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Abstract. We study the synthesis problem for external linear or branching spec-
ifications and distributed, synchronous architectures with arbitrary delays on pro-
cesses.Externalmeans that the specification only relates input and output vari-
ables. We introduce the subclass of uniformly well-connected (UWC) architec-
tures for which there exists a routing allowing each output process to get the
values of all inputs it is connected to, as soon as possible. We prove that the dis-
tributed synthesis problem is decidable on UWC architectures if and only if the
output variables are totally ordered by their knowledge of input variables. We
also show that if we extend this class by letting the routing depend on the output
process, then the previous decidability result fails. Finally, we provide a natural
restriction on specifications under which the whole class ofUWC architectures is
decidable.

Key words: Synthesis problem· Distributed systems· Synchronous architec-
tures.

1 Introduction

Synthesis is an essential problem in computer science introduced by Church [6]. It con-
sists in translating a system property which relates input and output events, into a low-
level model which computes the output from the input, so thatthe property is met. The
property may be given in a high level specification language (such as monadic second
order logic) while the low-level model can be a finite state machine. More generally,
the problem can be parametrized by the specification language and the target model.

The controller synthesis problem, in which a system is also part of the input, ex-
tends the synthesis problem. The goal is to synthesize a controller such that the sys-
tem, synchronized with the controller, meets the given specification. Thus, the synthe-
sis problem corresponds to the particular case of the controller synthesis problem with
a system having all possible behaviors. Both problems have aclassical formulation in
terms of games. See for instance [27, 28] for a presentation of relationships between
two-player infinite games in an automata-theoretic setting, and the synthesis problem.
Both problems also have several variants. Let us review someof them, in order to relate
the contribution of the present paper to existing work.

⋆ Partially supported by projects ARCUSÎle-de-France/Inde, DOTS (ANR-06-SETIN-003), and
P2R MODISTE-COVER/Timed-DISCOVERI.



1.1 Some variants of the synthesis problem

Closed vs. open systems.Early approaches consider closed systems, in which there
is no interaction with an environment [7]. Synthesis has later been extended to open
systems [22, 1], that is, to systems interacting with an unpredictable environment. The
goal is to enforce the specification no matter how the environment acts. In this work,
we consider open systems.

Centralized vs. distributed systems.A solution to Church’s problem for centralized
systems has been presented by Büchi and Landweber [5], for monadic second order
specifications. A distributed system is made up of several communicating processes.
The additional difficulty showing up with distributed systems is that the information
acquired by each individual process about the global state of the system is only partial.
Indeed, data exchanges between processes are constrained by a given communication
architecture. For controller synthesis, the controller itself is required to be distributed
over the same communication architecture, so that each of its components cannot have
a complete knowledge of what happens. In this paper we also consider distributed sys-
tems.

Algorithms solving the synthesis problem with incomplete information are given
in [12, 14, 3] for branching-time logic specifications. Synthesis has also been studied
for specifications in the logic of knowledge and linear time,in [29] for systems with
a single agent, and in [30] for distributed systems. The game-theoretic framework re-
mains useful in the distributed case [4]. Unifying several formalisms, [19] proposed the
framework of distributed games, a specialized variant of multiplayer games, to reason
about distributed synthesis.

Synchronous vs. asynchronous systems.For distributed systems, two classical seman-
tics have been previously considered. In synchronous systems, there is a global clock,
and each process executes one computation step at each clocktick. In asynchronous
systems, there is no such global clock: each process behavesat its own speed. This
paper considers synchronous systems. Only a few cases for such systems have been
identified as decidable. See [24, 15] where the problem is studied for temporal logic
specifications.

Full vs. local vs. external specifications.In addition to the specification language it-
self, another natural parameter concerns the variables that a specification is allowed to
refer to. Variables are of three kinds: input variables carry the values provided by the
environment. Output variables are written by the system, and are not used for internal
communication. Finally, for a distributed system, there isa fixed number of variables,
called internal, corresponding to communication links between processes. We define
three types of specifications:

– Full specifications are the most general ones: they may referto any variable.
– External specifications only refer to input and output variables, but not to internal

ones.
– Local specifications are Boolean combinations ofp-local specifications, wherep

denotes a process. For a given processp, a specification is saidp-local if it only
refers to variables read or written by processp.
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Fig. 1. Architecture decidable/undecidable for external/full specifications.

In this work, we use external specifications. Before discussing this choice and present-
ing our contributions, let us review the most salient existing results on the synthesis
problem.

1.2 Synthesis for distributed systems: related work

For asynchronous systems, synthesis has first been studied in [23] for single-process
implementations and linear-time specifications. In [17], the synthesis problem in the
distributed setting is proved decidable for trace-closed specifications, yet for a quite
specific class of controllers. This result has been strengthened in [18], where restrictions
on the communication patterns of the controllers have been relaxed. Another subclass
of decidable systems, incomparable with the preceding one,has been identified in [10],
using an enhanced memory for controllers. The synthesis of asynchronous distributed
systems in the general case ofµ-calculus specifications was studied in [9]. Also, the
theory of asynchronous automata has been applied in [26] to solve the synthesis prob-
lem ofcloseddistributed systems.

For synchronous systems, undecidability is the point in common to most existing
results. This question has been first studied in [24], where synthesis has been proved
undecidable for LTL specifications and arbitrary architectures. For pipeline architec-
tures (where processes are linearly ordered and each process communicates to its right
neighbor), synthesis becomes non elementarily decidable for LTL specifications. The
lower bound follows from a former result on multiplayer games [21]. Even for local
specifications, constraining only variables local to processes, the problem is still unde-
cidable for most communication architectures [16]. Synthesis has been shown decidable
for the pipeline architecture and CTL∗ full specifications [15]. A decision criterion for
full specifications has then been established in [8]. It implies that the problem is un-
decidable for the architecture of Figure 1. The reason is that full specifications make
it possible to enforce a constant value on variablet, breaking the communication link
between processesp0 andp1.

1.3 Contributions

We address the synthesis problem for open distributed synchronous systems and tem-
poral logic specifications. In contrast to the situation in the asynchronous setting, most
decidability results for synthesis of synchronous systemsare negative. The goal of this
paper is to investigate relevant restrictions to obtain decidability. Undecidability often



arises when dealing with full specifications. For the rare positive statements, as for the
pipeline architecture, allowing full specifications strengthen the decidability result [15].
On the other hand, for the undecidability part of the criterion obtained in [8], allowing
full specifications weakens the result by yielding easy reductions to the basic undecid-
able architecture of Pnueli and Rosner [24] (see Figure 1), for instance by breaking
communication links at will.

In the seminal paper [24], specifications were assumed to beexternal, or input-
output: only variables communicating with the environment could be constrained. The
way processes of the system communicate was only restrictedby the communication
architecture, not by the specification. This is very naturalfrom a practical point of view:
when writing a specification, we are only concerned by the input/output behavior of the
system and we should leave to the implementation all freedomon its internal behavior.
For that reason, solving the problem for external specifications is more relevant and
useful—albeit more difficult—than a decidability criterion for arbitrary specifications.
We will show that the synthesis problem is decidable for the architecture of Figure 1
and external specifications, that is, if we do not constrain the internal variablet.

Results. We consider the synthesis problem for synchronous semantics, where each
process is assigned a nonnegative delay. The delays can be used to model latency in
communications, or slow processes. This model has the same expressive power as the
one where delays sit on communication channels, and it subsumes both the 0-delay and
the 1-delay classical semantics [24, 15].

To rule out unnatural properties yielding undecidability,the specifications we con-
sider are external, coming back to the original framework of[24, 6]. In Section 3, we
first determine a sufficient condition for undecidability with external specifications, that
generalizes the undecidability result of [24]. We next introduce in Section 4uniformly
well-connected(UWC) architectures. Informally, an architecture is UWC ifthere exists
a routing allowing each output process to get, as soon as possible, the values of all inputs
it is connected to. Using tree automata, we prove that for such architectures and exter-
nal specifications, the sufficient condition for undecidability becomes a criterion. (As
already pointed out, synthesis may be undecidable for full specifications while decid-
able for external ones.) We also propose a natural restriction on specifications for which
synthesis, on UWC architectures, becomes decidable. We call such specificationsrobust
specifications. Finally, we introduce in Section 5 the larger class ofwell-connected ar-
chitectures, in which the routing of input variables to an output processmay depend
on that process. We show that our criterion is not a necessarycondition anymore for
this larger class. The undecidability proof highlights thesurprising fact that in Figure 1,
blanking out asingleinformation bit in the transmission ofx0 to p1 throught suffices to
yield undecidability. This is a step forward in understanding decidability limits for dis-
tributed synthesis. It remains open whether the problem is decidable for robust external
specifications and well-connected architectures.

