Distributed synthesis for well-connected architectures

Paul Gastih, Nathalie Sznajdér and Marc Zeitouf

1 LSV, ENS de Cachan & CNRS
61, Av. du Président Wilson, F-94235 Cachan Cedex, France
{Paul.Gastin,Nathalie.Sznajder}@lsv.ens-cachan.fr
2 |aBRI, Universitée Bordeaux 1 & CNRS
351, Cours de la Libération, F-33405 Talence Cedex, France
mz@labri.fr

Abstract. We study the synthesis problem for external linear or bramchpec-
ifications and distributed, synchronous architectureh aiibitrary delays on pro-
cessesExternalmeans that the specification only relates input and outpiit va
ables. We introduce the subclass of uniformly well-conee@{tJWC) architec-
tures for which there exists a routing allowing each outpatcpss to get the
values of all inputs it is connected to, as soon as possibéepiie that the dis-
tributed synthesis problem is decidable on UWC architestiirand only if the
output variables are totally ordered by their knowledgengfut variables. We
also show that if we extend this class by letting the routiageshd on the output
process, then the previous decidability result fails. Bnave provide a natural
restriction on specifications under which the whole claddWiC architectures is
decidable.

Key words: Synthesis problemDistributed systems Synchronous architec-
tures.

1 Introduction

Synthesis is an essential problem in computer sciencedinted by Church [6]. It con-
sists in translating a system property which relates inpdt@utput events, into a low-
level model which computes the output from the input, so thatproperty is met. The
property may be given in a high level specification languagelf as monadic second
order logic) while the low-level model can be a finite statechiae. More generally,
the problem can be parametrized by the specification largyaad the target model.

The controller synthesis problem, in which a system is akst pf the input, ex-
tends the synthesis problem. The goal is to synthesize aatlentsuch that the sys-
tem, synchronized with the controller, meets the giveni§igation. Thus, the synthe-
sis problem corresponds to the particular case of the déertsynthesis problem with
a system having all possible behaviors. Both problems halassical formulation in
terms of games. See for instance [27, 28] for a presentafioelationships between
two-player infinite games in an automata-theoretic sett@mgl the synthesis problem.
Both problems also have several variants. Let us review sitteem, in order to relate
the contribution of the present paper to existing work.

* Partially supported by projects ARCUI8-de-France/Inde, DOTS (ANR-06-SETIN-003), and
P2R MODISTE-COVER/Timed-DISCOVERI.

1.1 Some variants of the synthesis problem

Closed vs. open systemgarly approaches consider closed systems, in which there
is no interaction with an environment [7]. Synthesis hasrléieen extended to open
systems [22, 1], that is, to systems interacting with an edictable environment. The
goal is to enforce the specification no matter how the enwiremt acts. In this work,

we consider open systems.

Centralized vs. distributed system#. solution to Church’s problem for centralized
systems has been presented by Biichi and Landweber [5], doadic second order
specifications. A distributed system is made up of sevenaingonicating processes.
The additional difficulty showing up with distributed syste is that the information

acquired by each individual process about the global sfateesystem is only partial.

Indeed, data exchanges between processes are constrgiaggiden communication

architecture. For controller synthesis, the controllselitis required to be distributed
over the same communication architecture, so that eack obihponents cannot have
a complete knowledge of what happens. In this paper we alssider distributed sys-

tems.

Algorithms solving the synthesis problem with incomplatéormation are given
in [12,14, 3] for branching-time logic specifications. Syesis has also been studied
for specifications in the logic of knowledge and linear tirme[29] for systems with
a single agent, and in [30] for distributed systems. The gtmeretic framework re-
mains useful in the distributed case [4]. Unifying seveoahfalisms, [19] proposed the
framework of distributed games, a specialized variant oftiplayer games, to reason
about distributed synthesis.

Synchronous vs. asynchronous systef. distributed systems, two classical seman-
tics have been previously considered. In synchronousmgstihere is a global clock,
and each process executes one computation step at eachticlodk asynchronous
systems, there is no such global clock: each process behavissown speed. This
paper considers synchronous systems. Only a few casesdbrsystems have been
identified as decidable. See [24,15] where the problem diediufor temporal logic
specifications.

Full vs. local vs. external specification$n addition to the specification language it-
self, another natural parameter concerns the variablés thgecification is allowed to
refer to. Variables are of three kinds: input variablesyc#ne values provided by the
environment. Output variables are written by the systerd,axe not used for internal
communication. Finally, for a distributed system, thera f&xed number of variables,
called internal, corresponding to communication linksa@tn processes. We define
three types of specifications:

— Full specifications are the most general ones: they may tefeny variable.

— External specifications only refer to input and output Malega, but not to internal
ones.

— Local specifications are Boolean combinationgdbcal specifications, wherp
denotes a process. For a given procgsa specification is saig-local if it only
refers to variables read or written by procgss

(9 <
[Poj—()—{P1
%) D

Fig. 1. Architecture decidable/undecidable for external/fubsfications.

In this work, we use external specifications. Before disiagsthis choice and present-
ing our contributions, let us review the most salient ergtiesults on the synthesis
problem.

1.2 Synthesis for distributed systems: related work

For asynchronous systems, synthesis has first been studf@g]ifor single-process
implementations and linear-time specifications. In [1g synthesis problem in the
distributed setting is proved decidable for trace-clogeecHications, yet for a quite
specific class of controllers. This result has been stremgttiin [18], where restrictions
on the communication patterns of the controllers have belxxed. Another subclass
of decidable systems, incomparable with the precedinglmasebeen identified in [10],
using an enhanced memory for controllers. The synthesisyfchronous distributed
systems in the general case (ofcalculus specifications was studied in [9]. Also, the
theory of asynchronous automata has been applied in [2@]¥e the synthesis prob-
lem of closeddistributed systems.

For synchronous systems, undecidability is the point in o@m to most existing
results. This question has been first studied in [24], whegn¢hesis has been proved
undecidable for LTL specifications and arbitrary architees. For pipeline architec-
tures (where processes are linearly ordered and each promesnunicates to its right
neighbor), synthesis becomes non elementarily decidableTL specifications. The
lower bound follows from a former result on multiplayer ganj21]. Even for local
specifications, constraining only variables local to peses, the problem is still unde-
cidable for most communication architectures [16]. Sysithkas been shown decidable
for the pipeline architecture and CTlfull specifications [15]. A decision criterion for
full specifications has then been established in [8]. It iegpthat the problem is un-
decidable for the architecture of Figure 1. The reason isftiaspecifications make
it possible to enforce a constant value on varidblereaking the communication link
between processgp andp;.

1.3 Contributions

We address the synthesis problem for open distributed sgnols systems and tem-
poral logic specifications. In contrast to the situationhie &synchronous setting, most
decidability results for synthesis of synchronous systamsegative. The goal of this
paper is to investigate relevant restrictions to obtairididaility. Undecidability often

arises when dealing with full specifications. For the rarsifpee statements, as for the
pipeline architecture, allowing full specifications sigémen the decidability result [15].
On the other hand, for the undecidability part of the cr@irrdbtained in [8], allowing
full specifications weakens the result by yielding easy ctidus to the basic undecid-
able architecture of Pnueli and Rosner [24] (see Figuredt)infstance by breaking
communication links at will.

In the seminal paper [24], specifications were assumed texbenal or input-
output only variables communicating with the environment cowdcnstrained. The
way processes of the system communicate was only restitigtékde communication
architecture, not by the specification. This is very natfraah a practical point of view:
when writing a specification, we are only concerned by thetifgqutput behavior of the
system and we should leave to the implementation all freegloits internal behavior.
For that reason, solving the problem for external specifioatis more relevant and
useful—albeit more difficult—than a decidability criteniéor arbitrary specifications.
We will show that the synthesis problem is decidable for tfehitecture of Figure 1
and external specifications, that is, if we do not constiaénimternal variablé.

Results. We consider the synthesis problem for synchronous sensamnticere each
process is assigned a nonnegative delay. The delays caretdaimodel latency in
communications, or slow processes. This model has the sgpnessive power as the
one where delays sit on communication channels, and it sadsboth the 0-delay and
the 1-delay classical semantics [24, 15].

