Functional and Timing Abstraction

Pirouz Bazargan Sabet
Patricia Renault
Dominique Le Dû
Introduction

The input netlist contains:
- Transistors
- Capacitors
- Resistors
Functional Abstraction

Formal Method

- Build a gate (list of branches)
- If not dual: Color simulation
 - Remove non functional branches
 - Analyze conflict and tri-state condition
- If loop: Build a list of conflicts
 - Analyze transient conflicts
- If dual: Loop analysis (memory?)

System of Boolean equations
Signal correlation
Functional Abstraction

Analyzing transient conflicts

\[F_{cfl} \] is the expression of a conflict on gate \(x \)

\[F_{cfl} = x \cdot F + \overline{x} \cdot F \]

\[F_{cfl} = F \cdot F + x \cdot \frac{\partial F}{\partial x^+} + \overline{x} \cdot \frac{\partial F}{\partial x^-} \]

Permanent conflict

Transient conflict \(\rightarrow 0 \)

Transient conflict \(\rightarrow 1 \)
Functional Abstraction

Formal Method : Identifying a memory point

F is the Boolean expression of the gate x

$$F = x \cdot F + \bar{x} \cdot F$$

Memory point

$$\frac{\partial F}{\partial x^+} = F \frac{F}{x} \bar{x} \neq 0$$

Defines the write condition

$$\frac{\partial F}{\partial x^-} = \frac{\bar{F}}{x} \frac{F}{\bar{x}} = 0$$

Defines the written data

$$F \frac{F}{x} \bar{x} / \frac{\partial F}{\partial x^+}$$
SpSmall

SpSmall_1x2 : 2s
SpSmall_2x2 : 5s
SpSmall_3x2 : 10s
Functional Abstraction

mygal <option> <desc>

options :
-c <file> : use the configuration file <file>. Default value is `config.cnf`
-d <char> : use <char> as index delimiter for vectors. Default value is '('
-h : print this help
-l <file> : save a log file in <file>. This file can be used as input parameters for a further run. By default the log is printed on stdout
-o <file> : save the abstracted description in <file>
-p : load the user's parameters from the description that has the same name has the input netlist
-P <name>: load the user's parameters from the description <name>
-vdd <name>: define the signal named <name> as vdd. Default value is 'vdd'
-vss <name>: define the signal named <name> as vss. Default value is 'vss'
configuration root is inputs
(
 sp_1x2 $.spi netlist format = spice ;
 sp_2x2 $.spi netlist format = spice ;
 sp_3x2 $.spi netlist format = spice ;
 nlvtlp $.vbe extern format = vhdl leaf = ntransistor;
 nsvtlp $.vbe extern format = vhdl leaf = ntransistor;
 plvtlp $.vbe extern format = vhdl leaf = ptransistor;
 psvtlp $.vbe extern format = vhdl leaf = ptransistor;
);
end;
-- conflicts resolved by boolean analysis:

19/9/pass_h <= '0' when ((row<0> and (19/9/pass_l and (not b_<1>))) = '1');
18/e/net27 <= '1' when ((not b<0> and (18/e/bit_latched_h)) = '1');
16/13/a1 <= '0' when ((not 16/13/a1inv and (dec<0>)) = '1');

-- conflicts resolved by correlation analysis:

assert ((row<0> and (19/9/pass_l and (not 18/f/clk_local_h))) = '0');
assert (((19/8/pass_l and (row<0> and (not 18/e/clk_local_h))) = '0');
entity sp_3x2 is
 -- sp_3x2
 port
 (
 signal a : in bit_vector (1 downto 0) ;-- a
 signal ck : in bit ;-- ck
 signal csn : in bit ;-- csn
 signal d : in bit_vector (1 downto 0) ;-- d
 signal oen : in bit ;-- oen
 signal q : out bit_vector (1 downto 0) ;-- q
 signal wen : in bit ;-- wen
);
end;
v_16_13_a1 <= not dec (0);

process (ck, v_17_12_10_ext_cs_h)
begin
 if (not ck) = '1' then
 v_17_12_10_ext_cs_n <= not v_17_12_10_ext_cs_h;
 end if;
end process;

process (v_18_e_i47_out_p_drive_l, v_18_e_i47_out_n_drive_h)
begin
 if (not v_18_e_i47_out_p_drive_l) = '1' then
 q (0) <= '1';
 end if;
 if (v_18_e_i47_out_n_drive_h) = '1' then
 q (0) <= '0';
 end if;
end process;

end;