An extended abstract of this work appeared in [11].



2 Preliminaries

Trees and tree automata.Given two finite setsX andY, aY-labeledX-tree (also called
full tree) is a total functiont : X∗→ Y where elements ofX are called directions, and
elements ofY are called labels. A wordσ ∈ X∗ defines a node oft andt(σ) is its label.
The empty wordε is the root of the tree. A wordσ ∈ Xω is a branch. In the following,
a treet : X∗→Y will be called an(X,Y)-tree.

A non-deterministic tree automaton (NDTA)A = (X,Y,Q,q0,δ ,α) runs on(X,Y)-
trees. It consists of a finite set of statesQ, an initial stateq0, a transition functionδ :
Q×Y→ 2QX

and an acceptance conditionα ⊆ Qω . A run ρ of such an automaton
over an(X,Y)-treet is an(X,Q)-treeρ such thatρ(ε) = q0, and for allσ ∈ X∗, (ρ(σ ·
x))x∈X ∈ δ (ρ(σ), t(σ)). The runρ is accepting if all its branchess1s2 · · · ∈ Xω are
such thatρ(ε)ρ(s1)ρ(s1s2) · · · ∈ α. The specific acceptance condition chosen among
the classical ones is not important in this paper.

Architectures.An architectureA = (V ⊎P,E,(Sv)v∈V ,s0,(dp)p∈P) is a finite directed
acyclic bipartite graph, whereV ⊎P is the set of vertices, andE ⊆ (V ×P)∪ (P×V)
is the set of edges, such that|E−1(v)| ≤ 1 for all v∈ V. Elements ofP will be called
processesand elements ofV variables. Intuitively, an edge(v, p) ∈ V ×P means that
processp can read variablev, and an edge(p,v) ∈ P×V means thatp can write on
v. Thus,|E−1(v)| ≤ 1 means that a variablev is written by at most one process. An
example of an architecture is given in Figure 2, where processes are represented by
boxes and variables by circles. Input and output variables are defined, respectively, by

VI = {v∈V | E−1(v) = /0},

VO = {v∈V | E(v) = /0}.

Variables inV \ (VI ∪VO) will be calledinternal. We assume that no process is minimal
or maximal in the graph: forp∈ P, we haveE(p) 6= /0 andE−1(p) 6= /0.

Each variablev ranges over a finite domainSv, given with the architecture. For
U ⊆ V, we denote bySU the set∏v∈U Sv. A configurationof the architecture is given
by a tuples= (sv)v∈V ∈ SV describing the value of all variables. ForU ⊆V, we denote
by sU = (sv)v∈U the projection of the configurations to the subset of variablesU . The
initial configuration iss0 = (sv

0)v∈V ∈ SV .
We will assume that|Sv| ≥ 2 for all v∈V, because a variablev for which |Sv| = 1

always has the same value and may be ignored. It will be convenient in some proofs to
assume that{0,1} ⊆ Sv and thatsv

0 = 0 for all v∈V.
Each processp∈ P is associated with a delaydp ∈ N that corresponds to the time

interval between the moment the process reads the variablesv∈E−1(p) and the moment
it will be able to write on its own output variables. Note thatdelay 0 is allowed. In the
following, for v∈V \VI, we will often writedv for dp whereE−1(v) = {p}.

Runs.A run of an architecture is an infinite sequence of configurations,i.e., an infinite
word over the alphabetSV , starting with the initial configurations0 ∈ SV given by the
architecture. Ifσ = s0s1s2 · · · ∈ (SV)ω is a run, then its projection onU ⊆ V is σU =
sU
0 sU

1 sU
2 · · · . Also, we denote byσ [i, j] the factorsi . . .sj and byσ [i] the prefix of length

i of σ (by convention,σ [i] = ε if i ≤ 0). A run treeis a full treet : (SVI )∗→ SV , where
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Fig. 2.An architecture with input variablesu,w and output variableszi j .

t(ε) = s0 and forρ ∈ (SVI )∗, r ∈ SVI , we havet(ρ · r)VI = r. The projection oft onU ⊆V
is the treetU : (SVI )∗→ SU defined bytU(ρ) = t(ρ)U .

Specifications.Specifications over a setU ⊆V of variables can be given, for instance,
by a µ-calculus, CTL∗, CTL, or LTL formula, using atomic propositions of the form
(v = a) with v∈U anda ∈ Sv. We then say that the formula is inL (U) whereL is
the logic used. Specifications overU areexternal if U ⊆ VI ∪VO. The validity of an
external formula on a run treet (or simply a run) only depends on its projectiontVI∪VO

ontoVI ∪VO.

Programs, strategies.We consider a discrete time, synchronous semantics. Informally,
at stepi = 1,2, . . ., the environment provides new values for input variables. Then, each
processp reading values written by its predecessors or by the environment at stepi−dp,
computes values for the variables inE(p), and writes them. Letv∈V \VI and letR(v) =
E−2(v) be the set of variables read by the process writing tov. Intuitively, from a word
σR(v) in (SR(v))+ representing the projection onR(v) of some run prefix, a program
(or a strategy) advises a value to write on variablev. But, since the process may have
a certain delaydv, the output of the strategy must not depend on the lastdv values of
σR(v).

Formally, aprogram(or local strategy) for variablev is a mappingf v :
(

SR(v)
)+
→

Sv compatible with the delaydv, i.e., such that for allσ ,σ ′ ∈ (SR(v))i , if σ [i− dv] =
σ ′[i−dv], then f v(σ) = f v(σ ′). This condition – calleddelay-compatibilityor simply
d-compatibility– ensures that the delaydv is respected when computing the next value
of variablev. A distributed program(or distributed strategy) is a tupleF = ( f v)v∈V\VI

of local strategies. A runσ = s0s1s2 · · · ∈ (SV)ω is anF-run (or isF-compatible) if for
all v∈V \VI and alli > 0, sv

i = f v(σR(v)[i]). Given an input sequenceρ ∈ (SVI)ω , there
is a unique runσ ∈ (SV)ω which isF-compatible and such thatσVI = ρ .

TheF-run treeis the run treet : (SVI )∗→ SV such that each branch is labeled by a
words0s1s2 · · · ∈ (SV)ω which is anF-run. Note that, in anF-runσ ∈ (SV)ω , the prefix
σ [i] only depends on the prefixσVI [i]. This shows that theF-run tree is unique.

Distributed synthesis problem.Let L be a specification language. The distributed syn-
thesis problem for an architectureA is the following: given a formulaϕ ∈L , decide
whether there exists a distributed programF onA such that everyF-run (or theF-run



tree) satisfiesϕ . We will then say thatF is a distributed implementation for the specifi-
cationϕ . If for some architecture the synthesis problem is undecidable, we say that the
architecture itself isundecidable(for the specification languageL ).

Memoryless strategies.The strategyf v is memorylessif it does not depend on the
past, that is, if there existsg : SR(v) → Sv such that f v(s0 · · ·si · · ·si+dv) = g(si) for
s0 · · ·si+dv ∈ (SR(v))+. In casedv = 0, this corresponds to the usual definition of a mem-
oryless strategy.

Summaries.For a variablev∈ V, we let View(v) = (E−2)∗(v)∩VI be the set ofinput
variablesv might depend on. Observe that ifσ is an F-run, then for allv ∈ V \VI ,
for all i ≥ 0, sv

i only depends onσView(v)[i]. This allows us to define the summary
f̂ v : (SView(v))+ → Sv such thatf̂ v(σView(v)[i]) = sv

i , corresponding to the composition
of all local strategies used to computev.

Smallest cumulative delay.Throughout the paper, the notion ofsmallest cumulative
delayof transmission fromu to v will extensively be used. It is defined by

d(u,u) = 0

d(u,v) = +∞ if v /∈ (E2)+(u), i.e., if there is no path fromu to v

d(u,v) = dv +min{d(u,w) | w∈R(v) andw∈ (E2)+(u)}

d-compatibility for summaries.The compatibility of the strategiesF = ( f v)v∈V\VI
with

the delays extends to the summariesF̂ = ( f̂ v)v∈V\VI
. Formally, a maph : (SView(v))+→

Sv is d-compatible(or compatible with the delays(dv)v∈V\VI
) if for all ρ ∈ (SView(v))i ,

h(ρ) only depends on the prefixes(ρu[i−d(u,v)])u∈View(v).

3 Architectures with incomparable information

In this section, we state a sufficient condition for undecidability; this relies on an easy
generalization of the undecidable architecture presentedin [24].