To rule out unnatural properties yielding undecidabilibe specifications we con-
sider are external, coming back to the original framework2df, 6]. In Section 3, we
first determine a sufficient condition for undecidabilitythvexternal specifications, that
generalizes the undecidability result of [24]. We nextadiuce in Section 4iniformly
well-connecteqUWC) architectures. Informally, an architecture is UWG@hiére exists
a routing allowing each output process to get, as soon agfmdbe values of all inputs
it is connected to. Using tree automata, we prove that fon smchitectures and exter-
nal specifications, the sufficient condition for undecitigbbecomes a criterion. (As
already pointed out, synthesis may be undecidable for fidt#ications while decid-
able for external ones.) We also propose a natural restnictn specifications for which
synthesis, on UWC architectures, becomes decidable. \Wsucdd specificationmbust
specificationsFinally, we introduce in Section 5 the larger classvefl-connected ar-
chitecturesin which the routing of input variables to an output processy depend
on that process. We show that our criterion is not a necegsargiition anymore for
this larger class. The undecidability proof highlights slueprising fact that in Figure 1,
blanking out asingleinformation bit in the transmission a&f to p; throught suffices to
yield undecidability. This is a step forward in understamgiecidability limits for dis-
tributed synthesis. It remains open whether the probleraésdable for robust external
specifications and well-connected architectures.

An extended abstract of this work appeared in [11].

2 Preliminaries

Trees and tree automat&iven two finite setX andY, aY-labeledX-tree (also called
full tree) is a total functiont : X* — Y where elements oX are called directions, and
elements off are called labels. A word € X* defines a node dfandt(o) is its label.
The empty worc is the root of the tree. A word € X% is a branch. In the following,
atreet : X* — Y will be called an(X,Y)-tree.

A non-deterministic tree automaton (NDTR)= (X,Y,Q,do, d, a) runs on(X,Y)-
trees. It consists of a finite set of stat@san initial stateqg, a transition functiord :
QxY — 2% and an acceptance conditionC Q®. A run p of such an automaton
over an(X,Y)-treet is an(X, Q)-treep such thap(&) = go, and for allo € X*, (p(o -
X))xex € 0(p(0),t(0)). The runp is accepting if all its branchegs,--- € X® are
such thato(€)p(s1)p(s1%2) - - - € a. The specific acceptance condition chosen among
the classical ones is not important in this paper.

Architectures An architectures = (V WP,E, (S)vev, %, (dp)pep) is a finite directed
acyclic bipartite graph, wheid WP is the set of vertices, anld C (V x P) U (P x V)

is the set of edges, such th& (v)| < 1 for all v € V. Elements oP will be called
processesind elements o variables Intuitively, an edggy, p) € V x P means that
processp can read variable, and an edgép,v) € P x V means thap can write on
v. Thus,|E~1(v)| < 1 means that a variableis written by at most one process. An
example of an architecture is given in Figure 2, where preeesaire represented by
boxes and variables by circles. Input and output variableslafined, respectively, by

Vi={veV|Ev) =0},
Vo={veV |E(v)=0}.

Variables inv \ (Vi UVp) will be calledinternal. We assume that no process is minimal
or maximal in the graph: fop € P, we haveE (p) # 0 andE~1(p) # 0.

Each variablev ranges over a finite domai®’, given with the architecture. For
U CV, we denote byg’ the set[],.y $'. A configurationof the architecture is given
by a tuples = (s)yev € S’ describing the value of all variables. RarC V, we denote
by s¥ = (s')veu the projection of the configuraticsito the subset of variablés. The
initial configuration issp = ()vev € S’

We will assume thaS’| > 2 for all v € V, because a variablefor which |S'| = 1
always has the same value and may be ignored. It will be caentim some proofs to
assume thaf0,1} C S’ and thatg) =0 forallve V.

Each procesp € P is associated with a delay € N that corresponds to the time
interval between the moment the process reads the variablEs ™ (p) and the moment
it will be able to write on its own output variables. Note thiafay O is allowed. In the
following, for v e V \ Vi, we will often writed, for d, whereE~(v) = {p}.

Runs A run of an architecture is an infinite sequence of configuratioe@san infinite
word over the alphabed, starting with the initial configuratiosy € S’ given by the
architecture. Ifo = 9519+ € (S’)‘*’ is a run, then its projection od C V is oY =

$'s)ss ---. Also, we denote byi, j] the factors ...s;j and bya[i] the prefix of length
i of o (by conventiongl[i] = € if i < 0). A run treeis afull treet : (S)* — ', where

Fig. 2. An architecture with input variablesw and output variablez;.

t(€) =soand forp € (9%)*,r € S, we have (p-r)\' =r. The projection of onU CV
is the tregV : (S")* — S’ defined bytY (p) =t(p)".

SpecificationsSpecifications over a set C V of variables can be given, for instance,
by a u-calculus, CTE, CTL, or LTL formula, using atomic propositions of the form
(v=a) with ve U anda € S'. We then say that the formula is if (U) where.Z is
the logic used. Specifications ovdr are externalif U C V, UVp. The validity of an
external formula on a run tragor simply a run) only depends on its projectidfy’Vo
ontoV, UVop.

Programs, strategiedNe consider a discrete time, synchronous semantics. lrafibym
atstep =1,2,..., the environment provides new values for input variablé®nl each
procesg reading values written by its predecessors or by the enwigor at step— dj,
computes values for the variablesEfp), and writes them. Late V \ V; and letR(v) =
E~2(v) be the set of variables read by the process writing tatuitively, from a word
oRV) in (RY))* representing the projection dR(v) of some run prefix, a program
(or a strategy) advises a value to write on variablBut, since the process may have
a c(e)rtain delayly,, the output of the strategy must not depend on thedasalues of
oW,

Formally, aprogram(or local strategy for variablev is a mappingf" : (SR(V))+ —
S’ compatible with the delay, i.e., such that for alo, o’ € (SXV)!, if ofi —d,] =
o'li—dy], thenf¥(g) = fY(o’). This condition — calledlielay-compatibilityor simply
d-compatibility— ensures that the delaly is respected when computing the next value
of variablev. A distributed prograntor distributed strategyis a tupleF = (fY)yey\y,
of local strategies. A rum = $5,% - -+ € (S/)? is anF-run (or is F-compatibl§ if for
allveV\Viandalli > 0,s' = f¥(aRV[i]). Given an input sequengec (S, there
is a unique ruro € (S)® which isF-compatible and such that! = p.

TheF-run treeis the run tred : (S")* — S’ such that each branch is labeled by a
wordsps; - -+ € (S7)% which is anF-run. Note that, in aF-runo € (), the prefix
o[i] only depends on the prefix“i[i]. This shows that thE-run tree is unique.

Distributed synthesis problerhet . be a specification language. The distributed syn-
thesis problem for an architectur# is the following: given a formulg € .#, decide
whether there exists a distributed progrBron .e# such that every-run (or theF-run

tree) satisfieg. We will then say thaF is a distributed implementation for the specifi-
cationg. If for some architecture the synthesis problem is unddédé&lave say that the
architecture itself isindecidabldfor the specification languag#).

Memoryless strategieS he strategyf¥ is memorylessf it does not depend on the
past, that is, if there existg: SV — S such thatf¥(sp---s---Sq,) = 9(s) for
S0--Std, € (SSM)*. In casedy = 0, this corresponds to the usual definition of a mem-
oryless strategy.

SummariesFor a variabler € V, we let View(v) = (E=2)*(v) NV, be the set ofnput
variablesv might depend on. Observe thatdf is anF-run, then for allv € V\
for all i > 0, § only depends orgV®"[i]. This allows us to define the summary
fv: (8Vew)*+ ¥ such thatf¥(oVe(Vi]) = &, corresponding to the composition
of all local strategies used to compute

Smallest cumulative delayhroughout the paper, the notion sfallest cumulative
delayof transmission fronu to v will extensively be used. It is defined by

u
d(u,v) = +oif v (E?)*(u), i.e., if there is no path fromto v
d(u,v) = dy+min{d(u,w) | w € R(v) andw € (E?)"(u)}

d-compatibility for summarie§-he compatibility of the strategiés = (fV),ey\y, With
the delays extends to the summaifes: (fv)VEV\V|' Formally, a magh : (S/eV)+
' is d-compatiblgfor compatible with the delay@l)ycy\y;) if for all p € (ST,
h(p) only depends on the prefix€s“[i — d(u,V)])ueview(v)-

3 Architectures with incomparable information

In this section, we state a sufficient condition for undebiliky; this relies on an easy
generalization of the undecidable architecture presantgzi].

Definition 1. An architecture hasncomparable informatioif there exist variables
X,y € Vo such that Vieyx) \ View(y) # 0 and Viewy) \ View(x) # 0. Otherwise the
architecture hadinearly preordered information

For instance, the architectures of Figures 1, 2, 5 and 6 tiaearly preordered
information, while the architecture’’ of Figure 3 has incomparable information. The
following proposition extends the undecidability resdlf4, 8].

Proposition 2. Architectures with incomparable information are undedittafor LTL
or CTL external specifications.

In [24], the architecturey’ shown in Figure 3 is proved undecidable, both for LTL
and CTL specifications. We will reduce the synthesis probidéna?’ to the synthe-
sis problem of an architecture with incomparable informmatiThis reduction is rather

4 o’
Fig. 3. Architecturese and.o”’

natural but not completely straightforward, for instanke specification needs to be
changed in the reduction. For the sake of completeness,weeagirecise proof of the
reduction in the rest of this section.

