i =
2|vi|−1⋃
k=1

(A ∪ {1, . . . , n})k

Consider the signature with symmetric encryption enriched with con-
stants for the letters in A and values in {1, . . . , n}. and two additional
constants ε (for the empty word) and success.

Σpub = {ε/0, success/0, senc/2, sdec/2} ∪ {a/0|a ∈ A} ∪ {1/0, . . . , n/0}
Σprv = {ki, k′i}i∈{0,...,3} ∪ {k, kP , kQ}
Σ = Σpub]Σprv

Concatenation on the right for word will be represented by encryption.
Let PU (k) and PV (k) be the following parametrised processes with only

one variable x.

PU (k) := !in(ci, senc(senc(x · u∗i , k0), k)).out(ci, senc(senc(x, k1), k)) (2)
| !in(ci, senc(senc(x · u∗i , k1), k)).out(ci, senc(senc(x, k1), k)) (3)
| !in(c′, senc(senc(ε, k1), k)).out(c′, senc(senc(ε, k2), k)) (4)

where i ranges in {1, . . . , n}.

PV (k) := !in(ci, senc(senc(x · v, k′0), k)).out(ci, senc(senc(x, k′1), k)) (2′)
| !in(ci, senc(senc(x · v, k′1), k)).out(ci, senc(senc(x, k′1), k)) (3′)
| !in(ci, senc(senc(x · w, k′0), k)).out(ci, senc(senc(senc(x · w, k), k′3), k)) (2′a)
| !in(ci, senc(senc(x · w, k′1), k)).out(ci, senc(senc(senc(x · w, k), k′3), k)) (3′a)
| !in(ci, senc(senc(w′, k′0), k)).out(ci, senc(senc(senc(w′, k), k′3), k)) (2′b)
| !in(ci, senc(senc(w′, k′1), k)).out(ci, senc(senc(senc(w′, k), k′3), k)) (3′b)
| !in(ci, senc(senc(x, k′3), k)).out(ci, senc(senc(senc(x, k), k′3), k)) (5′)
| !in(c′, senc(senc(ε, k′1), k)).out(c′, success) (4′)
| !in(c′, senc(senc(x · α, k′1), k)).out(c′, senc(senc(x · α, k′2), k)) (4′a)
| !in(c′, senc(senc(x, k′3), k)).out(c′, senc(senc(x〉, k′2), k)) (4′b)

where i ranges in {1, . . . , n}, α in A, and for each i ∈ {1, . . . , n}, v ranges
in Vi, w in Wi and w′ in W ′i .

We can now define P and Q to be:

P := in(c0, x).out(c0, senc(senc(x, k0), kP))|PU (kP)
Q := in(c0, x).out(c0, senc(senc(x, k′0), kQ))|PV (kQ)

(P, ∅) and (Q, ∅) are indeed two protocols of C1.

Example 5. Consider the following instance of the Post Correspondence
Problem and let U and V be the following sequences of tiles built over
the alphabet A = {a, b}:

U = (b, aab, aab)
V = (ba, ab, aaa)

This instance has a solution, namely the sequence of indices (1, 2) corre-
sponding to the word u = baab. In our formalism, it leads to the following
sets of terms, representing words over (A · {1, 2, 3})∗:

u∗1 = 1b u∗2 = 2a2a2b u∗3 = 3a3a3b
V1 = {i1bi2a|i1, i2 ∈ {1, 2, 3}} V2 = {i3ai4b|i3, i4 ∈ {1, 2, 3}}
V3 = {i5ai6ai7a|i5, i6, i7 ∈ {1, 2, 3}} W1 = (A ∪ {1, 2, 3})2 r V1

W2 = (A ∪ {1, 2, 3})2 r V2 W3 = (A ∪ {1, 2, 3})3 r V3

W ′1 = W ′2 =
3⋃

k=1

(A ∪ {1, 2, 3})k W ′3 =
5⋃

k=1

(A ∪ {1, 2, 3})k

where, for instance, 1b is a shorthand for senc(senc(ε, 1), b), and (A∪{1, 2, 3})k
here also represents the set of terms associated to the words of (A∪{1, 2, 3})k.

Thus we can define the term u∗ to be u∗ = u∗1u
∗
2 = 1b2a2a2b and illus-

trate the traces of P and Q associated to it.

tr = (P, ∅) in(c,u∗)
=====⇒ out(c,x1)

======⇒ in(c2,x1)
======⇒ out(c2,x2)

=======⇒
in(c1,x2)
======⇒ out(c1,x3)

=======⇒ in(c′,x3)
======⇒ out(c′,x4)

======⇒ (P ′, φP)

tr′ = (Q, ∅) in(c,u∗)
=====⇒ out(c,x1)

======⇒ in(c2,x1)
======⇒ out(c2,x2)

=======⇒
in(c1,x2)
======⇒ out(c1,x3)

=======⇒ in(c′,x3)
======⇒ out(c′,x4)

======⇒ (Q′, φQ)

where

φP = { x1 . senc(senc(u∗, k0), kP), x2 . senc(senc(1b, k1), kP),
x3 . senc(senc(ε, k1), kP), x4 . senc(senc(ε, k2), kP)}

and

φQ = { x1 . senc(senc(u∗, k′0), kQ), x2 . senc(senc(1b2a, k′1), kQ),
x3 . senc(senc(ε, k′1), kQ), x4 . success}

Intuitively tr unstacks first the tile u∗2, then u∗1. Then the attacker, knowing
senc(senc(ε, k1), kP) can finally trigger a communication on channel c′. Note
that, as u∗ embeds the sequence of indices in itself, the attacker cannot start
by unstacking u∗3, even though u2 = u3 = aab: this is made to prevent her
from using an input in two different ways and causing unfortunate equalities
to hold in the frame.