Definition 1. An architecture hasincomparable informationif there exist variables
x,y ∈ VO such that View(x) \View(y) 6= /0 and View(y) \View(x) 6= /0. Otherwise the
architecture haslinearly preordered information.

For instance, the architectures of Figures 1, 2, 5 and 6 have linearly preordered
information, while the architectureA ′ of Figure 3 has incomparable information. The
following proposition extends the undecidability result of [24, 8].

Proposition 2. Architectures with incomparable information are undecidable for LTL
or CTL external specifications.

In [24], the architectureA ′ shown in Figure 3 is proved undecidable, both for LTL
and CTL specifications. We will reduce the synthesis problemof A ′ to the synthe-
sis problem of an architecture with incomparable information. This reduction is rather
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natural but not completely straightforward, for instance the specification needs to be
changed in the reduction. For the sake of completeness, we give a precise proof of the
reduction in the rest of this section.

LetA = (P⊎V,E,(Sv)v∈V ,s0,(dp)p∈P) be an architecture with incomparable infor-
mation. Without loss of generality, we assume thatsv

0 = 0 for all v∈V. By definition,
we findx0,y0∈VI andxn,ym∈VO such thatx0 /∈View(ym) andy0 /∈View(xn). Consider
pathsx0 E2 x1E2 . . .E2xn from x0 to xn, andy0 E2 y1 E2 . . .E2ym from y0 to ym such that
d(x0,xn) = dx1 + · · ·+dxn andd(y0,ym) = dy1 + · · ·+dym. Note that the sets of variables
{x0, . . . ,xn} and{y0, . . . ,ym} are disjoint.

Let A ′ = (P′ ⊎V ′,E′,(S′v)v∈V′ ,s
′
0,(d

′
p)p∈P′) be the architecture of Figure 3 with

VI
′ = {x0,y0}, VO

′ = {xn,ym}; with unchanged domains for output variables:S′xn = Sxn

andS′ym = Sym; with S′x0 = S′y0 = {0,1} as domain for input variables; and withs′0 = sV′
0 .

The delays forxn andym are the smallest cumulative delays of transmission fromx0 to
xn andy0 to ym as defined earlier:d′xn

= d′p = d(x0,xn) andd′ym
= d′q = d(y0,ym).

The architectureA ′ is undecidable for LTL or CTL specifications (it suffices to
adapt the proofs of [24, 8] taking into account different delays on processes). We reduce
the distributed synthesis problem forA ′ to the same problem forA . We first consider
CTL specifications.

Note that we do need to modify the specification when reducingthe distributed
synthesis problem fromA ′ to A . Indeed, observe that the specification

ψ = EG((x0 = 0)∧ (xn = 0))∧EG((x0 = 0)∧ (xn = 1))

is not implementable overA ′ whereas it is implementable overA , provided View(xn)\
{x0} 6= /0 and assuming no delays.

To define an implementationF ′ overA ′ given an implementationF overA , we
simulate the behavior ofF when all variables inVI \VI

′ are constantly set to 0. This will
be enforced when defining the reduction of the specification from A ′ to A , using the
formulaχ = (x0 ∈ {0,1})∧ (y0 ∈ {0,1})∧

∧

v∈VI\VI
′(v = 0). We define a reduction that

maps a formulaψ of CTL(V ′) into a formulaψ in CTL(VI ∪VO) that ensuresψ only
on the subtree of executions respectingχ . This reduction is defined by

(x = s) = (x = s) ¬ψ = ¬ψ
ϕ ∨ψ = ϕ ∨ψ EXψ = EX(χ ∧ψ)

Eϕ Uψ = E(χ ∧ϕ)U (χ ∧ψ) EGψ = EG(χ ∧ψ).



We use the following notation: forr ∈ S′VI
′
, we define ¯r ∈ SVI by r̄VI

′
= r and ¯rv = 0

for all v∈VI \VI
′, and we extend this definition to words (with̄ε = ε). This allows us to

fix the run treẽt : (S′VI
′
)∗→ SV′ overA ′ that corresponds to a run treet : (SVI )∗→ SV

overA : t̃(ρ) = t(ρ̄)V ′ for ρ ∈ (S′VI
′
)∗. The reduction of the formula is correct in the

following sense:

Lemma 3. For every formulaψ ∈ CTL(V ′), every tree t: (SVI)∗→ SV , and everyρ ∈
(S′VI

′
)∗ we have t, ρ̄ |= ψ if and only ift̃,ρ |= ψ .

Proof. By an easy induction onψ . Let t : (SVI)∗ → SV andρ ∈ (S′VI
′
)∗. Whenψ =

(x = s) for somex∈V ′ ands∈ Sx, the result follows from̃t(ρ)x = t(ρ̄)x. The cases of
boolean connectives are trivial. So letψ = Eψ1 U ψ2 and assume thatt, ρ̄ |= ψ . Then
we finds1 · · ·sn ∈ (SVI )∗ such thatt, ρ̄ ·s1 · · ·sn |= χ ∧ψ2 andt, ρ̄ ·s1 · · ·si |= χ ∧ψ1 for

all 0≤ i < n. Sincesi |= χ , we deduce thatsi = r i for r i = sVI
′

i ∈ S′VI
′
. By induction we

obtaint̃,ρ · r1 · · · rn |= ψ2 andt̃,ρ · r1 · · · r i |= ψ1 for all 0≤ i < n. Therefore,̃t,ρ |= ψ .
The converse implication can be shown similarly.

The casesEX andEG are left to the reader. ⊓⊔

Now we prove the reduction:

Lemma 4. If there is a distributed program F′ overA ′ that satisfiesψ , then there is a
distributed program F overA that satisfiesψ .

Proof. Let F ′ = ( f ′xn, f ′ym) be a distributed implementation forψ over A ′. We will
define a distributed strategyF = ( f v)v∈V for ψ overA so that the projection onV ′ of
anyF-run will be anF ′-run. More precisely, ifσ ∈ (SV)+ is a prefix of anF-run with
σx0 ∈ {0,1}+, then the following will hold:

f xn(σR(xn)) = f ′xn(σx0) (1)

and similarly for(y0,ym).
To do so, we use the variablesx1, . . . ,xn−1 to transmit the value ofx0 through the

architecture. Formally, at each step,f xk copies the last value ofxk−1 it can read – the
one that was writtendxk steps before: for 0< k < n andτ ∈ (SR(xk))+, we define

f xk(τ) =

{

sxk−1 if τ = τ1sτ2 with |τ2|= dxk andsxk−1 ∈ {0,1},

0 otherwise.

By definition, f xk is clearly compatible with the delaydxk. It is easy to check that if we
provideρ ∈ {0,1}ω as input onx0 and follow the strategies( f xk) above then we get on
xn−1 the outcome 0d(x0,xn−1)ρ corresponding to the shift byd(x0,xn−1) = d′xn

−dxn
.

In order to satisfy (1), the last strategyf xn simulatesf ′xn taking into account the
shift by d′xn

− dxn
of their respective inputs. To explain the definition off xn, consider

σ ∈ (SV)+ compatible with( f xk)0<k<n and such thatσx0 ∈ {0,1}+. If |σ | ≤ d′xn
then

f ′xn(σx0) does not depend onσ so we definef xn(σR(xn)) = f ′xn(0|σ |) = f ′xn(σx0) so
that (1) holds. Assume now thatσ = σ1σ2σ3 with |σ1|= d′xn

−dxn, |σ3|= dxn. Note that
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f ′xn(σx0) only depends on the prefix ofσx0 of length|σ2| which is preciselyσxn−1
2 due

to the shift induced by the strategies( f xk)0<k<n (see Figure 4). Hence, in this case, we
define f xn(σR(xn)) = f ′xn(σxn−1

2 0d′xn) = f ′xn(σx0) in order to get (1) again. The formal
definition of f xn is given for arbitraryτ ∈ (SR(xn))+ by

f xn(τ) =



















f ′xn(0|τ|) if |τ| ≤ d′xn
,

f ′xn(τxn−1
2 0d′xn) if τ = τ1τ2τ3 with |τ1|= d′xn

−dxn
, |τ3|= dxn

andτxn−1
2 ∈ {0,1}+,

0 otherwise.

By definition, f xn is clearly compatible with the delaydxn. Also, we have explained
that (1) holds with this definition of( f xk)0<k≤n. For 0< k≤m, we define similarlyf yk

and for every other variablev, we set f v = 0. The resulting distributed strategyF =
( f v)v∈V is indeed compatible with the delays. It remains to show thatF is a distributed
implementation forψ overA .