Let.s = (PWV,E, (§')vev, %, (dp)pep) be an architecture with incomparable infor-
mation. Without loss of generality, we assume thjat= O for all v € V. By definition,
we findXo, Yo € Vi andx,, ym € Vo such thatkg ¢ View(ym) andyg ¢ View(x,). Consider
pathsxg E?x1 E?. .. E2x, from Xg to X, andyo E?y1 E?. .. E2yp, fromyg to ym such that
d(Xp,%n) =y, + - - -+ dy, andd(yo, ym) = dy, +-- - +dy,,. Note that the sets of variables
{Xo,--.,%n} and{yo,...,ym} are disjoint.

Let &' = (P'wV',E,(SV)vev, S, (dp) pepr) be the architecture of Figure 3 with
VI’ = {Xo,¥o0}, Vo' = {Xn,Ym}; with unchanged domains for output variablg& = S¢
andSYm = S/m; with $* = S¥ = {0, 1} as domain for input variables; and wigh= sy .
The delays fox, andy, are the smallest cumulative delays of transmission frgio
Xn andyp to ym as defined earlied), = d/p = d(Xo,%n) andd)/,m = da = d(Yo,Ym)-

The architecturez’ is undecidable for LTL or CTL specifications (it suffices to
adapt the proofs of [24, 8] taking into account differentgslon processes). We reduce
the distributed synthesis problem fof’ to the same problem fa#’. We first consider
CTL specifications.

Note that we do need to modify the specification when reduttiegdistributed
synthesis problem from?’ to .o7. Indeed, observe that the specification

¥ =EG((x0=0) A (X = 0)) AEG((x0 = 0) A (X = 1))

is notimplementable over’ whereas it is implementable ovef, provided Viewx) \
{Xo} # 0 and assuming no delays.

To define an implementatiof’ over <7’ given an implementatiof over.«/, we
simulate the behavior ¢ when all variables iV, \ V|’ are constantly set to 0. This will
be enforced when defining the reduction of the specificatiomfe’’ to <7, using the
formulax = (% € {0,1}) A (Yo € {0,1}) A Avev\vy (V = 0). We define a reduction that
maps a formulay of CTL(V') into a formulay in CTL(V, UVp) that ensuregs only
on the subtree of executions respecting his reduction is defined by

(x=95)=(x=5) P =-7
SVI=9VP EXY =EX(X A\ Y)
EQUY=EXAP)U(XAP) EGY=EG(XT).

We use the following notation: fare S¥', we definer € % by ¥’ =r andr” =0
forallve Vi \V//, and we extend this definition to words (with= €). This allows us to
fix the run tred : (S¥')* — 9’ over.#’ that corresponds to a run tree(S%)* — &
over: f(p) =t(p)V' for p e (SW')*. The reduction of the formula is correct in the
following sense:

Lemma 3. For every formulay € CTL(V'), every tree t (S)* — S/, and evenyp <
(SV")* we have tp = if and only iff, p |= .

Proof. By an easy induction owp. Lett : (S1)* — & andp € (S¥)*. Wheny =
(x=s) for somex € V' ands € S, the result follows froni(p)* =t(p)*. The cases of
boolean connectives are trivial. So igt= E ¢ U), and assume thatp = @. Then
we finds;---s, € (S%)* suchthat,p-s1---sy = x ATz andt,p-s;---5 = X Ay for
all0<i < n. Sinces = x, we deduce theg =T forr; = gv" e sV, By induction we
obtaint,p-r1---rn = Yo andt,p-ry---ri = ¢y for all 0 <i < n. Thereforef,p = .
The converse implication can be shown similarly.

The case&X andEG are left to the reader. a

Now we prove the reduction:

Lemma 4. If there is a distributed program Fover .=/’ that satisfiesp, then there is a
distributed program F overy that satisfiegp.

Proof. Let F/ = (f"*n_{¥m) be a distributed implementation fqr over .«7’. We will
define a distributed stratedy= (f¥)yev for @ over.« so that the projection ov’ of
anyF-run will be anF’-run. More precisely, i € (S/)" is a prefix of arF-run with
0% € {0,1} 7, then the following will hold:

P (o)) = £70(0%) (1)

and similarly for(yo, ym)-

To do so, we use the variablgg ..., x,_1 to transmit the value afy through the
architecture. Formally, at each steffs copies the last value o§_1 it can read — the
one that was writteny, steps before: for & k < nandt (SR<XK))+, we define

P (1) = k1 if T = 13STp With |T| = dy, ands1 € {0, 1},
~]o otherwise.

By definition, f* is clearly compatible with the delay, . It is easy to check that if we
providep € {0,1}% as input onxy and follow the strategiesf*<) above then we get on
Xn—1 the outcome #0%-1)p corresponding to the shift by(Xo, X,—1) = dj — dy.

In order to satisfy (1), the last stratedy simulatesf taking into account the
shift by di_ —d,_ of their respective inputs. To explain the definitionfdf, consider
o € ()" compatible with(f*)o . and such that™ € {0,1}*. If |o| < d;_ then
% (0*) does not depend oa so we definef* (gR*n)) = £ (0l91) = £ (g%0) so
that (1) holds. Assume now that= 010,03 with |g1| = d; —dy,, |03| = dx,. Note that

% |

Xn—1 |

|
dy,
I\k\ |
1 i
dy,

Fig. 4. Simulation off by f*,

dh, — O,

f™n(0*) only depends on the prefix af° of length|o| which is precisel)crg"*1 due

to the shift induced by the strategie%)o.k«n (see Figure 4). Hence, in this case, we
define ¥ (gR)) = £ (gy*10%) = £ (0*) in order to get (1) again. The formal
definition of £ is given for arbitraryr € (SX*)* by

o) it fr < d,.

Po(r) = £ (0%) if T = 117213 with |11| = d}, —d,, |Xr3| = dy,
andr," ' € {0,1},

0 otherwise.

By definition, f* is clearly compatible with the delag,. Also, we have explained
that (1) holds with this definition off*)ox<n. For 0< k < m, we define similarlyf¥
and for every other variable, we setfY = 0. The resulting distributed stratedy=
(f¥)vev is indeed compatible with the delays. It remains to showRhista distributed
implementation foip over.o/.

Lett: (%) — & be theF-run tree overs’. We show below thaf : (SM')* —
S’ is in fact theF’-run tree overs’. Then, sinceF’ is a distributed implementation
of Y, we deducd, ¢ = (¢, and Lemma 3 implies, & = T. HenceF is a distributed
implementation ofp.

First, it is easy to see thétis a run-tree overs’: f(g) =t(¢)V = =g, and
for p € (SW)* andr € SM" we havef(p- 1)V =t(p- N = = V', Next, to
show thatf is the F’-run tree, we have to check thigp)*» = f*(p) for eachp =
ri---r € (%) and similarly for(yo,ym). Let o € ()" be theF-run induced by
p: 0 =t(e)t(r)t(rir2)---t(p). Using (1) we obtainf(p)® = t(p)* = f*n(gR)) =
f/*n(gX) = f™(p*0). Using the same arguments, we also obtainifgatm = f¥m(p¥o),
and that is theF’-run tree. 0

Lemma 5. If there is a distributed program F over that satisfiegp, then there is a
distributed program Fover.e/’ that satisfiesp.

Proof. Supposé = (fV),cv\y, is a distributed implementation @f over.«7. We need

to define the strategief : (S*0)* — S0 and f¥m : (S¥0)* — 9 of the variables in
&/'. The difficulty here is thaf”* may have less input variables th&f so it cannot
simply simulate it. To overcome this, we use the fact thag tuthe special form o,

the F-run treet satisfiesy if and only if the sub-tree restricted to branches where all
input variables other thaxy andyp are always 0 also satisfi@s So the processes of

<" will behave like the processes of writing respectively orx, andyn, in the special
executions when the values of input variables other #yaandyg are always 0.
Formally, forp € (S¥')*, we setf™n(p%) = fx(pViewx)) Observe that, due to
incomparable informationf* does not depend op¥. Hencef™ only depends on
0% and is a correct strategy for variabigin the architecture’. Moreover,f* is d-
compatible and s&™ is d’-compatible. We defin&”m similarly. It is easy to check that
F’' = (f” {%¥m) is a distributed implementation af over.«7’: lett be theF-run tree
andt’ be theF’-run tree. We havi(p)* = f*(p*0) = fn(pViewt)y —t(p)% =f(p)%
and similarlyt’(p)¥m = t(p)¥m. Hencet’ =t and sincd, € =, Lemma 3 implies that
t,e = @ andF’ is a distributed implementation gf on .o/’ O

We consider the reduction for LTL specifications. In thissdke specification over
<7 only needs to ensung when the input values oxy andyg are in the domain allowed
by 27’. We use the reduction

T=GE)—y

where the formuld is defined byé = (xo € {0,1}) A (yo € {0,1}).