As equivalent traces have to match in terms of channels and input recipes
and the pattern matching in Q is exclusive, tr′ is at this stage the only
possible candidate to be equivalent to tr: tr′ unstacks first the tile 2a2b
belonging to V2, and then the tile 1b2a belonging to V1. The communication
on c′ leads to the display of the tag success, thus preventing tr′ from being
equivalent to tr.

Similarly inputs corresponding to words which are not solutions of this
Post Correspondence Problem will lead to statically equivalent frames thanks
to the encoding with the secret key kQ (success never appears), and ill-
formed inputs will cause P to be stuck while Q will still be able to follow.

Proposition 1 (undecidability of trace inclusion). (P, ∅) vt (Q, ∅) if,
and only if, PCP has no solution.

To obtain a result on the trace equivalence of C1, let us enrich our
signature with two new private constants ka and kb. Let σ0 be the empty
frame; P ′ and Q′ be:

P ′ := in(c0, x).out(c0, senc(senc(x, k0), kP))
| in(c′0, x).out(c′0, senc(ka, k))
| in(c′0, x).out(c′0, senc(kb, k))
| in(c′′0, senc(x, k)).out(c′′0, x)
| P aU (kP)
| P bV (k′P)

and

Q′ := in(c0, x).out(c0, senc(senc(x, k′0), kQ))
| in(c′0, x).out(c′0, senc(ka, k))
| in(c′0, x).out(c′0, senc(kb, k))
| in(c′′0, senc(x, k)).out(c′′0, x)
| P aV (kQ)
| P bV (k′Q)

where for any process R, Ra (resp. Rb) is obtained by replacing every
occurrence of in(c, u) by in(c, senc(u, ka)) (resp. by in(c, senc(u, kb))) for any
c and any term u. (P ′, σ0) and (Q′, σ0) are both protocols of C1.

Proposition 2 (encoding of PCP). (P ′, σ0) ≈t (Q′, σ0) if, and only if,
PCP has no solution.

Theorem 2 (undecidability of trace equivalence in C1). Trace equiv-
alence in C1 is undecidable.

Proof. It is possible to encode any instance of the Post Correspondence
Problem into the problem of deciding whether two protocols are trace equiv-
alence according to Proposition 2. ut

4.3 Decidability of C2

Decidability of trace equivalent, in spite of the strong constraints on C2 is
not trivial. Let us consider the following examples of non-equivalent proto-
cols.

Example 6. Let a be a public constant in our signature Σ, k a private key,
σ0 = {x1 . senc2n(a, k)} and τ0 = {x1 . senc2n+1(a, k)} be two initial frames
where n ∈ N and sencn(u, k) is the n-th iterate of senc(, k) to u; and P be
the following process:

P =!in(c, x).out(c, senc(senc(x, k), k))

Then (P, σ0) 6≈t (P, τ0). Indeed, (P, σ0) is able to produce the term senc2n(a, k),
already present in σ0, in n steps, whereas, because of the parity, (P, τ0) is
unable to match this equality.

A similar phenomenon can also be observed without actually requiring
non-empty initial frames.

Example 7. Let Σ be the same signature defined in Example 6, P and Q
be the processes

P = !in(c1, x).out(c1, sencn(x, k)) (1)
| !in(c2, x).out(c2, sencp(x, k)) (2)

and
Q = !in(c1, x).out(c1, sencn(x, k)) (1′)

| !in(c2, x).out(c2, sencq(x, k)) (2′)

where n, p, q ∈ N. Then (P, ∅) 6≈t (Q, ∅) as soon as p 6= q. Once again, (P, ∅),
by playing the branch (1) p times and (2) n times will cause an equality to
hold, whereas, if q 6= p, playing (2′) n times will not result in an equality.
And symmetrically by switching the roles of p and q.

These two example illustrate the need for a sufficiently refined method
to deal with trace equivalence in C2 and motivate the following results.

Theorem 3 (decidability of trace equivalence in C2). Trace equiva-
lence in C2 is decidable.

We introduce a new technical class of protocols, C ′2, whose signature is
unary. The Lemma 1 enables us to focus rather on the equivalence prob-
lem of C ′2. To prove the decidability of the equivalence of two protocols P
and Q in C ′2, we go through a number of intermediate steps. We first re-
duce the problem of trace equivalence to the equivalence of two particular
languages on words. This first reduction is achieved by Proposition 3. The
main point here is to let words represent recipes leading to equalities within
a frame. Hence an accepting word symbolises a particular equality when a
non-accepting represents either an ill-formed recipe or an inequality.

Then we prove the existence of a generalised pushdown automaton recog-
nising the said language in Proposition 4. The condition on distinct chan-
nels in the definition of C ′2 ensures the determinism of the automaton which
enables us to use a result from Sénizergues [21] to conclude about the de-
cidability of the equivalence of two pushdown automata, and hence of two
protocols in C ′2.

As we do not deal with nonces, we will use substitutions like frames as
they do not contain any restricted names. For the sake of clarity, the initial
frames σ0 and τ0 have domains {y1† , . . . , yN†} to avoid useless arithmetic
on indices. Outputs still use variables xi.

For this purpose, we introduce a new class S′ of signatures Σ′ of the
form

Σ′ = Σ′pub]Σ′prv

Σ′pub = {ek/1, dk/1}k∈Kpub
∪Kpub ∪H ′pub ∪A′pub

Σ′+pub = {ek/1}k∈Kpub
Σ′−pub = {dk/1}k∈Kpub

Σ′prv = {ek/1, dk/1}k∈Kprv ∪Kprv ∪H ′prv ∪A′prv

with the equational theory E′:

E′ = {dk(ek(x)) = x|k ∈ Kpub ∪Kprv}

where Hpub and Hprv (resp. Apub and Aprv) are set of public and private
unary function symbols (resp. public and private constants); Kpub and Kprv

are sets of particular public and private constants used as keys and ek (resp.
dk) represents symmetric encryption with constant k (resp. decryption with
k). Finally, Σ′+pub is the set of public constructors, while Σ′−pub gathers the
public destructors of Σ′.