Let t : (SVI )∗ → SV be theF-run tree overA . We show below that̃t : (S′VI
′
)∗ →

SV′ is in fact theF ′-run tree overA ′. Then, sinceF ′ is a distributed implementation
of ψ , we deducẽt,ε |= ψ , and Lemma 3 impliest,ε |= ψ . HenceF is a distributed
implementation ofψ .

First, it is easy to see thatt̃ is a run-tree overA ′: t̃(ε) = t(ε̄)V ′ = sV ′
0 = s′0, and

for ρ ∈ (S′VI
′
)∗ and r ∈ S′VI

′
we havet̃(ρ · r)VI

′
= t(ρ̄ · r̄)VI

′
= r̄VI

′
= rVI

′
. Next, to

show thatt̃ is theF ′-run tree, we have to check thatt̃(ρ)xn = f ′xn(ρx0) for eachρ =

r1 · · · r i ∈ (SVI
′
)+ and similarly for(y0,ym). Let σ ∈ (SV)+ be theF-run induced by

ρ̄ : σ = t(ε)t(r̄1)t(r̄1r̄2) · · · t(ρ̄). Using(1) we obtaint̃(ρ)xn = t(ρ̄)xn = f xn(σR(xn)) =
f ′xn(σx0)= f ′xn(ρx0). Using the same arguments, we also obtain thatt̃(ρ)ym = f ′ym(ρy0),
and that̃t is theF ′-run tree. ⊓⊔

Lemma 5. If there is a distributed program F overA that satisfiesψ , then there is a
distributed program F′ overA ′ that satisfiesψ .

Proof. SupposeF = ( f v)v∈V\VI
is a distributed implementation ofψ overA . We need

to define the strategiesf ′xn : (S′x0)+→ Sxn and f ′ym : (S′y0)+→ Sym of the variables in
A ′. The difficulty here is thatf ′xn may have less input variables thanf xn so it cannot
simply simulate it. To overcome this, we use the fact that, due to the special form ofψ ,
theF-run treet satisfiesψ if and only if the sub-tree restricted to branches where all
input variables other thanx0 andy0 are always 0 also satisfiesψ . So the processes of



A ′ will behave like the processes ofA writing respectively onxn andym in the special
executions when the values of input variables other thanx0 andy0 are always 0.

Formally, forρ ∈ (S′VI
′
)+, we set f ′xn(ρx0) = f̂ xn(ρ̄View(xn)). Observe that, due to

incomparable information,̂f xn does not depend on̄ρy0. Hence f ′xn only depends on
ρx0 and is a correct strategy for variablexn in the architectureA ′. Moreover,f̂ xn is d-
compatible and sof ′xn is d′-compatible. We definef ′ym similarly. It is easy to check that
F ′ = ( f ′xn, f ′ym) is a distributed implementation ofψ overA ′: let t be theF-run tree
andt ′ be theF ′-run tree. We havet ′(ρ)xn = f ′xn(ρx0) = f̂ xn(ρ̄View(xn)) = t(ρ̄)xn = t̃(ρ)xn

and similarly,t ′(ρ)ym = t̃(ρ)ym. Hencet ′ = t̃ and sincet,ε |= ψ , Lemma 3 implies that
t̃,ε |= ψ andF ′ is a distributed implementation ofψ onA ′. ⊓⊔

We consider the reduction for LTL specifications. In this case, the specification over
A only needs to ensureψ when the input values onx0 andy0 are in the domain allowed
by A ′. We use the reduction

ψ = (Gξ )→ ψ

where the formulaξ is defined byξ = (x0 ∈ {0,1})∧ (y0 ∈ {0,1}).
The same constructions as the ones described in the proofs ofLemma 4 and Lemma 5

yield the reduction. Indeed, letF ′ be a distributed implementation ofψ overA ′, and
let F be defined as in the proof of Lemma 4. Letρ ∈ (SVI)

ω
be an input sequence

andσ = s0s1s2 · · · ∈ (SV)ω be the inducedF-run. If ρx0 /∈ {0,1}ω or ρy0 /∈ {0,1}ω

thenσ ,ε 6|= Gξ . Otherwise, by equation (1), we get for alli > 0, sxn
i = f xn(σR(xn)[i]) =

f ′xn(σx0[i]) andsym
i = f ym(σR(ym)[i])= f ′ym(σy0[i]). ThenσV ′ is anF ′-run, andσV ′ ,ε |=

ψ . Sinceψ ∈ LTL(V ′) we deduceσ ,ε |= ψ . We obtain that anyF-run σ is such that
σ ,ε |= (Gξ )→ ψ , andF is a distributed implementation ofψ overA .

Conversely, givenF a distributed implementation ofψ overA , defineF ′ as in the
proof of Lemma 5. Letρ ∈ (S′VI

′
)ω be an input sequence andσ = s0s1s2 · · · ∈ (SV)ω

be theF-run induced byρ̄. By definition of ρ̄, we haveσ ,ε |= Gξ and sinceF is a
distributed implementation ofψ we getσ ,ε |= ψ . Again, ψ ∈ LTL(V ′) implies that
σV′ ,ε |= ψ . Given thatσV′ is in fact theF ′-run induced byρ (this is immediate from
the definition off ′xn and f ′ym), F ′ is a distributed implementation ofψ overA ′.

We have defined a reduction from the distributed synthesis problem over the archi-
tectureA ′ to the distributed synthesis problem over an architecture with incomparable
information, for LTL or CTL specifications. Since the synthesis problem is undecid-
able both for LTL and CTL specifications overA ′, we obtain its undecidability for
architectures with incomparable information.

4 Uniformly well-connected architectures

This section introduces the new class of uniformly well-connected (UWC) architectures
and provides a decidability criterion for the synthesis problem on this class. It also
introduces the notion ofrobust specification and shows that UWC architectures are
always decidable for external and robust specifications.
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Fig. 5.A uniformly well-connected architecture

4.1 Definition

A routing for an architectureA = (V ⊎P,E,(Sv)v∈V ,s0,(dp)p∈P) is a family ofmemo-
rylesslocal strategiesΦ = ( f v)v∈V\(VI∪VO). Observe that a routing does not include local
strategies for output variables. Informally, we say that anarchitecture is uniformly well
connected if there exists a routingΦ that makes it possible to transmit with a minimal
delay to every processp writing to an output variablev, all the values of the variables
in View(v).

Definition 6. An architectureA is uniformly well-connected(UWC) if there exist a
routingΦ and, for every v∈VO and u∈ View(v), a decoding function gu,v :

(

SR(v)
)+
→

Su that can reconstruct the value of u, i.e., such that for anyΦ-compatible sequence
σ = s0s1s2 · · · ∈

(

SV\VO
)+

, we have for i≥ 0

su
i = gu,v(σR(v)[i +d(u,v)−dv]) (2)

In case there is no delay, the uniform well-connectedness refines the notion of ad-
equate connectivity introduced by Pnueli and Rosner in [24], as we no longer require
each output variable to be communicated the value ofall input variables, but only of
those belonging to its view. In fact, this gives us strategies for internal variables, that
are simply to route the input to the processes writing on output variables.

Observe that, whereas the routing functions are memoryless, memory is required
for the decoding functions. Indeed, consider the architecture of Figure 5. The delays are
written next to the processes, and all variables range over the domain{0,1}. Observe
first that this architecture is UWC: processp writes tot the xor ofu1 andu2 with delay 1.
This could be writtent = Yu1⊕Yu2 whereYx denotes the previous value of variable
x. In order to recover (decode)Yu2, processq1 memorizes the previous value ofu1

and makes the xor witht: Yu2 = t ⊕Yu1. But if we restrict to memoryless decoding
functions, then we only knowu1 andt and we cannot recoverYu2.

4.2 Decision criterion for UWC architectures

We first show that distributed programs are somewhat easier to find in a UWC architec-
ture. As a matter of fact, in such architectures, to define a distributed strategy it suffices



to define a collection of input-output strategies that respect the delays given by the ar-
chitecture.

Lemma 7. Let A = (V ⊎P,E,(Sv)v∈V ,s0,(dp)p∈P) be a UWC architecture. For each
v ∈ VO, let hv : (SView(v))+ → Sv be an input-output mapping which is d-compatible.
Then there exists a distributed program F= ( f v)v∈V\VI

overA such that hv = f̂ v for
all v ∈VO.

Proof. Let Φ = ( f v)v∈V\(VI∪VO) and(gu,v)v∈VO,u∈View(v) be respectively the routing and
the decoding functions giving the uniform well-connectedness of the architectureA .
We use the routing functionsf v as memoryless strategies for the internal variablesv∈
V \ (VI ∪VO). It remains to definef v for v∈ VO. Let ρ ∈ (SVI )i for i > 0 and letσ ∈
(SV\VO)i be the correspondingΦ-compatible sequence. Forv∈ VO, we want to define
f v such thatf v(σR(v)) = hv(ρView(v)). We need to verify that this is well-defined.

