State of Art in eSRAM design and validation flow

Presentation of D1.1 document
Outline

- Introduction: eSRAM in SoC market
- General overview of the eSRAM design
- Design and verification of transistor based design
 - Design and verification of critical path
 - Design and verification of full cut
- Design and verification of functional view
- Overview of the weaknesses of today flow
Introduction

eSRAM in SoC market

Number of embedded memory increases with the complexity of the SoC (>400 items).

Performances and area are key questions for the cost and the performances of the final product.

Embedded memories are mainly eSRAM

Number of processor customized for a specific function (right axis)

Total memory size normalized 2005 (left axis)

Total logic size normalized 2005 (right axis)

ITRS 2005 System Drivers
General overview of the eSRAM design

Quality items

<table>
<thead>
<tr>
<th>Quality steps</th>
<th>Description</th>
<th>Development processes to be achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Specifications</td>
</tr>
<tr>
<td>MAT5</td>
<td>Memory specification frozen Customers identified</td>
<td>X</td>
</tr>
<tr>
<td>MAT9</td>
<td>Memory compiler ready Basic views built and checked</td>
<td>X</td>
</tr>
<tr>
<td>MAT10</td>
<td>Additional derived views are generated</td>
<td>X</td>
</tr>
<tr>
<td>MAT20</td>
<td>Design successfully checked on silicon</td>
<td>X</td>
</tr>
<tr>
<td>MAT30</td>
<td>Design successfully checked on all temperature ranges.</td>
<td>X</td>
</tr>
</tbody>
</table>

- **Specifications**
- **CAD flow**
- **Silicon**
General overview of the eSRAM design

Design flow

- HDL and Transistor worlds are independent: they are compared at the end of the flow
- Transistor based development are split into 2 steps
 - Tune the model on a simplified eSRAM
 - Compare the results with the real eSRAM
Transistor based design
Design and verification of critical path

- Working on simplified design to win run time
- Perform all the characterization on this design (timing, power...)

Diagram:
- Critical path
- Leaf cells
- Schematic
- Layout
- LVS
- DRC
- DFM
- Leaf cells development (Critical path accuracy improvement)
- Stimuli
- Spice simulator
- Waveforms
- Expected
- Post-processing
- Timings
- Powers
- Fan-in
- Fan-out
Transistor based design
Design and verification of full cut

Performances and functionalities fund with the critical path are checked in on corner full-cuts
Design and verification of functional view

Two models are developed:
- Timed
- Functional

Use digital verification strategies
Overview of the weaknesses of today flow (1/2)

Transistor based design flow

– Use only transistor based simulation
 Cannot cover all cases
– Design and vectors are developed by the same people
 ● There is no cross-check performed with independent point of view
 ● Timings are not optimum
 ● All the paths are not checked
 ● Debug at silicon must be avoided as soon as possible: very costly, very complex and very long
Overview of the weaknesses of today flow (2/2)

- Need timing study:
 A kind of static timing analysis

- Need Functional analysis
 A kind of property checking tool

- Good solution: Check functionalities with timings
 There is no industrial solutions to check timings and functionalities in one shot