The same constructions as the ones described in the prdadsoha 4 and Lemma5
yield the reduction. Indeed, I&’ be a distributed implementation ¢f over.«/’, and
let F be defined as in the proof of Lemma 4. Lete (SV')w be an input sequence
ando = $31% -+ € ($/)? be the inducedr-run. If p© ¢ {0,1}% or p¥% ¢ {0,1}®
theno, € [~ Gé&. Otherwise, by equation (1), we get for it 0, 5" = f*(gR)[i]) =
£%(0*[i]) andg/™ = f¥m(gRUm[i]) = {¥m(g¥[i]). Thena"" is anF’-run, ando"', ¢ |=
Y. Sincey € LTL (V') we deducer, ¢ = (. We obtain that an¥-run o is such that
0, E (G&) — y, andF is a distributed implementation @f over.<.

Conversely, giverfr a distributed implementation @f over.e/, defineF’ as in the
proof of Lemma 5. Lep € (S’V")‘*’ be an input sequence amd= 5% --- € ()®
be theF-run induced byp. By definition of p, we haveo, e = G& and sinceF is a
distributed implementation a we geto, ¢ = . Again, ¢ € LTL (V') implies that
oV e = . Given thataV' is in fact theF’-run induced byp (this is immediate from
the definition off* and f¥m), F’ is a distributed implementation gf over.es’.

We have defined a reduction from the distributed synthesislpm over the archi-
tectures/’ to the distributed synthesis problem over an architecttitte wcomparable
information, for LTL or CTL specifications. Since the syntfgeproblem is undecid-
able both for LTL and CTL specifications over’, we obtain its undecidability for
architectures with incomparable information.

4 Uniformly well-connected architectures

This section introduces the new class of uniformly welltoected (UWC) architectures
and provides a decidability criterion for the synthesishy@m on this class. It also
introduces the notion afobust specification and shows that UWC architectures are
always decidable for external and robust specifications.

Fig. 5. A uniformly well-connected architecture

4.1 Definition

A routing for an architecture? = (V WP, E, (S)vev, S, (dp) pep) is a family ofmemo-
rylesslocal strategie®® = (fV)yev\ (vuvg)- Observe that a routing does notinclude local
strategies for output variables. Informally, we say thaheohitecture is uniformly well
connected if there exists a routi that makes it possible to transmit with a minimal
delay to every procegswriting to an output variable, all the values of the variables
in View(v).

Definition 6. An architecture< is uniformly well-connectedUWC) if there exist a
routing @ and, for every \e Vo and ue View(v), a decoding functionty’ : (SRW))+ —
S that can reconstruct the value of u, i.e., such that for @gompatible sequence
0 =599 € (3'V) ", we have for > 0

§' = g™ (o™i +d(u,v) — d]) (2)

In case there is no delay, the uniform well-connectedndsseethe notion of ad-
equate connectivity introduced by Pnueli and Rosner in,[@4]we no longer require
each output variable to be communicated the valualloinput variables, but only of
those belonging to its view. In fact, this gives us stratedo internal variables, that
are simply to route the input to the processes writing onwutpriables.

Observe that, whereas the routing functions are memorytessiory is required
for the decoding functions. Indeed, consider the architeaf Figure 5. The delays are
written next to the processes, and all variables range tneeddmain{0,1}. Observe
first that this architecture is UWC: procgserrites tot the xor ofu; andu, with delay 1.
This could be writtert = Y u; @ Y up, whereY x denotes the previous value of variable
X. In order to recover (decod®&)u,, processy; memorizes the previous value of
and makes the xor witht Yupy =t @ Yu;. But if we restrict to memoryless decoding
functions, then we only know; andt and we cannot recovafu,.

4.2 Decision criterion for UWC architectures

We first show that distributed programs are somewhat easfard in a UWC architec-
ture. As a matter of fact, in such architectures, to definestiiduted strategy it suffices

to define a collection of input-output strategies that resgiee delays given by the ar-
chitecture.

Lemma7. Let./ = (VWPE,(S)vev, %, (dp)per) be a UWC architecture. For each
VE Vo, let b (8VWVY))+ — & be an input-output mapping which is d-compatible.
Then there exists a distributed program=F(f"),c\\y, over.«7 such that M= " for
allv e Vo.

Proof. Let @ = (f¥)vev\ viuve) @nd(94Y)vevy ueview(v) DE respectively the routing and
the decoding functions giving the uniform well-connectesof the architecture’.
We use the routing function®’ as memoryless strategies for the internal variables
V\ (Vi UVo). It remains to defing for v € Vo. Let p € (S)! fori > 0 and leto €
(8/\Vo)i be the correspondin@-compatible sequence. Fore Vo, we want to define
fV such thatfV(aRv)) = hv(pView()). We need to verify that this is well-defined.

Leti >0andp,p’ € (S%)'. Leta, a’ € (S/\Vo)! be the corresponding-compatible
sequences, and assumBY)[i — d,] = 'RV [i —d,]. Then, for allu € View(v), p![i —
d(u,v)] = p"[i —d(u,v)]. Indeed, for all 6< j <i—d(u,v), we haves! = g"¥(aRV[j +
d(u,v)—dy]) andsl = g*¥(0"*V)[j +d(u,v) — dy]) by (2). UsingaRV[i —d\] = a’"R¥)[i —
dy] andj +d(u,v) <iwe gets] = si' as desired. Sinck" is d-compatible, we deduce
thathV(p\ﬁew(v)) _ hV(p/ViEW(V))'

Hence fort € (YY) with i > 0, we can define

h(gVew) if 1[i — dy) = RV i — dy] for some
V(1) = ®-compatible sequenae
0 otherwise

By the abovefV is well-defined and obviously it depends only oin— dy]. Thus, it is
indeedd-compatible. Now, lep € (S%)*, and leto be theF-run induced byp. We
get, by definition of summaried¥(pVe"V)) = fV(gRV). SinceaV\Vo is also a®-
compatible sequence fpr, we havefY(pViewv)) = fV(gRV)) = hv(pView(V)), 0

We now give a decision criterion for this specific subclasarahitectures.

Theorem 8. A UWC architecture is decidable for external (linear or bcking) spec-
ifications if and only if it has linearly preordered informeat.

We have already seen in Section 3 that incomparable infeomgtelds undecid-
ability of the synthesis problem for LTL or CTL external sg@ations. We prove now
that, when restricted to the subclass of UWC architectiihésalso becomes a neces-
sary condition.

We assume that the architectureis UWC and has linearly preordered information,
and therefore we can order the output variaMgs= {v1,...,vn} so that Viewv,) C
-+ C View(vy) C V.

In the following, in order to use tree-automata, we exteratallstrategyf : (S*)* —
S by letting f(¢) = S5, so that it becomes af8*, S')-tree. We proceed in two steps.
First, we build an automaton accepting all thiebal input-output 0-delagtrategies

implementing the specification. A global input-output Qagestrategy for<z is an
(SView(v1) 9¥o)-treeh satisfyingh(e) = s\.fo. This first step is simply the program synthe-
sis for a single process with incomplete information (sweenay have View;) CW)).
This problem was solved in [13] for CTLspecifications.

Proposition 9 ([13, Th. 4.4]).Given an external specificatiaghe CTL*(V, UVp), one
can build a non-deterministic tree automaton (ND 4)over (SVeWv1) | S¥o)-trees such
that he £ (2(;) if and only if the run tree induced by h satisfigs

If £(2(1) is empty then we already know that there are no distributgdeémenta-
tions for the specificatiogp over.«7. Otherwise, thanks to Lemma 7, we have to check
whether for eachr € Vo there exists aSe"(v)| §¥)-treeh’ which isd-compatible and
such that the global strateg®, .\, h” induced by the collectioih”)yey, is accepted
by 2(,. Formally, thesumof strategies is defined as follows. Dét= X; UX, CV; and
Y =Y1WY,2 C Vo, and fori = 1,2 leth; be an(S¥, S")-tree. We define theS®, S")-tree
h=h; @ hp by h(a) = (hy(0%1),hy(0%2)) for o € (SX)*.

To check the existence of such tre@®)vey,, we will inductively eliminate the
output variables following the ordes,...,vy. It is important that we start with the
variable thatviewsthe largest set of input variables, even though, due to theydeit
might get the information much later than the remainingakales. Lewy = {vy,...,vn}
for k > 1. The induction step relies on the following statement.