Let i > 0 andρ ,ρ ′ ∈ (SVI )i . Letσ ,σ ′ ∈ (SV\VO)i be the correspondingΦ-compatible
sequences, and assumeσR(v)[i−dv] = σ ′R(v)[i−dv]. Then, for allu∈ View(v), ρu[i−
d(u,v)] = ρ ′u[i−d(u,v)]. Indeed, for all 0≤ j ≤ i−d(u,v), we havesu

j = gu,v(σR(v)[ j +

d(u,v)−dv]) ands′uj = gu,v(σ ′R(v)[ j +d(u,v)−dv]) by (2). UsingσR(v)[i−dv] = σ ′R(v)[i−
dv] and j +d(u,v) ≤ i we getsu

j = s′uj as desired. Sincehv is d-compatible, we deduce

thathv(ρView(v)) = hv(ρ ′View(v)).
Hence forτ ∈ (SR(v))i with i > 0, we can define

f v(τ) =











hv(σView(v)) if τ[i−dv] = σR(v)[i−dv] for some

Φ-compatible sequenceσ
0 otherwise

By the above,f v is well-defined and obviously it depends only onτ[i−dv]. Thus, it is
indeedd-compatible. Now, letρ ∈ (SVI )+, and letσ be theF-run induced byρ . We
get, by definition of summaries,̂f v(ρView(v)) = f v(σR(v)). SinceσV\VO is also aΦ-
compatible sequence forρ , we havef̂ v(ρView(v)) = f v(σR(v)) = hv(ρView(v)). ⊓⊔

We now give a decision criterion for this specific subclass ofarchitectures.

Theorem 8. A UWC architecture is decidable for external (linear or branching) spec-
ifications if and only if it has linearly preordered information.

We have already seen in Section 3 that incomparable information yields undecid-
ability of the synthesis problem for LTL or CTL external specifications. We prove now
that, when restricted to the subclass of UWC architectures,this also becomes a neces-
sary condition.

We assume that the architectureA is UWC and has linearly preordered information,
and therefore we can order the output variablesVO = {v1, . . . ,vn} so that View(vn) ⊆
·· · ⊆ View(v1)⊆VI .

In the following, in order to use tree-automata, we extend a local strategyf : (SX)+→
SY by letting f (ε) = sY

0 , so that it becomes an(SX,SY)-tree. We proceed in two steps.
First, we build an automaton accepting all theglobal input-output 0-delaystrategies



implementing the specification. A global input-output 0-delay strategy forA is an
(SView(v1),SVO)-treeh satisfyingh(ε) = sVO

0 . This first step is simply the program synthe-
sis for a single process with incomplete information (sincewe may have View(v1) (VI).
This problem was solved in [13] for CTL∗ specifications.

Proposition 9 ([13, Th. 4.4]).Given an external specificationϕ ∈ CTL∗(VI ∪VO), one
can build a non-deterministic tree automaton (NDTA)A1 over(SView(v1),SVO)-trees such
that h∈L (A1) if and only if the run tree induced by h satisfiesϕ .

If L (A1) is empty then we already know that there are no distributed implementa-
tions for the specificationϕ overA . Otherwise, thanks to Lemma 7, we have to check
whether for eachv∈VO there exists an(SView(v),Sv)-treehv which isd-compatible and
such that the global strategy

⊕

v∈VO
hv induced by the collection(hv)v∈VO is accepted

by A1. Formally, thesumof strategies is defined as follows. LetX = X1∪X2 ⊆VI and
Y = Y1⊎Y2⊆VO, and fori = 1,2 lethi be an(SXi ,SYi )-tree. We define the(SX,SY)-tree
h = h1⊕h2 by h(σ) = (h1(σX1),h2(σX2)) for σ ∈ (SX)∗.

To check the existence of such trees(hv)v∈VO, we will inductively eliminate the
output variables following the orderv1, . . . ,vn. It is important that we start with the
variable thatviewsthe largest set of input variables, even though, due to the delays, it
might get the information much later than the remaining variables. LetVk = {vk, . . . ,vn}
for k≥ 1. The induction step relies on the following statement.

Proposition 10. Let 1≤ k < n. Given a NDTAAk accepting(SView(vk),SVk)-trees, one
can build a NDTAAk+1 accepting(SView(vk+1),SVk+1)-trees, such that a tree t is accepted
byAk+1 if and only if there exists an(SView(vk),Svk)-tree hvk which is d-compatible and
such that hvk⊕ t is accepted byAk.

The proof of Proposition 10 is split in two steps. SinceVk = {vk}⊎Vk+1, we have
t = tvk⊕tVk+1 for each(SView(vk),SVk)-treet (recall thattU is the projection oft onU). So
one can first transform the automatonAk into A

′
k that accepts the treest ∈L (Ak) such

thattvk is d-compatible (Lemma 11). Then, one can build an automaton that restricts the
domain of the directions and the labeling of the accepted trees toSView(vk+1) andSVk+1

respectively.

Lemma 11. Let v∈U ⊆VO. Given a NDTAA over(SView(v),SU)-trees one can build a
NDTAA

′ = compatv(A) also over(SView(v),SU)-trees such thatL (A′) = {t ∈L (A) |
tv is d-compatible}.

Proof. Intuitively, to make sure that the functiontv is d-compatible, the automatonA′

will guess in advance the values oftv and then check that its guess is correct. The guess
has to be madeK = max{d(u,v),u ∈ View(v)} steps in advance and consists in ad-
compatible functiong : (SView(v))K → Sv that predicts what will beK steps later the
values of variablev. During a transition, the guess is sent in each directionr ∈ SView(v)

as a functionr−1g defined by(r−1g)(σ) = g(rσ) which is stored in the state of the
automaton. Previous guesses are refined similarly and are also stored in the state of
the automaton so that the new set of states isQ′ = Q×F whereF is the set ofd-
compatiblefunctions f : (SView(v))<K → Sv, whereZ<K =

⋃

i<K Zi . The valuef (ε) is



the guess that was madeK steps earlier and has to be checked against the current value
of v in the tree.

To formalize this, we define the (transition) function∆ : F ×SView(v)→ 2F by

∆( f , r) = { f ′ | f ′(σ) = f (rσ) for |σ |< K−1} .

Intuitively, if we are in state(q, f ) ∈ Q×F at some nodeτ and move in direction
r ∈ SView(v) then∆( f , r) computes the set of functions inF that could label the node
τ · r. Observe thatf ′ is determined byf and r for any σ such that|σ | < K− 1 and
corresponds to the specialization off according to the new directionr. The functions
f ′ ∈ ∆( f , r) differ only on valuesf ′(σ) for |σ | = K−1 which correspond to the new
guesses.

Now, the transition function ofA′ is defined for(q, f ) ∈ Q′ and s∈ SU only if
sv = f (ε) (this ensures that the guess madeK steps earlier was correct) and sends in
each directionr ∈ SView(v) of the tree a copy of the automaton in the state (qr ,gr ) where
qr corresponds to the simulation of a run ofA andgr ∈ ∆( f , r). Formally, ifsv = f (ε)
then

δ ′
(

(q, f ),s
)

=

{

(qr ,gr)r∈SView(v)

∣

∣

∣

(qr)r∈SView(v) ∈ δ (q,s) and
gr ∈ ∆( f , r) for all r ∈ SView(v)

}

.

Finally, the set of initial states ofA′ is I ′ = {q0}×F and α ′ = π−1(α) whereπ :
(Q×F )ω → Qω is the projection onQ, i.e., a run ofA′ is successful if and only if its
projection onQ is a successful run ofA.

Let t be an(SView(v),SU)-tree accepted byA and suppose thattv is d-compatible.
Let ρ : (SView(v))∗→Q be an accepting run ofA overt. There is a unique way to extend
ρ to a runρ ′ : (SView(v))∗ → Q×F of A′ over t. The only possibility is to label a
nodeτ ∈ (SView(v))∗ by the mapfτ : (SView(v))<K → Sv defined byfτ (σ) = tv(τσ) for
σ ∈ (SView(v))<K so that all guesses are correct. Sincetv is d-compatible, we deduce
that fτ is alsod-compatible, hence it belongs toF . Then we can define the runρ ′
by ρ ′(τ) =

(

ρ(τ), fτ
)

for τ ∈ (SView(v))∗. We show that it is an accepting run ofA ′

over t. First, we prove that at each nodeτ ∈ (SView(v))∗ the transition functionδ ′ is
satisfied. Let(q, fτ ) = ρ ′(τ) and(qr , fτr) = ρ ′(τr) for all r ∈ SView(v). By definition,
fτ (ε) = tv(τ) andδ ′((qr , fτr),t(τ)) is defined. Now, sinceπ(ρ ′) = ρ which is a run of
A over t we have(qr)r∈SView(v) ∈ δ (q,t(τ)). It remains to show thatfτr ∈ ∆( fτ , r) for
all r ∈ SView(v). This is obvious from the definitions:fτr(σ) = tv(τrσ) = fτ(rσ) for
σ ∈ (SView(v))<K−1. Finally, the runρ ′ is successful since its projection onQ is ρ which
is successful.