Definition 6. C ′2 is the class of protocols (P, σ0) on a signature Σ′ ∈ S′
along with its equational theory,

P =
n

|
i=1
ε!in(ci, ui).out(ci, u

′
i)

such that:

– ∀i ∈ {1, . . . , n}, ui, u′i ∈ T (Σ′, {x})
– ∀i, i′ ∈ {1, . . . , n}, i 6= i′ ⇒ ci 6= c′i

Lemma 1 (reduction from C2 to C ′2). Let (P, σ0) and (Q, τ0) be two
protocols of C2 on a signature Σ ∈ S. There exist a signature Σ′ ∈ S′, two
protocols (P ′, σ′0) and (Q′, τ ′0) of C ′2 such that (P, σ0) ≈t (Q, τ0) if, and only
if, (P ′, σ′0) ≈t (Q′, τ ′0).

Note that the signature Σ′ depends on the protocols P and Q: in par-
ticular it has to include as constants the keys used in these protocols.

Definition 7. Let P =
n

|
i=1

!in(ci, ui).out(ci, u
′
i) be a process in C ′2 with ini-

tial frame σ0 and w a word in {1†, . . . , N †}.({1, . . . , n} ∪Σ′pub)∗. We define

termP
w by induction:

– termP
i = yiσ0 if i ∈ {1†, . . . , N †}

– termP
w·i = u′iθ if i ∈ {1, . . . , n} and θ = mgu(termP

w , uj) 6= ⊥
– termP

w·i = (i.termP
w) ↓ if i ∈ Σ′pub

– termP
w is otherwise undefined.

The term termP
w represents the interpretation of a word w, informally a

linear recipe in our calculus, in the protocol (P, σ0). Especially, in Proposi-
tion 3 we are interested in showing that an equality between two recipes in
two executions of two protocols is actually equivalent to the equality of the
“interpretations” of two words, getting us closer to pushdown automata.

Proposition 3 (language equivalence). Let (P, σ0) and (Q, τ0) be two
protocols of C2, LP and LQ be the languages

LP = {i1 . . . il#jm . . . j1|termP
i1...il

= termP
j1...jm}

and
LQ = {i1 . . . il#jm . . . j1|termQ

i1...il
= termQ

j1...jm
}

in

{1†, . . . , N †}.({1, . . . , n} ∪Σ′pub)∗.#.({1, . . . , n} ∪Σ′pub)∗.{1†, . . . , N †}

Then (P, σ0) ≈t (Q, τ0) if, and only if, LP = LQ.

Definition 8 (GDPA). A Generalised Deterministic Pushdown Automa-
ton (GDPA) A can be defined as a 7-uple:

A = (Q,Π, Γ, q0, ω,A, δ)

where



Q is set of states
Π is a finite set of input symbols
Γ is a finite set of stack symbols
q0 ∈ Q is the initial state
ω ∈ Γ is the starting stack symbol
A ⊆ Q is the set of accepting states
δ : (Q× (Π ∪ {ε})× Γ ∗)→ P(Q× Γ ∗) is a transition function

which moreover satisfies the following conditions:

– For any q ∈ Q, a ∈ Π ∪ {ε}, x ∈ Γ ∗, the set
⋃
y�x

δ(q, a, y), where � is

the prefix relation, has at most one element.
– For any q ∈ Q, x ∈ Γ ∗, if δ(q, ε, x) 6= ∅, then δ(q, a, x) = ∅ for every
a ∈ Π.

GDPA differ from traditional deterministic pushdown automata (DPA)
as they can unstack several symbols at a time. A GPDA can easily be
converted into a PDA by adding new states and ε-transitions.

Proposition 4 (existence of a GDPA). There exists a GDPA AP recog-
nising LP .

Proposition 5 (decidability of trace equivalence in C ′2). Trace equiv-
alence in C ′2 is decidable.

Proof. Let P and Q be two protocols of C ′2. By Proposition 3, the trace-
equivalence of P and Q is equivalent to the equality of the languages LP and
LQ. Thanks to Proposition 4, the equality of these two languages is itself
reducible to the equivalence of two GDPA AP and AQ. As GDPA can easily
be transformed into deterministic pushdown automata, their equivalence is
also decidable according to the result of Sénizergues in [21].

ut

A direct application from Proposition 5 and Lemma 1 leads to the de-
sired result.

Theorem 3 (decidability of trace equivalence in C2). Trace equiva-
lence in C2 is decidable.

5 Conclusion

We have defined in this report a class of protocols with one variable only
and without nonces for which the question of trace equivalence is shown to
be undecidable through an encoding of the Post Correspondence Problem.
Subsequently, we refined our class to achieve a decidability result relying
on a reduction to the equivalence of two deterministic pushdown automata.
As future work, it would be interesting to enrich our decidable fragment
with other primitives, pairing in particular. Another possible trail lies on
the weakening of the condition according to which parallel branches need
to have distinct channels. It seems reasonable to aim for a looser condition
involving exclusive pattern matching on the inputted and outputted terms.
A longer term perspective would be to focus on a variation of our decid-
ability result which would allow a effective procedure to be implemented,
or to apply our approach to tagged protocols, such as described in Blanchet
and Podelski [9] to obtain a new decidable class of protocols with regards
to trace equivalence.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In
Proc. 28th Symposium on Principles of Programming Languages (POPL’01), pages
104–115. ACM Press, 2001.

2. M. Abadi and A. Gordon. A calculus for cryptographic protocols: The spi calculus.
In Proc. 4th Conference on Computer and Communications Security (CCS’97), pages
36–47. ACM Press, 1997.

3. R. M. Amadio and W. Charatonik. On name generation and set-based analysis in
the dolev-yao model. In CONCUR, pages 499–514, 2002.

4. M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing unlinkability and
anonymity using the applied pi calculus. In Proc. 23rd Computer Security Foun-
dations Symposium (CSF’10), pages 107–121. IEEE Computer Society Press, 2010.