Proposition 10. Let 1 < k < n. Given a NDTA, accepting(S"e") S%)-trees, one
can build a NDTA, ., accepting S"eW¥+1) S¥+1)-trees, such that a tree t is accepted
by 2y 1 if and only if there exists afSV'eV), S)-tree Kk which is d-compatible and
such that M @t is accepted by.

The proof of Proposition 10 is split in two steps. Singe= {v} WVk,1, we have
t =t @ tVir1 for each(SVeWMJ | S¥)-treet (recall thatV is the projection of onU). So
one can first transform the automat¥pinto 2/} that accepts the treés .Z'(2y) such
thatt' is d-compatible (Lemma 11). Then, one can build an automatdmékgicts the
domain of the directions and the labeling of the acceptazstteS/eW(Vic1) and S¥k+1
respectively.

Lemma 11. Letve U C Vo. Given a NDTA over (S/e"Y) g)-trees one can build a
NDTA2!' = compay(2l) also over(S1eV))-trees such that? (') = {t € Z(A) |
t¥is d-compatiblé.

Proof. Intuitively, to make sure that the functiakis d-compatible, the automatct/

will guess in advance the valuesttfand then check that its guess is correct. The guess
has to be mad& = max{d(u,v),u € View(v)} steps in advance and consists id-a
compatible functiorg : (Se()K . ' that predicts what will be&K steps later the
values of variable. During a transition, the guess is sent in each direatiers”ew(")

as a functiorr ~1g defined by(r~1g)(o) = g(ra) which is stored in the state of the
automaton. Previous guesses are refined similarly and soestdred in the state of
the automaton so that the new set of state®'is- Q x .# where.# is the set ofd-
compatiblefunctionsf : (S1ew(V))<K _, ¥, whereZ<X = |J,_« Z'. The valuef (¢) is

the guess that was maHesteps earlier and has to be checked against the current value
of vin the tree.
To formalize this, we define the (transition) functidn .7 x SVew(v) _, 27 py

A(f,ry={f"|f'(g)=1f(ro) for o] <K—1}.

Intuitively, if we are in statg(qg, f) € Q x .# at some nodg and move in direction
r € 8wV thenA(f,r) computes the set of functions i# that could label the node
T-r. Observe that’ is determined byf andr for any o such thato| < K —1 and
corresponds to the specialization foficcording to the new direction The functions
f’ € A(f,r) differ only on valuesf’(o) for || = K — 1 which correspond to the new
guesses.

Now, the transition function of(’ is defined for(q, f) € Q' ands € S’ only if
s’ = f(¢&) (this ensures that the guess madsteps earlier was correct) and sends in
each directiom € S/®Y) of the tree a copy of the automaton in the staged;) where
gr corresponds to the simulation of a run@fandg, € A(f,r). Formally, ifs’' = f(¢)

then
/ _) (qr)reS‘/iEW(V) € 5(qu) and
o ((q7 f),s) = {(qragf)reS"'eW(V) g €A(f,r)forallr e Qview(v) (-
Finally, the set of initial states o’ is I’ = {qo} x .# anda’ = m*(a) whererr:

(Qx F)® — QY is the projection orQ, i.e., a run of!’ is successful if and only if its
projection onQ is a successful run ci.

Lett be an(S"ew() SY)-tree accepted b§t and suppose thaY is d-compatible.
Letp : (S'€V(V))* — Q be an accepting run @ overt. There is a unique way to extend
ptoarunp : (SVWV))* . Qx.Z of A overt. The only possibility is to label a
nodet € (S1e"M))* by the mapf; : (8/€"))<K _, &’ defined byf; (o) =t"(10) for
o € (9/®V))<K g0 that all guesses are correct. Sittés d-compatible, we deduce
that f; is alsod-compatible, hence it belongs t&. Then we can define the rypf
by p'(1) = (p(1), f) for T € (SVW(V))*. We show that it is an accepting run of’
overt. First, we prove that at each nodec (S"e¥(V))* the transition functiord’ is
satisfied. Let(q, f;) = p/(1) and(qy, f;r) = p/(1r) for all r € S/eW(V), By definition,
fr(e) =tY(1) andd’((qr, frr),t(7)) is defined. Now, sincer(p’) = p which is a run of
2L overt we have(qr), qeww) € 8(Q,t(7)). It remains to show that; € A(fr,r) for
all r € S®WV), This is obvious from the definitions;; (o) = tY(tro) = f.(ro) for
o € (S/1eWV))<K-1 Finally, the rurp’ is successful since its projection @is p which
is successful.

Conversely, suppose there is a successfulp’usf 2/’ overt. We need to show that
t¥ is d-compatible and thdte .Z(2). Letp’ : (Se"())" — Q x .7 be such a run. We
havep’ = (p,H) with p : (Se%())" — Q andH : (8"eW))* — 7. By definition of
&', we immediately get that is a run of2l, which is successful sing# is successful.

It remains to prove that' is d-compatible. Sinc@’ is a run and the transition func-
tion &’ is only defined or{(q, f),s) whens’ = f (&), we deduce that'(7) = H(1)(¢) for
all T € (8*"()*, Hence, we need to show that the ntap: H (1) (¢) is d-compatible.

Lett, 7’ € (SV®"V))i be such that'[i —d(u,v)] = T"V[i —d(u,V)] for all u € View(v).
We have to showd (1)(€) = H(T')(¢).

If |7| = |T'| > K then we show that, T/ necessarily share a common prefix. More
precisely, sinc& > d(u,v) for all u € View(v), we deduce from the equalitie$[i —
d(u,v)] = [i —d(u,v)] for all u € View(v) thatt = 1172, and 1’ = 117, with |12| =
|T5] = K and 13 [K — d(u,v)] = 15[K — d(u,v)] for all u € View(v). We can show, by
successive applications of the transition funcand by definition oA, that the value
of H(1112)(€) is indeed the guess made at nagldor the direction defined by, i.e.,
H(1112)(e) = H(11)(12). Similarly, we obtairH (1175)(€) = H(11)(15). SinceH(11) €
7, itis d-compatible. Using5 (K — d(u,v)] = 13'[K — d(u,v)] for all u € View(v), we
deduceH (11)(12) = H(11)(15). ThereforeH(1)(e) = H(T')(¢).

If |7| < K, then we obtain similarly thad (1) (e) =H(e)(1) =H(&)(t") =H(T')(¢)
sinceH (g) € .# is d-compatible. 0

Proof (of Proposition 10)We consider the NDTA compat®ly). It remains to project
away theS*k component of the label and to make sure thagfiet component of the la-
bel only depends on tH#"®"(%+1) component of the input. The first part is the classical
projection onS%+1 of the automaton and the second part isritherowing construction
introduced in [13]. The automaté ; fulfilling the requirements of Proposition 10 is
therefore given by narroyy,, ,) (Proly, ., (compay, (x))). Note that, even when ap-
plied to a NDTA, the narrowing construction of [13] yields alternatingtree automa-
ton. Here we assume that the narrowing operation returns 8ANE3ing a classical
transformation of alternating tree automata into NDTA [2Zlje drawback is that this
involves an exponential blow up. Unfortunately, this isae@since Lemma 11 requires
a NDTA as input. a

We can now conclude the proof of Theorem 8. Using Propositidinductively
starting from the NDTA%(; of Proposition 9, we obtain a NDTAl, accepting an
(SViewn) gin)-treeh' if and only if for each 1< i < n, there exists agS"ew(vi), S4)-
treeh¥i which isd-compatible and such thht: @ - - - @ h'n is accepted b@;. Therefore,
using Lemma 7, there is a distributed implementation fosfiecification overy if and
only if Z(compayf (2n)) is nonempty. The overall procedure is non-elementary due to
the exponential blow-up of the inductive step in Propoagitl®. We do not know for
now the lower bound of the complexity of this problem. a

4.3 Decidability for UWC architectures and robust specificdions

We now show that we can obtain decidability of the synthesiblem for the whole
subclass of UWC architectures by restricting ourselvepéeiications that only relate
output variables to their own view.

Definition 12. A specificationp € . with £ € {LTL,CTL,CTL"} is robustif it is a
(finite) disjunction of formulas of the forf,.,, v whereg, € £ (View(v) U{v}). Note
that a robust formula is always external.

Proposition 13. The synthesis problem for robust CTdpecifications is decidable over
UWC architectures.

Proof. Let o = (VWP E, (S")uev, %0, (dp) pep) be a UWC architecture ani be a ro-
bust CTL" specification. Without loss of generality, we may assumegha Ay, v
where ¢y € CTL*(View(v) U {v}). Using Proposition 9, for each € Vo we find a
NDTA 2l, accepting a stratedy: (S®¥(V))* — S if and only if the induced run tree
t: (SViewlv))x _, gview(vuivt satisfiespy. The proposition then follows from the

Claim. There exists a distributed implementationgobver o7 if and only if for each
v € Vp, the automaton compg®ly) is nonempty.