Conversely, suppose there is a successful runρ ′ of A′ overt. We need to show that
tv is d-compatible and thatt ∈L (A). Let ρ ′ :

(

SView(v)
)∗
→Q×F be such a run. We

haveρ ′ = (ρ ,H) with ρ :
(

SView(v)
)∗
→ Q andH : (SView(v))∗ →F . By definition of

δ ′, we immediately get thatρ is a run ofA, which is successful sinceρ ′ is successful.
It remains to prove thattv is d-compatible. Sinceρ ′ is a run and the transition func-

tion δ ′ is only defined on((q, f ),s) whensv = f (ε), we deduce thattv(τ) = H(τ)(ε) for
all τ ∈ (SView(v))∗. Hence, we need to show that the mapτ 7→H(τ)(ε) is d-compatible.

Letτ,τ ′ ∈ (SView(v))i be such thatτu[i−d(u,v)] = τ ′u[i−d(u,v)] for all u∈View(v).
We have to showH(τ)(ε) = H(τ ′)(ε).



If |τ| = |τ ′| > K then we show thatτ, τ ′ necessarily share a common prefix. More
precisely, sinceK ≥ d(u,v) for all u ∈ View(v), we deduce from the equalitiesτu[i−
d(u,v)] = τ ′u[i− d(u,v)] for all u ∈ View(v) that τ = τ1τ2, andτ ′ = τ1τ ′2 with |τ2| =
|τ ′2| = K andτu

2 [K− d(u,v)] = τ ′u2 [K− d(u,v)] for all u ∈ View(v). We can show, by
successive applications of the transition functionδ ′ and by definition of∆ , that the value
of H(τ1τ2)(ε) is indeed the guess made at nodeτ1 for the direction defined byτ2, i.e.,
H(τ1τ2)(ε) = H(τ1)(τ2). Similarly, we obtainH(τ1τ ′2)(ε) = H(τ1)(τ ′2). SinceH(τ1) ∈
F , it is d-compatible. Usingτu

2 [K−d(u,v)] = τ ′u2 [K−d(u,v)] for all u∈ View(v), we
deduceH(τ1)(τ2) = H(τ1)(τ ′2). Therefore,H(τ)(ε) = H(τ ′)(ε).

If |τ|< K, then we obtain similarly thatH(τ)(ε) = H(ε)(τ) = H(ε)(τ ′) = H(τ ′)(ε)
sinceH(ε) ∈F is d-compatible. ⊓⊔

Proof (of Proposition 10).We consider the NDTA compatvk
(Ak). It remains to project

away theSvk component of the label and to make sure that theSVk+1 component of the la-
bel only depends on theSView(vk+1) component of the input. The first part is the classical
projection onSVk+1 of the automaton and the second part is thenarrowingconstruction
introduced in [13]. The automatonAk+1 fulfilling the requirements of Proposition 10 is
therefore given by narrowView(vk+1)

(projVk+1
(compatvk

(Ak))). Note that, even when ap-
plied to a NDTA, the narrowing construction of [13] yields analternatingtree automa-
ton. Here we assume that the narrowing operation returns a NDTA using a classical
transformation of alternating tree automata into NDTA [20]. The drawback is that this
involves an exponential blow up. Unfortunately, this is needed since Lemma 11 requires
a NDTA as input. ⊓⊔

We can now conclude the proof of Theorem 8. Using Proposition10 inductively
starting from the NDTAA1 of Proposition 9, we obtain a NDTAAn accepting an
(SView(vn),Svn)-treehvn if and only if for each 1≤ i < n, there exists an(SView(vi),Svi )-
treehvi which isd-compatible and such thathv1⊕·· ·⊕hvn is accepted byA1. Therefore,
using Lemma 7, there is a distributed implementation for thespecification overA if and
only if L (compatvn

(An)) is nonempty. The overall procedure is non-elementary due to
the exponential blow-up of the inductive step in Proposition 10. We do not know for
now the lower bound of the complexity of this problem. ⊓⊔

4.3 Decidability for UWC architectures and robust specifications

We now show that we can obtain decidability of the synthesis problem for the whole
subclass of UWC architectures by restricting ourselves to specifications that only relate
output variables to their own view.

Definition 12. A specificationϕ ∈L with L ∈ {LTL,CTL,CTL∗} is robustif it is a
(finite) disjunction of formulas of the form

∧

v∈VO
ϕv whereϕv∈L (View(v)∪{v}). Note

that a robust formula is always external.

Proposition 13. The synthesis problem for robust CTL∗ specifications is decidable over
UWC architectures.



Proof. Let A = (V ⊎P,E,(Su)u∈V ,s0,(dp)p∈P) be a UWC architecture andϕ be a ro-
bust CTL∗ specification. Without loss of generality, we may assume that ϕ =

∧

v∈VO
ϕv

whereϕv ∈ CTL∗(View(v) ∪ {v}). Using Proposition 9, for eachv ∈ VO we find a
NDTA Av accepting a strategyh : (SView(v))∗ → Sv if and only if the induced run tree
t : (SView(v))∗→ SView(v)∪{v} satisfiesϕv. The proposition then follows from the

Claim. There exists a distributed implementation ofϕ overA if and only if for each
v∈VO, the automaton compatv(Av) is nonempty.

First, letF be a distributed implementation ofϕ overA and lett : (SVI )∗→ SV be
the induced run-tree. Fix somev∈VO. The mapf̂ v : (SView(v))∗→ Sv is d-compatible.
Let t ′ : (SView(v))∗ → SView(v)∪{v} be the run-tree induced bŷf v. For eachσ ∈ (SVI )∗

we havet(σ)View(v)∪{v} = t ′(σView(v)). SinceF implementsϕ , we havet |= ϕ and
then t |= ϕv. We can prove by structural induction on the formula that forany ψ ∈
CTL∗(View(v)∪{v}), any branchσ ∈ (SVI )ω and any positioni we havet,σ , i |= ψ if
and only ift ′,σView(v), i |= ψ . Sinceϕv∈CTL∗(View(v)∪{v}), we deduce thatt ′ |= ϕv.
Therefore,f̂ v is accepted byAv and also by compatv(Av).

Conversely, for eachv ∈ VO, let hv : (SView(v))∗ → Sv be a strategy accepted by
the automaton compatv(Av). By Lemma 11,hv is d-compatible. Lettv : (SView(v))∗ →
SView(v)∪{v} be the run-tree induced byhv. We havetv |= ϕv by definition ofAv and
Proposition 9. Now, using Lemma 7 we find a distributed program F = ( f v)v∈V\VI

such
that f̂ v = hv for eachv ∈ VO. Let t : (SVI )∗ → VVI∪VO be the run-tree induced byF .
For eachσ ∈ (SVI)∗ we havet(σ)View(v)∪{v} = tv(σView(v)) and we obtain as above that
t |= ϕv. Therefore,t |= ϕ andF implementsϕ onA . ⊓⊔

5 Well-connected architectures

It is natural to ask whether the decision criterion for UWC architectures can be extended
to a larger class. In this section, we relax the property of uniform well-connectedness
and show that, in that case, linearly preordered information is not anymore a sufficient
condition for decidability.

Definition 14. An architecture is said to bewell-connected, if for each output variable
v∈VO, the sub-architecture consisting of(E−1)∗(v) is uniformly well-connected.

Intuitively this means that for each output variablev there is a routing making it
possible to transmit the values of the input variables in View(v) to the process that writes
on v, but such a routing may vary from one output variable to another, in contrast with
the case of UWC architectures, where a single routing is usedfor all output variables.
For instance, the architecture of Figure 2 is well-connected. Indeed, to transmit the
values ofu andv to zi j , it is enough to writeu on zi andv on zj . Note that this does
not give a uniform routing. Actually, the architecture of Figure 2 is not UWC assuming
that variables values range over{0,1} (as shown by Proposition 16 below). Hence, the
subclass of UWC architectures is strictly contained in the subclass of well-connected
architectures.