5. A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and M. L. Tobarra. Formal
analysis of SAML 2.0 web browser single sign-on: breaking the SAML-based single
sign-on for google apps. In Proc. of the 6th ACM Workshop on Formal Methods in
Security Engineering (FMSE 2008), pages 1–10. ACM, 2008.

6. A. Armando et al. The AVISPA Tool for the automated validation of internet security
protocols and applications. In Proc. 17th International Conference on Computer
Aided Verification, CAV’2005, volume 3576 of LNCS. Springer, 2005.

7. M. Baudet. Deciding security of protocols against off-line guessing attacks. In ACM
Conference on Computer and Communications Security, pages 16–25, 2005.

8. B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In
Proc. 14th Computer Security Foundations Workshop (CSFW’01). IEEE Comp. Soc.
Press, 2001.

9. B. Blanchet and A. Podelski. Verification of cryptographic protocols: tagging enforces
termination. Theor. Comput. Sci., 333(1-2):67–90, 2005.

10. M. Bruso, K. Chatzikokolakis, and J. den Hartog. Formal verification of privacy for
RFID systems. In Proc. 23rd Computer Security Foundations Symposium (CSF’10).
IEEE Computer Society Press, 2010.

11. V. Cheval, H. Comon-Lundh, and S. Delaune. Trace equivalence decision: negative
tests and non-determinism. In ACM Conference on Computer and Communications
Security, pages 321–330, 2011.

12. H. Comon, V. Cortier, and J. Mitchell. Tree automata with one memory, set con-
straints, and ping-pong protocols. In ICALP, pages 682–693, 2001.

13. H. Comon-Lundh and V. Cortier. New decidability results for fragments of first-
order logic and application to cryptographic protocols. In Proc. 14th Int. Conf. on
Rewriting Techniques and Applications (RTA’2003), volume 2706 of LNCS, pages
148–164. Springer-Verlag, 2003.

14. C. Cremers. The Scyther Tool: Verification, falsification, and analysis of security
protocols. In Proc. 20th International Conference on Computer Aided Verification
(CAV 2008), volume 5123/2008 of LNCS, pages 414–418. Springer, 2008.

15. S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of elec-
tronic voting protocols. Journal of Computer Security, (4):435–487, July 2008.

16. S. Delaune, S. Kremer, and M. D. Ryan. Symbolic bisimulation for the applied pi
calculus. Journal of Computer Security, 18(2):317–377, 2010.

17. D. Dolev and A. C. Yao. On the security of public key protocols. In Proc. 22nd
Symposium on Foundations of Computer Science (FCS’81), pages 350–357. IEEE
Computer Society Press, 1981.

18. N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded security
protocols. In Proc. Workshop on Formal Methods and Security Protocols, 1999.

19. S. Even and O. Goldreich. On the security of multi-party ping-pong protocols. In
FOCS, pages 34–39, 1983.

20. R. Ramanujam and S. P. Suresh. Tagging makes secrecy decidable with unbounded
nonces as well. In FSTTCS, pages 363–374, 2003.

21. G. Sénizergues. L(a)=l(b)? decidability results from complete formal systems. Theor.
Comput. Sci., 251(1-2):1–166, 2001.

22. C. Stirling. Decidability of dpda equivalence. Theor. Comput. Sci., 255(1-2):1–31,
2001.

A Appendix

Proposition 1 (undecidability of trace inclusion). (P, ∅) vt (Q, ∅) if,
and only if, PCP has no solution.

Proof (sketch). We want to prove successively the two implications :

1. If PCP has a solution then P 6vt Q:
If PCP has a solution, there exists a word u = α1 . . . αm ∈ A+, p ∈ N
and (ik)0≤k≤p ∈ Np such that u = ui1 · . . . · uip = vi1 · . . . · vip . From
this word and sequence, the attacker can build the term u∗ representing
the word i1 · α1 · . . . · ip · αm from the tiles u∗i . Let tr be the trace of P
following the sequence (ik):

tr = (P, ∅) in(c,u∗)
=====⇒ out(c,x1)

======⇒
in(cip ,x1)
======⇒

out(cip ,x2)
=======⇒

. . .
out(ci1 ,xp+1)
=========⇒ in(c′,xp+1)

=======⇒ out(c′,xp+2)
========⇒ (P ′, φP)

tr model the fact that, given u∗, P can remove one by one the tiles
u∗ip to u∗i1 to reach the empty word and hence output the message
senc(senc(ε, k2), kP). In this execution, the only input recipes are vari-
ables of the frame xk and no equality holds in φ′, as the attacker ignores
the secret key k and all outputted message are different; thus all mes-
sages look like fresh values to her.
We claim that there exists no equivalent trace in Q. Indeed, as the
pattern matching operated by process parts (2′), (3′), (2′a), (3′a) and
(2′b), (3′b) is exclusive, given u∗ as an input (which is necessary as it is
sent in clear), Q has no choice but to remove tiles vip ∈ Vip to vi1 ∈ Vi1
and output success on channel c′ as u is a Post word. Any other trace
would either lead to a mismatch on the channels or an improper filtering
in Q. Then the recipe xp+2 = success is evaluated to true in φQ (the
frame resulting from this execution of Q) but false in φP . So tr has no
equivalent trace in Q: P 6vt Q.

2. If PCP has no solution then P vt Q:
If PCP has no solution, then for every word u∗ ∈ (A∪{1, . . . , n})+ either
u∗ cannot decomposed as a sequence of tiles u∗i or u∗ cannot decomposed
as a sequence of tiles in Vi. Given a trace tr of P and the final frame
φP , we claim that there exists a trace equivalent trace tr′ of Q with final
frame φQ.
– If u∗ is not a word of (A · {1, . . . , n})+: then P will not be able

to progress but by unstacking the potential last tiles of u∗: as Q
is always able to follow tr either with the tiles v ∈ Vi or with the

branches (2′a), (3′a) and (5′) and because no equality other than
those due to the replays of old messages holds in φP and φQ, tr is
trace-equivalent to tr′.