First, letF be a distributed implementation ¢fover.oZ and lett : (S1)* — S’ be
the induced run-tree. Fix sonves V. The mapf" : (€V())* _, & is d-compatible.
Lett : (SVewv))x _ gView(V)uiv} pe the run-tree induced bfY. For eacho e (S)*
we havet(g)VewMUVt — t/(gViewV)) | SinceF implementsg, we havet = ¢ and
thent = ¢y. We can prove by structural induction on the formula thatdoy ¢ €
CTL*(View(v) U {v}), any brancto € (S")® and any position we havet,g,i |= if
and only ift’, aV®W() j |= . Sincegy € CTL*(View(v) U{v}), we deduce that |= ¢y.
Therefore fV is accepted bgl, and also by compgly).

Conversely, for eacl € Vo, let h' : (SV€"())* _, &' pe a strategy accepted by
the automaton compg®ly). By Lemma 11}V is d-compatible. Let, : (S"e%())* —
SView(V)U{v} pe the run-tree induced Hy. We havet, = ¢, by definition of2l, and
Proposition 9. Now, using Lemma 7 we find a distributed progFa= (f"),cv\y, such
that f¥ = h for eachv € V. Lett : (S%)* — VMWo be the run-tree induced 4.
For eacho € (/)" we havet (g)ViewU{vE — ,(gVe"(V)) and we obtain as above that
t = ¢v. Thereforef = ¢ andF implementsp on <. ad

5 Well-connected architectures

Itis natural to ask whether the decision criterion for UWCHaitectures can be extended
to a larger class. In this section, we relax the property d@foum well-connectedness
and show that, in that case, linearly preordered informataot anymore a sufficient
condition for decidability.

Definition 14. An architecture is said to b&ell-connectedif for each output variable
v € Vp, the sub-architecture consisting @ 1)*(v) is uniformly well-connected.

Intuitively this means that for each output variabl¢here is a routing making it
possible to transmit the values of the input variables inNig to the process that writes
onv, but such a routing may vary from one output variable to aggih contrast with
the case of UWC architectures, where a single routing is teeall output variables.
For instance, the architecture of Figure 2 is well-conrictedeed, to transmit the
values ofu andv to zj, it is enough to writeu on z andv on z;. Note that this does
not give a uniform routing. Actually, the architecture ofj&ie 2 is not UWC assuming
that variables values range o), 1} (as shown by Proposition 16 below). Hence, the
subclass of UWC architectures is strictly contained in thigctass of well-connected
architectures.

In the proof of Proposition 16, we use the following lemmaabkshed in [25] for
solving the network information flow problem introduced #j.[

We say that two function§ andg from S to Sareindependenif (f,g) : & — &
is invertible.

Lemma 15 ([25, Lemma 3.1])If f1,..., f" are pairwise independent functions from
S toSthenr< g+ 1.

This lemma asserts that over a small alphabet, one canrdtalarge set of pair-
wise independent functions. In our setting, it implies thkofving result:

Proposition 16. Assuming that all variables are Boolean, the architectur€igure 2
is well-connected but not uniformly well-connected.

Proof. Itis easy to see that the architectuveof Figure 2 is well-connected. However,
it is not uniformly well-connected. Indeed, suppose it ibem there exist a routing
@ = (fa f2 % %) consisting of four memoryless strategies, and fovalVp, a
decoding functiory" : {0,1}2 — {0,1}2. Therefore, uniform well-connectednessaf
implies that every paiff?, f%) is invertible, usingg? as inverse. This is in contra-
diction with Lemma 15, which implies that for Boolean vatiedy there are at most
three pairwise independent functions. Hence the architeds not uniformly well-
connected. a

Interestingly enough, the size of the alphabet has an infien the possibility to
have auniformrouting and Lemma 15 helps to understand why. In our settimg,
means that by enlarging the domains of internal variablesnay obtain uniform well-
connectedness from a well-connected architecture.

The following theorem asserts that, unfortunately, thdsiee criterion cannot be
extended to well-connected architectures.

Theorem 17. The synthesis problem for LTL specifications and well-cotatearchi-
tectures with linearly preordered information is undedita

Let o be the architecture of Figure 6, in which all the delays atets®, and
which is clearly well-connected and linearly preorderemistiow its undecidability, fix
a deterministic Turing machink! with tape alphabef and state se®. We reduce
the non halting problem of1 starting from the empty tape to the distributed imple-
mentability of an LTL specification over/. Let & = {0,1} for ze V \ {x,y} and
S'=9 =T wQu {#} where # is a new symbol. As usual, the configurationvof
defined by state and tape contenp }», where the head scans the first symbolgf
is encoded by the worgiqys € I *QI * (we require thats, # € for technical reasons,
including in it some blank symbols if necessary). An inputrevo € 01P0{0,1}* en-
codes the integan(u) = p and similarly forv. We construct an LTL specificatiog
forcing any distributed implementation to output on valgabthe n(u)-th configura-
tion of M starting from the empty tape. Procesggsand pg play the role of the two
processes of the undecidable architecture of Pnueli andeRds”’ in Figure 3). The
difficulty is to ensure that procegg cannot receive relevant information about

The specificationpy = a A B A yiu A O A Yy iS a conjunction of five properties
described below that can all be expressed in (M UVo).

Fig. 6. Undecidable, well-connected and linearly preordereditacture

. The processqs for 1 <i < 5 have to output the current values(afw) on (u;, w;)
until (including) the first 1 occurs on. Afterwards, they are unconstrained. Process
ps Must always output the value afonwg. Moreover, after the first 1 ow, it also
has to output the current value ofon us. Formally, this is defined by the LTL
formulaa:

. If the input word oru (resp.v) is in 091P0{0,1}“, then the corresponding output
word x (resp.y) is in #P*QI T#,
This is expressed b§ = Bux A Buy, Where

Bt E (2= 0) A (t=#) W

((z: 1) A (((z: DAE=#)W(z=0)A(te r*qr+#wn))

where

ter Qr#) L teru(te QAXternU(teMNAXG(t=4))

. We next express with a formulg that if n(u) = 1 thenx has to output the first
configurationé; of M starting from the empty tape. That is, if the input is in
0910{0,1}*, then the corresponding output i$#%1#“. The LTL formula is

W ZUu=0)W ((u=1)AX((u=0) — (X E1#?)))

where(x € €1#®) can be expressed easily.
. We say that the input words asgnchronizeckither if u,v € 091P0{0,1}“ or else
if ue 091P*10{0,1}® andv € 09+11P0{0,1}®. We use a formuld to express the

fact that ifu andv are synchronized ana{u) = n(v), then the outputs or andy
are equal. We first define the LTL formula

() =n(v) E'u=v=0)U((u=v=1A(u=v=1)U(u=v=0))

to express the fact that the input wondandv are synchronized ana(u) = n(v).
Then the formula is defined by:

& = (n(u) =n(v)) — G(x=y)

5. Finally, one can express with an LTL formuls, that if the input words are syn-
chronized anah(u) = n(v) + 1 then the configuration encoded is obtained by
a computation step d¥1 from the configuration encoded gn We use the LTL
formula(n(u) = n(v) + 1) defined by

(u:v:O)U((u:1)/\(V:O)/\X((u:v:1)/\(u:v:1)U(u:v:O)))

to express the fact thatandv are synchronized anu(u) = n(v) + 1. The formula
Y is defined by

Ym = (n(u) =n(v) +1) — ((x: y) U (Trangy,x) AX3G(x = y)))

where Trangy, x) expresses the fact that the factor of length & isfobtained from
the one ofy by a transition of the Turing machirhd. We have

Trangy,X) = \Y (y=cpa) A (x= qch)
(p,a,0,b,—)eT,celr

v\ (y=pagA(x=bqo
(p,a,0,b,—)eT,celr

v \/ (y=pa#)A(x=bqd)
(p,a,g,b,—)eT

Here(x = abg) is an abbreviation fofx = a) A X(x = b) AX?(x = ¢). Furthermore,
O is the blank symbol of the tape afids the set of transitions dfl (the transition
(p,a,q,b,dir), taken wherM is in statep and scans symbal, switches the state to
g, writes symbob and moves the head according to the directliore {—,—1}).

We first show that there exists a distributed implementadfapy, over<’. Let® be
the addition modulo 2X0OR). Procesgg forwardsu to zy. Procesg) forwardsu to z;,
udwto z andwto zz. The strategy fors is not memoryless. Proceg$orwardsw to z4
until (including) the first 1 onv and then it forwarda® wto z4. Formally, f%(u,0%) =
bandf#*(ua 091wb) = a®b. We also use memoryless strategies for the processes
thata is satisfied. For instance, the strategy ffgris f1(by,by) = (b, by @ by) and the
strategy formps (y excluded) isf®(bz, bs) = (b3 @ by, b3). Itis easy to see that with these
strategies, the first property of the specification is satisfied. Note that, until the first 1
onw, pg outputs 0 orug, and after this first 1ps cannot decoda andw anymore.