In the proof of Proposition 16, we use the following lemma, established in [25] for
solving the network information flow problem introduced in [2].



We say that two functionsf andg from S2 to Sareindependentif ( f ,g) : S2→ S2

is invertible.

Lemma 15 ([25, Lemma 3.1]).If f 1, . . . , f n are pairwise independent functions from
S2 to S then n≤ |S|+1.

This lemma asserts that over a small alphabet, one cannot build a large set of pair-
wise independent functions. In our setting, it implies the following result:

Proposition 16. Assuming that all variables are Boolean, the architecture of Figure 2
is well-connected but not uniformly well-connected.

Proof. It is easy to see that the architectureA of Figure 2 is well-connected. However,
it is not uniformly well-connected. Indeed, suppose it is. Then there exist a routing
Φ = ( f z1, f z2, f z3, f z4) consisting of four memoryless strategies, and for allv∈ VO, a
decoding functiongv : {0,1}2→{0,1}2. Therefore, uniform well-connectedness ofA

implies that every pair( f zi , f zj ) is invertible, usinggzi j as inverse. This is in contra-
diction with Lemma 15, which implies that for Boolean variables, there are at most
three pairwise independent functions. Hence the architecture is not uniformly well-
connected. ⊓⊔

Interestingly enough, the size of the alphabet has an influence on the possibility to
have auniform routing and Lemma 15 helps to understand why. In our setting,this
means that by enlarging the domains of internal variables, we may obtain uniform well-
connectedness from a well-connected architecture.

The following theorem asserts that, unfortunately, the decision criterion cannot be
extended to well-connected architectures.

Theorem 17. The synthesis problem for LTL specifications and well-connected archi-
tectures with linearly preordered information is undecidable.

Let A be the architecture of Figure 6, in which all the delays are set to 0, and
which is clearly well-connected and linearly preordered. To show its undecidability, fix
a deterministic Turing machineM with tape alphabetΓ and state setQ. We reduce
the non halting problem ofM starting from the empty tape to the distributed imple-
mentability of an LTL specification overA . Let Sz = {0,1} for z∈ V \ {x,y} and
Sx = Sy = Γ ⊎Q⊎ {#} where # is a new symbol. As usual, the configuration ofM
defined by stateq and tape contentγ1γ2, where the head scans the first symbol ofγ2,
is encoded by the wordγ1qγ2 ∈ Γ ∗QΓ + (we require thatγ2 6= ε for technical reasons,
including in it some blank symbols if necessary). An input word u∈ 0∗1p0{0,1}ω en-
codes the integern(u) = p and similarly forv. We construct an LTL specificationϕM

forcing any distributed implementation to output on variable x the n(u)-th configura-
tion of M starting from the empty tape. Processesp0 and p6 play the role of the two
processes of the undecidable architecture of Pnueli and Rosner (A ′ in Figure 3). The
difficulty is to ensure that processp6 cannot receive relevant information aboutu.

The specificationϕM = α ∧ β ∧ γM ∧ δ ∧ψM is a conjunction of five properties
described below that can all be expressed in LTL(VI ∪VO).
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Fig. 6. Undecidable, well-connected and linearly preordered architecture

1. The processespi for 1≤ i ≤ 5 have to output the current values of(u,w) on(ui ,wi)
until (including) the first 1 occurs onw. Afterwards, they are unconstrained. Process
p6 must always output the value ofw onw6. Moreover, after the first 1 onw, it also
has to output the current value ofu on u6. Formally, this is defined by the LTL
formulaα:

α def
= G(w6 = w)∧

[

(

(w = 0)∧α ′
)

W
(

(w = 1)∧α ′∧XG(u6 = u)
)

]

, where

α ′ def
=

∧

1≤k≤5

(uk = u)∧ (wk = w)

2. If the input word onu (resp.v) is in 0q1p0{0,1}ω, then the corresponding output
wordx (resp.y) is in #q+pΓ ∗QΓ +#ω .
This is expressed byβ = βu,x∧βv,y, where

βz,t
def
= ((z= 0)∧ (t = #))W

(

(z= 1)∧
(

((z= 1)∧ (t = #))W ((z= 0)∧ (t ∈ Γ ∗QΓ +#ω))
)

)

where

(t ∈ Γ ∗QΓ +#ω)
def
= (t ∈ Γ )U ((t ∈Q)∧X(t ∈ Γ )U ((t ∈ Γ )∧XG(t = #)))

3. We next express with a formulaγM that if n(u) = 1 thenx has to output the first
configurationC1 of M starting from the empty tape. That is, if the input is in
0q10{0,1}ω, then the corresponding output is #q+1C1#ω . The LTL formula is

γM
def
= (u = 0)W ((u = 1)∧X((u = 0)→ (x∈ C1#ω)))

where(x∈ C1#ω) can be expressed easily.
4. We say that the input words aresynchronizedeither if u,v∈ 0q1p0{0,1}ω or else

if u∈ 0q1p+10{0,1}ω andv∈ 0q+11p0{0,1}ω. We use a formulaδ to express the



fact that ifu andv are synchronized andn(u) = n(v), then the outputs onx andy
are equal. We first define the LTL formula

(n(u) = n(v))
def
= (u = v = 0)U ((u = v = 1)∧ (u = v = 1)U (u = v = 0))

to express the fact that the input wordsu andv are synchronized andn(u) = n(v).
Then the formulaδ is defined by:

δ def
= (n(u) = n(v))→ G(x = y)

5. Finally, one can express with an LTL formulaψM that if the input words are syn-
chronized andn(u) = n(v)+ 1 then the configuration encoded onx is obtained by
a computation step ofM from the configuration encoded ony. We use the LTL
formula(n(u) = n(v)+1) defined by

(u = v = 0)U

(

(u = 1)∧ (v= 0)∧X((u = v = 1)∧ (u = v = 1)U (u = v = 0))
)

to express the fact thatu andv are synchronized andn(u) = n(v)+1. The formula
ψM is defined by

ψM = (n(u) = n(v)+1)→
(

(x = y)U
(

Trans(y,x)∧X
3
G(x = y)

)

)

where Trans(y,x) expresses the fact that the factor of length 3 ofx is obtained from
the one ofy by a transition of the Turing machineM. We have

Trans(y,x) =
∨

(p,a,q,b,←)∈T,c∈Γ
(y = cpa)∧ (x= qcb)

∨
∨

(p,a,q,b,→)∈T,c∈Γ
(y = pac)∧ (x= bqc)

∨
∨

(p,a,q,b,→)∈T

(y = pa#)∧ (x = bq�)

Here(x = abc) is an abbreviation for(x = a)∧X(x = b)∧X
2(x = c). Furthermore,

� is the blank symbol of the tape andT is the set of transitions ofM (the transition
(p,a,q,b,dir), taken whenM is in statep and scans symbola, switches the state to
q, writes symbolb and moves the head according to the directiondir ∈ {←,→}).

We first show that there exists a distributed implementationof ϕM overA . Let⊕ be
the addition modulo 2 (XOR). Processp0 forwardsu to z0. Processq forwardsu to z1,
u⊕w to z2 andw to z3. The strategy forz4 is not memoryless. Processq forwardsw to z4

until (including) the first 1 onw and then it forwardsu⊕w to z4. Formally, f z4(u,0qb)=
b and f z4(ua,0q1wb) = a⊕b. We also use memoryless strategies for the processespi so
thatα is satisfied. For instance, the strategy forp1 is f 1(b1,b2) = (b1,b1⊕b2) and the
strategy forp6 (y excluded) isf 6(b3,b4) = (b3⊕b4,b3). It is easy to see that with these
strategies, the first propertyα of the specification is satisfied. Note that, until the first 1
onw, p6 outputs 0 onu6, and after this first 1,p5 cannot decodeu andw anymore.

The strategyf x (respectivelyf y) is to output thep-th configuration ofM starting
from the empty tape whenu (respectivelyv) encodesp. Then, the rest of the specifica-
tion, β ∧ γM ∧δ ∧ψM, is satisfied.



Remark 18.Actually, one can define another distributed implementation by changing
only the strategyf z4: at each step, processq transmits top6 the value ofu at the pre-
ceding stepas the mod 2 difference betweenz3 andz4, until the first 1 occurs onw.
Formally, f z4(a,b) = b, f z4(u · a1 · a2,0qb) = a1⊕ b and f z4(ua,0q1wb) = a⊕b. We
also adapt the strategies ofp1, . . . , p6 so thatα is satisfied. Note that these strategies
are no longer memoryless, they have to remember the last bit if u. By XORing its two
arguments, processp6 can then recover the whole history ofu, except the bit occurring
simultaneously with the first 1 ofw. Hence, we are almost in the situation of the de-
cidable architecture of Figure 1, but surprisingly,missing only one bit of information
suffices to yield undecidability.