– If u∗ has no decomposition in tiles u∗i : then P never outputs on
channel c′ and φP contains nothing but trivial equalities i.e. equal-
ities between variables, consequences of replays operated by the at-
tacker. tr′ can be built by following the sequence of channels used
in tr and choosing the adequate filtering ((2′), (3′), (2′a), (3′a), (2′b)
or (3′c)). As for φP , φQ will not contain any non-trivial equality as
messages outputted are similar to random values to the attacker.

– If u∗ has a decomposition in tiles u∗i , and incidentally outputs
on channel c′: u∗ cannot be decomposed in tiles of Vi with the same
sequence of indices: because the filtering in Q is also exhaustive,
messages outputted by Q (up to replays) from a certain point will
be tagged by the constant 3 (i.e. of the form senc(senc(, k′3), kQ)),
which will enable Q, through the part (5′), to match inputs and
outputs on any channel ci. Finally, parts (4′a) and (4′b) allow Q to
match the outputs of P on c′. For the same reason as before, φP and
φQ are statically equivalent as the messages appears to be random
to the attacker and thus contain no non-trivial equalities.

Hence, for all traces of P there exists an equivalent trace of Q: P vt Q.

ut

Proposition 2 (encoding of PCP). (P ′, σ0) ≈t (Q′, σ0) if, and only if,
PCP has no solution.

Proof (sketch).

– If PCP has a solution, then (P ′, σ0) 6≈t (Q′, σ0): Indeed any trace
of (P ′, σ0) will either result in an execution of P aU (kP) or P bV (k′P); the
result in the first case is a consequence of Theorem 1, thus witnessing
the non-equivalence of the two protocols.

– If PCP has no solution, then (P ′, σ0) ≈t (Q′, σ0): first, note that
(Q′, σ0) vt (P ′, σ0) holds as the non-determinism in P ′ enables us to
always choose an execution following P bV , and the reverse inclusion is a
consequence also of Theorem 1 (if the execution uses P aU) or obvious (if
it uses P bV).

ut

Lemma 1 (reduction from C2 to C ′2). Let (P, σ0) and (Q, τ0) be two
protocols of C2 on a signature Σ ∈ S. There exist a signature Σ′ ∈ S′, two
protocols (P ′, σ′0) and (Q′, τ ′0) of C ′2 such that (P, σ0) ≈t (Q, τ0) if, and only
if, (P ′, σ′0) ≈t (Q′, τ ′0).

Proof. Let (P, σ0) and (Q, τ0) be two protocols of C2. We first explain how
to build the protocol Σ′ ∈ S′, (P ′, σ′0) in C ′2, and symmetrically for (Q′, τ0).
We will then prove that if (P ′, σ′0) 6≈t (Q′, τ ′0) then (P, σ0) 6≈t (Q, τ0); and
conclude by proving the opposite implication.

Defining Σ′: By Definition 5, the keys used in P and Q must either
be non reachable or present in their respective initial frames: consequently,
there exist two sets of indices I and J of respectively σ0 and τ0 such that
for all i ∈ I and j ∈ J , xiσ0 and xjτ0 are the keys known to the attacker.
Three cases occur:

– if for all i, i′ ∈ I ∪J , xi = xi′ holds in σ0 if, and only if it holds in τ0 and
moreover if all terms xiσ0 and xiτ0 are constants of Σ: in that case, we
can rename every xiτ0 occuring in (Q, τ0) by xiσ0. This renaming still
preserves the relation between (P, σ0) and (Q, τ0).

– if for all i, i′ ∈ I ∪ J , xi = xi′ holds in σ0 if, and only if it holds in τ0

but there is a term xiσ0 or xiτ0 which is not a constant of Σ: then the
two processes are not equivalent. Indeed, Definition 5 forbids non-atomic
encryption and thus one of the two terms senc(xi, xi)σ0 or senc(xi, xi)τ0

is an element in T ′(Σ, {x}), but not the other. In that case, rename the
non-atomic term with a new public constant: the renamed protocol and
the other are still non-equivalent.

– else there exists i, i′ ∈ I∪J such that, e.g. xi = xi′ holds in σ0 but not in
τ0: then, (P, σ0) and (Q, τ0) are a fortiori not trace equivalent. In that
case, no renaming is necessary.

Now, the protocol (P, σ0) and the (possibly renamed) protocol (Q, τ0)
share the same set of disclosed keys Kpub = {xiσ0|i ∈ I}∪{xjτ0|j ∈ J} (the
union need not be disjoint if there were a renaming). We can also define
Kprv to be the set of constants in (P, σ0) and (Q, τ0) used as keys but not
reachable. This preliminary work is indeed necessary to ensure that we can
define a common signature Σ′ for both protocols:

Σ′ = Σ′pub]Σ′prv

Σ′pub = {ek/1, dk/1}k∈Kpub
∪Kpub ∪Hpub ∪ (Apub rKpub)

Σ′prv = {ek/1, dk/1}k∈Kprv ∪Kprv ∪Hprv ∪ (Aprv rKprv)

with the equational theory E′:

E′ = {dk(ek(x)) = x|k ∈ Kpub ∪Kprv}

Defining (P ′, σ′0): We can now define σ′0 to be the substitution built
from σ0 and P ′ to be the process built from P where every occurrence of
senc(, k) has been replaced by ek, and every occurrence of sdec(, k) has
been replaced by dk. By definition of Σ′ and C2 then: (P ′, σ′0) ∈ C ′2. We
similarly define (Q′, τ ′0).

In this proof and the following ones, we only interest ourselves in re-
spectful executions, i.e. traces where every input is immediately followed
by its corresponding output. It is obvious that there is a witness for non-
equivalence if, and only if, there exists a witness which is respectful: missing
outputs need just to be inserted at the appropriate positions, and the frame
to be re-indexed. We prove successively the two implications.