The strategyf* (respectivelyfY) is to output thep-th configuration ofM starting
from the empty tape whem (respectivelyw) encodes. Then, the rest of the specifica-
tion, B A Y A S A P, is satisfied.

Remark 18.Actually, one can define another distributed implemeniakip changing
only the strategyf%: at each step, procegdransmits tops the value ofu at the pre-
ceding stepas the mod 2 difference betweefnandz,, until the first 1 occurs omwv.
Formally, f%(a,b) = b, f%(u-a; - ap,09b) = a; ® b and f%(ua 091wb) = a®b. We
also adapt the strategies pf,..., ps So thata is satisfied. Note that these strategies
are no longer memoryless, they have to remember the ladtibiBy XORing its two
arguments, procegs can then recover the whole historywfexcept the bit occurring
simultaneously with the first 1 of. Hence, we are almost in the situation of the de-
cidable architecture of Figure 1, but surprisingtyissing only one bit of information
suffices to yield undecidability.

Let nowF = (fV),ev\y, be a distributed implementation ¢fs on the architecture
< of Figure 6. We prove that* must simulate the computation bf starting from the
empty tape.

Step 1: relating the strategies forzz and z,.

Lemma 19. Let g1,02,03 : {0,1}? — {0,1} be pairwise independent functions. Then,
there existg € {0, 1} such that for all ab € {0,1}:

g3(a,b) = €@ g1(a,b) ® gz2(a,b)

Proof. We first note that each functia is two to one, i.e.|g, *(c)| = 2 forc € {0, 1}.
Indeed, if this is not the case then we have for inst&g@é(Oﬂ > 3 and the maggy, 9r)
for ¢ # k cannot be injective.

For the same reason, dk(a,b) = gk(a,b'), theng,(a,b) # g,(a’,b’). Therefore,
permuting indices if necessary, we may assume ¢héd,0) = g1(0,1), g»(0,0) =
g2(1,0) andgs(0,0) = g3(1,1), so that eaclyy is completely determined by its value
on (0,0). A simple computation then shows ttgat® go @ g3 is constant. For instance,
we have(g: & g2 ® gs)(1,0) = (-1 B G2 & —g3)(0,0) = (01 Q2©93)(0,0). O

Applying Lemma 19 both t¢f%, f2, f) and(f2, f2, f) after an inpu09,09)
on (u,w), we get:

Corollary 20. For all g > 0, there existg € {0, 1} such that
vabe {0,1}, 3(0%,0%) = e @ f%(0%,0%).

Proof. Fix q > 0. Letg; : {0,1}2 — {0,1} be defined bygi(a,b) = f%(0%,0%). The
conjuncta of the specificationpy imposes ta;, pz andp, to output the current value
of (u,w), hence they must distinguish the four possible valugsiof). Thereforeg;,
g2 andgs are pairwise independent. Applying Lemma 19, we obggig {0,1} such
thatgs(a,b) = e3@ g1(a,b) ® go(a,b) for all (a, b) € {0,1}2. Similarly, considering out-
puts of processes, ps, ps, we deduce thajl, g, andg, are also pairwise independent
and thags(a,b) = &4 ¢ g1(a,b) g2(a, b).

Therefore, for al(a,b) € {0,1}?, we havegs(a,b) ©g4(a,b) = &3 &, = € and we
obtain (0%, 0%) = ¢ @ f%(0%, 0%) as desired. O

Step 2: masking one bit ofu to pe.

Letq > 0. Foru= 091U/, we defineu® = 090u’. Observe that it € 091P+10{0,1}¢
encodep + 1 > 1 thenu® € 09+11P0{0,1}* encodesp. The next lemma states that
strategies? (resp.f%) must output the same sequenceda@nduC if the input word
w is suitable, so thapg cannot distinguish between encodinggpaindp+ 1 on input
variableu.

Lemma 21. Letuw € 091{0,1}*. For k € {3,4}, we have for all n> 0:

2 (u°In], win) = £ (u[n], win). 3)

Proof. By induction onn. If n < g, thenu®[n] = u[n] so (3) trivially holds.
Next, assuma = g+ 1, sou®[n] = 090 andu[n] = 091 = w(n]. AssumefZ (090, 090) =
f2(090,091) then we havef%(090,0%0) = f%(090,091) by Corollary 20. Fixing some
v e {0,1}", we deduce that procegs has observed exactly the same history on the
input triples (090,090, v) and (090,091, v), therefore it would write at step the same
value onwg, a contradiction with requiremeat Therefore %(090,090) # £2(090,091).
Similarly, f2(090,0%0) # f%(091,091). Since the mag% may only take two values,
we get f%(090,091) = f%(091,091). Applying again Corollary 20, we deduce that
f2(090,091) = f%(091,091) and (3) is proved fon= g+ 1.
Finally, assume that > q—+ 1. By induction hypothesis, fdce {3,4} and alli < n,
we havefZ(u0fi],w[i]) = f%(u[i],w[i]). Therefore, the historgs[n— 1] andz[n— 1]
is the same on the inputs,w) and (u®,w). Fixing somev € {0,1}", we deduce that
processpg has observed exactly the same history on the input tripis — 1], w[n —
1],v[n—1]) and(u[n—1],w[n— 1],v[n—1]).
Consider now the 3 mappings froff, 1}? to {0, 1}? defined by
h(c,d) = (f'
h(a,b) = (f*

ho(a,b) = (%, f2)(

, 1Y) (z3[n— 1]c,z4[n — 1]d, V)

, %) (u[n— 1]a,wjn—1]b)

uw[n— 1]a,w[n— 1]b)

We deduce from the requirememtthath is an inverse oh; and also an inverse &,

Thereforehp = hy and we obtainfZ(u°[n],w[n]) = f%(u[n],w[n]) for k € {3,4}, as
required. a

Step 3: enforcing output of then(u)-th configuration of M on x.

Lemma 22. If x is computed by *ffrom the input word u then for all p- 0 we have
vq >0, u € 091P0{0,1}® = x = #P TG #Y 4)

where%} is the p-th configuration reached by M starting from the entape.

Proof. The proof is by induction omp. The casey = 1 follows from the specification
W Let nowp > 1 and assume thate 091P+10{0,1}%. Letv = 09"11P0% andw =
091%. By induction, foru® € 09t11P0{0,1}* the output isx = #H1+PL#%. Using &,
we deduce that on the input trip(e®,w,v) the output isy = x = #9T1PL#9. Now,

by Lemma 21, on the input paifs®,w) and (u,w), the outputs orzs andz, are the
same. Hence, on the input triplés®, w,v) and (u,w,Vv) the outputs ory must bey =
#I+14P4 49 by the above. Usingiv, we deduce that on the input trip{e, w,v) the
output onx must bex = #4+1+P%, 1 #9. This concludes the proof singenly depends
onu. O

By masking one bit ofi to pg, we cause uncertainty with respect to the value of
n(u), preventing this process to “cheat”. In turn, procpgswhich has no information
about the other input values, only knows thpgtis not always able to cheat, and has
then to always output the correct Turing machine configarati

Proof (of Theorem 17)Starting from a Turing machin®l, we have shown that any
distributed implementation of the specificatigq is forced to output o the n(u)-th
configuration oM. Therefore, there is a distributed implementation on trihiéecture
for the formulagm A G(x # halt) if and only if M does not halt starting from the empty
tape. We have thus reduced the non halting problem of a Tangchine on the empty
tape to the LTL distributed synthesis problem over a wellreected architecture with
linearly preordered information, proving that this latpgoblem is undecidable (more
precisely not co-RE). a

6 Conclusion

In this paper, we have shown that every decidable architectwst have linearly pre-
ordered information, and that this condition is sufficiemtdeciding external specifica-
tions on UWC architectures. On the other hand, we have drlibiwell-connected ar-
chitecture with linearly preordered information, yet uoid@ble for external LTL spec-
ifications, by simulating the loss of a single informatiohdn the UWC architecture of
Figure 1.

Finally, we have shown that all UWC architectures are ddataléor robustspeci-
fications, i.e., specifications constraining externalalags which are causally related
by a communication path. A challenging problem is to find veethis still holds for
well-connected architectures.

Acknowledgement. We thank the anonymous referees for their remarks whicheldeifs to
improve the presentation of the paper.