Let nowF = ( f v)v∈V\VI
be a distributed implementation ofϕM on the architecture

A of Figure 6. We prove thatf x must simulate the computation ofM starting from the
empty tape.

Step 1: relating the strategies forz3 and z4.

Lemma 19. Let g1,g2,g3 : {0,1}2→ {0,1} be pairwise independent functions. Then,
there existsε ∈ {0,1} such that for all a,b∈ {0,1}:

g3(a,b) = ε⊕g1(a,b)⊕g2(a,b)

Proof. We first note that each functiongk is two to one, i.e.,|g−1
k (c)|= 2 for c∈ {0,1}.

Indeed, if this is not the case then we have for instance|g−1
k (0)| ≥ 3 and the map(gk,gℓ)

for ℓ 6= k cannot be injective.
For the same reason, ifgk(a,b) = gk(a′,b′), thengℓ(a,b) 6= gℓ(a′,b′). Therefore,

permuting indices if necessary, we may assume thatg1(0,0) = g1(0,1), g2(0,0) =
g2(1,0) andg3(0,0) = g3(1,1), so that eachgk is completely determined by its value
on (0,0). A simple computation then shows thatg1⊕g2⊕g3 is constant. For instance,
we have(g1⊕g2⊕g3)(1,0) = (¬g1⊕g2⊕¬g3)(0,0) = (g1⊕g2⊕g3)(0,0). ⊓⊔

Applying Lemma 19 both to( f̂ z1, f̂ z2, f̂ z3) and( f̂ z1, f̂ z2, f̂ z4) after an input(0q,0q)
on (u,w), we get:

Corollary 20. For all q≥ 0, there existsε ∈ {0,1} such that

∀a,b∈ {0,1}, f̂ z3(0qa,0qb) = ε⊕ f̂ z4(0qa,0qb).

Proof. Fix q≥ 0. Let gi : {0,1}2→ {0,1} be defined bygi(a,b) = f̂ zi (0qa,0qb). The
conjunctα of the specificationϕM imposes top1, p2 andp4 to output the current value
of (u,w), hence they must distinguish the four possible values of(u,w). Therefore,g1,
g2 andg3 are pairwise independent. Applying Lemma 19, we obtainε3 ∈ {0,1} such
thatg3(a,b)= ε3⊕g1(a,b)⊕g2(a,b) for all (a,b)∈ {0,1}2. Similarly, considering out-
puts of processesp1, p3, p5, we deduce thatg1,g2 andg4 are also pairwise independent
and thatg4(a,b) = ε4⊕g1(a,b)⊕g2(a,b).

Therefore, for all(a,b) ∈ {0,1}2, we haveg3(a,b)⊕g4(a,b) = ε3⊕ ε4 = ε and we
obtain f̂ z3(0qa,0qb) = ε⊕ f̂ z4(0qa,0qb) as desired. ⊓⊔



Step 2: masking one bit ofu to p6.
Let q≥ 0. Foru = 0q1u′, we defineu0 = 0q0u′. Observe that ifu∈ 0q1p+10{0,1}ω

encodesp+ 1 > 1 thenu0 ∈ 0q+11p0{0,1}ω encodesp. The next lemma states that
strategiesf z3 (resp. f z4) must output the same sequence foru andu0 if the input word
w is suitable, so thatp6 cannot distinguish between encodings ofp andp+1 on input
variableu.

Lemma 21. Let u,w∈ 0q1{0,1}ω. For k∈ {3,4}, we have for all n> 0:

f̂ zk(u0[n],w[n]) = f̂ zk(u[n],w[n]). (3)

Proof. By induction onn. If n≤ q, thenu0[n] = u[n] so (3) trivially holds.
Next, assumen= q+1, sou0[n] = 0q0 andu[n] = 0q1= w[n]. Assumef̂ z3(0q0,0q0)=

f̂ z3(0q0,0q1) then we havêf z4(0q0,0q0) = f̂ z4(0q0,0q1) by Corollary 20. Fixing some
v ∈ {0,1}n, we deduce that processp6 has observed exactly the same history on the
input triples(0q0,0q0,v) and(0q0,0q1,v), therefore it would write at stepn the same
value onw6, a contradiction with requirementα. Therefore,f̂ z3(0q0,0q0) 6= f̂ z3(0q0,0q1).
Similarly, f̂ z3(0q0,0q0) 6= f̂ z3(0q1,0q1). Since the map̂f z3 may only take two values,
we get f̂ z3(0q0,0q1) = f̂ z3(0q1,0q1). Applying again Corollary 20, we deduce that
f̂ z4(0q0,0q1) = f̂ z4(0q1,0q1) and (3) is proved forn = q+1.

Finally, assume thatn > q+1. By induction hypothesis, fork∈ {3,4} and alli < n,
we have f̂ zk(u0[i],w[i]) = f̂ zk(u[i],w[i]). Therefore, the historyz3[n− 1] andz4[n−1]
is the same on the inputs(u,w) and(u0,w). Fixing somev∈ {0,1}n, we deduce that
processp6 has observed exactly the same history on the input triples(u0[n−1],w[n−
1],v[n−1]) and(u[n−1],w[n−1],v[n−1]).

Consider now the 3 mappings from{0,1}2 to {0,1}2 defined by

h(c,d) = ( f u6, f w6)(z3[n−1]c,z4[n−1]d,v)

h1(a,b) = ( f̂ z3, f̂ z4)(u[n−1]a,w[n−1]b)

h0(a,b) = ( f̂ z3, f̂ z4)(u0[n−1]a,w[n−1]b)

We deduce from the requirementα thath is an inverse ofh1 and also an inverse ofh0.
Therefore,h0 = h1 and we obtainf̂ zk(u0[n],w[n]) = f̂ zk(u[n],w[n]) for k ∈ {3,4}, as
required. ⊓⊔

Step 3: enforcing output of then(u)-th configuration of M on x.

Lemma 22. If x is computed by fx from the input word u then for all p> 0 we have

∀q≥ 0, u∈ 0q1p0{0,1}ω =⇒ x = #p+q
Cp#ω (4)

whereCp is the p-th configuration reached by M starting from the emptytape.

Proof. The proof is by induction onp. The casep = 1 follows from the specification
γM. Let now p > 1 and assume thatu ∈ 0q1p+10{0,1}ω. Let v = 0q+11p0ω andw =
0q1ω . By induction, foru0 ∈ 0q+11p0{0,1}ω the output isx = #q+1+pCp#ω . Usingδ ,
we deduce that on the input triple(u0,w,v) the output isy = x = #q+1+pCp#ω . Now,



by Lemma 21, on the input pairs(u0,w) and(u,w), the outputs onz3 andz4 are the
same. Hence, on the input triples(u0,w,v) and(u,w,v) the outputs ony must bey =
#q+1+pCp#ω by the above. UsingψM, we deduce that on the input triple(u,w,v) the
output onx must bex = #q+1+pCp+1#ω . This concludes the proof sincex only depends
onu. ⊓⊔

By masking one bit ofu to p6, we cause uncertainty with respect to the value of
n(u), preventing this process to “cheat”. In turn, processp0, which has no information
about the other input values, only knows thatp6 is not always able to cheat, and has
then to always output the correct Turing machine configuration.

Proof (of Theorem 17).Starting from a Turing machineM, we have shown that any
distributed implementation of the specificationϕM is forced to output onx then(u)-th
configuration ofM. Therefore, there is a distributed implementation on this architecture
for the formulaϕM ∧G(x 6= halt) if and only if M does not halt starting from the empty
tape. We have thus reduced the non halting problem of a Turingmachine on the empty
tape to the LTL distributed synthesis problem over a well-connected architecture with
linearly preordered information, proving that this latterproblem is undecidable (more
precisely not co-RE). ⊓⊔

6 Conclusion

In this paper, we have shown that every decidable architecture must have linearly pre-
ordered information, and that this condition is sufficient for deciding external specifica-
tions on UWC architectures. On the other hand, we have exhibited a well-connected ar-
chitecture with linearly preordered information, yet undecidable for external LTL spec-
ifications, by simulating the loss of a single information bit on the UWC architecture of
Figure 1.

Finally, we have shown that all UWC architectures are decidable for robustspeci-
fications, i.e., specifications constraining external variables which are causally related
by a communication path. A challenging problem is to find whether this still holds for
well-connected architectures.
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