Suppose first that (P ′, σ′0) 6≈t (Q′, τ ′0): let tr′ be an execution of (P ′, σ′0)
such that there exists no equivalent execution of (Q′, τ ′0). Build tr the ex-
ecution of (P, σ0) from tr′, where every occurrence of ek() in the labels,
for any k ∈ K, is replaced by senc(, xi), where i is the index of σ′0 such
that xiσ

′
0 = k. Because keys occurring in the recipes (and thus the labels)

have to be reachable, by Definition 5, they necessarily appear in σ′0 and
σ0 for a certain (identical) index. Similarly every occurrence of ek() in the
frames of tr′ is replaced by senc(, k). And symmetrically for sdec(, k) and
dk(). tr is then an execution of (P, σ0) (note that indices in the frame are
identical in σ0 and σ′0). We claim that there exists no equivalent execution
of (Q, τ0). Indeed, if there were one, one could invert the previous process
to retrieve an execution of (Q′, τ ′0) and contradicts our hypothesis. Hence
(P, σ0) 6≈t (Q, τ0).

Suppose now that (P, σ0) 6≈t (Q, τ0): let tr be an execution of (P, σ0)
such that there exists no equivalent execution of (Q, τ0). One can revert
the construction used for the previous implication: from tr, let us build an
execution tr′ of (P ′, σ′0) as follows. In the labels, every occurrence of k ∈ K
in a recipe can be replaced by a variable xi for some index i by Definition
5. One can then replace every occurrence of senc(, xi) in the labels by
ek(). In the frames, every occurrence of senc(, k) can be replaced by ek().
We proceed symmetrically for sdec(, k) and dk(). Similarly, tr′ is then a
valid execution of (P, σ0). Moreover, we claim that there exists no equivalent
execution of (Q′, τ ′0): if there were one, one could invert the previous process
to get back an execution of (Q, τ0) and contradicts our hypothesis. Hence
(P ′, σ0) 6≈t (Q′, τ0).

And thus, deciding trace equivalence in C2 comes down to deciding trace
equivalence in C ′2. ut

Proposition 3 (language equivalence). Let (P, σ0) and (Q, τ0) be two
protocols of C2, LP and LQ be the languages

LP = {i1 . . . il#jm . . . j1|termP
i1...il

= termP
j1...jm}

and
LQ = {i1 . . . il#jm . . . j1|termQ

i1...il
= termQ

j1...jm
}

in

{1†, . . . , N †}.({1, . . . , n} ∪Σ′pub)∗.#.({1, . . . , n} ∪Σ′pub)∗.{1†, . . . , N †}

Then (P, σ0) ≈t (Q, τ0) if, and only if, LP = LQ.

Proof. – Suppose LP 6= LQ: for instance, let w = i1 . . . il#jm . . . j1 ∈
LP r LQ. Let ik1 , . . . , ikI , jk′1 , . . . , jk′J (k1 < . . . < kI and k′1 < . . . < k′J)
the letters of w in {1, . . . , n}. For every a ∈ {1, . . . , I}, we define Ra to
be the recipe:

• R1 = ik1−1 . . . i2.yi1 (if a = 1)

• Ra = ika−1 . . . ika−1+1.xka−1

and similarly, for every b ∈ {1, . . . , J}, we define R′b to be the recipe:

• R′1 = jk′1−1 . . . j2.yj1 (if b = 1)

• R′b = ik′b−1 . . . jk′b−1+1.xkb−1

and

tr = (P, σ0)
in(cik1

,R1)

=======⇒ (P1, σ0)
out(cik1

,x1)

========⇒ (P ′1, σ1)
in(cik2

,R2)

=======⇒ . . .

. . .
in(cikI

,RI)

=======⇒ (PI , σI−1)
out(cikI

,xI)

========⇒ (P ′I , σI)
in(cj

k′1
,R′1)

=======⇒ (PI+1, σI)
out(cj

k′1
,xI+1)

==========⇒ . . .

. . .
in(cj

k′
J

,R′J)

========⇒ (PI+J , σI+J−1)
out(cj

k′
J

,xI+J)

==========⇒ (P ′I+J , σI+J)

In particular, tr is a valid trace of P such that the equality

il(. . . (ikI+1(xI))) ↓ = (jm . . . (jkJ+1(xI+J)) ↓

holds in σI+J as w ∈ LP .

From our semantics and the definition of termP we get that il(. . . (ikI+1(xI)))σI+J ↓
= termP

i1...il
and termP

j1...jm
= (jm . . . (jkJ+1(xI+J))σI+J ↓. Moreover by

definition of LP , termP
i1...il

= termP
j1...jm

. On the other hand, because of
the exclusive input pattern matching and the absence of nonces, given tr,
either there exits no trace tr′ of Q matching the labels of tr: in that case

the equivalence fails immediately; or there exists only one trace tr′ of Q
matching the labels of tr: the restriction on respectful executions forbid
the process to accumulate inputs before outputting and thus creating
non-determinism. Given the symmetric notation, we hence have that
the same equality does not hold in σ′I+J as w 6∈ LQ and by definition

of LQ, termQ
i1...il

6= termQ
j1...jm

. Consequently, il(. . . (ikI+1(xI)))σ
′
I+J ↓ 6=

(jm . . . (jkJ+1(xI+J))σ′I+J ↓.
– Suppose P 6≈t Q: for instance, suppose P 6vt Q i.e. there exists tr a

trace of P such that for every trace tr′ of Q, tr is not equivalent to tr′.
Because we can focus on respectful executions of the processes, given tr,
there exists at most one trace tr′ of Q with adequate labels (respectful
executions forces the process to output as soon as he receives an input,
and thus behaving in a deterministic way). We make the following case
analysis:

1. There exists exactly one trace tr′ of Q matching the labels of tr. We
can then rephrase the hypothesis P 6vt Q in an equivalent way: there
exists a respectful trace tr of P with final frame σ, two recipes R and
R′ such that Rσ ↓ = R′σ ↓ but Rσ′ ↓ 6= R′σ′ ↓; or Rσ ↓ 6= R′σ ↓ but
Rσ′ ↓ = R′σ′ ↓, where σ′ is the final frame of the unique trace tr′ of
Q which matches the labels of tr.
As R (resp. R′) is a recipe built on a unary public signature, it is
of the form s1

1 . . . s
1
k1
.xl1 or s1

1 . . . s
1
k1
.yl1 (if the term is built from

the initial frame σ0) where for all i ∈ {1, . . . , k1}, sji ∈ Σ′pub (resp.

s′11 . . . s
′1
k′1
.xl′1 or s′11 . . . s

′1
k′1
.yl′1). Each variable appearing in R (resp.