References

1. Martin Abadi, Leslie Lamport, and Pierre Wolper. Redllile and unrealizable specifica-
tions of reactive systems. In Giorgio Ausiello, Mariangi®@ezani-Ciancaglini, and Simona
Ronchi Della Rocca, editorBroceedings of the 16th International Colloquium on Auttama
Languages and Programming (ICALP’8%)lume 372 ofLecture Notes in Computer Sci-
ence pages 1-17. Springer, 1989.

2. Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Raychtv Yeung. Network infor-
mation flow. IEEE Transactions on Information Theo®6(4):1204-1216, 2000.

10.

11.

12.

13.

14.

15.

16.

17.

. André Arnold, Aymeric Vincent, and Igor Walukiewicz. fas for synthesis of controllers

with partial observationTheoretical Computer Scienc&(303):7-34, 2003.

. Julien Bernet and David Janin. On distributed prograncifipation and synthesis in archi-

tectures with cycles. In Elie Najm, Jean-Frangois Pr&dgtre, and Véroniqgue Donzeau-
Gouge, editorsProceedings of the 26th IFIP WG6.1 International Confeezna Formal
Techniques for Networked and Distributed Systems (FORS)E/®@Iume 4229 ofLecture
Notes in Computer Scienggages 175-190. Springer, 2006.

. J. Richard Buchi and Lawrence H. Landweber. Solving eetial conditions by finite-state

strategiesTransactions of the American Mathematical Sogi&88:295-311, 1969.

. Alonzo Church. Logic, arithmetics, and automata. Pimceedings of the International

Congress of Mathematicianpages 23-35, 1962.

. Edmund M. Clarke and E. Allen Emerson. Design and syrngtedsiynchronization skeletons

using branching time temporal logic. Proceedings of the IBM Workshop on Logics of
Programs 1981.

. Bernd Finkbeiner and Sven Schewe. Uniform distributadh®sis. InProceedings of the

20th IEEE Annual Symposium on Logic in Computer ScienceS108&), pages 321-330.
IEEE Computer Society Press, 2005.

. Bernd Finkbeiner and Sven Schewe. Synthesis of asynohs®ystems. In German Puebla,

editor, Proceedings of the International Symposium on Logic-b&&edram Synthesis and
Transformation (LOPSTR’06yolume 4407 of_ecture Notes in Computer Sciengmges
127-142. Springer, 2006.

Paul Gastin, Benjamin Lerman, and Marc Zeitoun. Disted games with causal memory
are decidable for series-parallel systems. In Kamal LodayhMeena Mahajan, editors,
Proceedings of the 24th Conference on Foundations of SaftWechnology and Theoretical
Computer Science (FSTTCS'04dlume 3328 ofecture Notes in Computer Scienpages
275-286. Springer, 2004.

Paul Gastin, Nathalie Sznajder, and Marc Zeitoun. Diged synthesis for well-connected
architectures. In Naveen Garg and S. Arun-Kumar, editBreceedings of the 26th
Conference on Foundations of Software Technology and €tieal Computer Science
(FSTTCS'06)volume 4337 of_ecture Notes in Computer Scienpages 321-332. Springer,
2006.

Orna Kupferman and Moshe Y. Vardi. Synthesis with incletepinformation. InProceed-
ings of the 2nd International Conference on Temporal Lo§id ('97), pages 91-106, 1997.
Orna Kupferman and Moshe Y. Vardi. Church’s problemsiésd. The Bulletin of Symbolic
Logic, 5(2):245-263, 1999.

Orna Kupferman and Moshe Y. Vardiu-calculus synthesis. In Mogens Nielsen and
Branislav Rovan, editor®roceedings of the 25th International Symposium on Mathieala
Foundations of Computer Science (MFCS'08)lume 1893 ol ecture Notes in Computer
Sciencepages 497-507. Springer, 2000.

Orna Kupferman and Moshe Y. Vardi. Synthesizing disted systems. In Joseph Y.
Halpern, editorProceedings of the 16th IEEE Annual Symposium on Logic inpDtgn
Science (LICS’01)EEE Computer Society Press, 2001.

P. Madhusudan and P. S. Thiagarajan. Distributed d@tisynthesis for local specifica-
tions. In Fernando Orejas, Paul G. Spirakis, and Jan vanwergueditorsProceedings of
the 28th International Colloquium on Automata, Languaged Brogramming (ICALP’01)
volume 2076 oL ecture Notes in Computer Scienpgages 396—407. Springer, 2001.

P. Madhusudan and P. S. Thiagarajan. A decidable claasyaothronous distributed con-
trollers. In Lubos Brim, Petr Jancar, Mojmir Kretinsland Antonin Kucera, editor&ro-
ceedings of the 13th International Conference on Concugrefheory (CONCUR’02)ol-
ume 2421 ol ecture Notes in Computer Scienpages 145-160. Springer, 2002.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

P. Madhusudan, P. S. Thiagarajan, and Shaofa Yang. Ti@thtry of connectedly com-
municating processes. In Ramaswamy Ramanujam and Sanelesgd8orsProceedings of
the 25th Conference on Foundations of Software TechnolodyTaeoretical Computer Sci-
ence (FSTTCS'05)\olume 3821 ofLecture Notes in Computer Sciengages 201-212.
Springer, 2005.

Swarup Mohalik and Igor Walukiewicz. Distributed gamlesParitosh K. Pandya and Jaiku-
mar Radhakrishnan, editoRroceedings of the 23rd Conference on Foundations of Sadtwa
Technology and Theoretical Computer Science (FSTTCS/0R)me 2914 of_ecture Notes
in Computer Scien¢gages 338-351. Springer, 2003.

David E. Muller and Paul E. Schupp. Simulating altenmatree automata by nondetermin-
istic automata: New results and new proofs of theorems ofrRadicNaughton and Safra.
Theoretical Computer Scienc®41(1&2):69-107, 1995.

Gary L. Peterson and John H. Reif. Multiple-person a#téon. InProceedings of the 20th
Annual IEEE Symposium on Foundations of Computer Scie@€g+79) pages 348—-363.
IEEE Computer Society Press, 1979.

Amir Pnueli and Roni Rosner. On the synthesis of a reaatigdule. InProceedings of the
16th Annual ACM Symposium on Principles of Programming Laggs (POPL'89)pages
179-190. ACM, 1989.

Amir Pnueli and Roni Rosner. On the synthesis of an asgndus reactive module. In
Giorgio Ausiello, Mariangiola Dezani-Ciancaglini, andn®&ina Ronchi Della Rocca, edi-
tors, Proceedings of the 16th International Colloquium on Auttanhanguages and Pro-
gramming (ICALP’89)volume 372 ofLecture Notes in Computer Scienpages 652—671.
Springer, 1989.

Amir Pnueli and Roni Rosner. Distributed reactive systeare hard to synthesize. In
Proceedings of the 31st Annual IEEE Symposium on FoundatiérComputer Science
(FOCS'90) volume I, pages 746—757. IEEE Computer Society Pres€).199

April Rasala Lehman and Eric Lehman. Complexity classiion of network information
flow problems. In J. lan Munro, editoProceedings of the 15th ACM-SIAM Symposium on
Discrete Algorithms (SODA'04pages 142—-150. Society for Industrial and Applied Mathe-
matics, 2004.

Alin Stefanescu, Javier Esparza, and Anca Muscholntl&gis of distributed algorithms
using asynchronous automata. In Roberto Amadio and DewmgjiekpeditorsProceedings of
the 14th International Conference on Concurrency Theoi@ NCUR'03) volume 2761 of
Lecture Notes in Computer Scienpages 27—41. Springer, 2003.

Wolfgang Thomas. On the synthesis of strategies in tefg@mes. In Ernst W. Mayr and
Claude Puech, editorBroceedings of the 12th International Symposium on ThieateAs-
pects of Computer Science (STACS,%Jume 900 of_ecture Notes in Computer Science
pages 1-13. Springer, 1995.

Wolfgang Thomas. Church’s problem and a tour througbraata theory. In Arnon Avron,
Nachum Dershowitz, and Alexander Rabinovich, editBillars of Computer Scienc&ol-
ume 4800 ol ecture Notes in Computer Scienpages 635-655. Springer, 2008.

Ron van der Meyden and Moshe Y. Vardi. Synthesis from kedge-based specifications. In
Davide Sangiorgi and Robert de Simone, edit®r®ceedings of the 9th International Con-
ference on Concurrency Theory (CONCUR’98)lume 1466 of_ecture Notes in Computer
Sciencepages 34-49. Springer, 1998.

Ron van der Meyden and Thomas Wilke. Synthesis of digatsystems from knowledge-
based specifications. In Martin Abadi and Luca de Alfardtoesl, Proceedings of the 16th
International Conference on Concurrency Theory (CONCUWR'@olume 3653 olecture
Notes in Computer Scienggages 562—-562. Springer, 2005.