R′) was either in the initial frame (and then is a yi variable) or
appears first in an input and output triggered by the attacker on a
channel cn1 through a recipe R1 (resp. on a channel cn′1 through a
recipe R′1).

One can then build a sequence l1.sk1 . . . s1 (if it was a yi variable)
or n1.s

1
k1
. . . s1

1 (if it were the result of outputting on channel cn1).
In the latter case, the input was itself the result of applying a linear
recipe to a variable xl2 or yl2 . Because the execution and the recipes
are finite, we can inductively build a sequence by adding as a prefix
the reversed recipe which triggered the input and the index of the
channel. This sequence w would be of the form

w = l1.s
p
kp
. . . sp1.np . . . n1s

1
k11
. . . s1

1

where l1 ∈ {1†, . . . , N †}, p ∈ N, for all j ∈ {1, . . . , p} and i ∈
{1, . . . , kp}, sji ∈ Σ′pub; and ni ∈ {1, . . . , n}. And symmetrically we
would get a sequence w′ from R′. One possess then w (resp. w′) of

symbols of {1, . . . , n} (the channels) and Σ′pub (the recipes used by

the attacker) and starting by a element of {1†, . . . , N †} (as terms in
σ have to be closed, the attacker must start with an element of σ0).
Let then W be the word W = w#w′R where .R denotes the reverse
(mirror) operation. In particular, because of the adequacy between
our definition of term and the semantics, we get that Rσ ↓ = termP

w ,
R′σ ↓ = termP

w′ and symmetrically Rσ′ ↓ = termQ
w , R′σ′ ↓ = termQ

w′

for tr′ is a trace of Q with the same labels as tr so termQ
w and termQ

w

are indeed defined. Hence, as the equality must hold in σ or σ′ but not
both, either W ∈ LP rLQ (the equality holds in P) or W ∈ LQrLP
(the equality holds in Q). So LP 6= LQ as expected.

2. There exists no trace tr′ of Q matching the labels of tr.

Following the same process as in the previous case, we build a word
W = w#wR ∈ LP witnessing the equality x|σ|σ = x|σ|σ. On the

other hand, as termQ
w and termQ

w′ are undefined (consequence of the
absence of matching trace), we get that W /∈ LQ, proving that LP 6=
LQ.

ut

Proposition 4 (existence of a GDPA). There exists a GDPA AP recog-
nising LP .

Transitions are often written in a clearer way in the following fashion: a
transition from q to q′ reading a, popping u from the stack and pushing v

will be denoted by q
a;u/v−−−→ q′.

We extend our working definition of GDPA with an additional transition
labelled flush, whose effect is to erase the entire content of the stack (except
the starting stack symbol). Such a transition can easily be emulated with an

additional state and ε-transitions. We denote by q
a;u/flush/v−−−−−−−→ q′ a transition

form q to q′ reading a, popping u from the stack, flushing it and finally
pushing v.

q0 q1 q2 q3
i†;ω/yi†σ0ω

i; ūi/ū
′
i

#; z/z

i; ū′ji /ū
j
i

i†; yi†σ0ω/ε

Fig. 2. Automaton AP

Proof. We introduce here some notations: given a term u in T (Σ′, {x}) we
define ū to be the context such that u = ū[x]. As Σ′ contains only unary
symbols and constants, ū can be interpreted as a word in Σ′∗. Similarly,
given a ground term u, we consider it to both an element of T (Σ′) and Σ′∗.

We will also refer to the current stack of a run in the automaton by
stack (or stacki during a execution). Once again, from our stack alphabet, it
is possible to interpret a stack as a term in T (Σ′, {x}): letters from Σ′ are
viewed as constant or unary function symbols, the letter x as the variable
x and the starting stack symbol is ignored. In particular substitutions can
be applied: stackσ denotes the result of applying σ to the interpretation of
stack as a term.

The relation ≺ represents the strict prefix relation for words in Γ ∗. Note
that the bottom of the stack, where the starting stack symbol lies most of
the time, is on the right hand of the stack (seen as a word) and hence a
prefix can be seen as its head.

We treat first the case where every parallel branch is preceded by a bang:
let AP be the (extended) GDPA schematically defined in Figure 2:

AP = ({q0, q1, q2, q3}, Π, Γ, q0, ω, {q3}, δ)

where{
Π = {1†, . . . , N †} ∪ {1, . . . , n} ∪Σ′pub ∪ {#}
Γ = Σ′ ∪ {ω, x}

and δ is defined as follows:

– From q0 to q1: for every i† ∈ {1†, . . . , N †} there exists a transition
(i†;ω/yi†σ0ω).

– From q1 to q1:

• for every e ∈ Σ′+pub and z ∈ Γr{ω}, there exists a transition (e; z/ez).

• for every d ∈ Σ′−pub and z ∈ Γ r {ω, e} such that {d(e(x)) = x} ⊆ E,
there exist a transition (d; z/dz), and a transition (d; e/ε).

• for every i ∈ {1, . . . , n} such that u′i is not ground, there exists a
transition (i; ūi/ū

′
i).

• for every i ∈ {1, . . . , n} such that u′i is ground, there exists a transi-
tion (i; ūi/flush/ū′i).

– From q1 to q2: for every z ∈ Γ r {ω} there exists a transition (#; z/z).

– From q2 to q2:

• for every e ∈ Σ′+pub and z ∈ Γ r{ω}, there exists a transition (e; e/ε).

• for every d ∈ Σ′−pub and z ∈ Γ r {ω, d} such that {d(e(x)) = x} ⊆ E,
there exist a transition (d; z/ez), and a transition (d; d/ε).

• for every i ∈ {1, . . . , n} such that u′i is not ground, for every ū′ ≺ ū′i,
there exist a transition (i; ū′.x.ω/ūi.x.ω), and a transition (i; ū′i/ūi).

• for every i ∈ {1, . . . , n} such that u′i is ground, for every ū′ ≺ ū′i, there
exist a transition (i; ū′.x.ω/ūi.x.ω) and a transition (i; ū′i.ω/ūi.x.ω).

– From q2 to q3: for every i† ∈ {1, . . . , N †} and every ū ≺ yi†σ0, there
exist a transition (i†; ū.x.ω/ε) and a transition (i†; yi†σ0.ω/ε)

First, remark that, as protocols of C2 have the exclusive pattern match-
ing property, the resulting automaton AP is indeed deterministic. Then, it
is easy to observe that necessarily L(AP), the language recognized by AP , is
contained in {1, . . . , N †}.({1, . . . , n}∪Σ′pub)∗.#.({1, . . . , n}∪Σ′pub)∗.{1, . . . , N †}
as a transition from q0 to q1 or from q2 to q3 needs to read a letter in
{1, . . . , N †} and the transition from q1 to q2 is triggered by #. So any word
w ∈ L(AP) can be written as w = w1#wR2 , where w1, w2 ∈ {1, . . . , N †}.({1, . . . , n}∪
Σ′pub)∗ and w1 = i1 . . . il, w2 = j1 . . . jm. We need to prove now that w ∈
L(AP) if, and only if, termP

w1
= termP

w2
, according to the definition of LP .

1. Suppose termP
w1

= termP
w2

:
(a) Reading w1: the first transition from q0 to q1 is possible upon read-

ing i1 ∈ {1, . . . , N †}. After this, we get that stack1 = yi1σ0 = termP
i1

(i). If for some k ∈ {1, . . . , l}, stackk = termP
i1...ik

, then the tran-

sition q1
ik+1−−−→ q1 (with appropriate popping/pushing words, if ik+1

is in {1, . . . , n} or Σ′pub) is the only possible one, and the defini-

tion of termP
i1...ik

ensures to be able to pop the appropriate letters

from Γ while the definition of termP
i1...ik+1

ensures that stackk+1 =

termP
i1...ik+1

(ii). Finally, by induction from (i) and (ii) to l we get

that w1 can be read and after reading it, stackl = termP
w1

(iii).
(b) Reading wR2 : because termP

w1
= termP

w2
, after reading #, stack′m =

termP
w2

as the stack is left unchanged by the transition from q1 to
q2. Moreover we define θm = ∅ (the empty substitution) (i’). Then

if stack′k+1θk+1 = termP
j1...jk+1

then q2
jk−→ q2 (or q2

j1−→ q3 as j1 ∈
{1, . . . , N †}) is the only possible transition. By defining θk accord-

ingly, θk = mgu(uqjk+1
, termP

j1...jk
) if the transition is q2

jk;ū′.x.ω/ūqjk+1
.x.ω

−−−−−−−−−−−−→
q2 for instance, we ensure that stack′kθk = termP

j1...jk
(ii’). By induc-

tion from (i’) and (ii’) up to index i2 we get that stack′2θ2 = termP
j1.j2

in q2: the transition from q2 to q3 is possible: w ∈ L(AP).
2. Suppose w ∈ L(AP):

(a) Reading w1: we follow the same induction as in point 1a. Transitions
are known to be possible, as w is accepted, but we get to know that
stackl = termP

w1
after reading w1.

(b) Reading wR2 : the process is similar to the point 1b but backwards. We
define a sequence of substitution on w2. First by φ1 = mgu(stack′1, yj1σ0),

where stack′1 is the stack of AP before reading j1. This definition en-

sures that stack′1φ1 = yj1σ0 = termP
i1

(i). For any transition (q2, stack′k+1, φk+1)
jk−→

(q2, stackk, φk) along the path of w2, we define φk+1 accordingly. If
jk ∈ {1, . . . , n} for instance:

φk+1 = mgu(stack′k+1, u
′q
jk

mgu(stack′kφk, u
q
ik

))

Because the transition is indeed possible, as w is accepted, the two
mgu are defined and different from ⊥. In particular, if stack′kφk =
termP

j1...jk
then stack′k+1φk+1 = termP

j1...jk+1
(ii). By induction from

(i) and (ii) until jm, we get that stack′mφm = termP
j1...jm

, and as

stack′m is ground, stack′m = termP
w2

. As the stacks are identical before
and after reading #, we can conclude that termP

w1
= termP

w2
.

Hence we built an GDPA AP whose language is exactly LP .
To extend this proof to the case where some parallel branches do not have

a bang in front of them, we build a variation of the GDPA AP , A′P . Let I the
subset of {1, . . . , n} gathering the branches of P without a bang. The states
q1 and q2 in AP are replaced by the states qs1 and qs2 for s ∈ P(I): transitions
labelled with letters not in I are duplicated in every one of them whereas

for every i ∈ I a transition q1
i−→ q1 (resp. q2

i−→ q, where q ∈ {q2, q3}) is

replaced by the transitions q
s]{i}
1

i;z−→ qs1 (resp. q
s]{i}
2

i;z−→ qs2; or q
s]{i}
2

i;z−→ q3

if q = q3) where z represents any popping/pushing combination. Then A′P
still recognizes exactly LP and moreover the branches without bang are
used at most once as expected from our semantics. ut

